Marginal Likelihood From the Gibbs Output
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In the context of Bayes estimation via Gibbs sampling, with or without data augmentation, a simple approach is developed for
computing the marginal density of the sample data (marginal likelihood) given parameter draws from the posterior distribution.
Consequently, Bayes factors for model comparisons can be routinely computed as a by-product of the simulation. Hitherto, this
calculation has proved extremely challenging. Our approach exploits the fact that the marginal density can be expressed as the
prior times the likelihood function over the posterior density. This simple identity holds for any parameter value. An estimate
of the posterior density is shown to be available if all complete conditional densities used in the Gibbs sampler have closed-form
expressions. To improve accuracy, the posterior density is estimated at a high density point, and the numerical standard error of
resulting estimate is derived. The ideas are applied to probit regression and finite mixture models.
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1. INTRODUCTION

The advent of Markov chain Monte Carlo (MCMC) meth-
ods (Gelfand and Smith 1990, Tanner and Wong 1987) to
simulate posterior distributions has virtually revolutionized
the practice of Bayesian statistics. For the most part, these
methods have been used for estimation and out-of-sample
prediction, because both of those problems are easily solved
given a sample of draws from the posterior distribution. On
the other hand, the problem of calculating the marginal like-
lihood, which is the normalizing constant of the posterior
density and an input to the computation of Bayes factors
(see, for example, Berger 1985, Kass and Raftery 1995, or
O’Hagan 1994), has proved extremely challenging. This is
because the marginal likelihood is obtained by integrating
the likelihood function with respect to the prior density,
whereas the MCMC method produces draws from the pos-

terior.
One way to deal with this problem is to compute Bayes

factors without attempting to calculate the marginal like-
lihood by introducing a model indicator into the list of
unknown parameters. Work along these lines has been re-
ported by Carlin and Polson (1991), Carlin and Chib (1995),
and many others. To use these methods, however, it is nec-
essary to specify all of the competing models at the out-
set, which may not be always possible, and to carefully
specify certain tuning constants to ensure that the simula-
tion algorithm mixes suitably in model space. In this arti-
cle, therefore, we concern ourselves with methods that di-
rectly address the calculation of the marginal likelihood.
Suppose that f(y|@x, M) is the density function of the
data y = (y1,...,yn) under model Mj, (k = 1,2,...,K)
given the model-specific parameter vector . Let the prior
density of 8, (assumed to be proper) be given by 7 (0 |My),
and let {6} = (6,...,69} be G draws from the
posterior density 7(@x|y, M)) obtained using a MCMC
method, say the Gibbs sampler. Newton and Raftery
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(1994) showed that the marginal likelihood (equivalently,
the marginal density of y) under model My, that is,

m(y| M) = / F(910,, Mi)n(8xMi) Oy, (1)

can be estimated as

G —1
-

which is the harmonic mean of the likelihood values. Al-
though this estimate is a simulation-consistent estimate of
m(y|My), it is not stable, because the inverse likelihood
does not have finite variance. But consider the quantity
proposed by Gelfand and Dey (1993):

(0(9) -1 3
mGD_{G Z( (y16\, My)m (055)|Mk>> } - ®

where p(@) is a density with tails thinner than the product of
the prior and the likelihood. This can be shown to have the
property that hgp — m(y|My) as G becomes large without
the instability of /hygr. Nonetheless, this approach requires
a tuning function, which can be quite difficult to determine
in high-dimensional problems, and subsequent monitoring
to ensure that the numbers are stable. In fact, we have
found that the somewhat obvious choices of p(-)—a nor-
mal density or ¢ density with mean and covariance equal
to the posterior mean and covariance—do not necessarily
satisfy the thinness requirement. Other attempts to mod-
ify the harmonic mean estimator, though requiring samples
from both the prior and posterior distributions, have been
discussed by Newton and Raftery (1994).

The purpose of this article is to demonstrate that a sim-
ple approach to computing the marginal likelihood and the
Bayes factor is available that is free of the problems just de-
scribed. This approach is developed in the setting where the
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Gibbs sampling algorithm, with or without data augmenta-
tion, has been used to provide a sample of draws from the
posterior distribution. To compute the marginal density by
our approach, it is necessary that all integrating constants
of the full conditional distributions in the Gibbs sampler be
known. This requirement is usually satisfied in models fit
with conjugate priors and covers almost all applications of
the Gibbs sampler that have appeared in the literature.

The rest of the article is organized as follows. Section 2
presents the approach, and Section 3 illustrates the deriva-
tion of the numerical standard error of the estimate. Section
4 presents applications of the approach, first for variable
selection in probit regression and then for model compar-
isons in finite mixture models. The final section contains
brief concluding remarks.

2. THE APPROACH

Suppress the model index k£ and consider the situation
wherein f(y|@) is the sampling density (likelihood function)
for the given model and 7(8) is the prior density. To allow
for the possibility that posterior simulation requires data
augmentation, let z denote latent data and suppose that for
a given set of vector blocks 8 = (04, 0,,...,605), the Gibbs
sampling algorithm is applied to the set of (B + 1) com-
plete conditional densities,

{m(6:ly,0:(s #7),2)},,  p(zly,6). @)

The objective is to compute the marginal density m(y| M)
from the output {69, z(9)}$_, obtained from (4).

The approach developed here consists of two related
ideas. First, m(y), by virtue of being the normalizing con-
stant of the posterior density, can be written as

_ [ylo)(6)
r(6ly)

where the numerator is just the product of the sampling
density and the prior, with all integrating constants in-
cluded, and the denominator is the posterior density of
0. It is worthwhile to refer to this simple identity, which
holds for any 0, as the basic marginal likelihood identity
(BMI). Second, for a given 0 (say 6*), the posterior or-
dinate w(0*|y) can be estimated by exploiting the infor-
mation in the collection of complete conditional densities
{r(0.ly,0s(s # 7),2)}E_,. The technique for doing so is
described later, but for the present, if the posterior density
estimate at 8* is denoted by #(0"|y), then the proposed
estimate of the marginal density, on the computationally
convenient logarithm scale, is

Inm(y) = In f(y|6*) + In7(60*) — In7(6*|y).  (6)

m(y) &)

It is important to observe the simplicity and benefits of
this expression: all it requires is the evaluation of the log-
likelihood function and the prior and an estimate of pos-
terior ordinate. The estimate does not suffer from any
instability problem, because it is a density value that is
averaged rather than its inverse. In addition, the entire es-
timation (simulation) error arises from the estimation of
the posterior ordinate, and this simulation error can be de-

Journal of the American Statistical Association, December 1995

rived, as shown in Section 3. It is now time to examine the
method for calculating the posterior density estimate from
the Gibbs output.

2.1 Estimation of 7(6*|y).

Consider now the estimation of the multivariate density
m(0*|y) and the selection of the point 8*. As was pointed
out, the BMI expression holds for any 8, and thus the choice
of the point is not critical, but efficiency considerations dic-
tate that for a given number of posterior draws, the density
is likely to be more accurately estimated at a high density
point, where more samples are available, than at a point in
the tails. It should be noted that a modal value such as the
posterior mode, or the maximum likelihood estimate, can
be computed from the Gibbs output, at least approximately,
if it is easy to evaluate the log-likelihood function for each
draw in the simulation. Alternatively, one can make use of
the posterior mean provided that there is no concern that it
is a low density point.

We now explain how the posterior density ordinate can
be estimated from the Gibbs output, starting with a canoni-
cal situation consisting of two blocks of parameters before
turning to the general case. We show that the proposed
multivariate density estimation method is easy to imple-
ment, requires only the available complete conditional den-
sities, and produces a simulation consistent estimate of the
posterior ordinate.

2.1.1 Two Vector Blocks. Suppose that Gibbs sampling
is applied to the complete conditional densities

m(0ly,z);  p(zly,0),

which is the setting of Tanner and Wong (1987). Let the
output from the Gibbs algorithm be given by {69, 2(9)}&_|
and suppose that 8™ is the selected point. If the posterior
density is written as

w(ely) = [ #(6ly. 2paly) dz

then it follows that an appropriate Monte Carlo estimate of
w(0)y) at 6* is

Q

#(0%ly) =G _w(6%ly,2), (7)

g=1

because z(® is a draw from the distribution z|y. Gelfand
and Smith (1990) referred to this technique as Rao—
Blackwellization and argued that it improves on the multi-
variate kernel method (Scott 1992). Also, under regularity
conditions, the estimate is simulation consistent; that is,
#(0"|y) — 7(0"|y) as G becomes large, almost surely, as a
consequence of the ergodic theorem (Tierney 1994). Sub-
stituting the estimate of the posterior ordinate into (6) gives
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the following estimate of the marginal likelihood:
=In f(y|60") + In7(8%)

G
—1In {G’l Z (0" |y, z(g))} .
g=1

This simple expression can be used for a large class of mod-
els, including the probit regression model discussed later.
Observe that the calculation amounts to evaluating the like-
lihood, the prior, and the “complete data” posterior density
at the point 6*.

Inmn(y)

2.1.2 Three Vector Blocks. An even larger class of mod-
els can be covered by slightly generalizing the Tanner and
Wong structure. Suppose that the Gibbs sampler is defined
through the complete conditional densities

7'r(olly792)z); 7r(02ly’01az); p(zlyae)

Models such as linear regression, linear regression with in-
dependent Student-t errors, Zellner’s seemingly unrelated
regression, and censored regression either fall in this cat-
egory or are a special case of this structure if z is absent.
Once again, the objective is to estimate 7(6*|y), which now
is expressed as

(81 ]y)7(83]y, 67), (8)

where
7(63ly) = [ 7(6ily, 62, 2)7 (62, 2ly) db da
and
n(O31y,67) = [ (63ly. 67, 2)plaly,6))dz )

is the reduced conditional density ordinate. It should be
clear that the normalizing constants of 7(0:|y,02,z) and
m(02]y,61,2) must be included in the integration for the
decomposition in (8) to be valid. The first ordinate, 7(87]y),
can be estimated in an obvious way, by taking the ergodic
average of the full conditional density with the posterior
draws of (0,z), leading to the estimate

G
=G71Y  n(63ly,05,29).

A similar technique, with an important twist, can be invoked
to obtain the reduced conditional ordinate in (9). Recognize
that the draws of z from the Gibbs sampler are from the dis-
tribution [z|y] and not from [z]y, 87]. Therefore, the com-
plete conditional density of @, cannot be averaged directly.
A simple solution is available to deal with this complica-
tion: Continue sampling for an additional G iterations with
the complete conditional densities

7r(02|y,0’{,z) and p(z|y10;a02))

where in each of these densities, 6, is set equal to 8. From
MCMC theory, it can be verified that the draws {z()} from
this run follow the density p(z|y,87), as required. Conse-
quently, #(83]y,07) = G~* Y. 7(83ly,07,2)) is a simu-
lation consistent estimate of (9). Although this procedure
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leads to an increase in the number of iterations, it is impor-
tant to stress that it does not require new programming and
thus is straightforward to implement. Note that the reduced
conditional run is not necessary if z is absent from the sam-
pling. In this case the reduced conditional density of 8, is
identical to its complete conditional density, and the density
estimate reduces to one used by Zellner and Min (1995) in
a different context.

Substituting the two density estimates into (6) yields the
estimate

Inm(y) =In f(y|6*) + In7(6%)

—In#(01ly) — In#(62]y, 67).

2.1.3 General Case. Although the technique described
thus far will apply to many problems of importance, con-
sider the situation with an arbitrary number of blocks. Even
in this case, the posterior density ordinate can be estimated
rather easily.

Begin by writing the posterior density at the selected
point as

m(0%ly) = m(0ily) x m(6;]y, 67)

Xoees Xﬂ-(e};’b', Iv"'ve*B—l),

where the first term is the marginal ordinate, which can

be estimated from the draws of the initial Gibbs run,

and the typical term is the reduced conditional ordinate
7(0;|y, 07,65 0;_,). The latter is given by

/w<e:|y, .65

d7T(0T+1, e

r-1,01(1>7),2)

05 (10)

7037z|ya 'r l)

where 7 is being used to denote density and distribution
function interchangeably. To estimate this term, continue
the sampling with the complete conditional densities of
{6,,0,+1,...,0p,z}, where in each of these full condi-
tional densities, 0; is set equal to 0%, (s < r — 1). If the
draws from the reduced complete conditional Gibbs run are
denoted by {89,09).,...,0%) z()}, then an estimate of
(10) is

7671y, 05(s <))
G

=G (8
J=1

*ly,05,65,...,05_ 1,09 (1> r),z),

(11)

whereas an estimate of the joint density is Hle # (07 y,
6 (s < r)). The log of the marginal likelihood is

Zlnﬂ' 0rly,®;

Inm(y) = In f(y|0") + In7(6%) (s <1)).

(12)

As an illustration of this procedure, suppose that B = 3,
a situation that arises in longitudinal random effects models
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and many other models. Then 7(63|y,07) is estimated
as G~1 S m(65]y, 07,605, 2(1)), where the draws {6, z()}
are obtained by continuing the Gibbs sampler with

m(62|y, 01, 03,2),m(6s]y, 61, 62,2),
and
m(zly, 07,02,603).
Finally, additional G iterations with the densities

7T(03|y7 0; esa Z) and 7T(Z|ya OI) 9; 03)

produce draws {z(%)} that follow the distribution [z|y, 87,63

These draws yield an estimate 7(63y, 67,05). This tech-
nique is illustrated in Section 4.2 for mixture models.

2.2 Bayes Factor Estimate

To compute the Bayes factor for any two models k£ and
[—that is, m(y|My)/m(y|M;)—the calculation described
earlier is repeated for all models, and the following estimate
is used:

By = exp{lnri(y| M) — Invn(y| M)}

An estimate of the posterior odds of any two models is
given by multiplying the estimated Bayes factor by the prior
odds.

2.3 Remarks

In some situations there are two sets of latent vectors
(z,) such that the density f(y|6,v) = [ f(y,z|0,)dz
is available in closed form but the likelihood f(y|0)
= [ f(y,|0) de is not. This occurs, for example, in dis-
crete response data models with random effects. To analyze
this situation, one can use the BMI expression

f(y|6,4)m(0,%)
0. 4ly)

Both the numerator and denominator can be evaluated at
the point (6*,%"), and the posterior mean of (6,1)) and
(6, y) can be estimated using the method in Section 2.1
by treating 1) as an additional block.

The BMI can also be used to assess the convergence
of the Gibbs sampler, by computing and monitoring its
stability for different iterations. Such an idea, combined
with a different approach for computing the posterior den-
sity, appears in the Gibbs stopper proposed by Ritter and
Tanner (1992). Raftery (1994) mentioned using the ker-
nel estimate of the posterior density in connection with the
BMI, but the resulting estimate can inherit the inaccuracy
of the kernel method, especially in high dimensions. Fi-
nally, another identity similar to the BMI is available in
the prediction context. Suppose that y; denotes an out-of-
sample observation. Then the Bayesian prediction density,

fysly) = | f(ysly,0)m(Bly) dO, can be expressed as

fysly,0)m(Oly)
m(0ly, ys)

m(y) =

fysly) =
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(see Besag 1989). This identity follows in a straightfor-
ward manner from the definition of the posterior density
7(6y,ys) and cross-multiplying. Besag (1989) alluded to
a different proof.

3. NUMERICAL STANDARD ERROR

As mentioned in the preceding section, the proposed den-
sity estimation procedure is likely to produce an accurate
estimate of m(f]y) at the point 6*. In fact, it is possible
to calculate the accuracy achieved by a computation that
uses the Gibbs output. This calculation yields the numerical
standard error of the marginal density estimate (or, equiva-
lently, that of the posterior density estimate). The numerical
standard error gives the variation that can be expected in
the estimate if the simulation were to be done afresh, but
the point at which the ordinate is evaluated is kept fixed.

To concentrate on the main ideas, consider the case in
Section 2.1.2 and define the vector stochastic process

h = ( h1(027z) ) — ( 7r(0{|y,02,z) )
ha(z) )~ \ n(63ly,01,2) )’
where in the first component the latent vector (02,z) ~ [-|y]
while in the second component the latent vector z follows
the distribution [-|y, 87]. In general, hisa Bx 1 Vector with
the rth component given by = (6} |y,07,65,...,65_,,0,(
> r),z), the integrand of (10).

It should be noted that due to the procedure used to es-
timate the reduced conditional ordinate, the second com-
ponent of h is approximately independent of the first. But
for expositional simplifications, it is worthwhile to proceed
with the vector formulation. Then in this notation,

lzh(g (st )

and our objective is to find the variance of two functions
of h, namely ¢, = h; x hy and ¥ = In(h1) + In(hy)
= In#(07|y) + In#(03]y,07). The variance of these two
functions is found by the delta method as soon as the vari-
ance of h is determined. Because h inherits the ergodic-
ity of the Gibbs output, it follows by the ergodic theorem
(Tierney 1994) that

(13)

h—pu as G— oo,

(r(01ly), m(65y, 61))",
lim G{E(h - p)(h - p)'} = 27S(0),
G—o0
and S(0) is the spectral density matrix at frequency zero.

An estimate of 2 = 27S(0) can be obtained by the approach
of Newey and West (1987) or Geweke (1992). If

almost surely, where p =

G
Q. =G! Z (b9 —h)(h® —hY,
g=s+1
then
var(h) = 5 QO+Z (1— ——) (2 +€2))
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Table 1. Nodal Involvement Data
Case y X1 X2 X3 X4 X5 Case y X1 X2 X3 X4 X5
1 0 66 48 0 0 0 2 0 68 56 0 0 0
3 0 66 .50 0 0 0 4 0 56 .52 0 0 0
5 0 58 .50 0 0 0 6 0 60 .49 0 0 0
7 0 65 .46 1 0 0 8 0 60 .62 1 0 0
9 1 50 .56 0 0 1 10 0 49 .55 1 0 0
1 0 61 .62 0 0 0 12 0 58 71 0 0 0
13 0 51 .65 0 0 0 14 1 67 .67 1 0 1
15 0 67 47 0 0 1 16 0 51 .49 0 0 0
17 0 56 .50 0 0 1 18 0 60 78 0 0 0
19 0 52 83 0 0 0 20 0 56 98 0 0 0
21 0 67 52 0 0 0 22 0 63 75 0 0 0
23 1 59 99 0 0 1 24 0 64 1.87 0 0 0
25 1 61 1.36 1 0 0 26 1 56 .82 0 0 0
27 0 64 .40 0 1 1 28 0 61 .50 0 1 0
29 0 64 .50 0 1 1 30 0 63 .40 0 1 0
31 0 52 .55 0 1 1 32 0 66 .59 0 1 1
33 1 58 .48 1 1 0 34 1 57 .51 1 1 1
35 1 65 .49 0 1 0 36 0 65 .48 0 1 1
37 0 59 .63 1 1 1 38 0 61 1.02 0 1 0
39 0 53 .76 0 1 0 40 0 67 95 0 1 0
41 0 53 .66 0 1 1 42 1 65 .84 1 1 1
43 1 50 81 1 1 1 44 1 60 .76 1 1 1
45 1 45 70 0 1 1 46 1 56 78 1 1 1
47 1 46 70 0 1 0 48 1 67 .67 0 1 0
49 1 63 .82 0 1 0 50 1 57 .67 0 1 1
51 1 51 72 1 1 0 52 1 64 .89 1 1 0
53 1 68 1.26 1 1 1

where ¢ is some constant, essentially the value at which the
autocorrelation function tapers off. In the applications to
follow ¢ is conservatively set equal to 10, although there
was negligible to vanishing serial correlation in the h(9)
process. The variance of 12, for example, is found by the
delta method to be

(ad?)Ivar(ﬁ) (8142> ,
oh oh

where the derivative vector consists of elements A ' and

h3!. The square root of this variance is the numerical stan-
dard error of the marginal likelihood in the log scale.

(14)

4. EXAMPLES

In this section the approach developed earlier is applied to
two important classes of models. In particular, the methods
are discussed in the context of variable selection in binary
probit regression models and in the context of two broad
classes of finite mixture models, the iid mixture model and
the Markov mixture model.

By way of notation, for a d-dimensional normal ran-
dom vector .with mean u and covariance matrix X,
the density at the point t is denoted by ¢(t|u,X)
= (2m)¥2| 2|72 exp(—(t — u)’S"1(t —p)/2) and the
inverse gamma density at the point s is denoted by
prc(sla,b) = (b2/T'(a))(1/5)@*Y exp(—b/s). Finally, for
a m vector q on the unit simplex, the Dirichlet
D(a1, a2, ...,a.,) density is denoted by pp(qlay, ..., )
= F(Zj a;)g gt/ I1; T ().

4.1 Binary Probit Regression

Consider the data in Table 1 on the presence of prostatic
nodal involvement collected on 53 patients with cancer of
the prostate. The data (reported in the study by Brown
(1980); see also Collett 1991) include a binary response
variable y that takes the value 1 if cancer had spread to the
surrounding lymph nodes and value zero otherwise. The
objective is to explain the binary response with five vari-
ables: age of the patient in years at diagnosis (z;); level of
serum acid phosphate (zs); the result of an X-ray exami-
nation, coded O if negative and 1 if positive (z3); the size
of the tumor, coded O if small and 1 if large (x4); and the
pathological grade of the tumor, coded O if less serious and
1 if more serious (z5).

The probability of positive response can be explained
through a probit link function or, as by Collett (1991), by
a logit link. If interactions and powers of explanatory vari-
ables are excluded, then there are 32 possible models that
can be fit. Collett’s finding from the classical deviance
statistic (—2 times the maximized log-likelihood) is that
the logistic model containing log(zs), z3, and x4 provides
a suitable fit for the data among these 32 models. These
data are reanalyzed to demonstrate the computation of the
marginal likelihood using nine of these models (defined
later and selected entirely for illustrative purposes).

Under model k, suppose that

Pr(y; = 1|My) = ®(x}B%), 1 < 53,
1kMk

where ®(-) is the cumulative distribution function of the
standard normal density, z;; are the covariates included in
model k, and 3, is the corresponding regression parame-
ter vector. The likelihood function under M}, assuming a



