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A key question for understanding the cross-section of expected returns of equities is the following:
which factors, from a given collection of factors, are risk factors, equivalently, which factors are in the
stochastic discount factor (SDF)? Though the SDF is unobserved, assumptions about which factors (from
the available set of factors) are in the SDF restricts the joint distribution of factors in specific ways, as
a consequence of the economic theory of asset pricing. A different starting collection of factors that go
into the SDF leads to a different set of restrictions on the joint distribution of factors. The conditional
distribution of equity returns has the same restricted form, regardless of what is assumed about the factors
in the SDF, as long as the factors are traded, and hence the distribution of asset returns is irrelevant
for isolating the risk-factors. The restricted factors models are distinct (nonnested) and do not arise by
omitting or including a variable from a full model, thus precluding analysis by standard statistical variable
selection methods, such as those based on the lasso and its variants. Instead, we develop what we call a
Bayesian model scan strategy in which each factor is allowed to enter or not enter the SDF and the resulting
restricted models (of which there are 114,674 in our empirical study) are simultaneously confronted
with the data. We use a Student-t distribution for the factors, and model-specific independent Student-
t distribution for the location parameters, a training sample to fix prior locations, and a creative way to
arrive at the joint distribution of several other model-specific parameters from a single prior distribution.
This allows our method to be essentially a scaleable and tuned-black-box method that can be applied
across our large model space with little to no user-intervention. The model marginal likelihoods, and
implied posterior model probabilities, are compared with the prior probability of 1/114,674 of each model
to find the best-supported model, and thus the factors most likely to be in the SDF. We provide detailed
simulation evidence about the high finite-sample accuracy of the method. Our empirical study with 13
leading factors reveals that the highest marginal likelihood model is a Student-t distributed factor model
with 5 degrees of freedom and 8 risk factors.

KEY WORDS: Bayes inference; Marginal likelihood; MCMC sampling; Metropolis–Hastings; Pricing
kernel; Stochastic discount factor.

1. INTRODUCTION

A fundamental goal of theoretical and empirical finance is to
explain and measure the risk premium (the difference between
the expected return of the asset and the risk-free return) for
the cross-section of assets in financial markets. According to
the factor theory of asset pricing, financial assets earn a risk-
premium because the returns on those assets are systematically
related to the underlying pricing factors. Such factors are called
risk factors and represent sources of systematic risk affecting
all assets. An important element of the factor theory is that the
same set of risk factors affect the risk premium of all assets,
and that these different assets earn different risk premiums
because of different covariances (also called exposures) to the
underlying risk factors. The original such risk factor is the so-
called market portfolio proposed in the 1960s. Knowledge of
that risk factor led to the prescription of market index investing
(one just holds a version of the market portfolio rather than the
individual assets), which is a key principle that underpins the
investment/wealth management industry.

According to the theory of asset pricing, a risk-factor is
any variable that is in the stochastic discount factor (SDF),
or pricing kernel. In other words, a factor is a risk factor if it
is in the SDF, and it is not a risk factor if it not in the SDF
(Cochrane 2009). The question of establishing the identity of
such risk factors has generated a large literature in finance (see,
e.g., Fama and French 2017; Harvey and Liu 2017; Pukthuan-
thong, Roll, and Subrahmanyam 2017) though the question of
which factors in total are in the SDF is far from settled. The
importance of settling this question is that, first, it is central for
evaluating portfolio performance and, second, it has a bearing
on investment strategies of both individuals and professional
fund-managers. If one determines, for example, the identity of
the relevant risk factors, then from an investment perspective it
is sometimes beneficial to hold the risk factors in an investment
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portfolio, assuming that the factors are investable, rather than
the individual assets, a principle referred to as factor investing.
This is because the risk of the individual assets is composed of
the risk arising from the covariance with the returns of the risk
factors plus an idiosyncratic risk which, in principle, can be
diversified away. One can avoid having to find the appropriate
diversification strategy by just holding the relevant risk factors
(Ang 2014). Isolating such risk factors, therefore, has enormous
practical implications.

In this article, we provide a Bayesian approach for isolating
the risk factors, namely the factors that are in the SDF. In
particular, if we denote the SDF at time t by Mt, and let f t : d×1
denote the factors in contention for being in the SDF, then the
goal is to find the collection of factors xt : dx × 1 (1 ≤ dx ≤ d)
from f t that are in the SDF and the complementary set of factors
wt : dw × 1 (dx + dw = d) that are not in the SDF. For
any given decomposition of the factors in this way, the SDF-
based pricing condition implies that when the joint distribution
of the factors is written in terms of a marginal distribution of
the x-factors and a conditional distribution of the w-factors
given the x -factors, the latter conditional distribution must
have zero intercepts (assuming that all factors are traded). A
different starting collection of factors that go into xt leads to
a different Mt, which leads to a different set of restrictions
on the factor model. This means that we can identify the x-
factors in the SDF by simultaneously confronting each of the
resulting restricted factor models with the data. The conditional
distribution of equity returns has the same restricted form,
regardless of what is assumed about the factors in the SDF, as
long as the factors are traded, and hence the distribution of asset
returns is irrelevant for isolating the risk-factors. It should be
noted that the restricted factor models are distinct (nonnested)
and do not arise by omitting or including a variable from a full
model, thus precluding analysis by standard statistical variable
selection methods, such as those based on the lasso and its
variants.

In our empirical analysis, we consider a set of 13 potential
risk factors and suppose that the joint distribution of the factors
is Student-t with unknown degrees of freedom νf . Under this
collection of factors, and a grid consisting of 14 degrees of
freedom, our universe of models consists of (213 − 1) × 14 =
114, 674 possible models. We estimate each of these models
by tuned Bayesian methods and compare these models in
terms of marginal likelihoods. There is a powerful theoretical
basis to model comparisons via marginal likelihoods (see, e.g.,
Chib, Shin, and Simoni 2018). This theory shows that, as the
sample size goes to infinity, the model picked according to
the highest value of the marginal likelihood is either the true
model or the model that is closest to the true model in the
Kullback–Leibler information sense. Of course, ultimately, we
are interested in finite-sample comparisons. With this in mind,
much of our approach is devoted to careful consideration of
the prior distribution on the parameters of each of our 114,674
models. Our formulation of this prior distribution, which must
be proper, can act as a template for other similar large-scale
model comparison problems. Clearly, it is important that the
prior distributions across models should not steer the marginal
likelihood to favor one or the other models. It also must be set

up in an automatic way in order to allow the comparison of such
a large collection of models to proceed in a black-box fashion
with little or no user-intervention.

An important feature of this prior is that starting with a
prior on the covariance matrix of the factors, �, it is possible
to construct the implied prior on several key parameters of
the model, for any choice of the x and w-factors. This key
feature, which we explain in Section 2, allows us to by-pass
the model-by-model prior specification of a large number of
parameters in the universe of possible models. In addition,
we set up the hyperparameters of our prior distribution from
a training sample approach, where the training sample refers
to a sample of observations prior to the estimation sample.
The use of a training sample serves to bring a measure of
objectivity to this prior that is difficult to ensure otherwise.
We show that the prior we work with satisfies all the criteria
enumerated in the preceding paragraph, namely it is a black-
box prior that requires little to no user-intervention, is objective
and does not predispose the choice of models in contradiction to
the sample evidence. We demonstrate the last of these features
by the sample the prior method of Chib and Ergashev (2009)
under which the factor data are simulated for each model by
sampling the parameters from the prior of that model and then
sampling the factors of that model given the parameters. If
these sampled distributions are the same (or approximately the
same) across models, then the implication is that the effect
of the model-specific priors is similar, and differences in the
marginal likelihoods reflect the ability of the different models
in describing the observed data. We calculate the marginal
likelihoods as a by-product of the Markov chain Monte Carlo
(MCMC) simulation output by the method of Chib (1995) and
its Metropolis–Hastings version in Chib and Jeliazkov (2001).

We thoroughly document the effectiveness of our framework
to pick the true model from the universe of possible models in
carefully designed simulation studies that mimic the real-world
features of the factors that are typically employed in this setting.
In this simulation, we involve 11 factors and use our framework
to calculate the marginal likelihood of all possible models that
cover a grid of νf = 4, 8, 16, 32, and ∞ degrees of freedom,
for samples of size T = 600, 1200, and 2400, and for 100
replications of the data for each sample size. The results show
that our method is capable of locating the true model accurately.
This accuracy increases with sample size as per the asymptotic
theory of the marginal likelihood.

Finally, we provide detailed results from the application
of our method to the actual data on 13 common risk factors.
These are the Fama and French (1993, 2015) factors: excess
market return (MKT), size (SMB), value (HML), profitability
(RMW), and investment (CMA); the Hou, Xue, and Zhang
(2015) q-factors: size (ME), profitability (ROE), and investment
(IA); the Carhart (1997) momentum (MOM) factor; the Asness,
Frazzini, and Pedersen (2014) quality minus junk (QMJ) factor;
the Pástor and Stambaugh (2003) liquidity (LIQ) factor; the
Frazzini and Pedersen (2014) betting against beta (BAB) factor;
and another version of value (HMLD) factor proposed by
Asness and Frazzini (2013). In this real-data analysis, we use
a training sample that runs from January 1968 to December
1972 to form our prior distribution and an estimation sample
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that runs from January 1973 to December 2015 to estimate
and compare 114,674 factor models. This analysis reveals that
the highest marginal likelihood model is a Student-t distributed
factor model with 5 degrees of freedom in which MKT, SMB,
RMW, ROE, MOM, QMJ, BAB, and HMLD are the x-factors
and HML, CMA, ME, IA, and LIQ are the w-factors.

Our article adds to the literature on the use of Bayesian tech-
niques in finance (see Ruppert 2010). For example, Shanken
(1987) and Harvey and Zhou (1990) used the Bayesian frame-
work to test the efficiency of a given portfolio, while Avramov
and Chao (2006) used Bayes factors to compare conditional
linear factor models with prespecified traded factors. More
recently, Barillas and Shanken (2018) answer the same ques-
tion as in this article by fitting factor models and compar-
ing marginal likelihoods but, in their framework, both the
likelihood and prior components of the Bayesian model are
questionable. First, the MKT factor is assumed to be a risk-
factor in all models, whereas in our formulation the status of the
MKT factor is not preestablished in this way. Second, Barillas
and Shanken (2018) assume that the joint factor distribution
is multivariate normal, an assumption that is at odds with the
data. In our empirical study, we show that the multivariate
Student-t distribution is better supported than the multivariate
normal distribution, and that the best model under the normality
assumption is quite different from the best-supported Student-t
model. Third, and critically, Barillas and Shanken (2018) use
off-the-shelf Jeffreys’ priors on nuisance parameters that vio-
late a required across-models change-of-variable formula, thus
rendering the marginal likelihoods noncomparable. In extensive
simulation experiments, Chib, Zeng, and Zhao (2018) show
that, for each of 500 true DGP’s and 100 replications of the data
from each of those DGP’s, in a model space of 2048 models,
the Barillas and Shanken (2018) method does not detect the true
DGP even once, even for samples of size 12,000 (corresponding
to a thousand years of monthly data).

The remainder of the article proceeds as follows. In Sec-
tion 2, we describe the model, data and prior. In Section 3, we
give the MCMC algorithm for sampling the posterior distribu-
tion and the algorithm for calculating the marginal likelihood.
Section 4 deals with the results from our simulation studies and
Section 5 gives the results from the analysis of the real data.
Section 6 concludes the article.

2. MODEL, DATA, AND PRIOR

2.1. Model

In our framework, each factor can be either present in the
SDF (in which case it is called the x-factor) or absent from
the SDF (in which case it is the w-factor). The collection of
factors that are in the SDF are denoted by xt : dx × 1 and
the complementary collection of factors by wt : dw × 1. Now
consider the joint model of factors and asset returns. Writing
this joint model as a marginal model of the factors times
the conditional model of the asset returns given the factors it
follows that the latter conditional model depends on both xt

(the pricing factors) and the w-factors. Thus, the conditional
distribution of asset returns is the same, regardless of the
identity of the risk factors. Therefore, this conditional model

does not help to provide evidence about whether a particular
factor is in the SDF. Henceforth, therefore, it is enough to focus
our attention on the factor model. Barillas and Shanken (2017)
made the same point but by a different argument.

Factors: Suppose now that the factors follow the Student-t
distribution

f t
iid∼ Std(μ, �, νf ) , t ≥ 1 (2.1)

where μ : d × 1 (the mean vector), � : d × d (the
positive-definite dispersion matrix) and νf > 2 (the degrees of
freedom) are unknown parameters. The Student-t assumption
is important in the current case because the factor data tend to
display fatter tails than those of the Gaussian distribution (Fama
1965; Affleck-Graves and Mcdonald 1989; Richardson and
Smith 1993; Zhou 1993; Dufour, Khalaf, and Beaulieu 2003).
Making use of the well-known representation of the Student-t
distribution as a Gamma-scale mixture of normal distributions,
we have that

f t|τf ,t ∼ Nd(μ, τ−1
f ,t �), (2.2)

τf ,t
iid∼ G

(νf

2
,
νf

2

)
, (2.3)

where the scale τf ,t > 0 is latent. Now for a particular model
in the universe of possible models (constructed by letting a
collection of factors take the role of the x-factors and the
complementary set take the role of the w-factors), let us suppose
that the factors are rearranged as f t = (xt, wt), and the
parameters are partitioned accordingly as

μ =
(

μx
μw

)
and

� =
⎛
⎜⎝ �x

(dx×dx)

�xw

�′
xw

(dw×dx)

�w
(dw×dw)

⎞
⎟⎠ .

Let

� = �′
xw�−1

x : dw × dx

denote the matrix of regression coefficients in the regression
of the w-factors on the x-factors. Conditioned on the scale τf ,t,
write the factor model as the marginal distribution of the x-
factors and the conditional distribution of the w-factors given
the x-factors,

xt = μx + ηx,t, (2.4)

wt = μw + �(xt − μx) + ηw·x,t, (2.5)

where (
ηx,t

ηw·x,t

)∣∣∣∣τf ,t ∼ Nd

(
0, τ−1

f ,t

(
�x 0
0 �w·x

))
(2.6)

and

�w·x = �w − �′
xw�−1

x �xw : dw × dw.

A remark about notation. Although it would be more precise
to label xt, wt and the parameters by a model subscript, we
refrain from doing so to avoid notational clutter. It should be
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understood, however, that every aspect of this factor model is
model-specific.

SDF: Now suppose that the SDF Mt, defined following
Hansen and Jagannathan (1991), is given by

Mt = 1 − νf − 2

νf
λ′

x�
−1
x (xt − μx), (2.7)

where λx is a vector of unknown coefficients, and each element
in the vector �−1

x λx (the market price of factor risks) is nonzero
by virtue of the definition of xt. The SDF-based economic
pricing theory dictates that (excess returns or return spreads)
f t must satisfy the vector pricing restrictions

E(Mtf t) = 0, (2.8)

where the expectation is with respect to the joint distribution
of f t. By direct calculation it can be seen that these pricing
restrictions require that

μx = λx, (2.9)

μw = �λx, (2.10)

or, in other words, that the marginal and conditional distribu-
tions of the factors in Equations (2.4)–(2.6) take the restricted
form

xt = λx + ηx,t, (2.11)

wt = �xt + ηw·x,t, (2.12)

where (ηx,t, ηw·x,t)|τf ,t are distributed as in Equation (2.6). This
shows that assumptions about which factors are in the SDF
restricts the joint distribution of factors in specific ways. A
different starting collection of x-factors leads to a different final
model of the factors. Our idea, therefore, is to simultaneously
confront each of these possible restricted factor models with
the data, and compare them in terms of the Bayesian marginal
likelihood criterion. The best-supported pricing factors are the
x-factors in the model with the largest marginal likelihood. It
may be noted that simultaneous comparison in this way avoids
postmodel selection biases (in the frequentist sense), because
we enumerate all the models before the analysis of the data.

We explain our procedure with the help of the following
running example.

Example 1. (q-factor model) Suppose the x-factors are
{MKT, ME, ROE, IA} as in the q-factor model. Then xt =
(MKTt, MEt, ROEt, IAt) with length dx = 4 and wt = (SMBt,
HMLt, RMWt, CMAt, MOMt, QMJt, LIQt, BABt, HMLDt)

with length dw = 9. In this case,⎛
⎜⎜⎝

MKTt

MEt

ROEt

IAt

⎞
⎟⎟⎠ = λx︸︷︷︸

4×1

+ηx,t (2.13)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

SMBt

HMLt

RMWt

CMAt

MOMt

QMJt
LIQt
BABt

HMLDt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= �︸︷︷︸
9×4

⎛
⎜⎜⎝

MKTt

MEt

ROEt

IAt

⎞
⎟⎟⎠ + ηw·x,t (2.14)

with �x : 4 × 4 and �w·x : 9 × 9.

2.2. Data

In our analysis, we involve 13 prominent factors that are
often considered in the literature. The sample of the 13 factors
we use here is from January 1968 to December 2015, with 576
observations in total.1 Table 1 reports the sample correlation
among the factor returns. As we see from Table 1, most of the
factors have significant nonzero correlations.

In our analysis, we use an initial portion of these data,
which runs from January 1968 to December 1972 to form our
prior distribution, and the subsequent portion, which runs from
January 1973 to December 2015, to estimate and compare all
our 114,674 factor models.

2.3. Prior Specification

As mentioned earlier, the model-by-model prior must be
proper, that is, with integral over the parameter space equal
to one. In addition, the prior distributions should, in some
sense, be comparable across the different models so that the
differences in marginal likelihoods are not merely caused by
the differences in the priors. Finally, it is important that the
formulation of these model-specific priors should require little
to no user-intervention.

We now discuss how we specify such a model-specific prior.
The parameters of a particular restricted factor model are given
by

θ = (λx, �x, �w·x, γ ),

where γ = vec(�) : q × 1 and q = dw × dx. These parameters,
in general, lie in a high-dimensional parameter space. For
example, in Example 1, the total number of parameters in the
model is 95. If the prior is not formulated sensibly, it is possible
that the prior may concentrate in regions of the parameter space
that are in conflict with the model (likelihood function).

We develop our model-specific prior by using an initial
portion of the data (the training sample) to arrive at the
hyperparameters of each prior distribution. In our application,
this training sample runs from January 1968 to December 1972,
with 60 observations in total. From our experience, the specific
period used as a training sample is rather inconsequential
because of the fact that the training sample is used primarily
for locating the mean of the prior distribution; the spread of
the prior distribution is largely a user-specified hyperparameter
to ensure adequate uncertainty about the choice of location.
Of course, the training sample is employed solely for the
construction of the model-specific prior and is not used in the
model estimation procedure.

Prior of λx: Based on the training sample, we represent our
prior knowledge on each element of λx, model-by-model, by
a product of Student-t distributions. We use Student-t distribu-
tions, instead of (say) normal distributions, to allow a particular
component to shrink separately of the other components. Also,
the thick tails of the Student-t distribution (under our small
degrees of freedom) is helpful in avoiding prior-likelihood
conflicts. Let λx = (λ1, . . . , λdx). Then, our prior density is

1We thank Lu Zhang for providing us the factors in the q-factor model. Other
factors are obtained from authors’ webpages.
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Table 1. Correlation of candidate risk factors, monthly observations from January 1968 to December 2015.

MKT SMB HML RMW CMA ME ROE IA MOM QMJ LIQ BAB

SMB 0.27∗∗
HML −0.31∗∗ −0.12∗
RMW −0.21∗∗ −0.38∗∗ 0.11∗
CMA −0.40∗∗ −0.09 0.71∗∗ −0.06
ME 0.26∗∗ 0.97∗∗ −0.08 −0.37∗∗ −0.05
ROE −0.20∗∗ −0.39∗∗ −0.10 0.67∗∗ −0.08 −0.32∗∗
IA −0.38∗∗ −0.19∗∗ 0.69∗∗ 0.06 0.91∗∗ −0.14∗∗ 0.04
MOM −0.14∗ −0.05 −0.16∗∗ 0.09 0.01 −0.01 0.50∗∗ 0.03
QMJ −0.53∗∗ −0.52∗∗ 0.02 0.76∗∗ 0.08 −0.50∗∗ 0.69∗∗ 0.15∗∗ 0.26∗∗
LIQ −0.07 −0.03 0.02 0.02 0.02 −0.03 −0.05 0.02 −0.01 0.04
BAB −0.09 −0.02 0.39∗∗ 0.25∗∗ 0.32∗∗ 0.01 0.26∗∗ 0.34∗∗ 0.19∗∗ 0.19∗∗ 0.06
HMLD −0.13∗ −0.01 0.77∗∗ −0.07 0.51∗∗ −0.01 −0.45∗∗ 0.50∗∗ −0.65∗∗ −0.22∗∗ 0.06 0.13∗

NOTE: The top five correlations are in bold. Significance levels: 0.001 (**), and 0.01 (*).

given by

π(λx) =
dx∏

i=1

St(λi|ν, λ0,i, sλ), (2.15)

where St(·|ν, λ0,i, sλ) denotes the Student-t density. For com-
putational convenience, we represent this prior density in terms
of a scale mixture of normal densities as

π(λx|τλ) =
dx∏

i=1

N (λi|λ0,i, τ
−1
λ,i sλ), (2.16)

π(τλ) =
dx∏

i=1

G
(

τλ,i

∣∣∣∣ν2 ,
ν

2

)
, (2.17)

where N (·|λ0,i, τ
−1
λ,i sλ) and G

(·| ν
2 , ν

2

)
are normal and Gamma

densities, respectively, λ0,i is the prior mean, sλ is the dis-
persion, ν is the number of degrees of freedom and τλ =
(τλ,1, . . . , τλ,dx) are the latent scale random-variables. In fixing
the hyperparameters, we set λ0 = (λ0,1, . . . , λ0,dx) to be the
sample average of x-factors in the training sample, sλ to equal
0.0025 and ν to equal 2.1 (a choice that ensures that the
distribution has a finite variance plus thick-tails), which implies
that the prior standard deviation of each component of λx is
about 0.2291. This is a generously dispersed distribution that
implies a prior range of (2)(0.2291), or about 45%, on either
side of λ0,i, where the latter quantity is typically about .1%.

Prior of (�x, �w·x, γ ): For any choice of the x and w-factors,
we set up the prior on these parameters from a single inverse
Wishart prior on �

� ∼ IWd(ρ0, Q0), (2.18)

where ρ0 denotes the degrees of freedom of this distribution
and the scale matrix Q0 is derived from the prior mean �0 on
� as

Q0 = (ρ0 − d − 1)�0. (2.19)

We set ρ0 as d + 6, which leads to Q0 = 5 × �0, and set �0

as
νf −2
νf

multiplied by the sample variance-covariance matrix of

the factors in the training sample. If we partition Q0 as

Q0 =
⎛
⎜⎝ Qx,0

dx×dx

Q′
g,0

Qg,0
dw×dx

Qw,0
dw×dw

⎞
⎟⎠ , (2.20)

then from properties of the inverse Wishart distribution it
follows that the implied joint density on �x, �w·x, and γ is

π(�x, �w·x, γ ) = π(�x)π(�w·x)π(γ |�w·x), (2.21)

where (on letting IWd(·|ρ, Q) stand for the d-dimensional
inverse Wishart density with ρ degrees of freedom, and scale
matrix Q)

π(�x) = IWdx(�x|ρ0 − dw, Qx,0), (2.22)

π(�w·x) = IWdw(�w·x|ρ0, Qw·x,0), (2.23)

π(γ |�w·x) = Nq(γ |γ 0 = vec(Qg,0Q−1
x,0 ), Bγ ,0 = Q−1

x,0 ⊗ �w·x),
(2.24)

where Qw·x,0 = Qw,0 − Qg,0Q−1
x,0 Q′

g,0, “vec” is the column vec-
torization operator, and ⊗ is the Kronecker product operator.

Thus, our prior density on (�x, �w·x, γ ), for all the pos-
sible model specifications, is computed from the same pair
of hyperparameters, (ρ0, �0). Naturally, the elements of �0
have to be rearranged depending on the order of the x and
w factors in a particular model. Apart from this qualification,
what is important is that we only need to determine (ρ0, �0)

once, regardless of the number of factor models that are being
compared. This is not only computationally convenient but
maintaining a comparable prior across models in this way is
important in ensuring that differences in marginal likelihoods
are due to the data evidence, and not due to differences in the
prior on these parameters.

We note that our prior of γ is conditional on �w·x. Because
of this dependence, a Metropolis–Hastings step (Chib and
Greenberg 1995) is needed in sampling the conditional pos-
terior distribution of �w·x. Nonetheless, as we show later,
the M-H step can be implemented efficiently with an almost
costless proposal distribution.
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Table 2. Summary for the simulated factor distribution implied by the prior from different restricted factor models.

M1 M2 M3 M4

Lower Upper Lower Upper Lower Upper Lower Upper

MKT −0.3322 0.3098 −0.2204 0.2235 −0.2157 0.2267 −0.2212 0.2249
SMB −0.2287 0.2153 −0.2257 0.2229 −0.2124 0.2161 −0.2148 0.2140
HML −0.1053 0.1032 −0.2199 0.2293 −0.1910 0.1986 −0.2106 0.2161
RMW −0.0981 0.1037 −0.1510 0.1487 −0.2109 0.2067 −0.2044 0.2108
CMA −0.0964 0.1018 −0.2240 0.2391 −0.2068 0.2185 −0.1984 0.2068
ME −0.1912 0.1793 −0.2147 0.2116 −0.2157 0.2183 −0.2412 0.2441
ROE −0.1600 0.1706 −0.2056 0.2104 −0.2130 0.2122 −0.2059 0.2150
IA −0.0868 0.0924 −0.2009 0.2150 −0.2005 0.2104 −0.2055 0.2135
MOM −0.1761 0.1882 −0.2933 0.3006 −0.5102 0.5137 −0.2099 0.2226
QMJ −0.2022 0.2148 −0.1423 0.1459 −0.1974 0.2029 −0.2085 0.2133
LIQ −0.1332 0.1405 −0.2135 0.2056 −0.3794 0.3820 −0.4623 0.4573
BAB −0.0986 0.1031 −0.2480 0.2696 −0.3402 0.3573 −0.3983 0.4083
HMLD −0.1270 0.1220 −0.2577 0.2665 −0.2110 0.2151 −0.2378 0.2364

NOTES: In M1, x-factor is QMJ. M2 is the q-factor model in Example 1. In M3, x-factors are MKT, SMB, RMW, CMA, and HMLD. In M4, x-factors are MKT, SMB, HML, RMW,
ROE, IA, MOM, and QMJ. All the models have νf = 5. The summaries are based on 100,000 draws. “Lower” and “upper” refer to the 0.025 and 0.975 quantiles of the simulated draws.

Given these assumptions, our prior density of θ is now given
by the expression

π(θ) = π(λx)π(�x)π(�w·x)π(γ |�w·x). (2.25)

This prior is a key part of our procedure. As we document
later in the article, careful testing in simulation experiments
shows that our marginal likelihood procedure, based on this
prior, is rather effective in finding the underlying true model.
Whether another prior can perform as well is not relevant
for our purposes. What matters is that we have found a prior
construction that works well for this problem.

To illustrate the details of the prior set up, we continue our
previous example assuming νf = 4.

Example 1. (continued) The parameter list in the model is
θ = (λx : 4 × 1, γ : 36 × 1, �x : 4 × 4, �w·x : 9 × 9). Under
our prior setup, the prior mean on λx is the sample average of
the factors MKT, ME, ROE, and IA in the training sample

λ0 =

⎛
⎜⎜⎝

0.0020
−0.0002
0.0043
0.0067

⎞
⎟⎟⎠ . (2.26)

The prior mean on � is
νf −2
νf

= .5 multiplied by the sample
variance-covariance matrix of the factors MKT, ME, ROE,
IA, SMB, HML, RMW, CMA, MOM, QMJ, LIQ, BAB, and
HMLD (in that order) in the training sample.

To see what this prior implies about the (a priori) factor
distribution, we use the sample the prior method of Chib and
Ergashev (2009) and generate 100,000 draws from the prior
distribution. Given each generated draw of the parameters,
we simulate the 13 factors from the model. To compare the
simulated factor distribution from the q-factor model with those
of other models, we repeat the simulation for three alternative
models. In the first alternative model x-factor is QMJ. In the
second alternative model, x-factors are MKT, SMB, HMLD,
RMW, and CMA. In the third alternative model, x-factors are

MKT, SMB, HML, RMW, ROE, IA, MOM, and QMJ. All the
alternative models have νf = 4. Table 2 reports the simulated
quantiles from these models.

In general, the implied factor distributions from these mod-
els are comparable. There are small discrepancies across the
models for some factors. However, these discrepancies are
driven by the pricing restrictions instead of the priors. To see
that, we simulate the factor distributions from the unrestricted
versions of M1, M2, M3, and M4, given by the equations
from Equations (2.4)–(2.6). For the unrestricted factor model,
the priors on (�, �x, �w·x) are imposed in the same way as in
the restricted models; the priors on (μx, μw) are imposed as
those on λx. Table 3 reports the simulated quantiles from the
unrestricted factor models. As expected, the simulated quantiles
are the same across the different models.

3. POSTERIOR COMPUTATIONS

3.1. MCMC simulation algorithm

We now discuss the sampling of the posterior distribution
by MCMC methods. In this simulation, we take advantage of
the scale mixture of normals representation of the Student-t
distribution and focus on the (augmented) posterior distribution
given by

π(θ , τ f , τλ|f 1:T) ∝ p(x1:T |λx, �x, τ f )p(w1:T |x1:T , γ , �w.x, τ f )

×π(τ f )π(τλ)π(λx|τλ)π(�x)π(�w·x)π(γ |�w·x), (3.27)

where f 1:T = (f 1, . . . , f T) denotes the sample data on the
factors f t, for t running from January 1973 to December 2015,
and τ f = (τf ,1, . . . , τf ,T) are the latent scales for all T time
periods with distribution given by

π(τ f ) =
T∏

t=1

G
(

τf ,t

∣∣∣∣νf

2
,
νf

2

)
.

We sample this distribution by MCMC methods (for back-
ground on these methods, see Gelfand and Smith 1990; Tier-
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Table 3. Summary for the simulated factor distribution implied by the prior from different unrestricted factor models.

M1 M2 M3 M4

Lower Upper Lower Upper Lower Upper Lower Upper

MKT −0.2195 0.2213 −0.2217 0.2237 −0.2219 0.2226 −0.2212 0.2283
SMB −0.2152 0.2148 −0.2168 0.2115 −0.2194 0.2112 −0.2147 0.2101
HML −0.2069 0.2166 −0.2074 0.2139 −0.2069 0.2167 −0.2055 0.2144
RMW −0.2040 0.2110 −0.2077 0.2086 −0.2060 0.2097 −0.2075 0.2068
CMA −0.2001 0.2143 −0.2030 0.2149 −0.2052 0.2122 −0.2090 0.2140
ME −0.2154 0.2103 −0.2101 0.2116 −0.2121 0.2142 −0.2130 0.2103
ROE −0.2048 0.2123 −0.2058 0.2145 −0.2056 0.2152 −0.2052 0.2133
IA −0.2032 0.2148 −0.2018 0.2128 −0.1994 0.2150 −0.2030 0.2195
MOM −0.2123 0.2164 −0.2110 0.2157 −0.2127 0.2197 −0.2105 0.2235
QMJ −0.2029 0.2156 −0.2030 0.2140 −0.2037 0.2148 −0.2014 0.2121
LIQ −0.2079 0.2120 −0.2115 0.2145 −0.2131 0.2108 −0.2112 0.2162
BAB −0.1994 0.2202 −0.2010 0.2234 −0.2050 0.2148 −0.2031 0.2188
HMLD −0.2088 0.2147 −0.2085 0.2146 −0.2104 0.2171 −0.2136 0.2164

NOTES: In M1, x-factor is QMJ. M2 is the q-factor model in Example 1. In M3, x-factors are MKT, SMB, RMW, CMA, and HMLD. In M4, x-factors are MKT, SMB, HML, RMW,
ROE, IA, MOM, and QMJ. All the models have νf = 5. The summaries are based on 100,000 draws. “Lower” and “upper” refer to the 0.025 and 0.975 quantiles of the simulated draws.

ney 1994; Chib and Greenberg 1995; Chib 2001; Robert and
Casella 2005), by iterating on the following steps.

Step 1: Sample each element τf ,t of τ f from the Gamma
densities

π(τf ,t|f t, θ)

= G
(

τf ,t

∣∣∣∣νf + 1

2
,
νf + η′

tblockdiag(�−1
x , �−1

w·x)ηt

2

)
,

t = 1, . . . , T , (3.28)

where η′
t = (

(xt − λx)
′ , (wt − �xt)

′)′.
Step 2: Sample each element of τλ from the Gamma densi-

ties

π(τλ,i|f 1:T , λx, γ ) = G
(

τλ,i

∣∣∣∣ν + 1

2
,
ν + (λi − λ0,i)

2/sλ

2

)
,

i = 1, . . . , dx. (3.29)

Step 3: Sample �x from the density π(�x|x1:T , λx, τ f ), which
can be derived by writing the data on the x-factors in matrix
form as

Xτf︸︷︷︸
T×dx

= 1τf︸︷︷︸
T×1

λ′
x + Ex︸︷︷︸

T×dx

, (3.30)

where

Xτf =
⎛
⎜⎝

√
τf ,1x′

1
...√

τf ,Tx′
T

⎞
⎟⎠ , 1τf =

⎛
⎜⎝

√
τf ,1
...√
τf ,T

⎞
⎟⎠ (3.31)

and the error matrix Ex follows the matrix normal distribution

vec(Ex) ∼ NT×dx(0, �x ⊗ IT).

On combining with the inverse Wishart prior of �x in Equation
(2.22), it can be seen that

π(�x|x1:T , λx, τ f ) = IWdx(�x|ρ1 − dw, Qx,1), (3.32)

where

Qx,1 = Qx,0 + (Xτf − 1τf λ
′
x)

′(Xτf − 1τf λ
′
x), (3.33)

and ρ1 = ρ0 + T .
Step 4: Sample λx from the density π(λx|x1:T , �x, τ f , τλ),

which can be derived by starting with the vectorized form of
the model in (3.30):

vec(Xτf ) = (Idx ⊗ 1τf )λx + vec(Ex). (3.34)

Combining with the conditional normal prior of λx in Equation
(2.16) and applying standard Bayesian updates we get that

π(λx|x1:T , �x, τ f , τλ) = Ndx(λ̂x, Bλ,T), (3.35)

where

Bλ,T = (B−1
λ,0 + (1′

τf
1τf ) ⊗ �−1

x )−1 (3.36)

λ̂x = Bλ,T(B−1
λ,0λ0 + ((1′

τf
1τf ) ⊗ �−1

x )λ̂LS), (3.37)

and

Bλ,0 = diag(sλτ
−1
λ,1 , . . . , sλτ

−1
λ,dx

), (3.38)

λ̂LS = ((1′
τf

1τf )
−11′

TX)′. (3.39)

Step 5: Sample �w·x from the density

π(�w·x|w1:T , x1:T , γ , τ f ) ∝ p(w1:T |x1:T , γ , �w·x, τ f )π(�w·x)
× π(γ |�w·x),

which is not in closed form because of the third term. Following
(Chib and Greenberg 1995), however, we note that the first two
terms on the right-hand side combine nicely and can be used
as a proposal distribution in a Metropolis–Hastings (M-H) step.
The M-H probability of move then just involves the third term.
To combine those first two terms, express the matrix form of
the data on the w-factors as

Wτf︸︷︷︸
T×dw

= Xτf �
′ + Ew·x︸︷︷︸

T×dw

, (3.40)
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where

Wτf =
⎛
⎜⎝

√
τf ,1w′

1
...√

τf ,Tw′
T

⎞
⎟⎠ (3.41)

and

vec(E′
w·x) ∼ NT×dw(0, IT ⊗ �w·x).

Multiplying with the inverse Wishart prior of �w·x in Equation
(2.23), the proposal distribution becomes

IWdw(ρ1, Qw·x,1), (3.42)

where

Qw·x,1 = Qw·x,0 + (Wτf − Xτf �
′)′(Wτf − Xτf �

′). (3.43)

Then, in the M-H step, we propose �w·x from the latter
distribution, which we accept with probability given by

α(�w·x, �w·x|w1:T , x1:T , γ , τ f )

= min

{
1,

Nq(γ |vec(Qg,0Q−1
x,0 ), Q−1

x,0 ⊗ �w·x)
Nq(γ |vec(Qg,0Q−1

x,0 ), Q−1
x,0 ⊗ �w·x)

}
. (3.44)

We stay at the current value �w·x if the proposed value is not
accepted.

Step 6: Sample γ from the distribution p(γ |w1:T , x1:T , �w·x,
τ f ), which can be derived starting with the row-vectorized form
of the model in Equation (3.40),

vec(W ′
τf

) = (Xτf ⊗ Idw)γ + vec(E′
w.x). (3.45)

Combining with the conditional normal prior of γ in Equation
(2.24) and applying standard Bayesian updates we get that

π(γ |w1:T , x1:T , �w·x, τ f ) = Nq(γ̂ , Bγ ,T). (3.46)

where

Bγ ,T = (B−1
γ ,0 + (X′

τf
Xτf ) ⊗ �−1

w·x)−1, (3.47)

γ̂ = Bγ ,T(B−1
γ ,0γ 0 + ((X′

τf
Xτf ) ⊗ �−1

w·x)γ̂ LS), (3.48)

and

γ̂ LS = vec(((X′
τf

Xτf )
−1X′

τf
Wτf )

′). (3.49)

We repeat these sampling steps a large number of times, say
80,000 times and discard the burn-in draws, say the first 40,000.
The remaining 40,000 draws, ignoring the draws on the latent
scales, are samples from the posterior distribution π(θ |f 1:T).

Example 1. (continued) Applying our fitting algorithm to
the q-factor model (with νf = 4), the marginal posterior
distributions of λx, γ , �x, �w·x are summarized in Table 4. The
M-H acceptance rate is around 82% and the inefficiency factor,
the ratio of the numerical variance of the mean to the variance
of the mean assuming independent draws are small (indicating
that the draws, although serially correlated, are essentially
independent). The example showcases the simulation efficiency
of our MCMC algorithm.

3.2. Marginal Likelihood Computation

Our main task in the empirical study is not just estimat-
ing a single model but also comparing multiple models. In
Bayesian analysis, we use the posterior odds of models given
the observed data to compare alternative models. The poste-
rior odds reflect how data favor each competing model. Let
pj = Pr(Mj) denote the prior probability for model Mj. The
posterior odds between model Mi and Mk are

Pr(Mi|f 1:T)

Pr(Mk|f 1:T)
= pi

pk

m(f 1:T |Mi)

m(f 1:T |Mk)
, (3.50)

where the marginal likelihood is defined as the integral of the
likelihood function with respect to the prior density,

m(f 1:T |Mj) =
∫

�j

p(f 1:T |θ ,Mj)π(θ |Mj) dθ (3.51)

and the integration is over the parameter space

� = R
dx × R

q × {set of dx × dx pd matrices}
× {set of dw × dw pd matrices},

where “pd” stands for positive-definite. If the prior odds on
the models are one, which we are going to assume here,
the posterior odds are equal to the ratio of marginal likeli-
hoods. Therefore, the central piece of model performance is the
marginal likelihood. Marginal likelihoods automatically penal-
ize models based on complexity, ensuring that more complex
models will not rank higher merely because the more flexible
model is capable of fitting the noise in the data. Moreover,
model selection based on the comparison of Bayes factors or
marginal likelihoods has attractive asymptotic properties. If the
true model is among the candidates under consideration, the
highest marginal likelihood model will select it with probability
approaching one in the limit; if it is not among the candidates
(the likely case), the highest marginal likelihood model will
select the model that is closest to the true model in the
Kullback–Leibler distance (see, e.g., Chib, Shin, and Simoni
2018). We lean on this latter property to help us ascertain, from
the comparison of all subset models, which group of factors are
better supported by the data as being in the SDF.

To estimate the marginal likelihood of each contending
model, we employ the Chib (1995) method which starts with
the convenient expression of the log-marginal likelihood

ln m(f 1:T |Mj) = ln π(θ∗|Mj) + ln p(f 1:T |Mj, θ
∗)

− ln π(θ∗|Mj, f 1:T), (3.52)

where θ∗ = (λ∗
x , γ ∗, �∗

x , �∗
w·x) is some chosen point, say the

posterior mean. In this expression, the prior and likelihood
ordinates can be found analytically. As for the third term,
the posterior ordinate, suppress the model index, and use a
marginal-conditional decomposition to write

ln π(θ∗|f 1:T) = ln π(�∗
w·x|f 1:T) + ln π(λ∗

x , γ ∗|f 1:T , �∗
w·x)

+ ln π(�∗
x |f 1:T , λ∗

x , γ ∗, �∗
w·x), (3.53)
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Table 4. Posterior summary for selected parameters in Example 1 (q-factor model).

Param. Mean sd Lower Median Upper Ineff.

λ1 6.93 × 10−3 1.65 × 10−3 6.91 × 10−3 3.72 × 10−3 1.02 × 10−2 1.28
λ2 2.51 × 10−3 1.05 × 10−3 2.51 × 10−3 4.19 × 10−4 4.57 × 10−3 1.26
λ3 6.91 × 10−3 8.00 × 10−4 6.91 × 10−3 5.32 × 10−3 8.44 × 10−3 1.28
λ4 3.70 × 10−3 6.62 × 10−4 3.70 × 10−3 2.38 × 10−3 4.98 × 10−3 1.28
�1,1 −1.06 × 10−2 6.89 × 10−3 −1.07 × 10−2 −2.39 × 10−2 2.92 × 10−3 1.23
�2,1 −8.81 × 10−2 2.10 × 10−2 −8.79 × 10−2 −1.30 × 10−1 −4.72 × 10−2 1.22
�3,1 −4.37 × 10−2 1.49 × 10−2 −4.37 × 10−2 −7.28 × 10−2 −1.45 × 10−2 1.20
�4,1 −3.01 × 10−2 7.58 × 10−3 −3.01 × 10−2 −4.51 × 10−2 −1.55 × 10−2 1.22
�5,1 −2.02 × 10−3 3.30 × 10−2 −1.86 × 10−3 −6.81 × 10−2 6.16 × 10−2 1.22
�6,1 −1.73 × 10−1 1.50 × 10−2 −1.73 × 10−1 −2.03 × 10−1 −1.44 × 10−1 1.23
�7,1 −2.39 × 10−2 3.89 × 10−2 −2.39 × 10−2 −1.01 × 10−1 5.27 × 10−2 1.28
�8,1 9.08 × 10−2 3.13 × 10−2 9.08 × 10−2 2.89 × 10−2 1.52 × 10−1 1.33
�9,1 −4.47 × 10−2 2.35 × 10−2 −4.45 × 10−2 −9.08 × 10−2 1.10 × 10−3 1.21
�x,1,1 1.16 × 10−3 8.29 × 10−5 1.16 × 10−3 1.01 × 10−3 1.33 × 10−3 2.54
�x,2,2 4.81 × 10−4 3.48 × 10−5 4.80 × 10−4 4.17 × 10−4 5.52 × 10−4 2.40
�x,3,3 2.73 × 10−4 1.95 × 10−5 2.72 × 10−4 2.37 × 10−4 3.14 × 10−4 2.54
�x,4,4 1.92 × 10−4 1.35 × 10−5 1.91 × 10−4 1.66 × 10−4 2.20 × 10−4 2.47
�w·x,1,1 2.37 × 10−5 1.68 × 10−6 2.36 × 10−5 2.05 × 10−5 2.71 × 10−5 3.38
�w·x,2,2 2.26 × 10−4 1.60 × 10−5 2.25 × 10−4 1.96 × 10−4 2.59 × 10−4 2.96
�w·x,3,3 1.11 × 10−4 7.86 × 10−6 1.11 × 10−4 9.64 × 10−5 1.27 × 10−4 3.10
�w·x,4,4 2.90 × 10−5 2.04 × 10−6 2.89 × 10−5 2.53 × 10−5 3.32 × 10−5 3.51
�w·x,5,5 5.36 × 10−4 3.82 × 10−5 5.35 × 10−4 4.66 × 10−4 6.17 × 10−4 3.39
�w·x,6,6 1.13 × 10−4 8.09 × 10−6 1.13 × 10−4 9.79 × 10−5 1.30 × 10−4 3.54
�w·x,7,7 7.39 × 10−4 5.35 × 10−5 7.37 × 10−4 6.43 × 10−4 8.49 × 10−4 3.21
�w·x,8,8 4.81 × 10−4 3.41 × 10−5 4.80 × 10−4 4.16 × 10−4 5.50 × 10−4 3.36
�w·x,9,9 2.78 × 10−4 1.99 × 10−5 2.77 × 10−4 2.42 × 10−4 3.20 × 10−4 3.43

NOTES: The summaries are based on 10,000 MCMC draws beyond a burn-in of 40,000. “Lower” and “upper” refer to the 0.025 and 0.975 quantiles of the simulated draws, respectively,
and “ineff” to the inefficiency factor, the ratio of the numerical variance of the mean to the variance of the mean assuming independent draws.

Now appealing to the approach of Chib and Jeliazkov (2001)
we have that

π(�∗
w·x|f 1:T)

= E1{α(�w·x, �∗
w·x|f 1:T , λx, γ , τ f )IWdw(�∗

w·x|ρ1, Qw·x,1)}
E2{α(�∗

w·x, �w·x|f 1:T , λx, γ , τ f )} .

(3.54)

where E1 denotes the expectation with respect to the posterior
distribution π(θ |f 1:T), and E2 denotes the expectation with
respect to the distribution

π(λx, γ |f 1:T , �∗
w·x) × IWdw(�w·x|ρ1, Qw·x,1) (3.55)

We can calculate the former expectation by Monte Carlo with
the draws on θ from the full MCMC run. For the latter
expectation, we perform a reduced MCMC run in which �w·x
is fixed at �∗

w·x and the remaining blocks of parameters are
sampled as before. This reduced MCMC run gives rise to the
draws {

λ(j)
x , γ (j), �(j)

x , τ (j)
λ , τ (j)

f

}
. (3.56)

For each of these draws, we sample �
(j)
w·x from the proposal

distribution

IWdw(ρ1, Q(j)
w·x,1), (3.57)

where Q(j)
w·x,1 are conditional posterior quantities computed at

(γ (j), τ (j)
f ).

The second ordinate, π(λ∗
x , γ ∗|f 1:T , �∗

w·x), is estimated from
the output of the previous reduced run as

π̂(λ∗
x , γ ∗|f 1:T , �∗

w·x)

= 1

J

J∑
j=1

Ndx(λ
∗
x |λ̂

(j)
x , B(j)

λ,T)Nq(γ
∗|γ̂ (j), B(j)

γ ,T), (3.58)

where λ̂
(j)
x , B(j)

λ,T , γ̂
(j) and B(j)

γ ,T are computed conditional on

(�
(j)
x , �∗

w·x, τ (j)
λ , τ (j)

f ).
Finally, π(�∗

x |f 1:T , λ∗
x , γ ∗, �∗

w·x) is from the output
of another reduced MCMC run. Fixing (λx, γ , �w·x) at
(λ∗

x , γ ∗, �∗
w·x), we sample the remaining blocks of parameters.

If we let {
�(l)

x , τ (l)
f

}L

l=1

denote the draws in this second reduced run then our estimate
of the final ordinate is given by

π̂(�∗
x |f 1:T , λ∗

x , γ ∗, �∗
w·x) = 1

L

L∑
l=1

IWdx(�
∗
x |ρ1 − dw, Q(l)

x,1),

(3.59)
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Table 5. Log-marginal likelihoods of six common models.

q5 FF55 CAPM5 q∞ FF5∞ CAPM∞
17,569.61 17,538.61 17,511.86 16,809.67 16,790.97 16,782.65

where Q(l)
x,1 is computed conditional on (λ∗

x , τ (l)
f ).

Though the marginal likelihood in our framework does
not have a closed form, the numerical computations follow
in a straightforward manner. In addition, an R package for
implementing all the computations is available on request.

Example 1. (continued) Consider the q-factor model (with
νf = 5). Let θ∗ denote the average of 10,000 MCMC draws
beyond a burn-in of 40,000. Let the number of iterations in
both reduced runs be 10,000. The estimated log-marginal
likelihood is 17,555.31. Suppose we want to compare this
q-factor model with five alternative models: the CAPM,
in which the only x-factor is MKT, with νf = 5 and ∞,
the Fama-French five-factor model, in which x-factors are
{MKT, SMB, HML, RMW, CMA}, with νf = 5 and ∞, and
the q-factor model with νf = ∞. The log-marginal likelihood
for these models are given in Table 5.

4. SIMULATION EXPERIMENTS

In our framework, a different starting collection of factors
that go into xt leads to a different set of restrictions on the
factor model and, hence, a different model. Simultaneously,
confronting each of these possible restricted factor models with
the data, and comparing them in terms of the Bayesian marginal
likelihood criterion, provides the means to identify the x-factors
in the SDF. In this section, we use simulations to assess how
well the framework performs in identifying the x-factors. The
simulation studies are designed to mimic the real-world features
of the factors that are typically employed in this setting. We
suppose that there are 11 factors and use our framework to
calculate the marginal likelihood of all possible models that
cover a grid of νf = 4, 8, 16, 32, and ∞ degrees of freedom,
for samples of size T = 600, 1200, and 2400, and for 100
replications of the data for each sample size. We could use
a finer grid of νf values (as we do in our real data example)
but in general it is not possible to discriminate between close
degrees of freedom, unless the sample size is large. The results
show that our method is capable of locating the true model with
remarkable accuracy. This accuracy increases with sample size
as per the asymptotic theory of the marginal likelihood.

4.1. Simulation Design

Our simulations proceed as follows.

1. We assume an eleven-factor world in which the factors are
matched to the following 11 factors, MKT, SMB, HML,
RMW, CMA, ME, ROE, IA, MOM, QMJ, and LIQ.

2. We then make an assumption about the true pricing factors.
In this setting, for a given factor distributional form, there

Table 6. Maximum likelihood estimates of b in Mt = 1− νf −2
νf

b′(xt −
μx), with standard errors in parentheses.

Factor MKT ME ROE IA

b̂
9.61 6.34 28.66 30.64

(1.69) (2.43) (3.45) (4.22)

NOTES: The estimation is for the factor model that has MKT, ME, ROE, IA as the x-
factors and SMB, HML, RMW, CMA, MOM, QMJ, and LIQ as the w-factors, and has
νf = 4, based on the monthly data from January 1968 to December 2015.

are 211 − 1 = 2047 possible true models depending on the
assumption made about the collection of factors that go into
xt. For instance, suppose that in the true model xt consists
of MKT, ME, ROE, and IA and the factor distribution is a
student-t with νf = 4. Our aim is to generate data from this
model and to then confront the (211 − 1) × 5 = 10, 235
possible models over the grid of νf = 4, 8, 16, 32, and
∞ to these data to see if the marginal likelihoods correctly
pick this true model. Of course, in order to generate data
from this true model we need to fix the parameters at some
suitable values. A sensible choice is to fix the parameters
at the maximum likelihood (ML) values to ensure that the
generated data on the factors resemble the real data. A key
point is that we need to ensure that this is a valid model
for the purpose of generating our data. By valid model,
we mean a model in which the fitted SDF suggests that
each assumed x-factors is statistically significant. In other
words, we need to check that in the expression of Mt =
1 − νf −2

νf
λ′

x�
−1
x (xt − μx), the fitted values of b = �−1

x λx

are each significant. Otherwise, the maintained assumption
that the factors {MKT, ME, ROE, IA} are the pricing factors
would counter to the evidence and data generated from such
a data-generating process (DGP) would lead to misleading
model comparisons. In the following example, we show the
maintained assumption is valid for generating the simulated
data.

Example 2. Consider the factor model that has MKT, ME,
ROE, and IA as the x-factors and SMB, HML, RMW, CMA,
MOM, QMJ, and LIQ as w-factors. The factor distribution is
assumed to be a student-t with νf = 4. To check whether the
model is valid for generating the simulated data, we find the
estimate of b by maximizing the log-likelihood function and
calculate the variance-covariance matrix of the estimate as
the negative inverse of the Hessian matrix of the likelihood
function at the maximum likelihood estimate. The estimates
and the associated standard errors are reported in Table 6. As
we can see from the table, each element of b is significant at
the level of 0.05.

We select three models that are valid for generating the
simulated data. The composition of their xt are listed in the
first column of Table 7 and their factor distributional forms
are listed in the second column of the same table.

3. Then, we simulate data from each of these three true models.
As mentioned above, the true parameter values are those
obtained from the maximum likelihood fitting of the models
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Table 7. Percentage of times the true model is selected, from within
an enumerated model space of 10,235 models, over 100 simulated
datasets. There are 11 factors in the candidate set.

x-factors νf T = 600 T = 1200 T = 2400

MKT, ME, ROE, IA 3.5
52 67 72

(5322) (6857) (7369)

MKT ∞ 70 96 97
(7165) (9826) (9928)

MKT, HML 4
78 85 95

(7983) (8700) (9723)

NOTES: The first and second columns are the x-factors and the degrees of freedom used
in the true model. Given each true model, we consider three time-series sizes, T = 600
(column 3), T = 1200 (column 4) and T = 2400 (column 5). For each dataset, we select
the model that has the highest marginal likelihood. The numbers in parentheses are the
ratio of the selection percentage divided by 1/10,235, the prior probability of each model.

to the monthly data on the eleven factors which runs from
January 1968 to December 2015.

Example 2. (continued) The ML estimates of the model
over the actual data are

λ̂x =

⎛
⎜⎜⎝

0.0065
0.0021
0.0069
0.0038

⎞
⎟⎟⎠ ,

�̂x =

⎛
⎜⎜⎝

12.76 2.00 −0.64 −1.68
2.00 5.21 −0.67 −0.38

−0.64 −0.67 3.07 −0.28
−1.68 −0.38 −0.28 2.10

⎞
⎟⎟⎠ × 10−4,

(4.60)

�̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.00 0.96 −0.10 −0.07
−0.08 −0.01 −0.27 0.86
−0.04 −0.11 0.50 −0.15
−0.03 −0.00 −0.16 0.93
0.00 0.13 0.85 0.26

−0.18 −0.20 0.56 −0.07
−0.04 −0.06 0.11 0.07

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.61)

�̂w·x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.26 −0.14 0.12 −0.02 0.08 0.09 0.03
−0.14 2.38 0.12 0.26 −0.21 −0.33 0.23
0.12 0.12 1.16 −0.01 −0.47 0.62 0.25

−0.02 0.26 −0.01 0.32 0.03 0.03 0.00
0.08 −0.21 −0.47 0.03 5.73 −0.22 0.26
0.09 −0.33 0.62 0.03 −0.22 1.19 0.22
0.03 0.23 0.25 0.00 0.26 0.22 7.72

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

× 10−4. (4.62)

Given these parameter values, we then simulate the factors
for each t from the assumed model.

4. Given a particular DGP and a particular sample from that
DGP, we calculate the marginal likelihood of the 10,235
possible factor models on a grid of 4, 8, 16, 32, and ∞
degrees of freedom, and see if the highest marginal likeli-
hood corresponds to the true model that generated the data.

5. We repeat this exercise 100 times for sample sizes of
T = 600, 1200, and 2400 and for each of the three true
DGP’s.

4.2. Results

Note that for the first true DGP, the candidate models
exclude the true degrees of freedom. The true number of
degrees of freedom is 3.5 whereas the candidate degrees of
freedom are 4, 8, 16, 32, and ∞. In Table 7, we report the
percentages of times in 100 replications that the model with the
correct x-factors and the closest degrees of freedom (which is
4) to the true degrees of freedom is selected for sample sizes of
size T = 600, 1200, and 2400 based on the marginal likelihood.
For the other two designs, Table 7 reports the percentage of
times in 100 replications of data that the true model is selected
by the marginal likelihood comparison for each of the three
samples sizes. The results show that our method locates the
true model (a needle in the haystack of possible models) with
remarkable accuracy. This accuracy increases with sample size
as per the asymptotic theory of the marginal likelihood. The
results also confirm the ability of our framework to find the
model closest to the true model (when the true model is not in
the pool of possible models).

5. EMPIRICAL RESULTS

We now turn to the application of our framework to the
actual data on 13 common risk factors. These are the Fama
and French (1993, 2015) factors: excess market return (MKT),
size (SMB), value (HML), profitability (RMW) and investment
(CMA); the Hou, Xue, and Zhang (2015) q-factors: size
(ME), profitability (ROE) and investment (IA); the Carhart
(1997) momentum (MOM) factor; the Asness, Frazzini, and
Pedersen (2014) quality minus junk (QMJ) factor; the Pástor
and Stambaugh (2003) liquidity (LIQ) factor; the Frazzini
and Pedersen (2014) betting against beta (BAB) factor; and
another version of value (HMLD) factor proposed by Asness
and Frazzini (2013). In this real-data analysis, we use a training
sample that runs from January 1968 to December 1972 to
form our prior distribution, and the period from January 1973
to December 2015 as the estimation sample. In fitting the
different Student-t models, we use a grid of 14 values of νf ,
composed of 11 values from 2.5 to 8 in increments of 0.5,
and the values 16, 32, and inf. This leads to a collection of
(213 − 1) × 14 = 114, 674 models under contention. Each
of these 114,674 contending models is estimated from 40,000
draws of the MCMC algorithm, collected after an initial burn-
in period of 40,000 iterations. The subsequent reduced runs for
the marginal likelihood estimation are of length 10,000.

Our analysis shows that the model with the highest marginal
likelihood, which is listed in the second row of Table 8, is a
Student-t distributed factor model with 5 degrees of freedom. It
has a log-marginal likelihood value of 17,613.06 and includes
eight x-factors. Three of the Fama-French 5 factors, namely
the market excess return MKT, the size factor SMB, and the
profitability factor RMW are in this most preferred model. The
profitability factor ROE from the q-factor model is also in this
best model. Finally, the other x-factors in this model are the
momentum factor MOM, the quality factor QMJ, the betting
against beta factor BAB, and the value factor HMLD.

Table 8 contains the best 4 models according to the log-
marginal likelihood criterion. The best model is a Student-t
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Table 8. Top 4 marginal likelihood models among all 114,674 models
considered. Column 2 lists the x-factors in the model.

log(m) x-factors νf

17,613.06 MKT, SMB, RMW, ROE, MOM, QMJ,
BAB, HMLD

5

17,612.89 MKT, SMB, RMW, ROE, MOM, QMJ,
BAB, HMLD

5.5

17,612.55 MKT, SMB, HML, RMW, ROE, MOM,
QMJ, BAB, HMLD

5.5

17,612.38 MKT, SMB, HML, RMW, ROE, MOM,
QMJ, BAB, HMLD

5

NOTES: Column 3 reports in each model specification what the number of degrees of
freedom is in the factor process. The best model is the one with the highest marginal
likelihood as reported in the second row. The data sample consists of monthly observations
from January 1968 to December 2015. The first 60 observations form the training sample
and the remaining 516 observations are the estimation sample.

Table 9. The highest log-marginal likelihood model vs. the best
Gaussian model.

log(m) x-factors νf

17, 613.06 MKT, SMB, RMW, ROE, MOM, QMJ,
BAB, HMLD

5

16, 836.76 MKT, SMB, HML, RMW, ROE, MOM,
QMJ, HMLD

∞

NOTES: The data sample consists of monthly observations from January 1968 to
December 2015. The first 60 observations form the training sample and the remaining
516 observations are the estimation sample.

model with 5 degrees of freedom and 8 x-factors. The second
best model has 5.5 degrees of freedom and the same pricing
factors. The next two best models have 9 pricing factors
but because the log-marginal likelihood values are within .6,
according to Jeffreys’ scale (Jeffreys 1961), the models are
roughly equivalent.

Several findings can be observed in Table 8. First, that the
factors MKT, ROE, MOM, QMJ, BAB, and HMLD are in each
of the top 4 models. This suggests that these factors are jointly
important drivers of the cross-section of expected returns. Our
results show that size matters but it is in general better reflected
in the SMB factor. Second, the factors CMA, IA, and LIQ
do not appear in the collection of x-factors. Third, somewhat
surprisingly, the two versions of profitability, that is, the RMW
factor from the Fama-French five-factor model, and the ROE
factor from the q-factor model, often appear jointly, despite the
fact that both are measures of similar risks.

Another important point to note is that the Student-t distri-
bution is much better supported by these data than the Gaussian
distribution. The difference between the best overall model
and the best Gaussian model is more than 700 on the log
scale, as shown in Table 9. Moreover, the x-factors in the best
Gaussian are also different. For example, the BAB factor, is
not in the best Gaussian model. Given the large difference in
log-marginal likelihoods, one should be cautious in interpreting
results obtained under the normality assumption.

6. CONCLUDING REMARKS

In this article, we develop a Bayesian framework to isolate
risk factors, from a given collection of potential risk factors, to
explain the cross-section of expected returns. The framework
relies on two important assumptions, that factors are traded
portfolio excess returns or return spreads and the SDF is linear
in the factors. The framework uses an enumerative model
search strategy to jointly compare all possible factor pricing
models and finds the one that is best supported by the data in
terms of marginal likelihoods and posterior model probabili-
ties. One aspect of this enumerative strategy, that we do not
emphasize here, but is a potent justification for our approach,
is that it avoids postmodel selection biases (in the frequentist
sense) because all the models are enumerated before the data
are encountered. Our construction of the proper prior, based
on a training sample, with independent Student-t distributions
for some location parameters, and a common inverse Wishart
distribution for the covariance parameters, can act as template
for prior construction in other similar problems with large-
dimensional parameter spaces, and large-dimensional model
spaces. We also supply a simulation-efficient Bayesian MCMC
method for model estimation and marginal likelihood compu-
tation. The framework overall is self-contained and can be used
with minimum user intervention.

Our article also highlights the importance of using multivari-
ate Student-t distributions to model the fat tails in the factor
data. In our empirical study, we show that the multivariate
Student-t distribution is better supported than the multivari-
ate normal distribution. Moreover, the best model under the
normality assumption is quite different from the Student-t
model that is most supported overall. This suggests caution
in interpreting results that are predicated on the normality
assumption. As the editor of this paper has pointed out, it
would also be useful to allow for the possibility of multivariate
stochastic volatility. Such a model extension is likely to lead
to new findings about the risk factors. However, incorporat-
ing multivariate stochastic volatility in our model is a rather
significant extension that requires a considerable elaboration
and modification of our model and estimation framework. We
intend to describe this extension in future work.

We conclude by noting that with the enormous continuing
increase in computing power, our enumerative model search
strategy can be extended to even larger collections of potential
risk-factors than the 13 leading factors we have considered in
this article. For instance, if we assume sparsity and suppose that
at most 10 factors can be in the SDF, our Bayesian enumerative
strategy, with a starting collection of 50 potential risk factors,
would require the comparison of 13 billion models, which is
within the reach of our method with current parallel and cloud
computing resources. In general, as it turns out, the limiting
factor to the enumerative model comparison strategy outlined
here is not computing, but rather the lack of serious potential
risk factors. Nonetheless, in ongoing work we are in the process
of assembling a dataset with several additional factors, with the
aim of applying the method of this article to that setting. We are
hopeful that the proposed method will have a large impact on
the practical discovery of risk-factors, with a consequent large
impact on the investment and wealth management industries.
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Pástor, L., and Stambaugh, R. F. (2003), “Liquidity Risk and Expected Stock

Returns,” Journal of Political Economy, 111, 642–685. [772,781]
Pukthuanthong, K., Roll, R., and Subrahmanyam, A. (2017), “A Protocol for

Factor Identification,” Working paper. [771]
Richardson, M., and Smith, T. (1993), “A Test for Multivariate Normality in

Stock Returns,” The Journal of Business, 66, 295–321. [773]
Robert, C. P., and Casella, G. (2005), Monte Carlo Statistical Methods

(Springer Texts in Statistics), Secaucus, NJ: Springer-Verlag. [777]
Ruppert, D. (2010), Statistics and Data Analysis for Financial Engineering,

Springer Texts in Statistics, New York: Springer. [773]
Shanken, J. (1987), “A Bayesian Approach to Testing Portfolio Efficiency,”

Journal of Financial Economics, 19, 195–215. [773]
Tierney, L. (1994), “Markov Chains for Exploring Posterior Distributions,”

Ann. Statist., 22, 1701–1728. [777]
Zhou, G. (1993), “Asset-pricing Tests under Alternative Distributions,” The

Journal of Finance, 48, 1927–1942. [773]


	Abstract
	1.  INTRODUCTION
	2.  MODEL, DATA, AND PRIOR
	2.1.  Model
	2.2.  Data
	2.3.  Prior Specification

	3.  POSTERIOR COMPUTATIONS
	3.1.  MCMC simulation algorithm
	3.2.  Marginal Likelihood Computation

	4.  SIMULATION EXPERIMENTS
	4.1.  Simulation Design
	4.2.  Results

	5.  EMPIRICAL RESULTS
	6.  CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES


