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ABSTRACT

We provide a new upper bound on the ^-squared of a predictive regression of stock returns on predictable
variables, tightening substantially Ross's (2005) bound. An empirical application illustrates that while Ross's
bound is not binding, our bound does.

© 2010 Elsevier B.V. All rights reserved.

1. An improved bound on predictability

Forecasting stock returns is of great interest to both academics and
practitioners in finance. Consider a general predictive regression.

(1)

where Rt+1 is the return on an asset or on a portfolio of N risky assets in
excess of the riskfree rate, I, is the information available at time t, p( W =
E(Rt+ i|/t) is the predictive component of the future excess return, and
£t+i is the residual. A special case of Eq. (1) is the popular predictive
regression of the market,

(2)

where R, +1 is the market excess return or equity risk premium, and z, is
the predictable variable, such as the dividend yield, used to predict the
equity risk premium. There is a huge literature on predictability of the
equity risk premium. For example, Fama and Schwert (1977) and
Campbell (1987) are early studies that use various economic variables to
forecast the market. Subsequently, Person and Harvey (1991), and Ang
and Bekaert (2007), among others, find varying degrees of predictability
with various predictable variables. Recently, Campbell and Thompson
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(2008), Cochrane (2008). and Rapach et al. (2010) provide further
evidence even on out-of-sample predictability.

How much predictability should we expect given an asset pricing
model? While studies such as Kirby (1998), Person and Harvey (1999),
Stambaugh (1999), Avramov (2004),and Pastor and Stambaugh (2009)
analyze the implications of rational asset pricing on return predictabil-
ity, Ross (2005, p. 56) provides a simple and elegant bound on the R2 of
the predictive regression.

Lemma. (Ross, 2005, p. 56) Assume that the riskfree rate is constant,
then

4- Rf)2Var(m),(3)

where Rf is the riskfree rate and m is any stochastic discount factor
that prices the assets.

Since R2 is a common measure of predictability, the above Ross's
Lemma provides a simple bound in terms of the stochastic discount
factor. The constant interest rate assumption is not a problem since 1 + Rf
does not vary much relative to 1, and since one obtains similar results
with no substantial differences if a higher rate is used on the right hand
side. Under an additional auxiliary assumption that the Var(m) is no
greater than 5 times the observed market risk aversion on asset returns,
Ross (2005, p. 56) further shows, based on typical sample moments of the
market, that the R2 of the market excess return regression cannot be
greater than 0.25%, 1.9%, and 7.9% for daily, weekly and monthly returns,
respectively. However, for commonly used monthly regressions, a bound
of 7.9% is almost never close to being reached even with some of the best
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predictors, as demonstrated in our application below. Hence, it is of
interest to tighten the bound.

Before providing our improved bound, we discuss first the
stochastic discount factor (SDF), which is not only useful for
understanding Ross's Lemma, but also necessary for the proof
below. The discount factor or the state-price density or the pricing
kernel, is a random variable m = mr+, that satisfies

where rjj +, is the gross returns on the j-th asset at time t +1. Under
very general conditions, any asset pricing model is a specification of
mf+1 (see, e.g., Cochrane, 2001). The unconditional version of Eq. (4),
in a vector form, is

£[rm] =(5)

where r is an N-vector of the gross returns, and 1N is an N-vector of
ones.

While Eq. (5) is the pricing restriction that the SDF implied by a
given asset pricing model must satisfy, there can be other SDFs that
make the restriction hold. In particular, the specific function of the
asset returns below also serves as a SDF,

= Mm(6)

where Hm = £[m] is the mean of m, and p and 2 are the mean and
covariance matrix of the N risky asset returns. The m0 is called a default
SDF since it prices the assets by construction without requiring the
validity of any asset pricing model. We assume as usual that p is not
proportional to 1N in order to avoid the trivial case. In addition, the N
risky assets are assumed to be nonredundant so that 2 is nonsingular.

Let x = (xi,...jtKy be a vector of K state variables. Consider the
linear regression of mfl on x,

m0 = ct + px + e0.(7)

By construction, we have £[e0] = 0 and Cov[e0A] = 0. However, we
make a slightly stronger assumption that

E[e0|x] =(8)

A sufficient condition for this to hold is when the returns and the
state variables are jointly elliptically distributed (see, e.g., Muirhead,
1982, p. 36). Tu and Zhou (2004) demonstrate that the t-distribution,
a special case of the elliptical, fits the return data well, so Assumption
(8) does not seem too restrictive. Under this condition, Kan and
Zhou (2007) provide a bound that improves the well-known Hansen-
Jagannathan bound. Here we provide our improved bound on predic-
tability under the same assumption.

With above preparations and with results from Kan and Zhou
(2007), we can now improve Ross's bound by a factor, that is, we prove
that

Proposition. Under Assumption (8) and the conditions of Ross
(2005),

Rf)2Var[m(x)\)

where Rf is the riskfree rate, pXpm<1 is the multiple correlation between
the state variable x and the default SDF m0, and m(x) is the SDF or
pricing kernel of an given asset pricing model.

Since the correlation px.mo is always no greater than 1, our bound is
in general an improvement of Ross's. In fact, because pxjr,a is usually
much less than one, and is of order from 0.10 to 0.15 in our later
application, our bound can then be much tighter than Ross's, and is
potentially binding in many applications.

Proof. Based on Kan and Zhou (2007), we have

Var[m(x)]>^-Var[m0]

or

Var[m0]<pL0Var[m(x)].

(10)

(11)

Since m0 is a SDF, the original Ross bound holds for mo- One can
also directly verify this by following Ross's (2005) derivations. Applying
Eq. (11) to the Ross bound with m0, we obtain the desired result. Q..E.D.

It should be pointed out that our new bound is obtained at a cost.
Ross's bound is applicable to all SDFs, and ours is applicable only to those
that are a function (with an unknown parametric form) of the given
state variables. However, in the same spirit of Kan and Zhou (2007), the
latter set of SDFs is of practical interest For an asset model in practice,
one has to specify what the state variables are and how they drive the
dynamics of asset returns. For example, most asset pricing models are
consumption-based, that is, m(x) is a function of the aggregate
consumption, and there is a huge literature on it (Cochrane, 2001).
Our bound will be useful to answer the question whether or not the
consumption-based asset pricing models can explain a given amount of
predictability observed in the data.

2. An empirical application

Consider now an application of the bound in the popular predict
regression,

R, + , = a + (3zt + ft,

where R,+, is the return on the S&P500 index in excess of the riskfree
rate (which is approximated by the Treasury-bill rate, and z, is one of
the 10 predictors: dividend-price ratio, earnings-price ratio, book-to-
market, T-bill rate, default yield spread, term spread, net equity
issuance, inflation, long-term return, or stock variance. Welch and
Goyal (2008) provide a detailed description of the data. The 10
predictors are those commonly used to forecast stock returns, and are
consistently available from December 1926 to December 2008 at
Goyal's website.

Table 1 provides the results. The R2's are ranging from 0.0121% to
0.7059%. Stock returns are notoriously difficult to predict, and it is
typical that the R2's are very small in the predictive regressions. Ross
(2005) first provides an upper bound on the variance of all SDFs, and
then his earlier bound can be applied to bind the R2. However, his
bound on R2 for the monthly regression, as is computed in his book, is
7.9%, far away from binding any of the realized R2's based on real data.

On the other hand, pxjng is typically low, and hence it helps to
improve the bound sharply. Following Kan and Zhou (2007), we
consider a standard choice of x as the consumption growth rates, and
two sets of pricing assets. The first set is a single value-weighted
market index of the NYSE, and the second set is the Fama and French
(1993) 25 size and book-to-market ranked portfolios. This gives rise
to two SDFs, mg and mo, that correspond to two asset pricing models,
respectively. Based on Table 1 of Kan and Zhou (2007), we have
| Px.mj | <0.15 and | px mj | <0.10. Hence, we can compute the numerical
values of the new bounds, reported in the seventh and last columns of
Table 1. Except three cases, the bounds fail to bind the R2's of the
predictive regressions. Since any one violation is a rejection of the
theory, the low predictability found in the data is still too high to be
consistent with the two specified asset pricing models.

There are at least three reasons for the violation of the bounds. First,
the underlying asset pricing models, the standard ones, use a single state
variable. More state variables may be added that can potentially increase
Px,nv and hence make the new bound less binding. But research is clearly
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Table 1
Predictive regressions and bounds on R2. The table reports OLS estimation results and bounds on the R2 for the predictive regression model. R, +., = a+fix, + c.,, where x, is the
predictor given in the first column. The next three columns are standard regression results. The fifth column is the Ross (2005) bound for the R2. The sixth column is the correlation
between the predictor and the default pricing kernel, followed by the new bound in the last column. The values for R2 and its bounds are all in percentage points.

PredictorR2Ross boundNew bound A

(t-stats)(t-stats)

ftt.mllNew bound B

Dividend-price ratio

Earnings-price ratio

Book-to-market

T-Bill rate

Default yield spread

Term spread

Net equity issuance

Inflation

Long-term return

Stock variance

0.0040
(1.68)

0.0032
(1.43)

-0.0079
(-1.81)

0.0058
(2.03)

-0.0015
(-0.45)

-0.0001
(-0.02)

0.0054
(2.35)

0.0040
(2.01)

0.0021

(1.16)
0.0029

(1.48)

-0.0002
(-0.87)

-0.0000
(-0.42)

0.0177

(2.64)

-0.0828

(-1.42)

0.3680
(1.46)
0.1704

(1.22)

-0.1406

(-1.91)
-0.5306

(-1.59)

0.1078
(1.40)

-0.1055

(-0.34)

0.0766

0.0178

0.7059

0.2047

0.2170

0.1516

03720

0.2560

0.1997

0.0121

7.9000

7.9000

7.9000

7.9000

7.9000

7.9000

7.9000

7.9000

7.9000

7.9000

0.1500

0.1500

0.1500

0.1500

0.1500

0.1500

0.1500

0.1500

0.1500

0.1500

0.1777

0.1777

0.1777

0.1777

0.1777

0.1777

0.1777

0.1777

0.1777

0.1777

0.1000

0.1000

0.1000

0.1000

0.1000

0.1000

0.1000

0.1000

0.1000

0.1000

0.0790

0.0790

0.0790

0.0790

0.0790

0.0790

0.0790

0.0790

0.0790

0.0790

required to analyze how pxmo can be improved and how better asset
models can be developed. Second, there may be structural breaks in the
specified models over the long term under our study. For example,
Welch and Goyal (2008). and Rapach et al. (2010) find strong evidence
of fairly frequent breaks in the predictive regression. Third, there may be
small sample problems in measuring the exact distribution of the R^s.
While studies on any of the three causes are of interest, we leave them
elsewhere due to the substantial amount of research required.

3. Conclusion

The degrees of stock return predictability that an asset pricing model
allows for is an important and interesting question in economics and
investment practice. Ross (2005) provides an elegant bound on the R2 of
predictive regressions. However, his bound is too loose to be binding in
applications. In this paper, we provide a simple way to tighten the bound
by a sealer that measures the correlation of the state variables of an asset
pricing model with the default pricing kernel. Since the correlations are
low with many commonly used state variables, our bound can tighten
Ross's bound substantially. In an application with the use of two popular
consumption-based asset pricing models, we find that our new bound
binds most of the R2s in the predictive regressions when the predictor is
one of the 10 popular ones: dividend-price ratio, earnings-price ratio,
book-to-market, T-bill rate, default yield spread, term spread, net equity
issuance, inflation, long-term return, or stock variance. In other words,
the predictability found in the data cannot be explained, based on our
new bound, by the asset pricing models. We leave explorations for the
causes as future research.
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