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.We test the mean-variance efficiency of a given portfolio using a Bayesian framework. Our test
is more direct than Shanken's (1987b), because we impose a prior on all the parameters of the
multivariate regression model. The approach is also easily adapted to other problems. We use
Monte Carlo numerical integration to accurately evaluate 9O-dimensional integrals. Posterior-
odds ratios are calculated for 12 industry portfolios from 1926-1987. The sensitivity of the
inferences to the prior is investigated by using three different distributions. The probability that
the given portfolio is mean-variance efficient is small for a range of plausible priors.

1. Introduction
There are two competing approaches to statistical inference: classical and

Bayesian. The fundamental difference between them is the notion of proba-
bility. In the classical framework, the probability of an event is defined by the
limit of its relative frequency. Estimators and test procedures are evaluated
in repeated samples. In the Bayesian framework, probability is defined by a
degree of belief.

The Bayesian approach makes it possible to incorporate a belief about the
hypothesis being tested and its alternative in the form of a prior-odds ratio.
When we look at the data, we get a posterior-odds ratio, which summarizes
all the evidence (prior and sample) in favor of the hypothesis or its alterna-

.We have benefited from the comments of Douglas Foster, John Geweke, Michael Hemler,
Michael Lavine; Robert McCulloch, Peter Muller, Robert Nau, Tom Smith, Robert Winkler,
William Schwert (the editor), and seminar participants at Duke University and Washington
University. We thank Peter Rossi for all the suggestions he made in detailed correspondence
and conversations. We are especially indebted to Jay Shanken (the referee), who provided
numerous insights that greatly improved this paper.
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tive. The posterior-odds ratio can be interpreted as the ratio of the probabil-
ity that the hypothesis is valid to the probability that its alternative is valid.

Many applications in finance involve prior beliefs about the behavior of the
data. However, almost all empirical analysis has been carried out in the
classical framework. The slow adoption of Bayesian econometrics is a result
of two practical difficulties in implementing the approach. One is how to
choose a prior. The critical difficulty arises, however, in evaluating the
posterior distribution. This may involve high-dimensional integration, which
is analytically intractable. For example, some of our empirical work involves
90-dimensional integration. Fortunately, with the recent development of
Monte Carlo numerical integration, high-order integration problems are
routinely solved with a high degree of accuracy.

This paper examines multivariate tests of the mean-variance efficiency of a
given portfolio. Usually, these tests are done in a classical framework.'
Bayesian inference about mean-variance efficiency has received relatively
little attention. An exception is an important paper by Shanken (1987b) who
uses a result in Gibbons, Ross, and Shanken (1989) to develop a computa-
tionally convenient way to calculate the posterior-odds ratio.

Shanken (1987b) uses the posterior-odds ratio to test the restriction im-
posed by the Sharpe (1964) - Lintner (1965) capital asset pricing model
(CAPM) that the intercepts in the multivariate regression of excess returns
on the market excess return are equal to zero. Shanken's test is indirect,
however. He replaces the intercepts with a function of the intercepts and
tests whether this function is zero. With this method, he can impose a prior
only on the function, not on the intercepts. More importantly, Shanken's test
cannot easily be applied to other problems because it critically relies on the
sampling distribution of the classical F statistic proposed in Gibbons, Ross,
and Shanken (1989). For example, we cannot apply Shanken's results to test
the restrictions implied in the Black (1972) CAPM. Indeed, Shanken realizes
that:

A more ambitious and much more complicated approach to this problem
would start with a joint prior distribution for all parameters in the
multivariate linear regression of returns.

Our paper addresses this challenge and proposes a full Bayesian specifica-
tion of the asset pricing model tests.2 We use the algorithm suggested by
Geweke (1988, 1989) to evaluate the posterior distributions. Posterior-odds
ratios are calculated using both a diffuse prior and an informative prior to
test the restrictions implied by the Sharpe-Lintner CAPM. Further, we

ISee for example, Gibbons (1982), Stambaugh (1982), Shanken (1985, 1986), MacKinlay
(1987), and Gibbons, Ross, and Shanken (1989).

2 McCulloch and Rossi (1988, 1989a, b) independently address this challenge. Their focus,

however, is on the arbitrage pricing theory. They present an interesting methodology that
evaluates hypotheses by means of direct utility loss.
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check the sensitivity of the inference to the choice of prior distributions.
Finally, we calculate Bayesian confidence intervals for the parameters of
interest. Tests are carried out on monthly returns from 1926 to 1987 on 12
industry portfolios. The evidence suggests that the value-weighted New York
Stock Exchange (NYSE) market portfolio is not mean-variance efficient.

The paper is organized as follows. In the second section, we present the
Bayesian framework for testing the asset pricing restrictions. The empirical
results are included in the third section. Some concluding remarks are
offered in section 4. A brief introduction to Monte Carlo integration appears
in appendix A.

2. Methodology

2.1. Asset pricing restrictions

A test of the Sharpe-Lintner CAPM can be viewed as a test of the
mean-variance efficiency of the market portfolio. Consider the multivariate
regression model:

where r it is the return on asset i in excess of the return on a Treasury bill, r pt

is the excess return on the market portfolio, and Eit is the disturbance, which
is assumed to be correlated contemporaneously but not across time:

E . . = { U;j, s = t,
(2)e"e JS .

0, otheIWlse.

Eq. (1) can be written more compactly as

R =XB +E, (3)

where R is a T (obselVations) row by N (asset) column matrix of excess
returns, X is a T by 2 matrix, with the first column being a vector of ones and
the second column the market excess return, B is a 2 by N coefficient matrix
with the a coefficients in the first row and the f3 coefficients in the second
row, and E is the T row by N column disturbance matrix.

For both the classical and Bayesian analysis, the disturbances, £;1' are
assumed to be uncorrelated with the portfolio return, r pl' They are also
assumed to have a normal distribution with a zero mean and covariance
matrix IT @ X, where IT is the identity matrix of order T and X is the N by
N matrix of the u.. elements in (2). The distinctive feature of the BayesianII

r it = (1ip + {3ipr pt + E:it'
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framework is that the parameters, a, f3, and I, are viewed as random
variables. In the classical set-up, the parameters are constants. Classical
statistics attempts to answer the question: 'If the true values of the parame-
ters are B and I, what is the probability we would have observed the data?'
Bayesian statistics attempts to answer a different question: 'Given that we
have observed the data, what is the probability distribution of the parameters
B and I?' Of course, the latter question cannot be answered without
considering prior beliefs.

A mean-variance efficient portfolio, r PI' must satisfy the following first-
order condition:

E[ril] =l3ipE[rpl]' (4)

for i = 1,..., N. This implies the intercept parameters in (3) should be zero
for all assets:

a;p=O, i=1,...,N. (5)

This multivariate restriction of (3) will be tested.

2.2. Bayesian inference

Analysis of a model in the classical framework ignores prior information
about the distribution of the parameter values. Numerically, the classical and
Bayesian approaches may yield similar results if the Bayesian procedure uses
a diffuse or 'ignorance' prior on the parameters. The Bayesian approach,
however, gives the econometrician the option of incorporating prior knowl-
edge into the estimation. We will analyze the estimation problem using both
diffuse and informative priors.

The standard diffuse prior for the multivariate model (3) is the following
prior density on the parameters a, {3, I:

pCB, I) <X III-(N+I)/2, (6)

where IIi is the determinant of the covariance matrix I.
Using Bayes' rule and following Zellner (1971), the posterior density for

the parameters B and I is

P(B,X) =P(BII)P(I),

where

PCB/X) <X III-1exp {- t tr[(B -B)'X'X(B - B)I-I]}
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and

where 'tr' denote the trace of a matrix, JL = T - 1 + N, B is the least-squares
estimate of a and /J, and S = (R - xB)'(R - xB). In the classical framework,
the unbiased estimate of .!: is S /(T - 2). For notational convenience, we
have suppressed the dependence of the posterior density on the data. All
priors are denoted by lower-case' p' and posteriors are upper case.

The intercept vector, a, is the parameter of interest. Its marginal posterior
distribution is multivariate t and given in Zellner (1971) by

(8)

where v = T - 1 - N, H = VS-I la, and a is the (1,1) element of (X'X)-I
Appendix B contains the proof. The first and second moments are

and

By using "a multivariate t distribution or by directly integrating the poste-
rior distribution, we can construct a Bayesian confidence region (interval in
the one-dimensional case) or highest posterior density region:

where h is a number chosen such that the integration of the a's marginal
posterior density over the region in (10) is 'Y E (0,1), the given 'significance
level'. The Bayesian confidence region (10) can be interpreted as the region
into which the parameters, a, have a probability 'Y of falling~ It may be used
to test the hypothesis that the intercepts, a, are zero. As in the classical
approach, we reject the hypothesis if zero is outside the confidence region.
As shown later, in section 3, this procedure will yield roughly the same
results as the classical approach. The interpretation, however, is different.
The Bayesian approach asks: 'What is the probability that the intercepts fall
into this N-dimensional region?'

These confidence regions are not available in the classical framework.
Although there are known methods for evaluating the confidence interval for
a linear combination of the intercepts, we are interested in the confidence
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P(I) aIII-/J./2exp{-~trI-IS}, (7)

P(a) a [v + (a - &)'H(a - a)] -</'+N)/2,

E[ IX] = a

v a
var[a] = -B-1 = -So

v-2 v-2 (9)

-hvvarr~";;f + a;p < a;p < a;p + hvvarr~";;f , i = 1,..., N,

(10)
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intelVals for e;ach individual ai' so that for a given significance level 'Y, all the
intelVals will cover the true parameters simultaneously 'Y% of the times if we
draw repeated samples. Consider the simple case in which X is known. In
this situation, IX would have a normal distribution: IX"" N(a, aX). Since
high-dimensional normal tables are not available, we must use the Monte
Carlo approach to evaluate the confidence region. When X is not known,
however, the problem is much more complicated. Although both the
Bonferroni method [Shanken (1990)] and Scheff6's (1977) S-method can be
used to construct confidence regions, these regions are conselVative in the
sense that the overall probability that they will cover the true parameters is at
least (1 - 'Y) for a given level of significance 'Y. That is, these confidence
intelVals will be bigger than the confidence intelVals that contain the true
parameters with exact 1 - 'Y probability:

Bayesian posterior analysis reveals how our prior beliefs should change in
light of the data. When we study a parameter 0, its posterior density gives us
a basis for expressing (posterior) beliefs about possible values of O. The
Bayesian confidence intelVal is just a tool to quantify such information.
Suppose the posterior density of 0 vanishes except in the intelVal [0,5], and
the posterior probability for 0 ~ 3 is 99%. This implies the probability for
0 < 2 is less than 1 %. As a result, a null hypothesis that 0 = 0 or 0 = 1 may
be considered highly doubtful and hence be rejected. The Bayesian confi-
dence intelVals work on the same principle. This type of testing procedure,
however, implicitly assumes the use of a simple loss function that measures
the importance of a point by the posterior probability in a certain region
containing the point. The classical inference by confidence intelVals essen-
tially uses the same loss function. Of course, this only weighs the statistical
importance of the hypothesis. The economic significance is not taken into
account.

Even if one has a different loss function (knowing the economic context of
the problem), the Bayesian posterior analysis may still be useful. With a
different loss function, however, the Bayesian confidence intelVals themselves
will not yield a rejection of the null, but they do offer information so that a
decision may be based on the loss function. Consider an example. Suppose 0
is a reliability measurement for a machine part. Suppose it is an unacceptable
risk to have 1/1,000,000 chance of 0 = 0.5. As a result, even if we find the
posterior probability of 0 < 1 is less than 0.001, we are unable to reject the
null 0 = 0.5 or 0 = o.

Since the Bayesian posterior analysis is not formulated in terms of the null
hypothesis, even when we reject the null under the Bayesian confidence
intelVal we cannot obtain the probability that the null is true because the
hypotheses themselves are not defined in the probability space. If one wants
to assign probabilities for the null and alternative hypotheses, the analysis
focuses on the posterior-odds ratios, which deliver the posterior probability
that the null hypothesis is true. This ratio is calculated in the next section.
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Bayesian posterior inference for any given function of the parameters can
be performed by evaluating certain integrals that represent the desired
statistical measure, for example, the mean. These integrals are often analyti-
cally intractable but can be evaluated with reliable accuracy by using the
Monte Carlo integration approach of Geweke (1988, 1989).

In the context of the mean-variance efficiency problem, we study the
following function of the parameters:

This function is of interest for four reasons. First, as demonstrated in
Shanken (1987a), it is linked to the correlation between the (efficient)
tangency portfolio and the given portfolio. An equivalent geometric interpre-
tation is given in Gibbons, Ross, and Shanken (1989). Second, it is the
function (differing by a constant) tested by Shanken (1987b) to evaluate
whether the intercepts are zero. Third, it is the unknown parameter of the
important W statistic proposed in Gibbons, Ross, and Shanken. Finally, it is
good example for comparing the results of the high-dimensional numerical
integration with the known analytical solution.

The statistical properties of ).. can be obtained by evaluating integrals
under the posterior distribution of all of the parameters. In the present case,
however, this can be simplified because).. is not a function of fJ. As a result,
it is sufficient to consider the posterior distribution of Q' and :1; to obtain
inference about )... Appendix B proves that the posterior distribution of Q'

given I is

This is a multivariate normal distribution with covariance matrix aI. Using
(12), we can evaluate the moments of the function of interest, A. Actually, the
mean can be evaluated analytically as

A = EA = Na + a'i-Ia, (13)

where i=(T-2)-IS. This is demonstrated in appendix B. However, the
variance of A is analytically intractable.

To further characterize A, an examination of the posterior distribution is
informative. Consider how the Monte Carlo evaluation of the mean of A
works. A single replication of Ai is obtained by drawing ui and Ii from their
posterior distribution. The mean and standard error of A are simply approxi-
mated by the average and standard deviation of the {AJ over a given number
of replications. The posterior density can be plotted by sorting these Ai
values.

C.R. Harvey and G. Zhou, Bayesian inference in asset pricing tests
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The diffuse prior given in (6) was first introduced into Bayesian multivari-
ate analysis by Geisser and Cornfield (1963) and the idea can be traced back
to Jeffreys (1961). It is a prior of 'minimum prior information' [Press (1982)]
and its use produces results similar to those obtained with the classical
approach. This may be why it is the most widely used prior for multivariate
models. If one has prior information on lX, however, an informative prior
should be used. One possible form of the informative prior is

p(B,I) aIII-(N+I)/2pO(a),

where po(a) is a multivariate normal distribution for the parameters lx. If Po
is set equal to one, we obtain the prior in (6).
a IS

P(a) apo(a)[v + (a-a)'H(a-a)] -(v+N)/2.

This is a product of a multivariate t density with a normal density. As Zellner
(1971) notes, however, it is much more complicated than it seems. An
analytic Bayesian analysis of the a coefficients is very difficult, if not impossi-
ble. However, the means, variances, and Bayesian confidence regions can be
computed numerically by performing Monte Carlo integration in a N-dimen-
sional parameter space based on the posterior density in (15).

Of course, we need not assume that the prior is a multivariate normal
distribution for the parameters. Many other choices of the prior po(a) can be
easily analyzed by the Monte Carlo integration approach. Indeed, the ap-
proach suggested here allows the researcher to form and choose a rich set of
priors for the analysis, without the constraint that the problem is analytically
solvable.

2.3. An economic interpretation of the A parameter

The A is related to the correlation, p, between the tangency portfolio and
the given portfolio. Shanken (1987a) shows that

A = 8;(p-2 - 1),

where 0; is the squared Sharpe measure (ratio of expected excess return to
standard deviation of return) for portfolio p. The p is the ratio of the Sharpe
measure for the given portfolio to the Sharpe measure for the tangency
portfolio. If A = 0, this implies that p = 1, which in turn implies that the
given portfolio is efficient. Note that 0; is exogenous to the multivariate
regression model. However, conditioning on a given value of 0;, we can

Then the posterior density for

(15)

(16)



assess the efficiency by examining a plot of the posterior density of p. Given
8p, p is a function of A. As a result,

density( p) = density( A)

where

dA ( A ) 3/2 - = 282 - + 1

dp P 82
P

An equivalent
Shanken (1989):

A = 82 - 82
I p'

where 0, is the Sharpe measure for the tangency portfolio. Whereas p is a
relative measure of the deviation from efficiency, A is an absolute measure.
This can be seen in fig. 1. The correlation measure is the ratio of the Sharpe
measures: slope(OB)jslope(OA). The A is the difference in the squared
Sharpe measures. Thus, a A of zero implies efficiency. Geometrically, A can
be interpreted as the difference in the squared lengths of OA and DB, since
A = (1 + 0,2) - (1 + 0;).

2.4. Posterior-odds ratios

In the Bayesian framework, a test of the hypothesis that the intercepts, a,
are exactly zero is called a sharp null hypothesis. Testing this particular
hypothesis reveals that the econometrician has some prior belief that the null
hypothesis may be true. This belief can be incorporated into the prior-odds
ratio. Given the data and the theory, a posterior-odds ratio is calculated that
allows the econometrician to modify his beliefs in light of the data.

The null hypothesis for testing the efficiency of a given portfolio is

Ho: a = 0,

and the alternative is

HI: a*O.

The hypothesis, Ho, relates parameters to a single value. Testing of this type
of sharp hypothesis was pioneered by Jeffreys (1961). We employ the stan-

C.R. Harvey and G. Zhou, Bayesian inference in asset pricing tests
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(17)



230

. Standard deviation

Fig. 1. The geometry of the measures of departures from the null hypothesis that the given
portfolio is mean-variance efficient.

The correlation, p, between the given portfolio, p, and the tangency portfolio, t, is the ratio of
Sharpe measures, 8p/8,. A Sharpe measure of a portfolio is the ratio of its expected excess
return to its standard deviation. Geometrically, the correlation is slope(OB)/slope(OA). A
correlation of unity implies that the given portfolio is efficient. The other measure of the
departure from the null hypothesis, A, is the difference between 8[ and 8;. Geometrically, the A
is the difference in the squared lengths of OA and DB. If there is no difference in the squared

returns, A is zero and the given portfolio must be efficient.

dard diffuse prior under the null hypothesis, Ho:

p(/J, 1::IHo) a 11::1-(N+I)/2.

For the alternative hypothesis, HI' we use the prior:

p( a, /J, 1::IH I) a 11::1-(N+ 1)/2f( al1::) ,

where f(al1::) is a N-dimensional Cauchy density:

f( alI) = clkII-I/2 .

(1 +a'(kI)-la)(N+I)/2'

with c = T«N + 1)/2)/1T(N+ 1)/2 and T(') is the Gamma function. The zero
vector and the matrix k I are the location vector and scale matrix for the
Cauchy density. These can be roughly interpreted as the mean and covari-

C.R. Harvey and G. Zhou, Bayesian inference in asset pricing tests
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ance matrices for the Cauchy density in (20). The Cauchy density behaves
much like an N-dimensional normal density with zero mean and covariance
matrix k I near the origin point, but the Cauchy density has fatter tails. As a
result, a random vector following a Cauchy distribution does not possess
finite moments of order greater than or equal to one. Zellner and Siow
(1980) extend Jeffrey's method to a univariate regression model. We general-
ize their approach to the multivariate regression model.

The posterior-odds ratio, Kc for Ho and HI with prior odds 1: 1, is

J J L(fJ, IIHo)p(fJ, IIHo) dfJ dI
K =

c

If fL(a,fJ,IIHr)p(a,fJ,IIH.)dadfJdI

where L(/3, IIHo) is the likelihood function, L(a, /3, I), valued at a = O.
The posterior-odds ratio is equal to the prior odds times the ratio of
averaged likelihoods weighted by the prior densities. This contrasts with the
classical likelihood-ratio testing procedure, which uses ratios of maximized
likelihoods.

By analytically integrating fJ out, (21) is simplified:

- 1 ( ISI } (T-I)/2 K-- c -

Q ISRI

where SR' like S, is the cross-product matrix of the OLS residuals, but of the
restricted model where the intercepts equal zero. The other scalar, Q, is
defined as

Q = f f exp

with f(aII) given by (20) and P(I) in (7). The determinants, ISI and ISRI,
are measures of spread, and are sometimes called generalized variance [see
Anderson (1984)]. The ratio ISI/ISRI measures the relative goodness-of-fit of
the unrestricted model and the restricted one. A smaller ratio implies that
the restricted model is less likely to be valid. This smaller ratio lowers Kc.
The scalar Q can be interpreted as a weighting of the likelihoods. It is
extremely complicated to evaluate. For example, with N = 12 assets, the
order of the integration is the number of nonredundant elements in I plus
the number of parameters a, which is [N(N + 1)/2 + N] = 90. Its evaluation
is feasible only numerically.

1
- -(a-a)'X-I(a-a)

2a
f(aII)P(I) da dI,

(23)



232 C.R. Harvey and G. Zhou, Bayesian inference in asset pricing tests

An odds ratio, Kn, is also evaluated for the multivariate normal prior. This
prior is similar to the Cauchy prior except that f(aII) is replaced with a
multivariate normal density, g(aII), for a with covariance matrix kI:

g(aII) =
( .. NlkII-1/2exp(-!(a'(kI)-la)).

21T)

This second density checks the sensitivity of the inferences to the choice of
prior. The normal distribution has thinner tails than the Cauchy distribution.
As a result, the prior mass will be less spread out. Intuitively, large deviations
from zero in the intercepts should provide more evidence against the null
hypothesis with the normal.

Finally, in their tests of the arbitrage pricing theory, McCulloch and Rossi
(1988) use the Savage density approach to obtain posterior-odds ratios. The
prior under the alternative is chosen as a density of the parameters a, fJ, and
I, where the marginal distribution of I is an inverted Wishart while [fJ, a]
follows a multivariate normal distribution conditional on I. Letting a = 0, a
density in terms of fJ and I is obtained. This is the choice of the prior
density under the null hypothesis. So, to specify the Savage density com-
pletely, it suffices to give only the prior under the alternative:

p(B,I) a: [II/-1exp{-itr[(B-Bo)'1l'o(B-Bo)I-I]}]

where So is the prior-variance structure for I, and Bo and 11'0 determine the
prior means and variances of B parameters conditioning on I.

Given our choice of prior (denoted with a 0 subscript), one can obtain the
posterior density (which is identified with a 1. subscript). It can be verified
that both prior and posterior marginal densities of a are multivariate-t, so
their densities have the form of (8). That is, the densities are proportional to

Qi-(V;+N)/2= 1 + (a-a;)'Hi(a-a;)/v;, i=O,I,

where VO,VI are the degrees of freedom for marginal prior and posterior
distribution of a, and ao, al are prior and posterior means of a.

The Savage odds-ratio calculation was first studied by Dickey (1971) in the
univariate case and extended by Rossi (1980) to the murtivariate case. The
odds ratio K s can be written as

Ks = (CI/CO)( Va/VI) N/\IH II/IHoOI/\qI/qO) -<vo+N)/2ql<v,-Vo)/2

(24)

X [III-,.0/2 exp{ - t trI-1So}], (25)

(26)



where

r« V; + N)/2)
c; = r( v;/2)'

and qi is evaluated at a = O.
Of course, the variables with the zero subscripts must be determined

before the posterior analysis is undertaken. Conceptually, an investigator can
assign any values to Bo, 11'0' and So to reflect his particular prior belief. One
approach is to choose a ten-year subset of the data to form Bo, 11'0' and So
by Bayesian posterior analysis. The posterior-odds ratios can then be calcu-
lated with the remaining data. These estimates may not reflect our prior
beliefs about the relative efficiency of the given portfolio, however. We can
calculate the mean of A, Ao, by using the prior sample in the same way as
(13). This mean can be used in (16) to solve for the relative efficiency, p,
implied in the ten-year subperiod with a value of 8p = 0.5. This seems to be a
reasonable choice suggested by Shanken (1987b). The value implies that a
portfolio with an average excess return of 10% will have a standard deviation
of 20% per annum. To make the procedure operational, we adjust the initial
estimates of Bo and the estimates of the covariance by a scale parameter k
to attain three levels of prior efficiency: 50%, 60%, and 70%. Intuitively,
when p is less than 50% we want to reduce the size of the intercepts and the
uncertainty proportionally to raise the prior efficiency to the desired level.

In the Cauchy and normal densities, only a single scale parameter needs to
be determined. By using different ten-year samples of the data, one obtains
roughly the same scale estimates. Unlike this case, the Savage density
requires the prior specification of many variables. As a result, different ten
year data sets can deliver quite different estimates even after scaling. To
study the sensitivity of our inferences to the variability of the ten-year
subperiods, we conduct the Savage analysis by using consecutive ten-year
subperiods to obtain the corresponding odds ratios.

The three prior densities requires one's prior belief about the fundamental
parameters of the multivariate regression model. These beliefs imply a prior
on the relative efficiency of the given portfolio. Unfortunately, it is not clear
how to obtain the prior degree of efficiency from the Cauchy or normal prior.
For the Savage density, however, it is straightforward to evaluate the relative
efficiency implied by the prior under the alternative hypothesis.

Although the Bayesian approach offers a consistent framework for incor-
porating prior information into the analysis, it opens the door for disagree-
ments over the choice of prior. Traditionally, a prior distribution might have
been chosen because it was analytically tractable. In contrast, we have chosen

233C.R. Harvey and G. Zhou, Bayesian inference in asset pricing tests
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Table 1

Means, standard deviations, and autocorrelations for the portfolio excess returns3 of NYSE
common stocks sorted by industry and the excess return on the NYSE value-weighted index

based on monthly data from February 1926 to December 1987 (743 observations).

Portfolio

Petroleum
Finance &

real estate
Consumer

durables
Basic

industries
Food &

tobacco
Construction
Capital goods
Transportation
Utilities
Textiles &

trade
Services
Recreation
NYSE value-

weighted

3AIl rates of return are in excess of the one-month Treasury-bill rate.

without this constraint. The examination of more than one prior distribution
reveals the sensitivity of the inferences to the choice of prior ,3

3. Empirical results

3.1. The data and summary statistics

Twelve industry portfolios are used in the empirical work. The industry
groupings follow Sharpe (1982), Breeden, Gibbons, and Litzenberger (1989),
Gibbons, Ross, and Shanken (1989), and Ferson and Harvey (1991). The
portfolios are value-weighted. The market return is the value-weighted NYSE
return available from the Center for Research in Security Prices (CRSP) at
the UniversitY of Chicago. All returns are in excess of the 3D-day Treasury-bill
rate available from Ibbotson Associates. These monthly data span the
1926-1987 period.

Means, standard deviations, and autocorrelations of the data are presented
in table 1. The means range from 6.8% per year for the utilities industry to
10.5% per year for the consumer-durables industry. The lowest standard

3A technical appendix that provides a detailed derivation of each formula in the paper and the
FORTRAN programs are available from the authors on request.
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Mean Std. dev.

0.00757
0.00671

0.00832

0.00713

0.00658

0.06364
0.06111

0.07662

0.06502

0.04939

-0.021
0.004

- 0.004
-0.014
- 0.011

0.163 0.039 -0.094

0.127 -0.001 -0.095
0.149 - 0.006 - 0.155
0.150 -0.035 -0.133
0.150 -0.011 -0.074

- 0.003
0.015
0.025
0.036

- 0.022

0.012
0.011
0.035
0.034
0.042

0.07204
0.06618
0.07824
0.04830
0.06300

-0.021
0.015

-0.014
- 0.005

0.003

0.00606
0.00749
0.00571
0.00552
0.00628

0.052
-0.051

0.022

- 0.025
- 0.028

0.017

0.088
- 0.032

0.028

0.038
0.021

- 0.001

0.029
0.026

-0.010

- 0.003
- 0.076
-0.118

0.07502
0.07611
0.05727

0.017
0.204
0.113

0.00689
0.00710
0.00641
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deviation is found in utilities and the highest in transportation. There is some
evidence of first-order autocorrelation in the returns. There is no evidence of
any seasonals in these portfolio returns, however.

3.2. Ordinary-Least-squares regressions

Table 2 presents ordinary-least-squares (OLS) regressions of the portfolio
excess returns on the market excess return. The market model betas range
from 1.3 in consumer durables (industry 3) to a low of 0.7 in utilities (industry
9). The value-weighted market factor is able to explain over 80% (on average)
of the variation in the portfolio returns.

The Sharpe-Lintner model restricts the intercept to be zero. Inspection of
table 2 reveals that the intercept in the food and tobacco industry (industry 5)
is more than two standard errors from zero. Three other industries have
intercepts more than 1.2 standard errors from zero. At the bottom of the
table, the exact F statistic is calculated for the multivariate test that all the
intercepts are zero. This is one of the statistics studied by Gibbons, Ross, and
Shanken (1989). The classical probability value of the statistic is 0.025. This
would be interpreted as providing evidence against the model's restrictions at
the 95% level but not at the 99% level. This evidence is consistent with the
probability value of 0.013 reported by Gibbons, Ross, and Shanken for the
1926-1982 period.

3.3. Evaluation of the accuracy of the Monte Carlo integration

The main practical difficulty that has slowed the adoption of Bayesian
econometrics is the integration of the posterior distribution. Traditional grid
methods of numerical integration can handle only low-dimensional problems.
In contrast, with the recent advances in Monte Carlo integration, high-order
problems can be solved with considerable accuracy. In fact, the accuracy of
the Monte Carlo method does not depend on the order of integration - it

depends only on the number of replications.
To evaluate the aGcuracy of the Monte Carlo integrations, we compare the

known analytical mean of ai given in (9) and the analytical mean of A given
in (13) with the numerical estimates. For the intercepts, the order of
integration is only 12. For the A, the order of integration is 90. Both of these
problems would be infeasible using the grid method. For example, for a
10-point grid, numerical evaluation of the A would require 1090 calculations
of the integrand.

Table 3 compares the analytical results with the numerical results. The
second column reports the analytical calculation of the intercepts. These are
the same as the OLS estimates in table 2. The next three columns provide
the Monte Carlo evaluation of the 12-dimensional integral for 1,000, 10,000,
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Table 2
Ordinaiy-least-squares estimates of the model:

rj,=aj+{3jrp,+u;" i= 1,...,12,

where r; is the excess return" on an industry sorted portfolio, r p is the excess return on the
NYSE value-weighted index, and u; is an industry-specific disturbance. The regression is

estimated over February 1926 to December 1987 (743 observations).

Finance & real estate 0.0201 1.0153 0.905
(0.0695) (0.0121)

Consumer durables 0.0181 1.2700 0.901
(0.0891) (0.0155)

Basic industries 0.0100 1.0976 0.935
(0.0614) (0.0107)

Food & tobacco 0.1539 0.7863 0.831
(0.0750) (0.0130)

Construction -0.1290 1.1490 0.834
(0.1084) (0.0188)

Capital goods 0.0414 1.1039 0.912
(0.0724) (0.0126)

Transportation - 0.1986 1.2014 0.773
(0.1377) (0.0239)

Utilities 0.0834 0.7319 0.753
(0.0887) (0.0154)

Textiles & trade 0.0084 0.9675 0.773
(0.1108) (0.0192)

Services 0.0418 1.9517 0.593
(0.1766) (0.0307)

Recreation - 0.0470 1.1820 0.791
(0.1285) (0.0223)

P statisticb for a; = 0, i = 1,. ..,12 1.958
P-value 0.025

-All rates of return are in excess of the one-month Treasury-bill rate. Standard errors are in

parentheses.bp statistic is the exact statistic proposed in Gibbons, Ross, and Shanken (1989) for the
multivariate test of whether the 12 intercepts are jointly equal to zero.

cCoefficient of determination adjusted for degrees of freedom.

li2 c
I{3i



Table 3

An evaluation of the accuracy of the Monte Carlo integration. We compare the numerical means
and standard errors obtained from Monte Carlo integration with the analytical values. The
analytical means and standard errors for the intercepts, ai' are ordinary-least-squares estima-
tors.a The numerical means and standard errors are evaluated from 1,000, 10,000, and 100,000
Monte Carlo draws from the marginal posterior density of the intercepts - which is a multivari-
ate I-distribution. The A parameter measures the deviation from the null hypothesis that the
intercepts are all zero.b Although the analytical mean of A can be calculated,C its standard error
is intractable. The numerical mean and standard deviation are obtained by 1,000, 10,000, and
100,000 Monte Carlo draws from the posterior density of the vector of intercepts, which is a
multivariate (-distribution, and from the posterior density of the covariance parameter matrix,
which is an inverted Wishart distribution. The estimation is based on monthly data from

February 1926 to December 1987 (743 observations).

Finance & real estate

Consumer durables

Basic industries

Food & tobacco

Construction

Capital goods

Transportation

Utilities

Textiles & trade

SelVices

Recreation

a ' a a aI I I

analytical numerical numerical numerical
1,000 10,000 100,000 Order

replications replications replications of
(% per month) (% per month) (% per month) (% per month) integration

0.1589 0.1612 0.1581 0.1583 .12
(0.1284) (0.1271) (0.1274) (0.1278)

[0.0040]d [0.0013] [0.0004]

0.0201 0.0210 0.0200 0.0201 12
(0.0701) (0.0712) (0.0707) (0.0701)

[0.0023] [0.0007] [0.0002]

0.0181 0.0157 0.0187 0.0188 12
(0.0899) (0.0862) (0.0905) (0.0902)

[0.0027] [0.0009] [0.0003]

0.0100 0.0097 0.0093 0.0102 12
(0.0619) (0.0625) (0.0615) (0.0623)

[0.0020] [0.0006] [0.0002]

0.1539 0.1540 0.1537 0.1534 12
(0.0757) (0.0761) (0.0750) (0.0745)

[0.0024] [0.0008] [0.0002]
-0.1299 -0.1280 -0.1291 -0.1290 12
(0.1094) (0.1079) (0.1088) (0.1087)

[0.0034] [0.0011] [0.0003]

0.0414 0.0422 0.0418 0.0414 12
(0.0730) (0.0707) (0.0732) (0.0730

[0.0022] [0.0007] [0.0002]
-0.1986 -0.2008 -0.1977 -0.1990 12
(0.1389) (0.1435) (0.1389) (0.1390)

[0.00451 [0.0014] [0.0004]
0.0834 0.0822 0.0828 0.0837 12

(0.0895) (0.0895) (0.0898) (0.0898)
[0.0028] [0.0009] [0.0003]

0.0084 0.0087 0.0093 0.0081 12
(0.1118) (0.1135) (0.1116) (0.1116)

[0.0036] [0.0011] [0.0004]

0.0418 0.0445 0.0410 0.0414 12
(0.1782) (0.1830) (0.1758) (0.1781)

[0.0058] [0.0018] [0.0006]
-0.0470 -0.0454 -0.0468 -0.0473 12

(0.1297) (0.1277) (0.1298) (0.1297)
[0.0040] [0.0013] [0.0004]

12
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Table 3 (continued)

A A A A
analytical numerical numerical numerical

1,000 10,000 100,000
replications replications replications

c",."..."c...,~ -

0.0489 0.0491 0.0488 0.0488 90
(0.0151) (0.0151) (0.0150)
[0.00047] [0.00015] [0.00005]

---
3The model estimated is ril = ai + {3jr pI + Uil' i = 1,...,12, where ri is the excess return on an

industry-sorted portfolio, r p is the excess return on the NYSE value-weighted index, and Ui is an
industry-specific disturbance. All rates of return are in excess of the one-month Treasury-bill
rate. The standard errors, in parentheses, are slightly larger than the OLS standard errors
because the covariance matrix is divided by T - 2 - N in the Bayesian framework.

bA is defined as A a,,!;-la, where a is a vector of the intercepts and,!; is the covariance
matrix.

cThe analytical mean of A is given by A = Na + a'i-1a, where a and i are the OLS
estimates of the intercepts and covariance matrix, N is the number of assets, a is the (1,1)
element of (X' X) -I, and X is a 2 by T matrix that includes a column of ones and the excess
return on the CRSP value-weighted index.

dStandard errors of the numerical means in brackets.

and 100,000 replications. The analytical standard errors from (9) and numeri-
cal standard errors of the intercepts are in parentheses. The analytical
standard errors in table 3 are slightly larger than the OLS standard errors in
table 2. In OLS, the covariance matrix is divided by T - 2 and standard
errors are then calculated. In the Bayesian framework, the covariance matrix
is divided by T - 2 - N. This accounts for the small difference.

The Monte Carlo calculations are remarkably close to the analytical results
with as few as 1,000 replications. With 100,000 replications, the Monte Carlo
integration delivers five digits of precision. The formal way of assessing the
numerical accuracy is the standard error of the numerical Monte Carlo
integration. These measures, which correspond to un/ In in appendix A, are
presented in square brackets. These standard errors decrease as the replica-
tions increase, indicating increased accuracy.

The results for the A parameter are presented in the bottom panel of table
3. Unlike the evaluation of the intercepts, the evaluation of the A involves a
9O-dimensional integration. The accuracy of the Monte Carlo integration is
not affected, however, by the increased dimensionality. As the number of
replications increases, the numerical A approaches the analytic value.4 The
standard errors cannot be compared because the analytic standard error is
intractable.

4We also ran, but do not report, 1,000,000 replications. With this number of replications, the
difference between the numerical value and the analytical value of A is 0.000013.
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In summary, the Monte Carlo method delivers accurate solutions to
high-dimensional integration problems that were previously considered infea-
sible using the grid method. Even with a smaller number of replications, the
numerical estimates are close to the analytical ones. The evaluation of
the Bayesian confidence intervals and the posterior-odds ratios presented in
the next two sections uses 100,000 replications.

3.4. Baye.\'ian confidence intervals and posterior analysis

Consider the Bayesian confidence region for the intercepts. For a given h,
the region is in a 12-dimensional space as described by (10). Since it is
impossible to present the region graphically, we plot the 12 intervals together
in fig. 2. The figure has three panels that correspond to three values of h: 1.2,
2.0, and 2.8. The probabtIity value presented by each panel is the probability
that each intercept falls into the interval simultaneously.

Intuitively, the smaller the h, the smaller the interval and the smaller the
probability of the intercepts falling into the interval simultaneously. With
h = 1.2, there is only a 6.1 % chance that the intercepts lie in the intervals
simultaneously. With h = 2.8, there is a 94.2% chance that the intercepts lie
in the intervals. In the third panel, where h = 2.8, the value of zero is covered
by all of the portfolios. The portfolios that have most of the area away from
zero are: petroleum, food and tobacco, construction, transportation, and
utilities. It is these portfolios that are likely to drive a rejection of the null
hypothesis that the intercepts are equal to zero.

The A parameter, from (17), summarizes the absolute level of the depar-
tures from the null hypothesis. The posterior density is presented in fig. 3. It
is important to realize that the posterior density of the intercepts is a
multivariate t that contains zero as an interior point, whereas the posterior
density of A contains zero as a boundary point. This reflects the fact that A is
nonnegative. In terms of the Sharpe measures, 8p ~ 8t.

If the given portfolio is efficient, 8p = 8t and A = O. In the Bayesian
framework, however, all of the parameters including A are treated as random
variables. So if the null hypothesis is indeed true, we can only expect most of
the mass to be close to zero. An important question arises: How close should
A be to zero? Fig. 3 suggests that the mass is spread out and has no obvious
concentration near zero. The posterior density of A itself, however, does not
seem to offer a test for the null hypothesis,5 because if the null is indeed
true, we still' get a posterior density of A that has all of its mass 'away from
zero. Nevertheless, since A is the difference between the squared Sharpe
measures of the tangency portfolio and the given portfolio, we are still
interested in this difference along with its distributional properties, for it may

5We are grateful to the referee for bringing this important issue to our attention.
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shed additional light on our understanding of the behavior of the given

portfolio.
Fig. 4 presents the posterior density of the correlation measure p from (17)

for three assumptions for the value of ()p. The first value, ()pl = 0.111926, is
obtained from table 1. If annualized, it implies an annual excess return of
3.9% for a standard deviation of 10%. The third choice is an extremely
conservative one, (Jp3 = 0.288675, and is considered by Shanken (1987a) to be
'greater than any conceivable true value'. This choice corresponds to an
annualized 10% standard deviation on a 10% excess return. The final
selection, ()pz, is the average of (Jpl and (Jp3.

(Xi

0.006

0.005

0.004

0.003

0.002

0.001

0.000

-0.001

-0.002

-0.003

-0.004

-0.005

-0.006
2 3 4 5 6 7 B g 10 11 12

Industry

Fig. 2. Bayesian confidence regions for the intercepts, a;, in the multivariate regression of excess
returns on the CRSP value-weighted excess return.

The intervals are constructed using a multivariate t-distribution:

-h{v;~[~+a;p <a;p <a;p+h{v~~, i= 1,...,N, (10)

where N = 12 is the number of industry portfolios, a;p is the OLS estimator of intercept for
industry i, and h = 1.2,2.0,2.8 is a number chosen such that the integration of the a's marginal
posterior density over the region in (10) is "y E (0, 1), the given 'significance level'. The confi-
dence region (10) can be interpreted as the region that the parameters, a, have a probability "y
of falling in. The estimates are based on monthly data from February 1926 to December 1987
(743 observations). The industry groups are: 1 = petroleum, 2 = finance/real estate, 3 =
consumer durables, 4 = basic industries, 5 = food/tobacco, 6 = construction, 7 = capital goods,

8 = transportation, 9 = utilities, 10 = textiles/trade, 11 = services, and 12 = leisure.
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Probability of intercepts simultaneously falling in the interval=.600H=2.0

Industry

H=2.8 Probability of intercepts simultaneously falling in the interv&.l=.942

6 7

Industry

(continued)
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The measure). is the difference between the squared Sharpe measures for the tangency
portfolio and the given portfolio. A Sharpe measure of a portfolio is the ratio of its expected
excess return to its standard deviation. Let a and 1; be the intercepts and covariance matrix in
the multivariate regression of 12-industry-portfolio excess returns on the CRSP value-weighted
excess return. Based on 100,000 Monte Carlo draws from the posterior density of the vector of
intercepts, which is a multivariate t-distribution, and from the posterior density of the covariance
parameter. matrix, which is an inverted Wishart distribution, the density of ). is obtained by
sorting the generated samples of). =a'1;-la. The evaluations are based on monthly data from

February 1926 to December 1987 (743 observations).

The correlation measure is the ratio of the Sharpe measures for the given
portfolio and the tangency portfolio. Conditioning on ).. in (16), as 6p
increases, p increases. Intuitively, assigning a higher return to the given
portfolio per unit of risk should make the portfolio more efficient. This is
seen in fig. 4, where the densities are pushed toward efficiency as the 6p
is increased. Even with the conservative assumption for 6p, however, there is
only a small probability that the given portfolio is more than 90% efficient.
The probabilities are evaluated 'in detail in table 4.

The p is a measure of the relative efficiency of the given portfolio. A value
of unity implies efficiency. If. it is probability 1 that p > 0.9, the given
portfolio is at least 90% efficient. Table 4 presents the probabilities that the
given portfolio attains certain minimum levels of efficiency. With the conser-
vative assumption for 6p' there is 49% probability that the given portfolio is
more than 80% efficient. There is a less than one percent chance, however,
that the portfolio is more than 90% efficient. This evidence indicates that it is
unlikely that the CRSP value-weighted portfolio is efficient.

C.R. Harvey and G. Zhou, Bayesian inference in asset pricing tests

Fig. 3. The posterior density of A.



The measure p is the ratio of the Sharpe measures of the CRSP value-weighted portfolio to the
tangency portfolio, 8p/6,. A Sharpe measure of a portfolio is the ratio of its expected excess
return to its standard deviation. Let a and 1:: be the intercepts and covariance matrix in the
multivariate regression of 12-industry-portfolio excess returns on the CRSP value-weighted
excess return. To evaluate the posterior density, we choose values for 8p. The first corresponds
to the mean excess return (0.641 % per month) and the standard deviation (5.73% per month) on
the NYSE value-weighted index for the sample February 1926 to December 1987. On an
annualized basis, this Sharpe measure implies a 3.9% annualized excess return for a 10%
standard deviation. The third value is the most conservative, implying an annualized 10%
standard deviation for a 10% excess return on the given portfolio. The second value is the
average of the first and third values. Based on 100,000 Monte Carlo draws from the posterior
density of the vector of intercepts, which is a multivariate t-distribution, and from the posterior
density of the covariance parameter matrix, which is an inverted Wishart distribution, the
densities are evaluated by sorting the generated samples of p = (a'1::-la/8; + 0-1/2.
The evaluation is carried out on monthly data from February 1926 to December 1987 (743

observations).

3.5. Posterior-odds ratios

Posterior-odds ratios for three prior distributions are presented in table 5.
The posterior-odds ratio can be interpreted as the probability that the null is
true divided by the probability that the alternative is true. The null hypothe-
sis states that the intercepts are zero. A low value of the posterior-odds ratio
is evidence against the model's restriction that the market portfolio is
mean-variance efficient.

Using the fact that the probability that the alternative is true is one minus
the probability that the null is true, it is possible to extract the posterior
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Table 4

The probability that the given portfolio attains certain minimum levels of efficiency. The
efficiency is measured by p, which is the ratio of the Sharpe measures3 of the given portfolio to
the tangency portfolio, 8p/8,. Three values are chosenb for 8p to evaluate the posterior
probability for p to be in a prespecified relative efficiency interval. Based on 100,000 Monte
Carlo draws from the posterior density of the vector of interceptsC (a), which is a multivariate
I-distribution and from the posterior density of the covariance parameter matrix (1::), which is an
inverted Wishart distribution, the probabilities are evaluated by sorting the generated samples of
p = (a'1::-1a/8; + 1)-1/2. The analysis is based on monthly data from February 1926 to

December 1987 (743 observations).

Sharpe
measure

Op
Probability

(0.5 <p < I)

0.1119
0.2003
0.2887

aA Sharpe measure of a portfolio is the ratio of its expected excess return to its standard
deviation.b .

The first value corresponds to the mean excess return (0.641 % per month) and the standard
deviation (5.73% per month) on the NYSE value-weighted index for the sample February 1926
to December 1987. On an annualized basis, this Sharpe measure implies a 3.9% annualized
excess return for a 10% standard deviation. The third value is the most conservative, implying an
annualized 10% standard deviation for a 10% excess return on the given portfolio. The second
value is the average of the first and third values.

cThe model is rjt = aj + fJjr pt + Uj/' i = 1,...,12, where rj is the excess return on the ith
industry-sorted portfolio, r p is the excess return on the NYSE value-weighted index, and Uj is an
industry-specific disturbance. All rates of return are in excess of the one-month Treasury-bill
rate.

probability that the hypothesis is true:

Po= T+Ko

In the context of the asset pricing tests, this is the posterior probability that
the market index is mean-variance efficient. This probability is reported in
brackets in table 5.

To evaluate the odds ratios, we need to specify the value of the scaling
parameter k for both the conditioning Cauchy prior in (20) and the condi-
tioning normal prior in (24). Since the shape of the C<:tuchy is similar to the
normal around the origin point (with the exception of the fatter tails), the
same scaling parameter is used for both prior densities.

Consider the intuition behind the choice of scale for the normal prior in
(24). Given I, the scale k represents the prior uncertainty about a. Suppose
we had a data set Xo before we conducted the posterior-odds-ratio analysis.
In the classical framework, the least-squares estimator of a has a covariance

C.R. Harvey and G. Zhou, Bayesian inference in asset pricing tests

Probability

(O.9<p<1)
Probability

(0.7 <p < 1)
Probability

(0.8 <p < 1)
Probability

(0.6 <p < 1)

0.0000
0.0194
0.4806

0.0000
0.0001
0.0080

0.0007
0.3422
0.9862

0.2365
0.9999
1.0000

0.0178
0.9206
1.0000

K
(27)
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Table 5

Posterior odds ratios for the efficiency of the CRSP value-weighted index and posterior
probabilities that the index is efficient based on two prior distributions: Cauchya and normalb.
For a rangeC of prior beliefs, we evaluate the odds ratios and the posterior probabilities by
Monte Carlo integration based on 100,000 draws. The evaluations are for monthly data from

February 1926 to December 1987 (743 observations).
coc

Scale k Cauchy Normal

0.0006

0.0008

0.0010

0.0012

0.0014

aThe model is 'it = !Xi + /:Ii' pt + Uit' i = 1,...,12, where 'i is the excess return on the ith
industry-sorted portfolio, r p is the excess return on the NYSE value-weighted index, and Ui is an
industry-specific disturbance. All rates of return are in excess of the one-month Treasury-bill
rate. The Cauchy prior under the null hypothesis is the standard diffuse prior, III-(N+ 1)/2,
where III is the determinant of the covariance matrix and N is the number of assets. The prior
under the alternative is the product of this diffuse prior and a Cauchy density with mean zero
and scale matrix kI, where k is a scaling parameter.

bThe prior under the null hypothesis is the diffuse prior. The prior under the alternative is the
product of the diffuse prior and a normal density with mean zero and covariance matrix k I.

cThe range is represented by k, which is the scaling parameter in the covariance matrix of the
normal density and in the scale matrix of the Cauchy density. A higher k spreads out the prior
density concentration about zero, representing additional prior uncertainty.

dThe posterior probability that the null hypothesis is true is in brackets.

matrix aoI, where ao is a scaling factor that is the (1, 1) element of
(Xo' Xo) -1. The Bayesian posterior analysis in (12) also suggests that the
marginal distribution of a conditioned on I is multivariate normal with
covariance matrix aoI. So it seems reasonable to choose the covariance
matrix for the normal prior to be kI where k is roughly the same size as ao.
Unfortunately, a data set such as Xo is not available to us. As a result, we
randomly chose a ten-year subset of the data to get a sense of the magnitude
of ao' This examination of some of the data, in our sample6 shows ao to be
about 0.001, so we choose k = 0.001. To examine the sensitivity of the
inferences to this scaling, k we allow to vary from 0.0006 to 0.0014, as
reported in table 5.

6Over the January 1946 to December 1955 period, ao = 0.00092. Zellner and Siow (1980) use
the entire sample to construct the scale factor. In our case, over the full sample, ao = 0.0013.

0.3549
[26.19%]d

0.3579
[26.36% ]

0.3610
[26.52%]

0.3661
[26.80% ]

0.3744
[27.24%]

0.0981
[8.93%]

0.1178
[10.54%]

0.1461
[12.45%]

0.1745
[14.86%]

0.1839
[15.53%]
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The second and third columns report the posterior-odds ratios for the
Cauchy and normal-prior distributions based on 100,000 replications. The
first column is the value of the scale parameter, k, in (20). The scale
parameter changes the variance in the normal and the dispersion in the
Cauchy. A larger scale spreads out the prior distribution and may reduce the
evidence against the null. This is observed in the empirical results in table 5.
The posterior-odds ratios increase monotonically as the scale factor in-
creases.

Both the Cauchy and normal priors provide some evidence against the
model's restrictions. The odds ratios are relatively insensitive to the choice of
scaling factor. The results for the Cauchy prior indicate that the posterior
probability that the market portfolio is mean-variance efficient ranges from
26.2% to 27.2%. The normal prior suggests that the odds against the null
hypothesis are greater. The normal prior is expected to deliver a lower odds
ratio because its mass is more concentrated at the mean than the Cauchy.
The posterior probability that the market portfolio is efficient ranges from
8.9% to 15.5% with this prior.

The final posterior-odds ratio is based on the Savage density. This odds
ratio is calculated analytically. We use a ten-year subsample of the data to
get the prior intercept and the covariance structure. In addition, we scale
them to attain three prior levels of efficiency: 50%, 60%, and 70%. Further,
we investigate the sensitivity of the results to the choice of the prior sample
by looking at six ten-year subperiods.

Table 6 reports the posterior probabilities that the null hypothesis is true.
With a 50% assumed level of prior efficiency, five of the six subsamples show
less than 1 % chance that the null is true. The exception occurs when the
1926-1935 period is used to construct the prior intercepts and covariance
structure. This is, perhaps, not surprising, because this subsample spans the
Great Depression. When the prior level of efficiency is increased to 60% or
70%, there is overwhelming evidence against the mean-variance efficiency of
the given portfolio. With all prior subsamples, the posterior probabilities that
the null is true are less than 1 %. Compared with the Cauchy and normal, the
Savage prior offers more evidence against the model's restrictions. The odds
ratios from all three priors are consistent in favor of the alternative.

The Bayesian approach gives the investigator the option of including prior
beliefs in the empirical analysis. Of course, there may be disagreement over
the particular prior chosen. We have constructed a number of prior densit,ies
to mimic a range of plausible prior beliefs. With the Savage approach, we use
a number of ten-year subperiods to form the prior intercepts and covari-
ances. In addition, we scale these parameters to impose certain prior levels of
efficiency. Furthermore, we examine two .additional prior densities: the
Cauchy and the normal. Of course, these are only a small set of the possible
prior densities. The techniques introduced in this paper could allow the
investigator to choose virtually any prior density.
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Table 6

Posterior probabilities for the efficiency of the CRSP value-weighted index based on the Savage
density approach. With this approach, we choose ten-year subperiods (called prior samples) to
construct six data-based priors.a Each prior density is scaled to reflect three prior beliefs about
efficiency 0 levels: 50%, 60%, and 70%. The posterior probabilities are calculated over the

remaining sample. The evaluations are based on monthly data from February 1926 to December
1987 (743 observations).

Prior sample

1926-1935 0.2889 0.0040 0.0001
1936-1945 0.0047 0.0001 < 0.0001
1946-1955 < 0.0001 < 0.0001 < 0.0001
1956-1965 < 0.0001 < 0.0001 < 0.0001
1966-1975 < 0.0001 < 0.0001 < 0.0001
1976-1985 0.0010 < 0.0001 < 0.0001

"The model is Til = Ui + PiT pi + Uil' i = 1,...,12, where Ti is the excess return on the ith
industry-sorted portfolio, r p is the excess return on the NYSE value-weighted index, and ui is an
industry-specific disturbance. All rates of return are in excess of the one-month Treasury-bill
rate. In the Savage approach, the prior under the alternative is the product of an inverted
Wishart density on the covariance matrix, .E, and a conditioning normal density on the
intercepts, a, and the slopes, 11. The prior means and covariances are obtained from ten-year
subperiods (prior samples) and are scaled to attain three levels of prior efficiency. The prior
under the null hypothesis is obtained by letting a = O.

bThe prior efficiency is measured by the ratio of 'the Sharpe measures of the NYSE
value-weighted index to the tangency portfolio. A Sharpe measure is the ratio of expected excess
return on a portfolio to its standard deviation.

4. Conclusions

This paper uses the technique of Monte Carlo integration to construct a
general Bayesian framework for evaluating the mean-variance efficiency of a
given portfolio. The ability of the integration technique to evaluate high-
dimensional problems accurately allows us to choose prior densities for the
Bayesian analysis freely.

Although we concentrate on the Sharpe-Lintner asset pricing restrictions,
the approach developed here can easily be applied to test the restrictions of
other asset pricing.models such as the Black (1972), Merton (1973), and Long
(1974) CAPMs, the finite version [Dybvig (1983) and Grinblatt and Titman
(1983)] of Ross's (1976) arbitage pricing theory, and Rubinstein (1976) and
Breeden's (1979) consumption CAPM. Indeed, the technique can even be
used to evaluate complicated nonlinear constraints. Geweke (1986) shows
how to use the Bayesian framework to evaluate inequality constraints; they
are impossible to evaluate with the classical approach.

We obtain three main empirical results. First, we show in an asset pricing
application that the Monte Carlo integration technique is able to deliver
accurate evaluation of high-order (90-dimensional) problems. Second, we
show how to calculate Bayesian confidence intervals for the intercepts. In

-

Assumed level of prior efficiency

60% 70%50%
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addition, we evaluate the posterior density of the A parameter, which
measures the absolute level of deviation from efficiency. We also characterize
the posterior distribution of the correlation between the efficient portfolio
and the given portfolio. The probability that the given portfolio attains
certain minimal levels of efficiency is also presented. Third, we construct
posterior-odds ratios for the test that the intercepts are zero. The sensitivity
of the odds ratios to the scaling of the variance is explored. Wc also evaluate
odds ratios based on different prior distributions.

The Bayesian procedure in this paper complements Shanken's (1987b)
approach. One strength of Shanken is that he directly links the prior belief
about the relative efficiency to the odds in favor of efficiency. As a result, his
method can be used to test approximate efficiency. In addition, his procedure
is computationally convenient. In contrast, our approach starts with the joint
prior on all the parameters in the multivariate regression model. As such, our
method is more computationally demanding. Our approach has advantages,
however. First, we are able to use prior beliefs on all the parameters. Second,
we can conduct posterior analysis of the parameters as well as functions of
the parameters. Third, the odds in favor of efficiency can be calculated for
several forms of the prior beliefs. In the Savage density case, it is even
possible to assess the relative efficiency implicit in the prior beliefs.

How strong is the evidence against the model's restrictions? The classical
F statistic proposed by Gibbons, Ross, and Shanken (1989) suggests a
p-value of 2.5%, which is strong evidence against the null hypothesis. The
Bayesian posterior probability that the market portfolio is mean-variance
efficient ranges from 27% to less than 1 %, depending on the form of the
prior. Both points of view suggest departures from the null hypothesis in the
1926-1987 period. Likely explanations for these departures are nonstationar-
ity of the parameters over this sample, incorrect specification of the market
portfolio, nonnormality of the joint distribution of returns, or a more funda-
mental misspecification of the asset pricing model. The framework presented
in this paper does not attribute causes to the failure of the model. The
Bayesian approach does provide a different perspective, however, byattempt-
ing to answer the question: 'Given the data (and my prior beliefs), what is the
probability that the model's restrictions are valid?'

Appendix A: An introduction to Monte Carlo integration

Monte Carlo integration is a general approach to evaluating of high-
dimensional integrals. The traditional grid method of numerical integration is
impossible to implement when the dimension is large. For example, the use
of a 10-point grid in the evaluation of the A parameter would require 1090
calculations of the integrand. Not only is this infeasible even with today's
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computer technology, it is not clear with this coarse grid that the final result
will be accurate.

The Monte Carlo approach was drawn to the attention of econometricians
by Kloek and van Dijk (1978) and further developed by Geweke (1988,
1989).7 In finance, Monte Carlo methods have been applied in option pricing
problems by Boyle (1977) and Hull and White (1987). This appendix de-
scribes how the Monte Carlo integration is used in the Bayesian approach.
Two examples and their FORTRAN programs also included.

Most Bayesian inference problems can be expressed as the evaluation of
the expectation of the function of interest, g(O) under the posterior P(O),

where 8 is the parameters of the model. Let {8J be a sequence of i.i.d.
random samples drawn from the density 1(0). This is often referred to as the
importance sampling approach. 1(8) is the importance density. {OJ is the
importance sample. Under very weak assumptions [see Geweke (1989,
sect. 2)],

almost surely converges to g in (A. 1), where n is the random sample size or
replication number. Furthermore, under stronger conditions, the rate of
convergence can be characterized by

{ii(gn -g) -+ N(0,U2), (A.3)

and u2 may be estimated consistently.
With samples generated from P(8), (A.3) says that the random error

(gn - g) caused by the numerical integration is asymptotically (in the number
of replications) normal with mean zero and standard deviation u / Iii, where
U2 is the variance of g(8). In practice, an approximation of CT, CTn, is used to
obtain the numerical ~tandard error of the Monte Carlo integration, Un/ Iii.
The numerical standard error is often a good indication of the accuracy. For
example, a replication number of 10,000 often has an error of less than 2% of
the standard deviation of g(8).

70ther applications can be found in Gallant and Monahan (1985), Zellner, Bauwens, and van
Dijk (1988), Richard and Steel (1988), and Barnett, Geweke, and Vue (1988).

g = E[g(O)] = f g( 0) P( 0) dO

fp(O) dO
(A.I)

n

. E [g(8;)P(8;)/I(8;)]
- i=1gn == n,

E [P(8;)/I(8;)]
i-I

(A.2)
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To demonstrate how the approach is used, consider two examples. First,
suppose we wanted to evaluate the integral:

1 f ~ .2

1= - x2e-x /2dx.
& -~

It is obvious that the analytical solution is 1. The Monte Carlo integration is

where {Xi} are drawn from a standard normal. The FORTRAN code is:

10

20

where GGNML is the standard normal random number generator in
With 10,000 replications, the numerical value is 0.999.

Second, suppose we wanted to evaluate the following integral:

1= 11 sin[ln(1 +x)] dx.
0 x

The analytical solution to this example is not obvious. However, the Monte
Carlo integration is straightforward. Consider the FORTRAN code:

DOUBLE PRECISION DSEED
DSEED = 37581.0DOO
DO 10 I = 1, 10000
CALL GGUBS (DSEED, I, X)
S = S + SIN(LOG(I + X»/X

10 CONTINUE
S = S/10000
WRITE (*,20) S

20 FORMAT (FI2.8)
STOP
END
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1 n

Ex},
;=1n

DOUBLE PRECISION DSEED
DSEED = 37581.0DOO
DO 10 1=1,10000
CALL GGNML (DSEED, 1, X)
S=S+X**2
CONTINUE
S.= S/10000
WRITE (*,20) S
FORMAT (F12.8)
STOP
END

IMSL.

.
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where GGUBS is the standard uniform random number generator in IMSL.
With 10,000 replications, the numerical value is 0.7977.

Appendix B: Proofs

B.1. Proof of (8)

Let I be the identity matrix, a and b column vectors, then a well-known
formula in matrix theory states that:

Il+ab'!= 1 +a'b. (B.1)

Applying (B.1) to (8.43) of Zellner (1971), we immediately obtain (8).

B.2. Proofof (12)

As in Zellner (1971, p. 232), we have

where b = (r;rp)-l and

So,

We know that fJ has a multivariate normal distribution with mean ji and
covariance matrix hI, conditional on lX, I, and the data. Therefore, we can
readily integrate out the fJ parameters in (7) and establish (12).

B.3. Evaluation of the mean of )..

Results of (7) and (12) imply the mean is given by

A All - -
(B -B)'X'X(B -B) = ;(0'-&)(0'-&)' + b(/3 -fJ)(/3 -/3)',

(B.2)

ji =p - br;l(a - a).

tr[ (B - B)'X'X(B - B)I-I]

1 1 - -
= ;(a-a)'X-I(a-a) + b(/3 -/3)'X-I(/3 -/3).

[f (a'X-la)P(aIX) da]X=f (B.3)P(I) dI,
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where P(aII) is the multivariate normal density with mean Ii and covari-
ance matrix aI, P(I) is the inverted Wishart density, i.e., the one obtained
from the right-hand side of (7) by adding a constant. To evaluate (B.3), we
make the following transformation of the parameters:

a=(a2')1/28+«.. (B.4)

Then 8 will follow the standard multivariate normal distribution, and

a'2'-la=aO'8 + 2al/2«.'2'-1/28 +«"2'-1«..

Therefore, after performing the integration in the a or 8 space in (B.3), we
have the result

"'~-I" + ATa a IVa.

Now let A=I-1, then A has a Wishart density W(S-I,T-2,N) [see
Zellner (1971, app. B)].

Apply the moments results of a Wishart distribution to

A,~-lAa.. a=

We immediately obtain (13), that is:

X =Na +«'1;-1«.
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