Rational Inattention and Portfolio Selection

LIXIN HUANG and HONG LIU∗

ABSTRACT

Costly information acquisition makes it rational for investors to obtain important economic news only with limited frequency or limited accuracy. We show that this rational inattention to important news may make investors overinvest or underinvest. In addition, the optimal trading strategy is “myopic” with respect to future news frequency and news accuracy. We find that the optimal news frequency is nonmonotonic in news accuracy and investment horizon. Furthermore, when both news frequency and news accuracy are endogenized, an investor with a higher risk aversion or a longer investment horizon chooses less frequent but more accurate periodic news updates.

Journal of Economic Literature Classification Numbers: D11, D91, G11, C61.

Keywords: Inattention, Predictability, Periodic News, Estimation Risk.

Forthcoming in the Journal of Finance

∗Huang is from City University of Hong Kong and Liu is from Washington University in Saint Louis. We are very grateful to an anonymous referee, Kerry Back, Suleyman Basak, Alex David, Jérôme Detemple, Gary Gorton, Qiang Kang, Richard Kihlstrom, Yuming Li, Jianjun Miao, Rob Stambaugh (the Editor), Yihong Xia, Guofu Zhou, and seminar participants at the 2004 AFA conference, the 2003 MFA Conference, Boston University, the Hong Kong University of Science and Technology, the University of Missouri at Columbia, the University of North Carolina at Chapel Hill, and Washington University in Saint Louis for helpful comments. Huang acknowledges research funding provided by a grant from City University of Hong Kong (Project no. 7001870). Corresponding author: Hong Liu at liuh@wustl.edu.
Standard portfolio selection theories assume that investors can costlessly obtain and process all the relevant information that affects investment performance. However, this assumption does not hold for most investors, including the most sophisticated ones. First, information production can be very costly due to necessary data collection and noise reduction (e.g., macroeconomic news and earnings forecast). Second, information processing can also be costly in terms of required time and effort. These costs induce limited attention.¹ Hong, Torous, and Valkanov (2002), among others, provide evidence of investors’ inattention to important economic news. Bacchetta and van Wincoop (2005) build an overlapping generations model to explain the forward discount and predictability puzzle with rational inattention.² Peng and Xiong (2005) show that inattention can lead to “category-learning” behavior and cross-sectional return predictability.

Some unanswered questions in this literature include how to determine an investor’s optimal inattention to valuable information and how rational inattention affects his trading strategy. To address these questions, we develop a novel portfolio selection model in which an investor with a hyperbolic absolute risk aversion (HARA) preference over his terminal wealth can purchase both periodically released news and continuously released news (with different accuracies and costs) about a predictive state variable that predicts the future expected return.³

We derive explicit forms for the value function and the optimal trading strategy. The information cost gives rise to rational inattention to the news in the sense that the investor chooses to receive the news only with limited frequency and/or limited accuracy. We show that with rational inattention, the trading strategy is “myopic” with respect to news frequency and news accuracy even for an investor with non-log preference, in the sense that as long as the current conditional distribution is the same the optimal trading strategies will be the same irrespective of whether or not
one is going to have more information in the future. So all that matters for the investor's current optimal trading strategy is the current conditional distribution of the predictive variable. Intuitively, periodic news updates may have two opposite effects on the optimal trading strategy. On the one hand, the investor's estimation risk is smaller with periodic news updates than without them. Accordingly, it seems reasonable to conjecture that the investor would invest more at time 0 in the case with periodic news updates than in the case without them, given the same conditional distribution at time 0. On the other hand, since the investor can observe the predictive variable at the beginning of the next period, it seems also reasonable to conjecture that the investor would reduce the current stock investment to decrease the damage from possible estimation error and wait until the next period when he gets better estimation for choosing a better trading strategy. We show that both of these conjectures are incorrect. This somewhat surprising independence stems from a fairly simple fact: Access to more accurate or more frequent news in the future improves the investor's utility by a constant multiple across all states and thus does not affect the optimal trading strategy. However, because periodic news coming in the future will almost surely change the conditional distribution, the trajectories of the optimal trading strategies will be almost surely different across the two models with or without periodic news.

Furthermore, we find that trading only at periodic news-update times to reduce estimation risk at trading times (e.g., a discrete-time model) results in significant underinvestment and welfare loss. In addition, when the investor underestimates (overestimates) the predictive variable, he tends to underinvest (overinvest). However, if news about the predictive variable is very noisy, the investor may still underinvest even with good news. Finally, our model predicts that trading volume jumps up at news-update times due to the drop in uncertainty about the predictive variable at
these times.

We show that the optimal news frequency increases with the unconditional volatility of the predictive variable and decreases with information cost and risk aversion. Intuitively, with a more volatile predictive variable the news updates become more helpful, higher information cost increases the marginal cost of news updates, and greater risk aversion decreases the benefit of more frequent news since the investor invests less in stock. In contrast, we find that the optimal news frequency displays nonmonotonic patterns in news accuracy, investment horizon, and the correlation between the stock return and the predictive variable. When news is very noisy, it is not very useful and it is not worthwhile to pay for frequent news. When news is very precise, there is no need for very frequent news because the estimation risk based on a precise prior is small. A very short investment horizon decreases the benefit of more frequent news. A very long horizon increases the cost of more frequent news. Finally, although high correlation between the stock return and the state variable makes learning effective and reduces the necessity for more frequent news, very low correlation also lowers the optimal news frequency because learning becomes ineffective and the value of news updates is reduced.

When news accuracy is also endogenized, we find that an investor with a higher risk aversion or a longer investment horizon chooses less frequent but more accurate periodic news updates. Intuitively, a more risk-averse investor invests less in the stock and is also more averse to estimation risk. As the investment horizon increases, total information costs increase for given news frequency and news accuracy. This induces the investor to decrease news frequency. To partly compensate for the increase in the estimation risk caused by less frequent news updates, the investor increases news accuracy.

We also generalize our model to allow for intertemporal consumption, nonlinear
dynamics, and continuous choice of information. Numerical results suggest that the above results are robust to these generalizations.

The existing model closest to ours is that of Detemple and Kihlstrom (1987). They consider a similar portfolio selection problem where continuous news is available for purchase throughout the investment horizon. In contrast to their model, our model allows for both continuous news and periodic news and focuses more on the analysis of periodic news since an important manifestation of inattention is the choice of limited news frequency and, typically in practice, periodic news (e.g., economic statistics announcements) is more accurate than continuous news.

Our study is also closely related to the literature on portfolio selection with return predictability (e.g., Kandel and Stambaugh (1996), Xia (2001), and Detemple, Garcia, and Rindisbacher (2003)). Most of the models in this literature assume that all predictive variables are accurately observable at all trading times. For example, the continuous-time models of Xia (2001) and Detemple et al. (2003) assume that all predictive variables are continuously and accurately observable to the investor; the discrete-time models of Kandel and Stambaugh (1996) and Stambaugh (1999) assume that at the beginning of every period the investor can always accurately observe predictive variables. In contrast, although the investor in our paper trades continuously, the cost of obtaining and processing information about the predictive variable makes it optimal for him to receive the periodic news only with limited frequency. In addition, the periodic news frequency in our paper is endogenously determined rather than exogenously given as in the existing literature.

Our model is also different from portfolio selection models with return predictability and parameter uncertainty. Kandel and Stambaugh (1996) consider the asset allocation implications of return predictability in the presence of predictive parameter estimation risk. They find that although the predictive regression seems weak when
described by usual statistical measures, return predictability can have a substantial influence on stock trading strategy. Xia (2001) also studies the impact of parameter uncertainty on the optimal trading strategy in the presence of return predictability. She shows that uncertainty about the predictive relation leads to a state-dependent relationship between the optimal portfolio choice and the investment horizon. In contrast, we study how information production and processing costs induces inattention to the predictive variable and how this inattention affects the stock trading strategy.

It is worth noting that because the investor in our model needs to combine the continuous filtering (from continuously observing the stock price and the continuous news) and the periodic filtering (from the periodic news updates), the problem faced by the investor is different from those problems considered by most of the portfolio selection models with dynamic learning (e.g., Gennette (1986), Detemple and Kihlstrom (1987), Detemple (1991), Brennan (1998), and Xia (2001)). In most of these models, the unknown variables that an investor tries to learn are never directly observed. For example, Brennan (1998) assumes that the expected return of a stock is constant and unobservable throughout the investment horizon. In contrast, in our model the investor can obtain periodic news updates about the predictive variable. These periodic updates periodically correct the investor’s estimation errors and significantly change the investor’s trading strategy. The filtering problem in this paper is also different from that in Duffie and Lando (2001). In their model, investors observe only periodic signals on the unobservables and therefore do not face the continuous filtering problem on top of the discrete filtering, as we do in this paper.

The rest of the paper is organized as follows. In Section I we describe our portfolio selection model with rational inattention. Section II provides the solution in explicit forms. In Section III an empirical model is calibrated using Center for Research in Security Prices (CRSP) data and consumption-to-wealth ratio data. In Sections IV,
V, and VI, we use the calibrated model to study the optimal news frequency, the optimal news accuracies, and the effect of rational inattention on the optimal trading strategy. In Section VII, we generalize the model to allow intertemporal consumption, nonlinear dynamics, and continuous choice of information to demonstrate the robustness of the main results. Section VIII concludes. We provide technical details in the Appendix.

I. The Model

There are two assets that an investor can continuously trade in a financial market. The first asset is a risk-free money market account with a constant interest rate of \(r \). The second asset (stock) is risky and its cum-dividend price \(S_t \) satisfies

\[
\frac{dS_t}{S_t} = (\mu_0 + \mu_1 X_t)dt + \sigma_S dZ_{1t},
\]

where \(\mu_0, \mu_1, \) and \(\sigma_S \) are all constants, \(Z_{1t} \) is a one-dimensional Brownian motion, and \(X_t \) is a predictive variable that evolves as follows:

\[
dX_t = (g_0 + g_1 X_t)dt + \rho \sigma_X dZ_{1t} + \sqrt{1 - \rho^2} \sigma_X dZ_{2t},
\]

where \(g_0, g_1, \sigma_X, \) and \(\rho \in [-1, 1] \) are all constants and \(Z_{2t} \) is a one-dimensional Brownian motion that is independent of \(Z_{1t} \). As opposed to the standard literature, we assume that the predictive variable process \(X_t \) is not freely observable to the investor. Instead, there is an information market where (possibly inaccurate) news about the predictive variable is available only at a cost and the investor can obtain both periodic and continuous news updates. The periodic news is designed to model periodic news announcements such
as economic forecasts and news letters; the continuous news is designed to model in-house information production or inference from other continuous-information streams such as media coverage of related economic events. For the periodic news updates, we assume that the investor can receive \(N \) news updates at \(t_i = (i - 1)\frac{T}{N} \) \((i = 1, 2, \ldots, N) \), where \(T > 0 \) is the investment horizon of the investor. The \(i \)th update \(y_{ti} \) received at \(t = t_i \) is a noisy signal of \(X_t \):

\[
y_{ti} = X_t + \varepsilon_{ti},
\]

where \(\varepsilon_{ti} \) represents the noise in the news. We assume that \(\varepsilon_{ti} \) is serially uncorrelated, independent of any other random variables at any time, and identically normally distributed with mean 0 and standard deviation \(\alpha_{\varepsilon}^{-1} \). We interpret \(\alpha_{\varepsilon} \) to represent the periodic news accuracy. Note that if \(\alpha_{\varepsilon} = 0 \), then it is equivalent to no periodic news update, whereas if \(\alpha_{\varepsilon} = \infty \), then it is equivalent to perfectly accurate news updates.

The cost for the \(i \)th news update is \(\beta_i(\alpha_{\varepsilon}) \), so the total cost for all periodic news updates to be paid at time 0 is equal to \(\sum_{i=1}^{N} \beta_i(\alpha_{\varepsilon}) \). For the continuous news, by paying a cost of \(\beta_c(\alpha_{\nu}) \) at time 0, the investor can receive continuous news \(\nu_t \) of accuracy \(\alpha_{\nu} \), where, similar to Detemple and Khilstrom (1987), \(\nu_t \) evolves as

\[
d\nu_t = (h_0 + h_1 X_t)dt + \sigma_{\nu} dZ_{3t},
\]

where \(h_0, h_1, \) and \(\sigma_{\nu} \) are all constants and \(Z_{3t} \) is a Brownian motion that is independent of \(Z_{1t} \) and \(Z_{2t} \). The accuracy \(\alpha_{\nu} \equiv h_1/\sigma_{\nu} \) of the continuous news is measured by the signal-to-noise ratio. Similar to Detemple and Khilstrom (1987), we assume that both \(\beta_c(.) \) and \(\beta_i(.) \) are strictly increasing and strictly convex. To simplify exposition, in the rest of the paper, unless the words “continuous news” are used, the word “news” alone refers to “periodic news.”
Before the time 0 news update, the prior of the investor is that \(X_0 \) is normally distributed with mean \(M_0^- \) and variance \(V(0^-) \). Let \(\mathcal{F}_t \) denote the filtration at time \(t \) generated by \{\(S_s, \nu_s \), \(y_t \)\}, and the prior \((M_0^-, V(0^-))\) for all \(s \leq t \) and \(t_i \leq t \). We assume that an investor has a HARA preference over the terminal wealth at time \(T \). Specifically, the investor’s utility function is

\[
u(W) = \gamma \left(\frac{\lambda W}{\gamma} + \eta \right)^{1-\gamma},
\]

where \(\gamma, \lambda, \eta \) are all constants subject to the restrictions\(^9\)

\[
\gamma \neq 1, \lambda > 0, \text{ and } \eta = 1 \text{ if } \gamma = \infty.
\]

Given the initial wealth \(W_0^- > 0 \) and the prior \((M_0^-, V(0^-))\), the investor’s problem is to choose the number \(N \in \mathcal{F}_0 \) of news updates, the news accuracies \(\alpha_\varepsilon, \alpha_\nu \in \mathcal{F}_0 \), and a trading strategy \(\theta_t \in \mathcal{F}_t \) to maximize the expected utility from the terminal wealth; that is,

\[
\max_{N, \alpha_\varepsilon, \alpha_\nu, \theta} E[u(W_T)],
\]

subject to

\[
dW_t = rW_t dt + \theta_t(\mu_0 + \mu_1 X_t - r)dt + \theta_t \sigma dZ_t, \tag{5}
\]

\[
W_0 = W_0^- - \sum_{i=1}^N \beta_i(\alpha_\varepsilon) - \beta_c(\alpha_\nu), \tag{6}
\]

the dynamics (2) of \(X_t \), the news equations (3) and (4), and the constraint that the wealth process \(W_t \) is bounded below, where equation (5) is the budget constraint and equation (6) is the initial wealth after deducting the information cost.
II. The Solution

We first consider the optimal investment problem for given frequency N and accuracies α_ε and α_ν. Then we solve for the optimal N, α_ε, and α_ν that maximize the obtained value function. As in Detemple (1986), Gennotte (1986), and Detemple (1991), the investor’s problem for given N, α_ε, and α_ν is separable in inference and optimization.\(^\text{10}\) In particular, the investor’s portfolio selection problem given N, α_ε, and α_ν is equivalent to

$$
\max_\theta E[u(W_T)],
$$

subject to

$$
dW_t = rW_t dt + \theta_t(\mu_0 + \mu_1 M_t - r)dt + \theta_t \sigma_S d\hat{Z}_{1t},
$$

where $M_t \equiv E[X_t|\mathcal{F}_t]$ is the conditional expectation of X_t that $\forall i = 1, 2, \ldots, N$ satisfies

$$
dM_t = (g_0 + g_1 M_t)dt + \sigma_{M1}(t)d\hat{Z}_{1t} + \sigma_{M2}(t)d\hat{Z}_{3t}, \ \forall t \in (t_i, t_{i+1}),
$$

$$
\sigma_{M1}(t) = \frac{\mu_1}{\sigma_S} V(t) + \rho \sigma_X, \ \sigma_{M2}(t) = \alpha_\nu V(t), \text{ where } V(t) \equiv E[(X_t - M_t)^2|\mathcal{F}_t] \text{ is the conditional variance of } X_t \text{ satisfying}
$$

$$
\frac{dV(t)}{dt} = 2g_1 V(t) + \sigma_X^2 - \left(\frac{\mu_1}{\sigma_S} V(t) + \rho \sigma_X\right)^2 - \alpha_\nu^2 V(t)^2, \ \forall t \in (t_i, t_{i+1}),
$$

\hat{Z}_{1t} and \hat{Z}_{3t} are the (observable) innovation processes satisfying

$$
d\hat{Z}_{1t} = \frac{\mu_1}{\sigma_S} (X_t - M_t)dt + dZ_{1t},
$$

and

$$
d\hat{Z}_{3t} = \alpha_\nu (X_t - M_t)dt + dZ_{3t}.
$$
In addition, at the news update times, conditional mean and conditional variance are updated using Bayes’ Rule:

\[M_{t_i} = M_{t_i^-} + \frac{V(t_i^-)}{V(t_i^-) + \alpha_\varepsilon^{-2}} (y_{t_i} - M_{t_i^-}), \]

(10)

\[V(t_i) = \frac{V(t_i^-)\alpha_\varepsilon^{-2}}{V(t_i^-) + \alpha_\varepsilon^{-2}}, \]

(11)

where

\[y_{t_i} = X_{t_i} + \varepsilon_{t_i}, \quad \varepsilon_{t_i} \sim N(0, \alpha_\varepsilon^{-1}). \]

(12)

A brief discussion of the above equations is now in order. Between news updates, the investor infers the conditional distribution of the predictive variable \(X_t \) from the observation of stock prices and the continuous news \(\nu_t \). By Theorem 10.5.1 of Kallianpur (1980), for any \(i = 1, 2, ..., N \) and time \(t \in (t_i, t_{i+1}) \), the conditional mean \(M_t \) satisfies equation (8) and the conditional variance \(V(t) \) satisfies equation (9). Right before news \(y_{t_i} \) is received at time \(t_i \), the conditional distribution of \(X_{t_i} \) is normal with mean \(M_{t_i^-} \) and variance \(V(t_i^-) \). Upon observing \(y_{t_i} \), this conditional distribution of \(X_{t_i} \) is updated. Given equation (12), \(M_{t_i^-} \), and \(V(t_i^-) \), \(X_{t_i} \) and \(y_{t_i} \) are jointly normal and the conditional distribution of \(X_{t_i} \) after incorporating news \(y_{t_i} \) is normal with mean \(M_{t_i} \) and variance \(V(t_i) \) as in equations (10) and (11) respectively. It is worth noting that as \(\alpha_\nu \) decreases to 0, the continuous signal \(\nu_t \) becomes useless and thus is equivalent to not observing \(\nu_t \).

A. No Periodic News for the Entire Horizon

In this subsection we assume that no periodic news about the predictive variable \(X \) is obtained throughout the entire horizon \(T \) (equivalently, \(\alpha_\varepsilon = 0 \)). This case provides a basis for developing the solution to the more complicated case with periodic news.
updates. Similar to Detemple and Kihlstrom (1987), after taking into consideration the information contained in the continuous process ν through equations (8) and (9), the investor’s value function only depends on (W, M, t) and is independent of the realized value ν since neither the wealth process W nor the conditional mean process M depends on ν. For a given accuracy of the continuous news α_ν, let J be the value function at t; that is,

$$J(W, M, t; \alpha_\nu) = \max_{\theta} E[u(W_T)|W_t = W, M_t = M].$$

The value function must satisfy the Hamilton-Jacobi-Bellman (HJB) equation

$$J_t + \max_{\theta}\left\{ \frac{1}{2} \theta^2 \sigma_S^2 J_{WW} + \theta (\mu_0 + \mu_1 M - r) J_W + \theta \sigma_S \sigma_{M1}(t) J_{WM} \right\}$$

$$+ r W J_W + \frac{1}{2} \sigma_M(t)^2 J_{MM} + (g_0 + g_1 M) J_M = 0$$

(13)

and the terminal condition

$$J(W, M, T; \alpha_\nu) = u(W),$$

where $\sigma_M(t)^2 \equiv \sigma_{M1}(t)^2 + \sigma_{M2}(t)^2$. We provide the explicit solution in the following proposition.

Proposition 1. When there is no periodic news update throughout the entire horizon, the value function is

$$J(W, M, t; \alpha_\nu) = U(W, t) e^{(1-\gamma)(c(t)+d(t)M+\frac{1}{2}Q(t)M^2)},$$
where

\[U(W, t) \equiv \frac{\gamma}{1 - \gamma} \left(\frac{\lambda W}{\gamma} + \eta e^{-r(T-t)} \right)^{1-\gamma}, \]

and the optimal trading strategy satisfies

\[\pi_t^* \equiv \frac{\theta_t^*}{W_t + \frac{\eta \mu}{\gamma} e^{-r(T-t)}} = \frac{\mu_0 + \mu_1 M_t - r + (1-\gamma)\sigma_S \sigma_M(t)(d(t) + Q(t)M_t)}{\gamma \sigma_S^2}, \] \(14\)

where \(Q(t), d(t),\) and \(c(t)\) are as in equations (A26)–(A28) in the Appendix.

Proof. See the Appendix.

The functional form of the value function and the optimal trading strategy follows from the fact that for a HARA investor, \(\frac{\eta \mu}{\gamma}\) is like an extra income at time \(T\) and his time \(t\) effective wealth is equal to the current wealth \(W_t\) plus the present value of this extra income \(\left(\frac{\eta \mu}{\gamma} e^{-r(T-t)}\right)\). To simplify exposition, in the rest of this paper unless specified otherwise we will refer to this “effective wealth” simply as “wealth” and \(\pi^*\) simply as the fraction of wealth in stock.

Once we have obtained the value function for a fixed \(\alpha_\nu\), we then solve the following maximization problem

\[\max_{\alpha_\nu} J(W, M, 0; \alpha_\nu) \]

to compute the optimal accuracy \(\alpha_\nu^*\) for the continuous news. Even though this optimization problem does not seem to have a closed-form solution, it can be easily solved numerically, as shown later in Sections IV, V, and VI.
To better understand the optimal trading strategy, we can rewrite the trading strategy as

$$\pi_t^* = \frac{\mu_0 + \mu_1 M_t - r}{\gamma \sigma_S^2} + \frac{(1 - \gamma) \rho \sigma_X (d(t) + Q(t) X_t)}{\gamma \sigma_S} + \frac{(1 - \gamma) \rho \sigma_X \sigma_S Q(t)}{\gamma \sigma_S^2} (M_t - X_t) + \frac{(1 - \gamma) \mu_1 (d(t) + Q(t) M_t)}{\gamma \sigma_S^2} V(t).$$

(15)

This shows that the optimal trading strategy consists of four parts: (1) the myopic trading for the growth of wealth, (2) the hedging against the time-varying investment opportunity set determined by the predictive variable X_t, (3) the hedging against the estimation error of the expected stock return, and (4) the hedging against the estimation risk of the predictive variable. Lack of perfect information generates a hedging demand that depends on the estimation error $M_t - X_t$ and the conditional variance $V(t)$ and can therefore cause an investor to overinvest or underinvest from misestimation.

B. Periodic News Updates

Now we extend the above analysis to the case where periodic news about X_t is received at a cost. This captures the empirical fact that, at a cost (e.g., subscribing to analyst services or investment newsletters), an investor can typically obtain periodic news updates about important predictive variables such as dividend yield, the gross national product (GNP) growth rate, the consumption to wealth ratio, and the inflation rate.

Suppose the number of updates is N, the news accuracy is α_ε and the cost is
\[\sum_{i=1}^{N} \beta_i(\alpha_\varepsilon). \] We solve the investor’s optimization problem using an iterative method. At the beginning of the \(N \)th period (i.e., \(t = t_N \)) the results in Proposition 1 apply, and therefore the value function at any time \(t \in [t_N, T] \) is

\[J^N(W, M, t; N, \alpha_\varepsilon, \alpha_\nu) = U(W, t) e^{(1-\gamma)(c^N(t) + d^N(t)M + \frac{1}{2}Q^N(t)M^2)}, \]

where \(c^N(t) \), \(d^N(t) \), and \(Q^N(t) \) are the respective counterparts of \(c(t) \), \(d(t) \), and \(Q(t) \) in Proposition 1.

Now suppose the investor is in the \((i-1)\)th period for \(i = 2, 3, \ldots, N \). Since the investor does not know \(M_{t_i} \) before \(y_{t_i} \) is revealed, he first takes the expectation with respect to \(M_{t_i} \) conditional on \(M_{t_{i-1}} \) and \(V(t_i^-) \). Given expressions (10) and (11), we have

\[
\begin{align*}
J^{i-1}(W, M, t_i^-; N, \alpha_\varepsilon, \alpha_\nu) &= E[J^i(W, M_{t_i}, t_i); N, \alpha_\varepsilon, \alpha_\nu | M_{t_i} = M, V(t_i^-)] \\
&= \int_{-\infty}^{\infty} U(W, t_i^-) e^{(1-\gamma)(c^{i-1} + d^{i-1}M + \frac{1}{2}Q^{i-1}M^2)} n(x) dx \\
&= U(W, t_i^-) e^{(1-\gamma)(\hat{c}^{i-1} + \hat{d}^{i-1}M + \frac{1}{2}\hat{Q}^{i-1}M^2)},
\end{align*}
\]

(16)

where \(n(x) \) is the normal density function with mean \(M_{t_i}^- \) and variance \(V_M(t_i) \), with \(V_M(t_i) \) being the conditional variance of \(M_{t_i} \) given \(M_{t_{i-1}} \) and \(V(t_i^-) \), satisfying

\[V_M(t_i) = \frac{V(t_i^-)^2}{V(t_i^-) + \alpha_\varepsilon^2}, \]

\[\hat{c}^{i-1} = c^i + \frac{(1-\gamma)(d^i)^2V_M(t_i)}{2(1-(1-\gamma)V_M(t_i)Q^i)} - \frac{1}{2(1-\gamma)} \log(1-(1-\gamma)Q^iV_M(t_i)), \]

\[\hat{d}^{i-1} = \frac{d^i}{1-(1-\gamma)V_M(t_i)Q^i}, \quad \hat{Q}^{i-1} = \frac{Q^i}{1-(1-\gamma)V_M(t_i)Q^i}. \] (17)
Equation (16) provides the terminal conditions for solving the investor’s problem in period \((i - 1)\). Note that the terminal value function \(J^{i-1}\) for period \((i - 1)\) has the same exponential form as the value function \(J^i\) for period \(i\). This stability of the functional form makes it possible to solve the investor’s problem across all periods, as shown below.

Proposition 2. For a given \(N > 0\), for \(i = 1, 2, ..., N\), the value function at time \(t \in [t_i, t_{i+1})\) is

\[
J^i(W, M, t; N, \alpha_\varepsilon, \alpha_\nu) = U(W, t)e^{(1-\gamma)(c^i(t) + d^i(t)M + \frac{1}{2}Q^i(t)M^2)}
\]

and the optimal trading strategy is

\[
\pi^*_t \equiv \frac{\theta^*_t}{W_t + \frac{\gamma}{X}e^{-r(T-t)}} = \frac{\mu_0 + \mu_1 M_t - r + (1 - \gamma)\sigma_S\sigma M_1(t)(d^i(t) + Q^i(t)M_t)}{\gamma \sigma_S^2},
\]

where \(Q^i(t), d^i(t),\) and \(c^i(t)\) are as in equations (A29)–(A31) in the Appendix.

Proof. See the Appendix.

Once we have obtained the value function for fixed \(N, \alpha_\varepsilon,\) and \(\alpha_\nu,\) we then solve the following maximization problem

\[
\max_{N, \alpha_\varepsilon, \alpha_\nu} J^1(W, M, 0; N, \alpha_\varepsilon, \alpha_\nu)
\]

to compute the optimal number of news updates \(N^*\) and the optimal news accuracies \(\alpha^*_\varepsilon\) and \(\alpha^*_\nu.\)

Equation (18) implies that, as opposed to the case with no news update, the fraction of wealth invested in the stock jumps at observation times due to discrete changes of the conditional mean \(M_t\) and the conditional variance \(V(t)\) at these times.
This is consistent with the empirical evidence that trading volume increases immediately after news arrival (e.g., see Balduzzi, Elton, and Green (1997), Woodruff and Senchack (1988), Cready and Mynatt (1991)). To see the effect of a news update more clearly, we next compare the trading strategy right before and right after news y_{t_i} is received at $t = t_i$. Right before y_{t_i} is received, the trading strategy is

$$
\frac{\mu_0 + \mu_1 M_{t_i^-}}{\gamma \sigma_S^2} - r + \frac{(1 - \gamma)(\rho \sigma_X \sigma_S + \mu_1 V(t_i^-))}{\gamma \sigma_S^2} (d^{i-1}(t_i^-) + Q^{i-1}(t_i^-)M_{t_i^-}).
$$

Right after y_{t_i} is observed, the trading strategy becomes

$$
\frac{\mu_0 + \mu_1 M_{t_i^-}}{\gamma \sigma_S^2} - r + \frac{(1 - \gamma)(\rho \sigma_X \sigma_S + \mu_1 V(t_i^-))}{\gamma \sigma_S^2} (d^i(t_i) + Q^i(t_i)M_{t_i^+}).
$$

These expressions suggest that the discrete change of π at news-update times comes from two sources. The first is the update of the conditional mean of X_{t_i} from $M_{t_i^-}$ to $M_{t_i^+}$, which changes the expected return of the stock. Since the expected value of M_{t_i} is equal to $M_{t_i^-}$, this update does not affect π on average. The second source is the update of the conditional variance of X_{t_i} from $V(t_i^-)$ to $V(t_i)$. Since $V(t_i)$ is always smaller than $V(t_i^-)$, the news update decreases the uncertainty about the predictive variable. Note that the difference between (d^{i-1}, Q^{i-1}) and (d^i, Q^i) is also caused by the change in the conditional volatility, as can be seen from Equations (A29)-(A30).

Extensive numerical results show that this reduction of the conditional variance tend to increase stock investment at the news update times (see Figure 6 in Section V. for example).

Because of the periodic news updates, the investor can periodically correct his estimation error. This periodic correction may have two opposite effects on the optimal trading strategy. On the one hand, the estimation risk that the investor faces with
periodic news is smaller than the risk without periodic news. Accordingly, it seems reasonable to conjecture that given the same current conditional distribution at time 0, the investor would invest more at time 0 with periodic news than without it. On the other hand, at the beginning of the next period the investor can receive a news update that will reduce estimation risk, so it also seems reasonable to conjecture that given the same current conditional distribution at time 0, with periodic news the investor would reduce time 0 stock investment to decrease the damage from possible estimation error and wait until the next period when he gets better estimation for choosing a better trading strategy. Somewhat surprisingly, the following proposition implies that both of these conjectures are incorrect and that the periodic news update affects the trading strategy only through its effect on the current conditional distribution of the predictive variable.

Proposition 3. For any $i = 1, 2, ... N$, at time $t \in [t_i, t_{i+1})$ the solutions $(Q^i(t), d^i(t))$ to the case with periodic news updates and the solutions $(Q(t), d(t))$ to the case with no periodic news are related as follows:

\[
Q^i(t) = \frac{Q(t)}{1 + (1 - \gamma)(V(t) - V^i(t))Q(t)}, \quad (20)
\]

\[
d^i(t) = \frac{d(t)}{1 + (1 - \gamma)(V(t) - V^i(t))Q(t)}, \quad (21)
\]

where $V(t)$ and $V^i(t)$ are the conditional variance of X_t in the case with no periodic news and in the case with periodic news updates respectively. In particular, if $V(t) = V^i(t)$, then we have $Q^i(t) = Q(t)$ and $d^i(t) = d(t)$.

Proof. See the Appendix.12

Substituting (20)-(21) into (18) in Proposition 2 shows that if $M_t = M^i_t$ and $V(t) = V^i(t)$, then the time t optimal trading strategy with periodic news will be
the same as the time t optimal trading strategy without periodic news, i.e., $\pi^{ix}_t = \pi^*_t$. This result implies that the time t optimal stock investment π^{ix}_t is independent of how frequently or how accurately the investor is going to observe the predictive variable in the future. All that matters for the investor’s current optimal trading strategy is the current conditional distribution of the predictive variable. This somewhat surprising “myopic” behavior (with respect to future information structure) for even non-log investors stems from a fairly simple fact: While access to more accurate or more frequent news in the future does improve the investor’s utility, it improves the utility by a constant multiple across all states through $c^i(t)$ and thus does not affect the current optimal trading strategy.

We emphasize that the optimal trading strategies with or without periodic news are the same only when the conditional means and variances are the same across the two models. At times $s \geq t$ the optimal policy π^{ix}_s in the model with periodic information will almost surely differ from the optimal policy π^*_s in the model without periodic information, because periodic information will almost surely change the conditional distribution. Therefore, the trajectories of the optimal trading strategies will be almost surely different across the two models.

From the perspective of computation, Proposition 3 suggests an efficient way of computing the trading strategy with periodic news updates. Specifically, to calculate the optimal trading strategy π^{ix}_t at any time t, we only need to set $M_t = M^i_t$ and $V(t) = V^i(t)$ in equation (14) and then we have $\pi^{ix}_t = \pi^*_t$. This approach reduces N iterations to one-period computation.
III. An Empirical Calibration

To understand how the information cost affects optimal news frequency, news accuracy, and trading strategy, we apply the theoretical results derived in Section II to study an empirical model. In this study, we will focus primarily on periodic news because one of our main objectives is to examine the determination of the optimal news frequency. In addition, periodic news is usually more accurate than continuous news and is therefore typically a more important information source for an investor. We provide an analysis of the optimal continuous news accuracy in Sections VI and VII.

One of the popular predictive variables used in the predictability literature is dividend yield. For example, Fama and French (1988), Hodrick (1992), and Xia (2001) use dividend yield as the predictive variable in their model calibration. However, as demonstrated by Lettau and Ludvigson (2001), fluctuations in the aggregate consumption to wealth ratio have stronger predictive power and forecast future returns better than dividend yield.\(^{13}\) The economic intuition is that investors who want to smooth consumption adjust their current consumption if they expect transitory movements in their financial wealth caused by the variation in expected returns. When the expected return becomes higher, a forward-looking investor increases his current consumption, and when the expected return gets lower, he decreases it.

Consistent with their findings, we assume in the following analysis that the consumption-wealth ratio predicts asset return. We first estimate the joint stochastic processes of stock return and consumption-wealth ratio. Then we show how optimal news frequency, news accuracies, and optimal trading strategy are affected by the fundamental parameters such as risk aversion, investment horizon, and information cost.

Specifically, we estimate the model described by equations (1) and (2), where the
stock return is the quarterly CRSP value-weighted return of stocks traded on the New York Stock Exchange (NYSE) and X_t represents the estimated trend deviation variable, cay_t, for the consumption-wealth ratio as used by Lettau and Ludvigson (2001) to predict stock return. 14 $\mu_0, \mu_1, g_0, g_1, \sigma_S, \sigma_X$, and ρ are all constant parameters to be estimated.

The estimation period is from 1952 to 2001, a period chosen because of the availability of the predictive variable cay_t. The risk-free interest rate is the mean of the continuously compounded real quarterly T-bill return, which is equal to .0034. 15 Since only quarterly data of cay_t are available, following Duffie, Pan, and Singleton (2000) and Singleton (2001) we first derive the characteristic function and then use the maximum likelihood method to estimate the parameter values (see the Appendix for details). 16 Through this procedure, we obtain the following estimates:

$$
g_0 = .117, g_1 = -.180, \mu_0 = -1.301, \mu_1 = 2.040,$$

$$\sigma_S = .0801, \sigma_X = .00747, \rho = -.620.$$

For the numerical analyses we conduct in subsequent sections, we set the default risk-aversion coefficient $\gamma = 5$ (as estimated, e.g., by Xia (2001)), $\lambda = 1, \eta = .01$ and the initial value of the predictive variable X_0 equal to its sample mean .649.

We assume that the prior variance $V(0^-)$ is equal to the steady-state conditional variance $\bar{V} = .000147$ and the prior mean M_0^- is equal to the initial value X_0. In addition, as a default setting, we assume that each news update is unbiased and thus the conditional mean M_0 after the initial news release is also equal to X_0. 17 The investor’s initial wealth W_0^- is normalized to be equal to 1.

In Sections IV and V we focus on the analysis of the optimal news frequency. To
reflect that continuous news is typically less accurate and is more costly, we assume
that news accuracies are exogenously fixed at $\alpha_\varepsilon = 100$ and $\alpha_\nu = 10$. In addition,
information costs are fixed at $\beta_i(\alpha_\varepsilon) = \beta = .05\%$ (5 basis points) for every periodic
news update and $\beta_c(\alpha_\nu) = \beta_c = .1\%$ for the continuous news.18 In Sections VI and
VII we study the case where the optimal frequency and the optimal accuracies are all
endogenously determined.

IV. Analysis of the Optimal News Frequency

In this section, we use the model calibrated above to examine how various fundamental
parameters affect the optimal news frequency.

A. Risk Aversion

Figure 1 plots the optimal news update frequency (measured in quarters by the time
τ between news updates) as a function of the risk-aversion coefficient γ. This figure
shows that as an investor becomes more risk averse, the investor chooses less frequent
news updates. This is consistent with the standard finding that a more risk-averse
investor invests less in stock and therefore benefits less from news updates. The figure
also shows the intuitive result that as the information cost β increases, the optimal
news frequency decreases. For example, an investor with a risk aversion coefficient
of 5 chooses $\tau^* = .32$ (about one update per month) when the cost is 5 basis points,
and he chooses $\tau^* = .53$ (about two updates per quarter) when the cost goes up
to 10 basis points. The wedge between the two lines illustrates that an increase in
the information cost induces a larger decrease in the optimal frequency for a more
risk-averse investor.
B. Correlation

Figure 2 plots the optimal news update frequency as a function of the correlation ρ between the stock return and the predictive variable. This figure shows that the optimal news frequency is a nonmonotonic function of the correlation. Intuitively, when the stock return and the predictive variable are highly (negatively) correlated, the investor can infer much information about the predictive variable from observing the stock return and therefore does not need very frequent news updates. As the correlation decreases, the stock return becomes less informative and the investor chooses more frequent news updates to reduce the estimation risk. However, when the correlation becomes too low, learning is not effective and the benefit from extra information obtained from more frequent news updates becomes smaller. Accordingly, the investor starts to decrease the news frequency to save information cost.

This figure also shows that as the unconditional volatility of the predictive variable increases, the investor increases the news update frequency to reduce the estimation risk.

C. Investment Horizon

Figure 3 plots the optimal news update frequency as a function of the investment horizon T. This figure shows that the optimal news frequency is also nonmonotonic in the investment horizon. When the investment horizon is short, the investor cannot gain much from news updates, so he only needs low-frequency news updates. An increase in the investment horizon has two opposite effects. On the one hand, as
the investment horizon increases, the gain from more frequent news updates also increases. This effect tends to increase the optimal news frequency. On the other hand, as the investment horizon increases, for a given frequency the total information cost becomes higher because the number of news updates becomes larger. This effect tends to decrease the optimal news frequency. The figure shows that although the first effect dominates when the horizon is short, the second effect gradually takes over as the investment horizon becomes longer. The interaction of the two opposite effects produces the nonlinear patterns in the figure.

Figure 3 also shows that for a short investment horizon the optimal news frequency is nonmonotonic in the news accuracy. Specifically, as the news becomes less accurate, the optimal news frequency first increases and then decreases. The underlying intuition is similar to that for the nonmonotonic pattern in the correlation ρ displayed in Figure 2. When news is accurate, the investor does not need very frequent news updates. As news becomes less reliable, more frequent news is important to reduce estimation risk. However, when news becomes too noisy, additional news updates increase costs without much benefit; therefore the optimal news frequency decreases.

V. Analysis of the Optimal Trading Strategy

In this section, we use the calibrated model to examine how rational inattention affects the optimal trading strategy.
A. Horizon

As discussed before, Propositions 2 and 3 imply that the optimal investment in the stock at time t only depends on the conditional distribution $(M_t, V(t))$, but not on the future news frequency or accuracy. Figure 4 plots the initial fraction of wealth (π_0^*) in stock against horizon T. Starting with the same prior $(M_0^-, V(0^-))$ (except for the lowest curve to be discussed later), the figure illustrates the optimal stock investments right after a time 0 news update with different accuracy σ_ε. The figure shows that uncertainty about the predictive variable significantly reduces the stock investment across all horizons and the reduction increases with the horizon. When the horizon is one year, the difference in investments between the case with $\sigma_\varepsilon = 0$ and the case with $\sigma_\varepsilon = 100$ is about 10%. As the horizon increases to five years, this difference increases to about 20%.

This figure also shows that the optimal fraction of wealth in stock increases with horizon, consistent with the typical life-cycle investment advice from a financial advisor. However, the life-cycle pattern can be reversed if some of the default parameter values are different. As an example, after we decrease the initial news accuracy $\alpha_0 \equiv 1/\sqrt{V(0^-)}$ from 82.5 to 66.7, the optimal fraction of wealth invested in the stock decreases with the investment horizon. Intuitively, there are two offsetting effects at work. On one hand, because of the negative correlation between the stock return and the predictive variable, the hedging benefit increases as the horizon increases; the stock investment also increases with the horizon. We refer to this effect as the hedging effect. On the other hand, as noise in observation increases, the investor becomes less certain about the expected return of the stock and on that ground reduces his stock investment. As the horizon increases, the impact of this uncertainty grows; therefore the reduction in the stock investment is greater for an investor with
a longer horizon. We refer to this effect as the uncertainty effect. Depending on the relative magnitudes of these two opposite effects, the stock investment can increase or decrease as the horizon increases. In the presence of parameter uncertainty, Xia (2001) finds that the horizon pattern of the optimal stock investment depends on the current value of the continuously observable predictive variable. In contrast, we show that the magnitude of the uncertainty about a predictive variable can reverse the horizon effect of return predictability. The reverse pattern illustrated in this figure suggests that the horizon effect is sensitive to the existence of information cost and news inaccuracy.

Given that news is only received at discrete times in the case with periodic news updates, an alternative strategy is to trade only at the news update times, as in a discrete-time model. Clearly, this is a suboptimal strategy because it imposes an exogenous constraint on the trading frequency. What would be the effect of this discrete trading constraint on the trading strategy? Would it cause an investor to invest more or less? To address these questions, in Figure 4 we also plot the optimal trading strategy of an investor who can only trade at the quarterly news update times, assuming quarterly news is accurate. This figure shows that trading only at news update times would result in significant underinvestment for an investor with a long horizon. For example, the investor with a five-year horizon who can only trade at news update times would invest about 12% less in the stock than an investor who can trade continuously. When the investor is restricted to trading only at news update times and thus cannot update his position as new information from the stock price comes in, he is more cautious and invests significantly less in the stock.22

\begin{figure}[h]
\centering
\caption{Figure 4 about here}
\end{figure}
B. Estimation Error

Figure 5 plots the initial trading strategy difference ($\Delta \pi_0^*$) between an investor who receives a news update at time 0 and an investor who perfectly observes the predictive variable against the initial estimation error ($M_0 - X_0$) for two news accuracy levels: $\alpha_\varepsilon = 100$ and $\alpha_\varepsilon = 0$. It demonstrates the impact of estimation error on the optimal trading strategy and how it changes with uncertainty about the estimation. When a line is above (below) zero, the investor overinvests (underinvests) compared with the optimal investment under perfect observation. The figure shows that, in general, when the investor underestimates the predictive variable, he underinvests, and when he overestimates, he overinvests. However, there is a region in which $M_0 - X_0 > 0$, but the $\alpha_\varepsilon = 100$ and $\alpha_\varepsilon = 0$ curves are below the horizontal axis. This suggests that if news is not very accurate (e.g., $\alpha_\varepsilon = 100$), then the investor might still underinvest even when he overestimates. Intuitively, news inaccuracy discounts the reliability of the predictive variable estimate and lowers the investor’s investment in the stock.

C. Portfolio Revision at News Update Times

With periodic news updates, the investor updates his estimate of the predictive variable and discretely adjusts his portfolio according to the discrete changes in the conditional mean and conditional variance. Since the conditional expectation right before a news update is an unbiased estimate of the conditional expectation after the news update ($E(M_{t_i}) = M_{t_i}^*$), the change in the portfolio weights caused by the difference in the conditional means before and after an observation is, on average, equal to zero. However, the conditional variance also has an impact on the portfolio weights. Whenever a news update is received, the updated conditional variance de-
creases immediately. The reduction in uncertainty about the stock return makes the stock more attractive, therefore the investor increases his stock investment. Figure 6, which plots the expected percentage increase in stock holding \(E[\frac{\pi^{*} - \pi^{*}}{\pi^{*}}] \times 100\) at the first news update time for an investor with a risk aversion coefficient of 5 and an investment horizon of five years, confirms this intuition. For example, when \(\alpha_{\text{e}} = 100\), after the first news update the investor on average invests an additional 8.5\% of wealth into the stock if \(\beta = 0.05\%\) and an additional 9.5\% of wealth into the stock if \(\beta = 0.1\%\). The figure also shows that the expected percentage change in the stock holding first increases and then decreases with news accuracy \(\alpha_{\text{e}}\). A decrease in the news accuracy \(\alpha_{\text{e}}\) has two opposite effects. On the one hand, a noisier news update results in larger conditional volatility just before the next news update, which implies a greater reduction in the conditional volatility when the next news arrives with the same accuracy. On the other hand, for a fixed level of conditional volatility, noisier news is less helpful in reducing the volatility. Figure 6 shows that when \(\alpha_{\text{e}}\) is large, the first effect dominates and the expected adjustment increases as \(\alpha_{\text{e}}\) decreases. When \(\alpha_{\text{e}}\) is small, however, the second effect dominates and the expected adjustment decreases as \(\alpha_{\text{e}}\) decreases.

In addition, an increase in the information cost \(\beta\) increases the percentage change in the stock investment at the optimal news update time and the resulting increase is greater for more accurate news. Intuitively, as the information cost increases, the optimal news frequency decreases, and thus a news update causes a greater reduction in the conditional volatility.
VI. Endogenous News Accuracies

In Sections IV and V we assume that an investor can only choose the news frequency but not the news accuracies. However, it is usually the case that one can improve the accuracy of news up to a certain limit by paying a higher information production cost. An interesting question then is: What are the optimal news frequency and accuracies from an investor’s point of view given the tradeoffs among frequency, accuracies, and information costs? To shed some light on this question, we now consider the joint choice of optimal news frequency and optimal news accuracies. For the analysis in this section, we assume that the cost function for periodic news is the same across all news updates with the following form:

\[\beta(\alpha) = \left(\frac{0.0006 \alpha}{1 - 0.0025 \alpha} \right)^{16/9} \] \hspace{1cm} (22)

and the cost function for the continuous news is:

\[\beta_c(\alpha) = \left(\frac{0.0004 \alpha}{1 - 0.1 \alpha} \right)^{16/9} \] \hspace{1cm} (23)

We numerically solve for the optimal news frequency \(\tau^* \), the optimal periodic news accuracy \(\alpha_{\tau^*} \), and the optimal continuous news accuracy \(\alpha_{\nu^*} \) that maximize the investor’s value function.

We plot the optimal frequency, the optimal accuracies, and the optimal trading strategy as functions of the risk-aversion coefficient in Figure 7. Figure 7 shows that as an investor becomes more risk averse, he tends to choose less frequent but more accurate periodic news updates. Intuitively, as shown in this figure, a more risk-averse investor invests less in stock, therefore more frequent news is less helpful to him. Accordingly, he chooses less accurate high frequency news (e.g., continuous
news) and more accurate low frequency periodic news.

Figure 7 about here

Figure 8 shows that as investment horizon increases, the investor also chooses less frequent but more accurate periodic news updates plus more accurate continuous news. Recall that when the news accuracy is exogenously given, the optimal news frequency is nonmonotonic in horizon (see Figure 3). With endogenous news accuracy, the investor has a trade off between news frequency and news accuracy. In the case shown in this figure, it is relatively cheaper to increase accuracy rather than frequency. In addition, as in the case with exogenous news accuracy, the optimal fraction of wealth invested in stock also increases with horizon. Since the investor chooses more accurate news as horizon increases, this life-cycle pattern is strengthened when news accuracies are endogenized.

Figure 8 about here

VII. Extensions

To demonstrate the robustness of the main results we obtained, in this section we generalize our model to allow for intertemporal consumption, nonlinear dynamics, and continuous choice of information accuracy. Specifically, we assume that an investor derives utility from both intertemporal consumption c_t and terminal wealth W_T. For the continuous news ν, the investor can continuously choose any accuracy $\alpha_{\nu t}$ by paying a cost at the rate of $\beta_c(\alpha_{\nu t})$, and for the periodic news, the investor can choose any accuracy α_ϵ by paying at time 0 a cost of $\beta_i(\alpha_\epsilon)$ for the ith observation. The investor’s problem is to choose the number of news updates N, the periodic news accuracy α_ϵ, the continuous news accuracy $\alpha_{\nu t} \in F_t$, the consumption $c_t \in F_t$, and
the trading strategy $\theta_t \in F_t$ to maximize the expected utility from consumption and terminal wealth, i.e.,

$$\max_{N, \alpha, \sigma, c, \theta} E[(1 - \omega) \int_0^T e^{-\delta t} u_1(c_t) dt + \omega e^{-\delta T} u_2(W_T)],$$

subject to the budget constraint

$$dW_t = rW_t dt + \theta_t(\mu_0 + \mu_1 X_t - r) dt + \theta_t \sigma S dZ_1 t - c_t dt - \beta_c(\alpha \nu_t) dt,$$

the nonlinear dynamics of X_t,

$$dX_t = (g_0 + g_1 X_t + g_2 X_t^2) dt + \rho \sigma_X dZ_1 t + \sqrt{1 - \rho^2} \sigma_X dZ_2 t,$$

the periodic news equation (3), the continuous news equation (4), and the initial wealth after deducting the information cost for the periodic news

$$W_0 = W_0 - \sum_{i=1}^N \beta_i(\alpha \nu_t),$$

where $\delta > 0$ is the time discount factor, $\omega \in [0, 1]$ is the weight of the utility from the terminal wealth, and g_2 is the nonlinearity coefficient, and

$$u_i(x) = \frac{\gamma_i}{1 - \gamma_i} \left(\frac{\lambda_i x}{\gamma_i} + \eta_i \right)^{1 - \gamma_i}, \quad i \in \{1, 2\}.$$

Unfortunately, given the complexity of this generalized problem, it seems very difficult, if possible at all, to obtain an explicit solution. In addition, with the HJB partial differential equation being highly nonlinear and four-dimensional (with state variables (W, M, V, t)), even numerically solving the HJB becomes quite challenging.
Instead, we numerically solve a discretized version of the investor’s problem using the projection method as described in Judd (1998). Specifically, we divide T into n time intervals with length h. Then the investor’s objective function becomes

$$
\max_{N, \alpha, \epsilon, c_j, \theta_j} E[(1 - \omega) \sum_{j=0}^n e^{-\delta_j h} u_1(c_j) h + \omega e^{-\delta n h} u_2(W_n)],
$$

and the wealth dynamics becomes

$$
W_{j+1} = W_j + (r W_j + \theta_j (\mu_0 + \mu_1 M_j - r) - c_j - \beta \epsilon(\alpha_{\nu j})) h + \theta_j \sigma_S \sqrt{h} z_1,
$$

where z_1 is a standard normal random variable.

Discretizing the continuous-time filtering equations derived by Basin (2003), we have the conditional mean dynamics:

$$
M_{j+1} = M_j + (g_0 + g_1 M_j + g_2 M_j^2) h + \left(\frac{\mu_1}{\sigma_S} V_j + \rho \sigma_X \right) \sqrt{h} z_1 + \alpha_{\nu j} V_j \sqrt{h} z_3,
$$

and the conditional variance dynamics

$$
V_{j+1} = V_j + \left(2 g_1 V_j + 4 g_2 M_j V_j + \sigma_X^2 - \left(\frac{\mu_1}{\sigma_S} V_j + \rho \sigma_X \right)^2 - \alpha_{\nu j}^2 V_j^2 \right) h,
$$

where z_3 is a standard normal random variable independent of z_1.

Note that with a nonlinear dynamics for the predictive variable, the conditional variance is no longer deterministic. Instead, it depends on the conditional mean M and consequently is stochastic over time. For given number of news updates N and accuracy α, we then solve this discrete-time problem iteratively from period $n - 1$ backward, taking into account the periodic news y as before. Finally, we maximize over N and α to obtain the solution.
To examine the robustness of the main qualitative results shown in the previous sections, we first reestimate the nonlinear system of equations (1) and (25) for the parameter values of μ_0, μ_1, σ_S, g_0, g_1, g_2, σ_X, and ρ, using the methodology derived in Shoji and Ozaki (1998). We then numerically compute the optimal frequency, optimal trading strategy, optimal consumption, and/or optimal accuracies for cases corresponding to Figures 1–8 and report a subset of these results in Table I.\(^{25}\)

Table I shows that the main qualitative results remain the same in the presence of intertemporal consumption, nonlinear dynamics, and continuous news accuracy choice. Specifically, in Panels A and B, we solve for the optimal periodic news frequency τ^*, the optimal trading strategy π^*, and the optimal consumption c^* for a given constant periodic news cost β, a continuous news accuracy α_ν, and a continuous news cost β_c, similar to Figures 1–6. Comparison of row 1 with rows 2 and 3 of Panel A shows that, consistent with Figure 1, the optimal periodic news frequency decreases as risk aversion or news cost increases. Consistent with Figure 2 (comparing row 1 to rows 4–6), the optimal frequency is increasing in σ_X and nonmonotonic in the correlation coefficient ρ because of the change in the informativeness of the stock return. The results shown in rows 1, 7, and 8 suggest that, similar to Figure 4, the optimal fraction of wealth (π^*) still increases with horizon and news accuracy. Rows 9 and 10 suggest that overestimation (underestimation) tends to cause overinvestment (underinvestment), the same pattern as that illustrated in Figure 5. Rows 12 and 13 report results for the cases with exogenously given quarterly periodic news frequency and the same initial news accuracy $\alpha_{c0} = 100$ but different news accuracy for future periodic updates. Comparing rows 7, 12, and 13 suggests that, consistent with Proposition 3, the optimal trading strategy is not sensitive to future news frequency.
or news accuracy as long as the current news accuracy is the same.

In Panel B, we report the expected percentage changes \((E[\frac{\Delta \pi^*}{\pi^*}] \times 100) \) in the fraction of wealth in stock at the first news update time after time 0 for cases with different news accuracies and news costs. Consistent with Figure 6, the expected percentage change is nonlinear in news accuracy and increases as the news cost increases.

In Panel C, we also endogenize the news frequency and news accuracies for both the periodic and the continuous news. Rows 18–20 suggest that the optimal periodic news frequency decreases with risk aversion and horizon. This is consistent with Figure 7 and different from Figure 8. The difference from Figure 8 confirms the nonlinearity of news frequency in investment horizon as shown in Figure 3. The trade off between news accuracy and frequency in this example makes it cheaper to decrease news frequency for a short horizon, as in Figure 3. Also, the optimal periodic news accuracy increases with both risk aversion and horizon. In contrast, the optimal continuous news accuracy decreases with risk aversion but increases with investment horizon. Panel C also implies that the optimal consumption decreases with risk aversion and horizon. Intuitively, as the investor gets more risk averse, he saves more to guard against bad shocks in the market, and as the consumption horizon increases, the investor needs to spread consumption across more years and therefore the consumption level declines.

VIII. Conclusions

In this paper, we show that because of information production and processing cost, inattention to important economic news that affects investment performance may be rational. Rational inattention significantly changes the optimal trading strategy and the investor may overinvest or underinvest. Optimal news frequency (attention fre-
frequency) displays nonmonotonic patterns in news accuracy and investment horizon. We also find that the optimal trading strategy is myopic with respect to news frequency and news accuracy even for an investor with non-log preference. Furthermore, an investor with a higher risk aversion or a longer investment horizon chooses less frequent but more accurate periodic news updates.
Appendix

In this Appendix, we first extend our analysis to a more general model with multiple risky assets, multiple predictive variables, and time-varying parameters. We then provide more details on the results in the paper.

A.1 A More General Model with Multiple Risky Assets, Multiple Predictive Variables, and Time Varying Parameters

There are $n + 1$ assets being continuously traded in the market. We assume $n < m$ so that there are no redundant assets. The first asset is a money market account that is locally risk free. The other n assets (“stocks”) are risky. There are k predictive variables that predict the expected returns of these assets. The first k_1 predictive variables X_t^u are only observable (possibly with some errors) at discrete times $t_1(0), t_2, ..., t_N \in [0, T]$. The remaining $k_2 = k - k_1$ predictive variables X_t^o are continuously and accurately observable. Let B_t denote the price of the locally riskless asset and S_t be the cum-dividend stock price vector at time t. We assume that B_t evolves as follows:

\[
\frac{dB_t}{B_t} = (r_0(t) + r_2(t)X_t^o)dt,
\]

where $r_0(t)(1 \times 1)$ and $r_2(t)(1 \times k_2)$ are deterministic functions of time. In addition, the prices of the risky assets satisfy

\[
\frac{dS_t}{S_t} = (\mu_0(t) + \mu_1(t)X_t^u + \mu_2(t)X_t^o)dt + \sigma_S(t)dZ_t,
\]

35
where $\mu_0(t)(n \times 1), \mu_1(t)(n \times k_1), \mu_2(t)(n \times k_2)$, and $\sigma_S(t)(n \times m)$ are deterministic functions of time t and where dS_t/S_t represents element-by-element division. For the dynamics of the predictive variables, we assume that

$$dX^u_t = (g_0(t) + g_1(t)X^u_t + g_2(t)X^o_t)dt + \sigma_u(t)d\hat{Z}_t,$$

$$dX^o_t = (h_0(t) + h_1(t)X^u_t + h_2(t)X^o_t)dt + \sigma_o(t)d\hat{Z}_t,$$

where $g_0(t)(k_1 \times 1), g_1(t)(k_1 \times k_1), g_2(t)(k_1 \times k_2), \sigma_u(t)(k_1 \times m), h_0(t)(k_2 \times 1), h_1(t)(k_2 \times k_1), h_2(t)(k_2 \times k_2)$, and $\sigma_o(t)(k_2 \times m)$ are all deterministic functions of time t. To save notations, henceforth we suppress argument t wherever confusion is unlikely.

Assume that at any observation time $t_i (i = 1, 2, ..., N)$, a noisy signal on X^u reveals that $X^u(t_i)$ is normally distributed with mean m_{t_i} (“initial mean”) and with deterministic variance v_{t_i} (“initial variance”).

Suppose that σ^T is invertible so that there are no redundant assets. Let M_t be the time $t \in [t_i, t_{i+1})$ expectation of X^u_t conditional on observing S_t and X^o_t (so $M(t_i) = m_{t_i}$). Define

$$\sigma(t) = \begin{bmatrix} \sigma_S \\ \sigma_o \end{bmatrix},$$

and

$$d\hat{Z}_t = (\sigma^\top\sigma)^{-1/2} \begin{bmatrix} \mu_1 \\ h_1 \end{bmatrix} (X^u_t - M_t)dt + \sigma d\hat{Z}_t,$$

where \hat{Z}_t is the (observable) innovation process. By Theorem 10.5.1 of Kallianpur (1980), M_t then evolves as follows:

$$dM_t = (g_0 + g_1 M_t + g_2 X^o_t)dt + \sigma_M(t)d\hat{Z}_t,$$
where
\[
\sigma_M(t) = \left(V(t) \begin{bmatrix} \mu_1 \\ g_1 \end{bmatrix}^\top + \sigma_u \sigma^\top \right) (\sigma \sigma^\top)^{-1/2}, \tag{A1}
\]
and \(V(t) \) is the conditional variance of \(X_t^u \) satisfying
\[
\frac{dV(t)}{dt} = g_1 V(t) + V(t)^\top g_1 + \sigma_u \sigma_u^\top \\
- \left(V(t) \begin{bmatrix} \mu_1 \\ h_1 \end{bmatrix}^\top + \sigma_u \sigma_u^\top \right) (\sigma \sigma^\top)^{-1} \left(V(t) \begin{bmatrix} \mu_1 \\ h_1 \end{bmatrix}^\top + \sigma_u \sigma_u^\top \right)^\top,
\]
subject to \(V(t_i) = v_{t_i} \).

Then the investor’s portfolio selection problem in this more general case is equivalent to
\[
\max_{\pi(t): t \in [0,T]} E[u(W(T))],
\]
subject to the budget constraint
\[
dW_t = r(X_t, t) W_t dt + \pi(t)^\top W_t (\mu(X_t, t) - r(X_t, t) \bar{1}) dt + \pi(t)^\top W_t \sigma_S(t) d\tilde{Z}_t \tag{A2}
\]
and
\[
dx_t = \mu_X(X_t, t) dt + \sigma_X(t) d\tilde{Z}_t,
\]
where
\[
r(X_t, t) = r_0(t) + r_2(t) X_t^o,
\]
\[
\mu(X_t, t) = \mu_0(t) + \mu_1(t) M_t + \mu_2(t) X_t^o,
\]
\[
\mu_X(X_t, t) = \begin{bmatrix} g_0(t) + g_1(t) M_t + g_2 X_t^o \\ h_0(t) + h_1(t) M_t + h_2 X_t^o \end{bmatrix},
\]
where
\[
\sigma(u) = \left(V(t) \begin{bmatrix} \mu_1 \\ g_1 \end{bmatrix}^\top + \sigma_u \sigma^\top \right) (\sigma \sigma^\top)^{-1/2},
\]
\[X_t = \begin{bmatrix} M_t \\ X_t^o \end{bmatrix}, \quad (A3) \]

and

\[\sigma_X(t) = \begin{bmatrix} \sigma_M(t) \\ \sigma_o(t) \end{bmatrix}. \]

A.1.1 The solution to the case where the predictive variables are unobservable for the entire horizon

We conjecture that

\[J(W, X, t) = \frac{\gamma}{1-\gamma} \left(\frac{\lambda W}{\gamma} + \eta e^{-r(T-t)} \right)^{1-\gamma} f(X, t)^{1-\gamma}. \quad (A4) \]

Assume that there are no redundant stocks and therefore \(\sigma_S \sigma_S^T \) is invertible. Then the optimal fraction of wealth invested in the stocks is given by

\[\pi = \frac{1}{\gamma} (\sigma_S \sigma_S^T)^{-1} \left(\mu - r \mathbf{1} + (1-\gamma) \sigma_S \sigma_X^T f_X \right). \quad (A5) \]

Substituting the conjectured form of the solution into the HJB equation, we have

\[
\begin{align*}
 f_t &+ \frac{1}{2} \text{Tr}(\sigma_X \sigma_X^T f_{XX^T}) + \left(\frac{1-\gamma}{\gamma} (\mu - r \mathbf{1})^T (\sigma_S \sigma_S^T)^{-1} \sigma_S \sigma_X^T + \mu_X^T \right) f_X \\
 &+ \left(\frac{1}{2\gamma} (\mu - r \mathbf{1})^T (\sigma_S \sigma_S^T)^{-1} (\mu - r \mathbf{1}) + r \right) f + \frac{f_X^T \Phi_1 f_X}{2f} = 0, \quad (A6)
\end{align*}
\]

where

\[\Phi_1 = \sigma_X \left(\frac{(1-\gamma)^2}{\gamma} \sigma_S^T (\sigma_S \sigma_S^T)^{-1} \sigma_S - \gamma I \right) \sigma_X^T. \]
We now further conjecture that

$$f(X, t) = e^{c(t) + \frac{1}{2} X^\top Q(t) X},$$ \hfill (A7)$$

where $Q(t)$ is set to be symmetric. Substituting equation (A7) into (A6), we obtain the following ordinary differential equations (ODEs) for $c, d,$ and Q:

$$c'(t) + \frac{1}{2} d(t)^\top \Phi_1 d(t) + \frac{1}{2} \text{Tr} \left(\Phi_2 (Q(t) + d(t)d(t)^\top) \right) + \Phi_3 d(t) + \varphi_c = 0, \hfill (A8)$$

$$d'(t) + Q(t)(\Phi_1 + \Phi_2)d(t) + \Phi_4 d(t) + Q(t)\Phi_3^\top + \varphi_d = 0, \hfill (A9)$$

and

$$Q'(t) + Q(t)(\Phi_1 + \Phi_2)Q(t) + \Phi_4 Q(t) + Q(t)\Phi_3^\top + \varphi_Q = 0, \hfill (A10)$$

subject to the terminal conditions

$$c(T) = 0, \quad d(T) = 0, \quad Q(T) = 0,$$

where

$$\Phi_2 = \sigma_X, \quad \Phi_3 = \frac{1 - \gamma}{\gamma} \delta_0^\top (\sigma_S \sigma_S^\top)^{-1} \sigma_S \sigma_X^\top + \eta_0^\top,$$

$$\Phi_4 = \frac{1 - \gamma}{\gamma} \delta_1^\top (\sigma_S \sigma_S^\top)^{-1} \sigma_S \sigma_X^\top + \eta_1^\top, \quad \varphi_c = \frac{1}{2\gamma} \delta_0^\top (\sigma_S \sigma_S^\top)^{-1} \delta_0 + r_0,$$

$$\varphi_d = \frac{1}{\gamma} \delta_1^\top (\sigma_S \sigma_S^\top)^{-1} \delta_0 + [r_1 \ 0]^\top, \quad \varphi_Q = \frac{1}{\gamma} \delta_1^\top (\sigma_S \sigma_S^\top)^{-1} \delta_1,$$

$$\delta_0 = \mu_0 - r_0 \bar{1}, \quad \delta_1 = (\mu_1, \mu_2 - \bar{1}r_2),$$

$$\eta_0 = \begin{bmatrix} g_0 \\ h_0 \end{bmatrix}, \quad \text{and} \quad \eta_1 = \begin{bmatrix} g_1 & g_2 \\ h_1 & h_2 \end{bmatrix}.$$
The ODEs (A9) and (A10) are matrix Riccati equations, the solutions of which are derived in Appendix 1.3. By plugging the solutions of \(d(t)\) and \(Q(t)\) into equation (A8), \(c(t)\) can be solved.

A.1.2 The solution to the case where the predictive variables are periodically observable

Now we assume that a signal \(Y_t\) of \(X_{tu}\) can be observed periodically at \(t = t_i\) (\(i = 1, 2, ..., N\)). Moreover, \(Y_t\) satisfies

\[
Y_t = X_{tu} + \varepsilon_t,
\]

where \(\varepsilon_t\) represents the noise in the signal. We assume that \(\varepsilon_t\) is normally distributed with mean 0 and variance-covariance matrix \(\Sigma\), not serially correlated and independent of any other random variables at any time.

Immediately before the observation of the predictive variables at \(t_i\), \(X_{tu}\) is normally distributed with mean \(M_{ti}\) and variance \(V_{ti}\). By Bayes’ Rule, the distribution of \(X_{tu}\) conditional on \(Y_{ti}\) is also normal with mean

\[
m_{ti} = M_{ti} + V_{ti}(V_{ti} + \Sigma)^{-1}(Y_{ti} - M_{ti})
\]

and variance-covariance matrix

\[
v_{ti} = V_{ti}(V_{ti} + \Sigma)^{-1}\Sigma.
\]
We conjecture that the value function at \(t \in [t_{i-1}, t_i) \) in period \((i-1)\) is

\[
J^{i-1}(W, X, t) = \frac{\gamma}{1-\gamma} \left(\frac{\lambda W}{\gamma} + \eta e^{-r(T-t)} \right)^{1-\gamma} f^{i-1}(X, t)^{1-\gamma}, \tag{A13}
\]

with

\[
f^{i-1}(X, t) = e^{c^{i-1}(t)+X^\top d^{i-1}(t)+\frac{1}{2}X^\top Q^{i-1}(t)X}, \tag{A14}
\]

where \(X_t \) is as defined in equation (A3), and \(c^{i-1}(t), d^{i-1}(t), \) and \(Q^{i-1}(t) \) are the coefficients in period \((i-1)\). To solve the value function, we first need to pin down the terminal conditions by calculating the expected value of \(J^i \) for given \(M_{t_i} \) and \(V_{t_i}. \)

Let \(E^m \) denote the expectation operator with respect to \(m_{t_i} \) for given \(M_{t_i} \) and \(V_{t_i}. \) According to equation (A12), \(m_{t_i} \) is normally distributed with mean \(M_{t_i} \) and variance \(\Lambda = V_{t_i}(V_{t_i} + \Sigma)^{-1}V_{t_i}. \) Let

\[
c = c^i(t_i), \tag{A15}
\]

\[
d = \begin{bmatrix} d_m \\ d_o \end{bmatrix} = d^i(t_i), \tag{A16}
\]

\[
Q = \begin{bmatrix} q_{mm} & q_{mo} \\ q_{mo}^\top & q_{oo} \end{bmatrix} = Q^i(t_i) \tag{A17}
\]

be the parameter values of \(J^i \) at the beginning of \(i \)th period \(t_i \) and

\[
\hat{X}_t = \begin{bmatrix} m_t \\ X_t^o \end{bmatrix}. \tag{A18}
\]
We then have

\[
E^m[f^i(\hat{X}, t_i)^{1-\gamma}] = E^m[e^{(1-\gamma)(c+\hat{X}^T d + \frac{1}{2} \hat{X}^T Q \hat{X})}]
\]

\[
= E^m[e^{(1-\gamma)(c+d_o^T X_o + \frac{1}{2} (m^T q_{mm} m + 2m^T q_{mo} X_o + (X_o^T q_{oo} X_o))}]
\]

\[
= e^{(1-\gamma)(c+d_o^T X_o + \frac{1}{2} (m^T q_{mm} m + 2m^T q_{mo} X_o + (X_o^T q_{oo} X_o))} E^m[e^{(1-\gamma)(d_o^T m + m^T q_{mo} X_o + \frac{1}{2} m^T q_{mm} m)}]
\]

\[
= \left(e^{\hat{c}^i-1 + X^T \hat{d}^i-1 + \frac{1}{2} X^T \hat{Q}^i-1 X} \right)^{1-\gamma}, \tag{A19}
\]

where

\[
\hat{c}^i-1 = c + \frac{1}{2} (1 - \gamma) d_o^T (I - (1 - \gamma) \Lambda q_{mm})^{-1} \Lambda d_m - \frac{1}{2(1 - \gamma)} \log[Tr(I - (1 - \gamma) \Lambda q_{mm})], \tag{A20}
\]

\[
\hat{d}^i-1 = \begin{bmatrix}
 d_m^i-1 \\
 d_o^i-1
\end{bmatrix} = \begin{bmatrix}
 (I - (1 - \gamma) q_{mm} \Lambda)^{-1} d_m \\
 d_o + (1 - \gamma) q_{mo}^T (I - (1 - \gamma) \Lambda q_{mm})^{-1} \Lambda d_m
\end{bmatrix}, \tag{A21}
\]

\[
\hat{Q}^i-1 = \begin{bmatrix}
 q_{mm}^i-1 & q_{mo}^i-1 \\
 d_m^i-1 & q_{oo}^i-1
\end{bmatrix} = \begin{bmatrix}
 (I - (1 - \gamma) q_{mm} \Lambda)^{-1} q_{mm} & (I - (1 - \gamma) q_{mm} \Lambda)^{-1} q_{mo} \\
 q_{mo}^T (I - (1 - \gamma) \Lambda q_{mm})^{-1} q_{oo} + (1 - \gamma) q_{mo}^T (I - (1 - \gamma) \Lambda q_{mm})^{-1} \Lambda q_{mo}
\end{bmatrix}. \tag{A22}
\]

The expected value function calculated above is of the objective function for the \((i-1)\)th period and therefore provides the terminal conditions.

Therefore, \(c^{i-1}(t), d^{i-1}(t), \) and \(Q^{i-1}(t)\) must solve ODEs (A8), (A9), and (A10), with \(c(t), d(t), Q(t)\) replaced by \(c^{i-1}(t), d^{i-1}(t), Q^{i-1}(t)\) respectively, subject to the terminal conditions

\[
c^{i-1}(t_i) = \hat{c}^{i-1}, \quad d^{i-1}(t_i) = \hat{d}^{i-1}, \quad Q^{i-1}(t_i) = \hat{Q}^{i-1}.
\]
In this way, the investor’s problem can be solved iteratively, and in each iteration we only need to solve the same system of ODEs with different terminal conditions.

A.2 The One-Stock, One-State Variable Case

In the case of one stock and one predictive variable, as described by equations (1), (2), and (4), the conditional variance \(V_t \) of the predictive variable satisfies

\[
\frac{dV(t)}{dt} = a_1 V(t)^2 + a_2 V(t) + a_3,
\]

where \(a_1 = -\frac{\mu_1}{\sigma_s} - a_2^2, a_2 = (2g_1 - \frac{2\rho \sigma_X \mu_1}{\sigma_s}), \) and \(a_3 = (1 - \rho^2)\sigma_X^2. \) The solution is

\[
V(t) = \frac{-a_2 - \eta}{2a_1} + \frac{\eta(2a_1 V_0 + a_2 + \eta)}{a_1(2a_1 V_0 + a_2 + \eta - (2a_1 V_0 + a_2 - \eta)e^{\eta t})},
\]

where \(\eta = \sqrt{a_2^2 - 4a_1 a_3} \) \((a_2^2 - 4a_1 a_3 > 0 \) follows trivially from \(a_1 < 0 \) and \(a_3 > 0 \). As \(t \) goes to infinity, \(V(t) \) converges to \(-\frac{a_2 - \eta}{2a_1} \).

Plugging \(\sigma_{M1}^2(t) = \left(\frac{\mu_1}{\sigma_s} + \rho \sigma_X\right)^2, \sigma_{M2}^2(t) = (\alpha_1 V(t))^2, \) and \(\sigma_M^2(t) = \sigma_{M1}^2(t) + \sigma_{M2}^2(t) \) into ODEs, we have

\[
Q'(t) + \varphi_1(t)Q^2(t) + \varphi_2(t)Q(t) + \varphi_3 = 0, \tag{A23}
\]

\[
d'(t) + \varphi_1(t)Q(t)d(t) + \frac{1}{2} \varphi_2(t)d(t) + \varphi_4(t)Q(t) + \varphi_5 = 0, \tag{A24}
\]

\[
c'(t) + \frac{1}{2} \varphi_1(t)d^2(t) + \frac{1}{2} \sigma_M^2(t)Q(t) + \varphi_4(t)d(t) + \varphi_6 = 0, \tag{A25}
\]
where

\[\varphi_1(t) = \frac{(1-\gamma)^2}{\gamma} \sigma_{M1}^2(t) + (1-\gamma)\sigma_{M}^2(t), \quad \varphi_2(t) = 2 \left(\frac{1-\gamma}{\gamma} \varphi \sigma_{M1} + g_1 \right), \]

\[\varphi_3 = \frac{1}{\gamma} \left(\frac{\mu_1}{\sigma_S} \right)^2, \quad \varphi_4(t) = \frac{1-\gamma}{\gamma} \left(\frac{\mu_0 - r}{\sigma_S} \right) \sigma_{M1}(t) + g_0, \]

\[\varphi_5 = \frac{\mu_1(\mu_0 - r)}{\gamma \sigma_S^2}, \quad \varphi_6 = \frac{1}{2\gamma} \left(\frac{\mu_0 - r}{\sigma_S} \right)^2 + r. \]

For the no-periodic-news case, \((Q, d, c)\) is the solution to (A23)-(A25) subject to the terminal conditions \(Q(T) = d(T) = c(T) = 0\). We can also obtain a series solution for \(Q\) by transforming the nonlinear ODE for \(Q\) into a linear homogeneous ODE. The solution for \((Q, d, c)\) in terms of constants \(b_j\)'s is:

\[Q(t) = \frac{\gamma^2 \sigma_M' (t)}{(1-\gamma)^2 \sigma_M (t)^2} \sum_{j=0}^{\infty} \frac{\varphi b_j (\sigma_M (t) - \sigma_M (T))^{j-1}}{\sum_{j=0}^{\infty} \varphi b_j (\sigma_M (t) - \sigma_M (T))^j}, \]

\[d(t) = \int_t^T e^\int_s^t (\varphi_1(k)Q(k)+\frac{1}{2}\varphi_2(k))dk (\varphi_4(s)Q(s)+\varphi_5)ds, \]

and

\[c(t) = \int_t^T \left(\frac{1}{2} \varphi_1(s) d^2(s) + \frac{1}{2} \sigma_M^2(s) Q(s) + \varphi_4(s) d(s) + \varphi_6 \right) ds. \]

For the periodic news case, \((Q^{i-1}(t), d^{i-1}(t), c^{i-1}(t))\) \((t \in [t_{i-1}, t_i])\) is the solution to (A23)-(A25) with \(V(t)\) replaced by \(V^{i-1}(t)\), subject to the terminal conditions \(Q^{i-1}(t_i) = \hat{Q}^{i-1}, d^{i-1}(t_i) = \hat{d}^{i-1}, c^{i-1}(t_i) = \hat{c}^{i-1}\), where \((\hat{Q}^{i-1}, \hat{d}^{i-1}, \hat{c}^{i-1})\) is as defined in (17). Similar to the no-periodic-news case, we can also obtain a series solution as follows:

\[Q^{i-1}(t) = \hat{Q}^{i-1} + \frac{\gamma^2 \sigma_M' (t)}{(1-\gamma)^2 \sigma_M (t)^2} \sum_{j=0}^{\infty} \frac{j b_j^{i-1} (\sigma_M (t) - \sigma_M (t_i))^{j-1}}{\sum_{j=0}^{\infty} b_j^{i-1} (\sigma_M (t) - \sigma_M (t_i))^j}, \]
\begin{align}
&d^{i-1}(t) = \hat{d}^{i-1} e^{\int_t^t (\varphi_1(s)Q^{i-1}(s) + \frac{1}{2} \varphi_2(s))ds} \\
&\quad + \int_t^{t_i} e^{\int_t^t (\varphi_1(k)Q^{i-1}(k) + \frac{1}{2} \varphi_2(k))dk} (\varphi_4(s)Q^{i-1}(s) + \varphi_5)ds, \quad (A30)
\end{align}

and

\begin{align}
c^{i-1}(t) = \hat{c}^{i-1} + \int_t^{t_i} \left(\frac{1}{2} \varphi_1(s)(d^{i-1}(s))^2 + \frac{1}{2} \sigma_M^2(s)Q^{i-1}(s) + \varphi_4(s)d^{i-1}(s) + \varphi_6 \right)ds. \quad (A31)
\end{align}

A.3 Proofs of Propositions 1–3

Proof of Proposition 1: By Liptser and Shiryaev (2001, Theorems 12.5 and 12.7), the sigma algebra generated by \((S_0, \hat{Z}_1, \hat{Z}_3)\) and the one generated by the stock price \(S\) and the signal process \(\nu\) are equivalent, and \(\hat{Z}_1\) and \(\hat{Z}_3\) are Wiener processes. Therefore a trading strategy is adapted to the original filtration generated by the stock price process \(S\) and the signal process \(\nu\) if and only if it is adapted to the filtration generated by \((S_0, \hat{Z}_1, \hat{Z}_3)\). The dynamics (8) follows from Theorem 10.5.1 of Kallianpur (1980). Thus the optimal trading strategy that depends only on \((W_t, M_t, t)\) is also optimal given the original filtration. Next we show that function \(J(W, M, t)\) in Proposition 1 is indeed the value function, and the stated trading strategy is optimal.

First, the expressions for \(c, d, Q\) follow from Part 2.2 of this Appendix. Next, applying Itô’s lemma to the stochastic process \(L_t \equiv J(W_t, M_t, t)\), we have that the drift of \(L_t\) is always nonpositive for any admissible trading strategy and equal to zero for the candidate optimal trading strategy since the candidate value function in Proposition 1 satisfies the HJB equation (13). In addition, the stochastic integral of \(L_t\) is a martingale. Therefore, \(L_t\) is a super martingale for all admissible trading strategy and a martingale for the candidate optimal trading strategy. Thus, we have
for all admissible trading strategy

\[J(W, M, 0) = L_0 \geq E[L_T] = E[u(W_T)|W_0 = W, M_0 = M] \]

with equality for the candidate optimal strategy. This shows the optimality of the stated trading strategy and that \(J(W_t, M_t, t) \) is the value function.

The expression for the optimal trading strategy follows from the fact that \(\pi^*_t \) maximizes the left-hand side of the HJB equation (13), i.e.,

\[
\pi^*_t = -\frac{(\mu_0 + \mu_1 M_t - r)J_W + \sigma_S \sigma_M J_{WM} \sigma_2 S J_{WW}}{\sigma^2 W J_{WW}}.
\]

\[\square \]

Proof of Proposition 2: We prove this by backward induction. In the last period \(N \), the proof is the same as that for Proposition 1. For period \(N - 1 \), after first taking the expectation of the value function \(J^N \) with respect to the next observation \(y_{t_N} \), one gets the value function \(J^{N-1}(W_{t_{N-1}^-}, M_{t_{N-1}^-}, t_{N-1}^-) \) at \(t_{N-1}^- \), and then the proof for Proposition 1 applies for this period. Continuing this procedure completes the proof for Proposition 2.

\[\square \]

Proof of Proposition 3: For the unobservable case, we divide the whole investment horizon into the same \(N \) periods as for the periodically observable case. We use \(Q^i_u, d^i_u, \) and \(V^i(u) \) to denote the \(Q, d, \) and \(V \) functions of the \(i \)th period \((i = 1, 2, ..., N)\). Because there is no observation, these functions have no jumps, and we have \(Q^{i-1}_u(t_i) = Q^i_u(t_i), \) \(d^{i-1}_u(t_i) = d^i_u(t_i), \) and \(V^{i-1}_u(t_i) = V^i_u(t_i) \) (recall that \(t_i \) is the end of the \((i-1)\)th period and also the beginning of the \(i \)th period). Moreover, \(Q^{i-1}_u \) and \(d^{i-1}_u \) follow equations (A23) and (A24) with terminal conditions: \((Q^N_u(T) = 0, d^N_u(T) = 0) \) and \((Q^{i-1}_u(t_i) = Q^i_u(t_i), d^{i-1}_u(t_i) = d^i_u(t_i)) \) for \(i = 2, ..., N. \)

46
We denote $V^i_p(t)$ as the ith period V function ($i = 1, 2, ..., N$) for the periodically observable case. Because of the arrival of new information, we have

$$V^i_p(t_i) = \frac{V^{i-1}_p(t_i)\alpha^{-2}}{V^{i-1}_p(t_i) + \alpha^{-2}}. \quad (A32)$$

Now we define

$$Q^i_p(t) = \frac{Q^i(t)}{1 + (1 - \gamma)(V^i_u(t) - V^i_p(t))Q^i_p(t)}, \quad (A33)$$

$$d^i_p(t) = \frac{d^i(t)}{1 + (1 - \gamma)(V^i_u(t) - V^i_p(t))Q^i_p(t)}. \quad (A34)$$

It can be shown that the defined $Q^i_p(t)$ and $d^i_p(t)$ are the Q and d functions of the ith period for the periodically observable case by verifying that\(^{28}\)

1) they follow the same ODEs as those of the periodically observable case, and
2) they have the same terminal conditions.

To prove 1), we only need to realize that the sole difference between the ODEs for the unobservable case and those for the periodically observable case is $V(t)$. From definitions (A33) and (A34), we can easily derive

$$Q^i_u(t) = \frac{Q^i_p(t)}{1 - (1 - \gamma)(V^i_u(t) - V^i_p(t))Q^i_p(t)}, \quad (A35)$$

$$d^i_u(t) = \frac{d^i_p(t)}{1 - (1 - \gamma)(V^i_u(t) - V^i_p(t))Q^i_p(t)}, \quad (A36)$$

$$\frac{dQ^i_u(t)}{dt} = \frac{\frac{dQ^i(t)}{dt} + (1 - \gamma)(Q^i_p(t))^2(\frac{dV^i_u(t)}{dt} - \frac{dV^i_p(t)}{dt})}{[1 - (1 - \gamma)(V^i_u(t) - V^i_p(t))Q^i_p(t)]^2}, \quad (A37)$$
\[
\frac{d(d_i^u(t))}{dt} = \frac{d(d_i^p(t))}{dt} \left(1 - (1 - \gamma)(V_i^u(t) - V_i^p(t))Q_i^p(t) \right) \\
= \frac{(1 - \gamma)d_i^u(t)\left[(\frac{dV(t)}{dt} - \frac{dV_i^p(t)}{dt})Q_i^p(t) + (V_i^u(t) - V_i^p(t)) \frac{dQ_i^p(t)}{dt} \right]}{[1 - (1 - \gamma)(V_i^u(t) - V_i^p(t))Q_i^p(t)]^2},
\] (A38)

In addition, by (9) both \(V_i^u(t)\) and \(V_i^p(t)\) satisfy

\[
\frac{dV(t)}{dt} = -\left[\left(\frac{\mu_1}{\sigma_S} \right)^2 + \alpha_\nu^2 \right] V(t)^2 + \left(2g_1 - \frac{2\rho\sigma_X\mu_1}{\sigma_S} \right) V(t) + (1 - \rho^2)\sigma_X^2
\] (A39)

and

\[
\sigma_{M1}(t) = \frac{\mu_1}{\sigma_S} V(t) + \rho\sigma_X, \quad \sigma_{M2}(t) = (\alpha_\nu V(t))^2.
\] (A40)

Plugging (A35)-(A40) into the ODEs for the no-periodic-news case ((A23)-(A24)) and after straightforward but tedious algebra simplification, one can verify that \(Q_i^p(t)\) and \(d_i^p(t)\) indeed satisfy the ODEs for the case with periodic observation, i.e., claim 1) holds.

To prove 2), we start from the last period. According to Definitions (A33) and (A34), it is trivial to see that \(Q_i^N(T) = Q_i^N(T) = 0\) and \(d_i^N(T) = d_i^N(T) = 0\). So \(Q_i^N(t)\) and \(d_i^N(t)\) are indeed the \(Q\) and \(d\) functions for the periodically observable case.

Now suppose \(Q_i^p(t)\) and \(d_i^p(t)\) are the \(Q\) and \(d\) functions of the \(i\)th period for the periodically observable case. So at the beginning of the \(i\)th period \((t = t_i)\), we have

\[
Q_i^u(t_i) = \frac{Q_i^p(t_i)}{1 - (1 - \gamma)(V_i^u(t_i) - V_i^p(t_i))Q_i^p(t_i)}
\] (A41)
and

\[
d_u(t_i) = \frac{d^i_p(t_i)}{1 - (1 - \gamma)(V^i_u(t_i) - V^i_p(t_i))Q^i_p(t_i)} \tag{A42}
\]

according to (A35) and (A36).

Next we move to the \((i - 1)\)th period. Considering the end of the \((i - 1)\)th period, we have \(Q^{i-1}_u(t_i) = Q^i_u(t_i)\) and \(d^{i-1}_u(t_i) = d^i_u(t_i)\) for the unobservable case and thus

\[
Q^i_u(t_i) = Q^{i-1}_u(t_i) = \frac{Q^{i-1}_p(t_i)}{1 - (1 - \gamma)(V^{i-1}_u(t_i) - V^{i-1}_p(t_i))Q^{i-1}_p(t_i)},
\]

\[
d^i_u(t_i) = d^{i-1}_u(t_i) = \frac{d^{i-1}_p(t_i)}{1 - (1 - \gamma)(V^{i-1}_u(t_i) - V^{i-1}_p(t_i))Q^{i-1}_p(t_i)},
\]

according to Definitions of \(Q^{i-1}_p\) and \(d^{i-1}_p\).

Then by (A41) and (A42) and noting that \(V^{i-1}_u(t_i) = V^i_u(t_i)\) because the conditional volatility does not jump for the unobservable case, it can be shown that

\[
Q^{i-1}_p(t_i) = \frac{Q^i_p(t_i)}{1 - (1 - \gamma)(V^i_u(t_i) - V^i_p(t_i))Q^i_p(t_i)}
\]

and

\[
d^{i-1}_p(t_i) = \frac{d^i_p(t_i)}{1 - (1 - \gamma)(V^i_u(t_i) - V^i_p(t_i))Q^i_p(t_i)}.
\]

By (A32) and (17), we have

\[
Q^{i-1}_p(t_i) = \frac{Q^i_p(t_i)}{1 - (1 - \gamma)V_M(t_i)Q^i_p(t_i)}
\]

and

\[
d^{i-1}_p(t_i) = \frac{d^i_p(t_i)}{1 - (1 - \gamma)V_M(t_i)Q^i_p(t_i)},
\]

which are the same as the \((i - 1)\)th period terminal conditions (17) for the periodically

49
observable case and thus claim 2) holds.

Finally, since in the first period \(V^1_p(t) = V^1_u(t) \) for the same initial value of \(V(0) \), we have \(Q^1_p(t) = Q^1_u(t) \) and \(d^1_p(t) = d^1_u(t) \) by (A35) and (A36). In addition, given the same \(M(0) \), the trading strategies are the same by Proposition 2.

\[\Box \]

A.4 Parameter Estimation Method

Duffie et al. (2000) show that the conditional characteristic function of the diffusion processes described in (1) and (2) has a closed form. Using their results, we obtain the following characteristic function

\[
\psi(u_s, u_X, s_{t+\tau}, X_{t+\tau}|s_t, X_t) = \exp[\alpha(\tau, u_s, u_X) + \beta_s(\tau, u_s, u_X)s_t + \beta_X(\tau, u_s, u_X)X_t],
\]

where \(\alpha(\tau, u_s, u_X) \), \(\beta_s(\tau, u_s, u_X) \), and \(\beta_X(\tau, u_s, u_X) \) satisfy the following ODEs:

\[
\begin{bmatrix}
\dot{\beta}_s \\
\dot{\beta}_X
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 \\
\mu_1 & g_1
\end{bmatrix}
\begin{bmatrix}
\beta_s \\
\beta_X
\end{bmatrix},
\]

\[
\dot{\alpha} =
\begin{bmatrix}
\mu_0 - \frac{1}{2} \sigma^2_s & g_0
\end{bmatrix}
\begin{bmatrix}
\beta_s \\
\beta_X
\end{bmatrix}
+ \frac{1}{2}
\begin{bmatrix}
\sigma^2_s & \rho \sigma_s \sigma_X \\
\rho \sigma_s \sigma_X & \sigma^2_X
\end{bmatrix}
\begin{bmatrix}
\beta_s \\
\beta_X
\end{bmatrix},
\]
with boundary conditions $\alpha(0, u_s, u_X) = 0$, $\beta_s(0, u_s, u_X) = u_s$, and $\beta_X(0, u_s, u_X) = u_X$. The above ODEs have closed-form solutions:

$$
\beta_s(\tau, u_s, u_X) = u_s,
$$

$$
\beta_X(\tau, u_s, u_X) = \left(u_X + \frac{\mu_1}{g_1} u_s\right) e^{g_1 \tau} - \frac{\mu_1}{g_1} u_s,
$$

$$
\alpha(\tau, u_s, u_X) = \frac{1}{4g_1} \sigma_X^2 \left(u_X + \frac{\mu_1}{g_1} u_s\right)^2 \left(e^{2g_1 \tau} - 1\right)
+ \frac{1}{g_1} \left(g_0 + \rho \sigma_s \sigma_X u_s - \frac{\mu_1}{g_1} \sigma_X^2 u_s\right) \left(u_X + \frac{\mu_1}{g_1} u_s\right) \left(e^{g_1 \tau} - 1\right)
+ \left(\frac{\mu_0}{2} - \frac{1}{2} \sigma_s^2 - \frac{\mu_1 g_0}{g_1}\right) u_s^2 \left(\mu_0 - \frac{1}{2} \sigma_s^2 - \frac{\mu_1 g_0}{g_1}\right) u_s \tau.
$$

It can be easily verified that, conditional on s_t and X_t, the continuously compounded return $R_{t+1} = s_{t+1} - s_t$ and X_{t+1} are jointly Gaussian, and the first and second moments are

$$
M_1 = E_t(R_{t+1}) = \left|_{u_s=0, u_X=0} \right. = \left(\mu_0 - \frac{1}{2} \sigma_s^2 - \frac{\mu_1 g_0}{g_1}\right) + \frac{\mu_1}{g_1} (e^{g_1 \tau} - 1) \left(X_t + \frac{g_0}{g_1}\right),
$$

$$
M_2 = E_t(X_{t+1}) = \left|_{u_s=0, u_X=0} \right. = \frac{g_0}{g_1} (e^{g_1 \tau} - 1) + e^{g_1} X_t,
$$

51
\[\sigma_1^2 = \text{Var}_t(R_{t+1}) = \frac{\partial^2 \psi}{\partial u_s^2}igg|_{u_s=0,u_X=0} - (E_t(R_{t+1}))^2 \]
\[= \frac{1}{2g_1} (e^{g_1} - 1) \frac{\mu_1^2}{g_1^2} \sigma_X^2 + \frac{2\mu_1}{g_1^2} (e^{g_1} - 1) \left(\rho \sigma_s \sigma_X - \frac{\mu_1}{g_1} \sigma_X^2 \right) + \sigma_s^2 + \frac{\mu_1^2}{g_1^2} \sigma_X^2 - \frac{2\mu_1}{g_1} \rho \sigma_s \sigma_X, \]
\[\sigma_2^2 = \text{Var}_t(X_{t+1}) = \frac{\partial^2 \psi}{\partial u_X^2}igg|_{u_s=0,u_X=0} - (E_t(X_{t+1}))^2 = \frac{1}{2g_1} (e^{g_1} - 1) \sigma_X^2, \]
\[\rho_{12} \sigma_1 \sigma_2 = \text{Cov}_t(R_{t+1}, X_{t+1}) = \frac{\partial^2 \psi}{\partial u_s \partial u_X}igg|_{u_s=0,u_X=0} - E_t(R_{t+1}) E_t(X_{t+1}) \]
\[= \frac{\mu_1}{2g_1} (e^{g_1} - 1)^2 \sigma_X^2 + \frac{1}{g_1} (e^{g_1} - 1) \rho \sigma_s \sigma_X. \]

Define
\[a_{11} = \mu_0 - \frac{1}{2} \sigma_s^2 - \frac{\mu_1 g_0}{g_1} + \frac{\mu_1 g_0}{g_1^2} (e^{g_1} - 1), a_{12} = \frac{\mu_1}{g_1} (e^{g_1} - 1), \]
\[b_{11} = \frac{g_0}{g_1} (e^{g_1} - 1), b_{12} = e^{g_1}. \]

Let \(\Theta \equiv (a_{11}, a_{12}, b_{11}, b_{12}, \sigma_1, \sigma_2, \rho_{12}) \). The log likelihood function can then be calculated as
\[
L(\Theta) = \log f(X_1; \Theta) + \sum_{t=2}^{T} \log f(r_t, X_t|X_{t-1}; \Theta) \\
= -\frac{1}{2} \log 2\pi - \frac{1}{2} \log \frac{\sigma_X^2}{1 - b_{12}^2} - \frac{(X_1 - b_{11} / (1 - b_{12}))^2}{2\sigma_X^2 / (1 - b_{12}^2)} \\
- \frac{T - 1}{2} \left(\log 2\pi + \log \sigma_s^2 + \log \sigma_X^2 + \log (1 - \rho_{12}^2) \right) \\
- \frac{1}{2(1 - \rho_{12}^2)} \sum_{t=2}^{T} \left\{ \frac{(R_t - a_{11} - a_{12}X_{t-1})^2}{\sigma_1^2} + \frac{(X_t - b_{11} - b_{12}X_{t-1})^2}{\sigma_2^2} \\
+ 2\rho_{12} (R_t - a_{11} - a_{12}X_{t-1}) (X_t - b_{11} - b_{12}X_{t-1}) \frac{1}{\sigma_1 \sigma_2} \right\}.
\]

We then use the maximum likelihood estimation method to estimate the parameters.
References

Notes

1See Kahneman (1973) and Fiske and Taylor (1991), for example, for evidence of limited attention documented in social psychology.

2In their model, for tractability, they assume that inattentive investors live longer than attentive investors and invest a constant fraction of wealth in stock throughout their entire life.

3In contrast to our approach, Sims (2003) and Moscarini (2004) impose an information-processing capacity constraint on economic agents.

4One of the justifications for a discrete-time model is the presence of transaction costs. However, Liu (2004) and Liu and Loewenstein (2002) show that in this case the optimal rebalancing frequency is not deterministic but rather stochastic, and is thus different from the predictive variable observation frequency.

5Papers on return predictability include Keim and Stambaugh (1986), Lee (1992), McQueen and Roley (1993), Kandel and Stambaugh (1996), Patelis (1997), and Stambaugh (1999).

6See the Appendix for a more general model that allows multiple stocks, multiple predictive variables, and time-varying coefficients.

7Assuming that paying all the costs up front allows us to keep homogeneity of the value function in the (effective) wealth and thus makes the model tractable. This assumption is also consistent with common practice in subscribing to newsletters or some other services.

8This independency assumption is only for expositional simplicity. Allowing for correlations is a straightforward extension.

9The HARA family is rich in the sense that by suitable adjustment of the parameters one can have a utility function with increasing, decreasing, or constant absolute or relative risk aversion. See Merton (1992, p. 138) for these cases.

10The separation principle trivially applies because the objective function is independent of the unobservable state variable (see, e.g., Fleming and Rishel (1975, Chap. 4, Sec. 11).

11Although one may use the conditional volatility $V(t)$ as a state variable in the value function, we combine it with time t for simplicity because $V(t)$ is only a deterministic function of time.

12This proposition also holds for a more general model that allows multiple stocks, multiple predictive variables, and time-varying coefficients (see the Appendix). The proof for this more general case is available from the authors.
There have been some arguments against the estimation approach used by Lettau and Ludvigson (2001) (see Brennan and Xia (2002) and Hahn and Lee (2001)). But Inoue and Kilian (2004) suggest that this approach may be the correct one to improve test power.

Implicitly, we assume that historical quarterly consumption-wealth ratio time series data is precisely observable to econometricians and the resulting estimates are available to investors. We abstract away from calibrating the noise in the historical quarterly data. Quarterly data of cay_t can be downloaded from Martin Lettau’s Web page at New York University.

Our estimate of the real risk-free interest rate is similar in magnitude to those used in the literature (e.g., Campbell, Lo, and MacKinlay (1997)). We also use higher real interest rates, like those in Xia (2001), to check the sensitivity of our results to our interest rate estimate and find that our main results are robust to these changes.

We also used monthly stock return data and quarterly cay_t data to estimate the model. Specifically, we maximize the likelihood function derived after taking into account the monthly Bayesian updates on the predictive variable from the monthly observation of stock return. The qualitative results remain the same.

Implicitly, we assume that a long history of data on the stock price and the predictive variable is available and therefore the steady-state conditional variance \bar{V} can be estimated and is used as the initial conditional variance.

Varying these parameter values does not change qualitative results.

The nonmonotonicity of the optimal news frequency in the news accuracy actually holds for all investment horizons, with the critical news accuracy level (at which the slope is zero) decreasing in the horizon.

As mentioned before, to simplify exposition, we simply use “wealth” to refer to the “effective wealth” defined immediately after Proposition 1.

This result suggests that if the conditional volatility is stochastic, as in a non-Gaussian setting, the life-cycle pattern may be reversed when uncertainty is high. And if the correlation ρ between the stock return and the predictive variable is positive, this life-cycle pattern may also be reversed.

We have also found that the welfare loss (in terms of certainty equivalent wealth) of the investor from adopting this suboptimal strategy can be very significant (as high as 8% of the initial wealth for an investor with a five-year horizon and a risk-aversion coefficient of 5). We omit the figure on this result to save space.
We present results based on these cost functions because they are increasing and convex, imply an upper bound for possible news accuracies (i.e., $\alpha_\varepsilon < 400$ and $\alpha_\nu < 10$), and yield an interior solution. The difference between β and β_c is chosen to capture the typical feature that the upper bound for the continuous news accuracy is lower than that for periodic news accuracy and the cost for continuous news is higher than that for periodic news. We have tried other functional forms. For those functional forms that yield interior solutions, we obtain the same qualitative results as those reported in this section.

Given the nonlinear dynamics of the predictive variable X_t, it does not seem feasible to derive the exact filter for the discretized model. The commonly used Extended Kalman Filter for nonlinear filtering requires another layer of approximation (in addition to time discretization) by linearizing the nonlinear dynamics (see Chen (1993)). In comparison, direct discretization of the continuous-time filter equations has only one layer of approximation (i.e., time discretization) and allows for the incorporation of continuous information. This approach has also been widely used in the existing literature (e.g., Clark (1978), James, Krishnamurthy, Le Gland (1996)).

More extensive numerical results we conducted confirm the same findings as reported in Table I.

Strictly speaking, M_{t_i} and V_{t_i} are values at t_i^-, right before Y_{t_i} is observed, and m_{t_i} and v_{t_i} are values at t_i, right after Y_{t_i} is observed.

The expressions for b_j and b_{j-1}^l in (A29) are presented in an earlier version of this paper which is available from the authors and omitted in this version to save space.

More detailed proof of these claims is available from the authors.
Table I. Optimal periodic news frequency, accuracies, trading strategy, and consumption

<table>
<thead>
<tr>
<th>Panel A: Optimal news frequency, trading strategy, and consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Impact of news on stock investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C: Optimal frequency, accuracies, trading strategy, and consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

Note. The table shows the optimal frequency (τ*), the optimal fraction of wealth in stock π*, and the optimal consumption (c*). Panel B shows π* just before and immediately after the second periodic news update time τ* and the percentage changes. Panel C also shows the optimal news accuracies. For Panels A and B, the base case parameter values are γ1 = γ2 = 5, λ1 = λ2 = 1, η1 = η2 = .01, T = 20, μ0 = −1.275, μ1 = 1.998, g0 = −.724, g1 = 2.423, g2 = −2.012, σS = .0802, σX = .00748, ρ = −.617, r = .00340, β = .03%, βε = 3 × 10−6, αε = 100, αν = 10, δ = .01, ω = .5, X0 = .649, M0− = .649, and V (0−) = .000139. For Panel C, β, αε, and αν are all endogenous with β(αε) = (0.0001αε/(1 − 0.001αε))^{16/9} and β(αν) = (0.000004αν/(1 − 0.1αν))^{16/9}.29
Figure 1: The optimal news frequency against risk aversion.
Parameter values: $T = 20$, $\mu_0 = -1.301$, $\mu_1 = 2.040$, $g_0 = .117$, $g_1 = -.180$, $\sigma_S = .0801$, $\sigma_X = .00747$, $\rho = -.620$, $r = .00340$, $X_0 = .649$, $M_0 = .649$, $V(0^-) = .000147$, $\beta_c = .1\%$, $\alpha_e = 100$, $\alpha_{\nu} = 10$, $\eta = .01$, and $\lambda = 1$.

Figure 2: The optimal news frequency against correlation.
Parameter values: $\gamma = 5$, $T = 20$, $\mu_0 = -1.301$, $\mu_1 = 2.040$, $g_0 = .117$, $g_1 = -.180$, $\sigma_S = .0801$, $r = .00340$, $X_0 = .649$, $M_0 = .649$, $V(0^-) = .000147$, $\beta = .05\%$, $\beta_c = .1\%$, $\alpha_e = 100$, $\alpha_{\nu} = 10$, $\eta = .01$, and $\lambda = 1$.

62
Figure 3: The optimal news frequency against horizon.
Parameter values: $\gamma = 5$, $\mu_0 = -1.301$, $\mu_1 = 2.040$, $g_0 = .117$, $g_1 = -.180$, $\sigma_S = .0801$, $\sigma_X = .00747$, $\rho = -.620$, $r = .00340$, $X_0 = .649$, $M_0 = .649$, $V(0^-) = .000147$, $\beta = .05\%$, $\beta_c = .1\%$, $\alpha_\nu = 10$, $\eta = .01$, and $\lambda = 1$.

Figure 4: The fraction of wealth in stock against horizon.
Parameter values: $\gamma = 5$, $\mu_0 = -1.301$, $\mu_1 = 2.040$, $g_0 = .117$, $g_1 = -.180$, $\sigma_S = .0801$, $\sigma_X = .00747$, $\rho = -.620$, $r = .00340$, $X_0 = .649$, $M_0 = .649$, $V(0^-) = .000147$, $\beta = .05\%$, $\beta_c = .1\%$, $\alpha_\nu = 10$, $\eta = .01$, and $\lambda = 1$.
Figure 5: The fraction of wealth in stock against initial estimation error.
Parameter values: \(\gamma = 5, T = 20, \mu_0 = -1.301, \mu_1 = 2.040, g_0 = .117, g_1 = -.180, \sigma_S = .0801, \sigma_X = .00747, \rho = -.620, r = .00340, X_0 = .649, V(0^-) = .000147, \beta = .05\%, \beta_c = .1\%, \alpha_\nu = 10, \eta = .01, \) and \(\lambda = 1. \)

Figure 6: The expected percentage change in stock fraction against news accuracy.
Parameter values: \(\gamma = 5, T = 20, \mu_0 = -1.301, \mu_1 = 2.040, g_0 = .117, g_1 = -.180, \sigma_S = .0801, \sigma_X = .00747, \rho = -.620, r = .00340, X_0 = .649, M_0^- = .649, V(0^-) = .000147, \beta = .05\%, \beta_c = .1\%, \alpha_\nu = 10, \eta = .01, \) and \(\lambda = 1. \)
Figure 7: Optimal news frequency, accuracies, and trading strategy against the risk-aversion coefficient.
Parameter values: $T = 20$, $\mu_0 = -1.301$, $\mu_1 = 2.040$, $g_0 = .117$, $g_1 = -.180$, $\sigma_x = .0801$, $\sigma_x = .00747$, $\rho = -.620$, $r = .00340$, $X_0 = .649$, $M_0 = .649$, $V(0^-) = .000147$, $\alpha_\nu = 10$, $\eta = .01$, and $\lambda = 1$.

Figure 8: News frequency, accuracies, and trading strategy against horizon.
Parameter values: $\gamma = 5$, $\mu_0 = -1.301$, $\mu_1 = 2.040$, $g_0 = .117$, $g_1 = -.180$, $\sigma_x = .0801$, $\sigma_x = .00747$, $\rho = -.620$, $r = .00340$, $X_0 = .649$, $M_0 = .649$, $V(0^-) = .000147$, $\alpha_\nu = 10$, $\eta = .01$, and $\lambda = 1$.