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Asset-pricing Tests under Alternative
Distributions

GUOFU ZHOU*

ABSTRACT

Given the normality assumption, we reject the mean-variance efficiency of the
Center for Research in Security Prices value-weighted stock index for three of the
six consecutive ten-year subperiods from 1926 to 1986. However, the normality
assumption is strongly rejected by the data. Under plausible alternative distribu-
tional assumptions of the elliptical class, the efficiency can no longer be rejected.
When the normality assumption is violated but the ellipticity assumption is main-
tained, many tests tend to be biased toward overrejection and both the accuracy of
estimated beta and R? are usually overstated.

MANY ASSET-PRICING MODELS predict a linear relationship between the ex-
pected return on an asset and the covariance between the asset’s return and
one or more factors. It is this mean-variance framework that plays a central
role in modern theories of asset pricing. However, Chamberlain (1983) showed
that the mean-variance analysis is consistent with investor’s portfolio deci-
sion making if and only if the returns are elliptically distributed. Moreover,
in the case of elliptical returns, the capital asset-pricing model (CAPM) of
Sharpe (1964) and Lintner (1965) and multibeta models will remain valid
theoretically.! Therefore, it is important to test asset-pricing models for the
case where the returns are elliptically distributed. And yet, Gibbons, Ross,
and Shanken (1989), among others, provide tests that are valid only under
the normality assumption, a special case of the elliptical distributions.
Affleck-Graves and McDonald (1989) and MacKinlay and Richardson (1991)
examine tests without the normality assumption, but their approaches are
difficult to apply to obtain exact tests in the elliptical case.

Complementing the existing studies, we propose exact tests for both the
case where the returns are elliptically distributed and the case where the
residuals are elliptically distributed. When the normality assumption is
violated but the ellipticity assumption is maintained, our results show that
the usual tests can be biased and the widely used beta and R? (estimated
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from the market model) are not as accurate as commonly believed. To assess
whether the returns are elliptically distributed, we provide exact tests based
on measures of multivariate skewness and kurtosis proposed by Mardia
(1970), complementing studies on the distributional properties of stock re-
turns, of which Fama (1965) and Affleck-Graves and McDonald (1989) sum-
marize most of the univariate approaches.?

The paper is organized as follows. In Section I, we derive the exact tests for
both the case of elliptical residuals and the case of elliptical returns. We
analyze also how the accuracy of the estimated beta and R? may be affected
when residuals or returns are elliptically distributed. In Section II, we
introduce measures of multivariate skewness and kurtosis and show how
they can be used to test for ellipticity. Then, by using monthly data for every
consecutive ten-year period from 1926 to 1986, we apply the tests to study the
multivariate normality of the market model residuals and that of the excess
returns. In Section III, we test the efficiency of the Center for Research in
Security Prices (CRSP) value-weighted index under plausible alternative
distributional assumptions on both the residuals and the returns. Section IV
concludes the paper.

I. Exact Asset-pricing Tests under Elliptical Distributions

In this section, we focus our analysis on testing the mean-variance efficiency
of a given portfolio. We consider first the normality case by presenting the
standard multivariate framework of Gibbons, Ross, and Shanken (1989).
Then, we test the mean-variance efficiency in the case where the model
residuals are elliptically distributed and the case where the returns are
elliptically distributed. Finally, we analyze how the accuracy of estimated
beta and R?> may be affected when residuals or returns are elliptically
distributed. Because there are no analytical solutions for both of the elliptical
cases, a simple numerical approach based on Monte Carlo integration is
proposed to obtain the exact p-values. Despite the generality of our approach,
we will consider only the market model in what follows. This is because it is
an important model and it is the simplest case of the multivariate regression.
The simplicity of the model allows us to better illuminate the central ideas
and the econometric theory being employed. Once the simple case is under-
stood, the results for the general case are straightforward and thus only a few
remarks are provided for the generalizations.

A. Tests under Normality

Assume that there is a riskless rate of interest, rs, for each time period.
Consider the returns on N assets in excess of the riskless rate. As in many

% Richardson and Smith (1991) provide multivariate normality tests based on the generalized
method of moments approach.
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studies, we assume the market model regression for the excess returns:
ri=o; +Br,, +e&, i=1,...,N, t=1,...,T, (1

where r;, is the excess return on asset i in period ¢, r »¢ the excess return on
the given portfolio, ¢;, the disturbance or random error, N the number of
assets, and T' the number of periods or sample size. Model (1) is a special case
of the multivariate regression model. Throughout this subsection and the
next, we assume that the model residuals, E, = (ey,,..., &y,)’, are indepen-
dent and identically distributed (i.i.d.) over time with zero mean and nonsin-
gular covariance matrix 3.

Given the portfolio p, the most widely asked question is whether this
portfolio is mean-variance efficient. It is well known that efficiency implies
the following restrictions on the parameters:

Hy:a;=0, i=1,...,N. (2)

If the model residuals follow a multivariate normal distribution, Gibbons,
Ross, and Shanken (1989) provide an exact test (the GRS test) for the
efficiency hypothesis H:

W= [(T - N - 1/(N§?)|a's 6 (3)

where ¢>2 =1+7;/s}, F, is the sample mean of r,,, sZ the sample variance
of Tpt w1thout adJustmg for degrees of freedom, and é& and ¥ are the
maximum likelihood estimators of the corresponding parameters in (1). The
GRS test has rich economic interpretations and attractive statistical proper-
ties. Under the null hypothesis that the given portfolio is mean-variance
efficient, W, follows an F distribution with degrees of freedom N and
T — N — 1. The efficiency hypothesis is rejected for large values of W;. The

GRS test is fundamental for testing efficiency under normality.

B. Tests under Elliptical Residuals

A random vector X is said to have an elliptical distribution with parame-
ters O (N X 1) and (N X N) if its density function is of the form

fX) = CylZI 22X - 031X — 0)], (4)

where Cy is a constant and g(-) some function. If X is elliptical, it can be
shown that the mean and the covariance matrix are linked to the parameters
by '

EX)=0 and cov(X) =¢23, 5)

where c¢“ is some constant that depends only on the specific functional form
of g(-). The class of elliptical distributions is large, containing as special cases
the multivariate normal, mixture normal, multivariate ¢, multivariate stable,
Kotz and Pearson II distributions, and is the largest class of distributions
that possess linear conditional expectations (Kelker (1970)).

The GRS test will not in general have an exact F distribution when the
model residuals follow an elliptical distribution other than the normal. Al-
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though analytically intractable, the exact distribution can be computed nu-
merically by using an important property of the W, statistic that it is
invariant to any nonsingular linear transformation of the residuals (see
Appendix A for a proof). In other words, if every E,, an N X 1 vector of the
residuals at ¢, is replaced by CE, where C is any N X N nonsingular matrix,
the value of the test statistic will remain the same. In particular, we can
multiply the residuals by %~!/2 to get new residuals that follow an elliptical
distribution with 3 being the identity matrix. Therefore, as far as the
distribution of W, is concerned, a three-step approach may be used to
compute the p-value Prob(W; > x). First, the new residuals are drawn from
the elliptical distribution which is straightforward because no unknown
parameters of the market model are involved. Second, at each of the draws,
the statistic W, is computed and compared against the observed value x.
Third, we repeat this process say 10,000 times, the percentage for which W
is greater then x is readily computed. This is the numerical approximation to
the exact p-value Prob(W, > x). This method is in fact a Monte Carlo
integration approach applied to compute the integral Prob(W, > x). The
numerical error is independent of both the sample size 7' and the number of
assets N. The accuracy improves as the number of draws increases. Through-
out the paper, we use 10,000 draws. Then the approach often generates
values that are accurate to 2 or 3 decimal points. For our inference purposes,
this level of accuracy seems to be very satisfactory.

Table I illustrates how the p-values of the GRS test will change if the
model residuals follow a multivariate #, a mixture-normal, and a Kotz

Table I

The GRS Test under Alternative Residual Distribution

Table I provides a comparison of the p-values of the Gibbons, Ross, and Shanken (1989) test
(GRS test) under alternative distributional assumptions on the model residuals. The first column
is the number of assets, N, and the second is the p-values of the GRS test under the multivariate
normality assumption. The rest of the columns show how this p-value will change if the
residuals follow a multivariate ¢, a mixture multivariate normal, and a Kotz distribution,
respectively. For each of the three alternative distributions, the p-values are with three choices
of the degrees of freedom (y is fixed at a value of 10 for the mixture multivariate normal
distribution).

Multivariate ¢ Mixture Normal Multivariate Kotz
N Normal v=5 v=8 v=24 €=5% &£=26% e&=50% v=5 v=10 v=20

10 0.050 0.065 0.054 0.052 0.063 0.084 0.072  0.050 0.044 0.042
20 0.050 0.068 0.064 0.055 0.061 0.090 0.082  0.047 0.050 0.049
40 0.050 0.065 0.059 0.052  0.054 0.069 0.086 0.046 0.050 0.053
58 0.050 0.051 0.052 0.051 0.050 0.052 0.051 0.050 0.050 0.048

10 0.100 0.113 0.104 0.103 0.108 0.132 0.125 0.101 0.096 0.094
20 0.100 0.122 0.117 0.104 0.115 0.142 0.144  0.097 0.101 0.095
40 0.100 0.123 0.113 0.101  0.105 0.123 0.150 0.099 0.099 0.099
58 0.100 0.100 0.104 0.101 0.101 0.108 0.099 0.100 0.098 0.099
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distribution, respectively. The p-values are computed for three choices of the
degrees of freedom, different numbers of assets (N varies from 10 to 58), and
two significance levels (5 and 10 percent). However, for the ease of computa-
tion, the sample size is fixed at T' = 60. It is interesting that the p-values are
not much different from one another. As the degree of freedom increases from
5 to 24, the ¢t distribution becomes closer to the normal distribution, and so
the p-values are closer to either 5 or 10 percent. In the Kotz case, the larger
the degree of freedom, the more the distribution differs from the normal.
Nevertheless, as v varies from 5 to 20, the p-values do not change substan-
tially. Of all the p-values, the notable differences occur in the mixture-normal
case. At the 5 percent level, the largest difference is 4 percent when ¢ = 25
percent and N = 20. At the 10 percent level, the largest difference is 5
percent. Notice that there are always differences between the p-values
obtained under normality and those obtained under other elliptical distribu-
tions. The differences may or may not be economically important in a
particular application, but our approach helps to assess it.

C. Tests under Elliptical Returns

Our analysis of the GRS test has so far been focused on the model
residuals. We now change our focus to the returns. Let X = (r', r,)’ be an
N + 1 vector of the individual excess returns and the excess return of the
given benchmark portfolio. Assume that r, contains some assets which are
not in r so that the covariance matrix of X is nonsingular. Partition the mean

and the covariance matrix with respect to r and r,:

vV, V
M — Ml , V — 11 12 . (6)
o Vor Vo
Under the usual normality assumption, the distribution of r conditional on r,

must also be normal. The mean is a linear function of r,, but the covariance

matrix does not depend on ryt

E(rir,) = p + VpVyl(r, — py), (D
Var(r | r,) = Vy; — V,V'V,,. (8)

It is clear that (7) and (8) imply the market model regression where V;,V,,!
plays the role of the betas and V,; — V;,V5,!'V,, plays the role of the 3
matrix. It is thus true that testing efficiency under the multivariate normal-
ity assumption on the excess returns can be regarded as a special case of the
market model parameterization. The latter may allow r, to be fixed or to
follow a distribution other than the normal.

However, the market model parameterization does not include the case
where the excess returns are elliptically distributed but nonnormal. Let p
and V be the parameters of the elliptical distribution. The expectation of r

conditional on r, will be exactly the same as (7), but.the conditional covari-
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ance matrix is no longer independent of rp:3
Var(r | r,) = k(r,)(Vy; — V,V!'Vy,), 9

where &(:) is some function of r,. It can also be shown that if the conditional
covariance does not depend on r,, X = (r’, r,)’ must be normal. Hence, the
model residuals of (1) must depend on r, for elliptical returns other than the
normal. This states that the residual covariance matrix is time varying. In
contrast, the residual covariance matrix ¥ of the market model is not time
varying, always being a function of the parameters alone. Hence, asset-pric-
ing tests in the case of elliptical returns do not fall into the previous case of
elliptical residuals.

Nevertheless, we can adapt our previous approach to obtain the exact

p-value. It can be shown (Fang and Zhang, 1990, pp. 67-70) that k(r,) is a
function of the quadratic form (r, — p,)'Vg,'(r, — p,) alone. Other than this,
it depends neither on any components of X = (r r ) nor V and p. Therefore,
because of the invariance property of the GRS test, we can assume 3, =
k(r,)I for the computation of the p-value. Conditional on r,,, p,, and Vy,,
both k(r,,) and 3, are completely determined. As a result, samples from the
residual dlstrlbutlons are easily generated. Despite the time-varying nature
of the residuals, each draw for the entire period, i.e., a draw of all the
residuals, is still ii.d. Therefore, the Monte Carlo integration approach
remains a valid method for obtaining the p-value. However, this is the
p-value conditional on the realizations of r,,. Because r,, is treated here as a
random variable rather than a fixed constant, we are interested in the
p-value unconditional on the realizations of r,,, implying that r,, should be
integrated out from the GRS statistic along with the residuals. To do so, we
need only to generate r,, from its marginal distribution in each of the sample
draws. An alternative method is to draw r,, and the residuals together from

their joint elliptical distribution. Because (;Df the invariance property, we can,
for purpose of computing the p-value, assume that the joint elliptical distri-
bution has parameters p, =0, V;, =0, and V;; =1 with the additional
parameters p, and V,,. This latter approach is preferred to the first one
because neither marginal nor conditional distributions are required, which
may be difficult to obtain.

Notice that the true values of the parameters u, and V,, are unknown and
have to be estimated from data. This is the limitation of the above procedure.
Nevertheless, our experiments show that small perturbations of the esti-
mates have only negligible effects. As its extension, we notice that the
procedure is applicable not only to the GRS test, but also to four other widely
used tests; Wilks’ A test, Hotelling-Lawley’s T2 test, the Pillai trace test and
Roy’s largest root test, of which the GRS test is a special case.4 These. tests

%1 am especially grateful to one of the referees for pointing this out in addition to many other
detailed suggestions that substantially improved the paper.

* See Muirhead (1982) for a discussion of these four tests. An additional multivariate test is
given in Butler and Frost (1992).
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are useful for testing general linear hypotheses on the regression coefficient
matrix. Since many asset-pricing tests are about the regression coefficient
matrix and are equivalent to one of the four tests, the suggested approach
should have wide applications. For example, any of the four exact small
sample tests can be used to examine the mean-variance spanning hypothesis
of Huberman and Kandel (1987). Our approach may also be applied to time
series models where a vector autoregression model conditional on initial
observations is a multivariate regression.

Finally, consider parameter estimates for elliptical residuals and elliptical
returns. Notice first that the usual estimates are consistent. The accuracy as
measured by the variances is asymptotically the same for elliptical residuals
(or ii.d. residuals with finite fourth moments), but this is not true for
elliptical returns. For example, the variances of estimates for 8 _and R?
obtained under the normality assumption should be adjusted to var( 8)1 + )
and var(R%)X1 + k) where k= A,/N(N +2)—1 and A, is the kurtosis
(Section II). The adjustments can be justified asymptotically. Table II pro-
vides simulation results in small samples. The first panel reports ratios of the
variances for normal and ¢ residuals (the degree of freedom is 6). The ratios
are close to one when the sample size is as small as 20, confirming the
asymptotic results. The second panel reports the same ratios for normal and ¢
returns. The asymptotic results imply that the ratios should be close to
(1 + k) = 2. This is supported by the simulations. Thus, the adjustments
seem to be adequate even for small samples, suggesting that the accuracy of
widely used estimates for such parameters as 8 and R? may be overstated
for i.i.d. elliptical returns other than the normal.

II. Multivariate Skewness, Kurtosis, and Ellipticity Tests

In this section, we introduce first measures of multivariate skewness and
kurtosis. Then we show how they can be used to obtain exact tests for
ellipticity, and finally, we apply the measures to test whether the market
model residuals and stock returns follow a multivariate normal distribution.

A. Definitions and Tests

Most asset-pricing tests assume normality for either the residuals or excess
returns. We have examined in the first section how to obtain exact tests when
the normality assumption is removed but the ellipticity assumption is main-
tained. The question remains whether or not the residuals or the excess
returns indeed follow a multivariate normal distribution or a distribution of
the elliptical class. To answer this question, we need tests for ellipticity.

Let X;,...,X, be the observations on an N X 1 random vector X over T
periods. Following Mardia (1970), the multivariate skewness and kurtosis can
be defined as

1 7T T 1 7T
D,=—Y Yr} and D,=—=) r2, (10)
T t=1s=1 Tt=1
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Table I1

Estimation under Alternative Distributions
We examine the accuracy of estimation for beta and R? in the market model:

rr=a+Br,,+e, t=1,...,T; & isiid.over time;

where r, and r,, are returns (or excess returns) on an asset and a benchmark portfolio. The
accuracy is measured by the variance and the ratio of the variance obtained under one
distributional assumption to that obtained under another distributional assumption indicates
the sensitivity of the accuracy of the alternative distributional assumptions. Panel A reports the
variance ratios in the case where r,,’s are treated as fixed constants and the residuals follow the
normal and ¢ distributions respectively. Panel B reports the variance ratios in the case where
r,/’s are treated as random variable and r, and r,, are jointly normal and ¢ distributed
respectively. The computations are based upon 10,000 simulated data sets and the degree of

freedom of the ¢ distribution is fixed at six.

Sample Size var( §),/var( §), var(R?),/var(R?),
Panel A. Alternative Residual Distributions
T =20 0.991 1.455
T =40 0.995 1.371
T =60 1.010 1.441
T =80 1.040 1.409
T =120 0.987 1.293
T = 600 1.001 1.099

Panal B. Alternative Return Distributions

T =20 1.523 1.368
T = 40 1.590 1.546
T = 60 1.699 1.619
T = 80 1.764 1.729
T = 120 1.847 1.824
T = 600 1.961 1.931

where r,, = (X, — X)’S}(X, — X), X and S are the sample mean and sample
covariance matrix respectively. As sample size increases, the central limit
theorem implies that D; and D, converge to their population counterparts

A, = E(IX - )T (Y - 0)T°), (11)
and
A, =E([X - )2 '(X - 0)]), (12)

where Y is independent of X but has the same distribution. When X follows a
multivariate normal distribution, it can be shown that: 7D, /6 ~ sz, where
f=N(N + 1N + 2)/6, and D, ~ N(N + 2)/[8N(N + 2)/T1"/% ~ N(0, 1).
Therefore both D, and D, can be used to test multivariate normality. If
N =1, D, and D, are tests for univariate normality. The size of the tests can
be determined from the asymptotic chi-squared and normal distributions.
Notice that both D, and D, are invariant to shifts and nonsingular linear
transformations of the data. With our analysis in Section I, it is clear that a
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Monte Carlo integration approach can be used to compute the exact p-values
where the samples can easily be drawn from the standard normal distribu-
tion. Because no specifics of the normal distribution other than the availabil-
ity of samples from it are required, the procedure also applies to test the
hypothesis that the data come from a given member of the elliptical class. In
this case, the samples are drawn from the corresponding distribution of the
elliptical class with parameters § = 0 and 2 = I, .

B. Residual and Return Normality

Consider the returns on twelve industry portfolios formed by following the
groupings procedure of Sharpe (1982) and others. The industry groups are:
petroleum, finance/real estate, consumer durables, basic industries, food /
tobacco, construction, capital goods, transportation, utilities, textiles/ trade,
services, and leisure. The portfolio returns are value weighted. The bench-
mark portfolio return is the value-weighted New York Stock Exchange return
available from CRSP at the University of Chicago. All returns are in excess of
the 30-day Treasury bill rate available from Ibbotson Associates. The monthly
data span February 1926 to January 1986.

The first panel of Table III reports the results by using the skewness and
kurtosis tests to test univariate normality of each of the residuals and
multivariate normality of all the residuals together, where the residuals are
obtained by running ordinary least square regressions of the industry excess
returns on the index excess returns.® The number of rejections of univariate
normality at the 5 percent significance level is summarized in the second and
fourth columns. We cannot reject the univariate normality assumption at the
5 percent level for most industries in most periods. However, there is strong
evidence against multivariate normality and we reject it for all of the twelve
periods at the 5 percent significance level (or a much lower level). On testing
normality of the returns, similar results are provided in the second panel of
Table III. There is little evidence against univariate normality, but normality
is strongly rejected from a multivariate point of view.

III. Efficiency Tests

Given that we have rejected multivariate normality of both the residuals
and the excess returns, it is of interest to determine which distributions of
the elliptical class, if any, are reasonable alternatives. Furthermore, under
reasonable alternative distributional assumptions on either the residuals or
the returns, we want to examine how the conclusions of the mean-variance
efficiency test may change.

Fang, Kotz, and Ng (1990) provide a number of examples of elliptical
distributions. However, for ease of implementation, we consider only the

®The p-values are computed by using the exact approach as discussed in the previous
subsection. However, strictly speaking, the p-values are not exact in the residual case because
the true disturbance terms are unobservable and it is their estimates, the ordinary least squares
residuals, that are used in the computation of the p-values.
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Table III

Residual and Return Normélity
The residuals are from the market model

riy=o; +Bir,, +ey, i=1,...,N, t=1,...,T; g, isiid.over time;

where r;, and r,, are the excess returns on the ith industry portfolio and on the CRSP
value-weighted index, N = 12 the number of industries and T' = 120 the sample size in each
ten-year period. The residual normality is tested by using the skewness and kurtosis tests and
the results are provided in the first panel of the table. The second column reports the range of
observed univariate skewness values for all the residuals. The third column summarizes the
number of rejections to univariate normality of each of the 13 residuals at the 5 percent level.
The fourth column provides the multivariate skewness statistic and the associated p-value (in
parentheses) of the test for multivariate normality. The last three columns report similar results
by using the kurtosis tests. In the second panel of the table, we report the results of testing the
normality of the 13 excess returns. (the 12 industry excess returns plus the index excess return)
by using the same procedure.

Period Range Rejections Multivariate Range Rejections Multivariate

Panel A. Residual Normality

1926 /2-1936 /1 [0.00,1.32] 6 53.24 (0.000) [2.98,6.74] 8 228.72 (0.000)
1936,/2-1946 /1 [0.01,2.52] 7 53.50 (0.000) [2.48,10.93] 8 229.01 (0.000)
1946 /2-1956 /1 [0.00, 1.78] 4 35.47 (0.000) [2.77,7.90] 5 201.88 (0.000)
1956 ,/2-1966 /1 [0.00,0.42] 2 22.69 (0.001) [2.62,3.97] 1 178.94 (0.000)
1966,/2-1976 /1 [0.00,1.11] 2 33.25 (0.000) [2.62,9.45] 6 199.14 (0.000)
1976/2-1986/1 [0.00,0.19] 1 24.59 (0.000) [2.41,4.27] 1 178.14 (0.001)
Panal B. Return Normality
1926 /2-1936 /1 [0.02,2.97] 9 82.18 (0.000) [5.14,11.34] 13 286.31 (0.000)
1936,/2-1946 /1 [0.02,1.12] 6 71.91 (0.000) [5.26,8.57] 13 272.16 (0.000)
1946 /2-1956 /1 [0.00,0.64] 2 42.60 (0.000) [2.55,4.34] 2 229.99 (0.000)
1956 /2-1966 /1 [0.00,0.33] 4 30.10 (0.000) [2.83,4.99] 1 207.58 (0.000)
1966 ,/2-1976 /1 [0.00,0.43] 2 48.49 (0.000) [2.78,5.30] 6 239.53 (0.000)
1976,/2-1986 /1 [0.00,0.17] 0 30.99 (0.000) [3.07,3.95] 0 207.60 (0.000)

multivariate ¢ and the multivariate mixture-normal distributions as the
alternative distributions to the multivariate normal. We want to find the
appropriate degrees of freedom that allow the two alternative distributions to
best fit the residuals or the returns. Consider first the residuals. By trial and
error, we obtain v = 8 for the multivariate ¢, and y = 2, 3, and 5 for the
mixture-normal distribution (¢ is fixed at 50 percent). The first panel of
Table IV provides the results testing the hypothesis that the residuals follow
a given distribution of the alternatives. Because elliptical distributions have
zero population skewness, one would expect that the chosen alternatives are
perhaps plausible judged by the kurtosis test and not so by the skewness test.
However, it is striking that the variations of the sample skewness are large
and match those from the data, perhaps due to the difficulty of measuring the
third moments. Notice that, to fit the data, we have made three choices of the
gamma parameter of the mixture-normal distribution and only one choice of
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Table IV

Alternative Residual and Return Distributions
The residuals are from the market model

rip=o;+Biry,+e, i=1,...,N, t=1,...,T; g, isii.d.overtime;

where r;, and r,, are the excess returns on the ith industry portfolio and the CRSP value-
weighted index, N = 12 the total number of industries and 7' = 120 the sample size for each of
the ten-year periods. In the first panel of the table, we test whether the residuals follow a
multivariate ¢ distribution or a multivariate mixture-normal distribution with the degrees of
freedom v and y as specified in the second and fifth columns. The third and fourth columns
report the p-values obtained by using the multivariate skewness and kurtosis tests for the
hypothesis that the residuals are multivariate ¢. The last two columns report the same p-values
but for the hypothesis that the residuals are multivariate mixture normal. In the second panel of
the table, we report the results of testing whether the returns follow a multivariate ¢ distribu-
tion or a multivariate mixture normal distribution by using the same procedure.

Period v S-test K-test v S-test K-test

Panel A. Residual Distributions

1926 /2-1936 /1 8 0.003 0.001 5 0.030 0.620
1936,/2-1946/1 8 0.409 0.824 5 0.020 0.679
1946 /2-1956 /1 8 0.008 0.001 3 0.020 0.980
1956 /2-1966 /1 8 0.773 0.879 2 0.440 0.860
1966 /2-1976 /1 8 0.097 0.054 3 0.090 0411
1976 /2-1986 /1 8 0.722 0.877 2 0.160 0.980
Panel B. Return Distributions
1926 /2-1936 /1 5 0.254 0.747 8 0.014 0.822
1936,/2-1946 /1 5 0.409 0.824 8 0.054 0.184
1946 /2-1956 /1 7 0.703 0.243 4 0.434 0.029
1956 /2-1966 /1 7 0.997 0.001 3 0.302 0.113
1966 /2-1976 /1 7 0.472 0.655 4 0.085 0.409
1976 /2-1986 /1 7 0.995 0.001 3 0.210 0.112

the degree of freedom of the multivariate ¢. This is due to the fact that, with a
given gamma, the variations of the sample skewness and kurtosis are rela-
tively small compared to those of the multivariate ¢ distribution. Some of the
p-values in 1926 ,/2-1936/1 and 1946/2-1956/1 periods are small, but
almost all others are greater than 5 percent and are substantially large in
most cases. Hence, the two alternative distributions with the chosen degrees
of freedom are very good candidates for the distribution of the residuals. In
contrast, all the p-values computed by imposing the normality assumption
are virtually zero. Consider now the returns. Similar to the residual case, we
find the alternative distributions are good candidates for the distribution of
the (excess) returns if » = 5 and v = 7, and y = 3, 4, and 8. The second panel
of Table IV provides the results supporting the choices of the degrees of
freedom.
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With the chosen alternative distributions of the residuals we examine now
the mean-variance efficiency of the CRSP value-weighted index. Under the
normality assumptions, Gibbons, Ross, and Shanken’s (1989) exact test is
reported in Table V as GRS which has an F distribution with degrees of
freedom 12 and 107. The p-value is reported as Pj, computed analytically
from the F distribution. Efficiency is rejected in three of the six subperiods at
the 5 percent level. To assess the accuracy of our proposed numerical ap-
proach, the same p-value is also computed numerically and reported as P, in
the third column of the table. A comparison of P and P, indicates the
anticipated accuracy. The numerical errors are all below 1 percent and in
some cases the results agree with one another up to 3 decimal points. Under
the alternative distributions, the p-values are reported as P; and P, com-

Table V

Test of Efficiency of the CRSP Value-weighted Index under

Alternative Distributions
The efficiency is examined by using the market model

ry=a;+Bir,, +&, i=1,..,N, ¢g,isiidovertime;

where r;, is the excess return on the ith industry portfolio, r,, the excess return on the CRSP
value-weighted index and N = 12 is the number of industries. The data are monthly returns and
the sample size it 7' = 120 for each of the ten-year periods. The efficiency implies the following
hypothesis to be tested:

Hy: a;=0, i=1,...,N.

We test H, under the usual normality assumption and two alternative distributional assump-
tions, multivariate ¢, and multivariate mixture normal, for both the residuals and reutrns. In the
table, GRS is the Gibbons, Ross, and Shanken (1989) test statistic. P¥ is the p-value under
normality assumption which is computed analytically by using an F distribution with degrees of
freedom 12 and 107. P, is the same p-value but computed by using our proposed numerical
approach. P; and P, are the p-values when the residuals or returns follow the alternative
distributions.

Period GRS p¢ P, P, p,
Panel A. Alternative Residual Distributions
1926 /2-1936 /1 1.574 0.110 0.110 0.107 0.104
1936,/2-1946 /1 1.195 0.296 0.295 0.298 0.296
1946 /2-1956 /1 2.370 0.010 0.010 0.009 0.010
1956 /2-1966 /1 2.790 0.002 0.003 0.002 0.003
1966 /2-1976 /1 3.378 0.000 0.000 0.000 0.000
1976 /2-1986 /1 1.544 0.120 0.121 0.118 0.111
Panel B. Alternative Return Distributions
1926,/2-1936 /1 1.574 0.110 0.110 0.210 0.177
1936 /2-1946 /1 1.195 0.296 0.295 0.315 0.399
1946 /2-1956 /1 2.370 0.010 0.010 0.103 0.241
1956 /2-1966 /1 2.790 0.002 0.003 0.068 0.110
1966 /2-1976 /1 3.378 0.000 0.000 0.036 0.062

1976,/2-1986 /1 1.544 0.120 0.121 0.216 0.191
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puted by the proposed approach. They are strikingly close to those p-values
obtained under the normality assumption. In almost all cases, the differences
are no more than 1 percent, suggesting that alternative distributional as-
sumptions on the model residuals matter little.® This is also what one may
expect from Table I. Therefore, with the given data, conclusions reached
under the multivariate normality assumption remain valid under the alter-
native distributions. However, as demonstrated below, the test will no longer
be robust when the index returns are treated as random.

Under the chosen alternative distributions of the excess returns, the p-
values are reported in the second panel of Table V. They are larger than those
obtained under the normality assumption. Furthermore, except for a value of
3.5 percent, all the p-values are greater 5 percent. Therefore, the normality
assumption tends to results in lower p-values. Under the normality assump-
tion, we reject efficiency in three of the six periods. However, under the
alternative distributional assumptions, we can no longer reject efficiency in
all of the six periods.

To obtain some intuition on why the p-values are higher under the
alternative distributions, consider the geometric interpretation of the GRS
test. Gibbons, Ross, and Shanken (1989) show that:

%2 = 02 + &' 1a, (13)

where 6* is the Sharpe measure of the ex post efficient portfolio (ratio of the
expected excess return to the standard deviation of the excess return), and 0
the Sharpe measure of the given portfolio. It follows that the expectatlon of
6*2 is asymptotically determined by the righthand side with 3~ replaced by
its limit. In the case where the excess returns have greater kurtosis than the
normal, i.e., A, > N(N + 2), we have k > 0. Similar to the beta estimate,
there will be more variations of the alpha estimate, yielding greater variance
for 0*. Intuitively, this says that we are more uncertain about the ex post
efficient portfolio being ex ante efficient. Now, by Gibbons, Ross, and Shanken
(1989),

Wy = e[+ 6+2)/(1+ 62) — 1], (14)

where ¢ = (T'— N — 1)/N. As it is the ex ante efficiency of p that is being
tested, we ideally want to compare p with the ex ante efficient portfolio.
Because the ex ante efficient portfolio is unobservable, (14) states that we
compare the sample Sharpe measure of p with that of the ex post efficient
portfolio. If the difference is large (W, or the GRS statistic is large), we reject
efficiency. However, there will always be sample variations between the
Sharpe measures even if p is ante efficient. The p-value of the test reflects
the probability of observing a given level of the variations. With normality
assumption, the p-value is computed from the F' distribution. With multivari-

6 A related robust result (see Fang and Zhang (1990)) is that, if the residuals are not i.i.d., but
jointly (across assets and time) elliptical, the p-values will be exactly equal to those obtained
under the usual normality assumption.
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ate ¢ assumption, we expect more variations of the ex post efficient portfolio
and so there is greater probability of observing a given level of the variations.
This says that, if the excess returns are i.i.d. elliptical and have greater
kurtosis than the normal, the p-value of the GRS test tends to be greater
than that obtained under the normality assumption. As it is usually the case
that stock returns have higher kurtosis than those from the normal distribu-
tion, empirical studies which ignore the nonnormality of the returns are
likely to overreject the theory being tested (assuming the returns are ellipti-
cally distributed).”

In summary, testing the mean-variance efficiency of the CRSP value-
weighted index yields very similar results under plausible alternative distri-
butional assumptions on the model residuals (treating the index returns as
constants), but not so on the returns (treating the index returns as random
variables). Under normality assumption, the efficiency of the index is rejected
in half of the periods at the 5 percent level. However, under alternative
assumptions on the returns, the efficiency can no longer be rejected.

IV. Conclusions

In this paper, we propose exact tests for many asset-pricing models under
the theoretically consistent assumption that the returns are independent,
identical, and elliptically distributed. Since almost all empirical work in
finance is conducted under the multivariate normality assumption, our re-
sults tell exactly how the usual conclusions may be affected by a violation of
the normality assumption. To examine further the robustness of many com-
monly used tests, we also provide exact inference for alternative distribu-
tional assumptions on the model residuals. In addition, we provide measures
of multivariate skewness and kurtosis and apply them to examine the
ellipticity of stock returns and the market model residuals. Using monthly
industry returns for every consecutive ten-year period from 1926 to 1986, we
find strong evidence against the usual multivariate normality assumption.
We also test the mean-variance efficiency of the CRSP value-weighted index.
Under the usual normality assumption, we reject the efficiency for half of the
periods, but the efficiency can no longer be rejected under plausible alterna-
tive assumptions on the stock returns. Our results suggest that, if the returns
are elliptically distributed, empirical studies that ignore the nonnormality
are likely to overreject the theory being tested, but the proposed approach can
be used to detect the magnitude of the overrejection.

Appendix A

In this appendix, we prove that under the null hypothesis the GRS statistic
is invariant to nonsingular linear transformation of the model residuals and

" If the returns are not elliptically distributed, we will be unable to tell whether there will be
overrejection or underrejection of the null hypothesis because the true p-value is unknown. What
remains true is that tests based on the normality assumption tend to overreject the null as
compared with tests based on the ellipticity assumption.
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hence it can be computed once samples from the residuals are drawn. To
simplify the presentation, we rewrite the market model in matrix form:

R=R,B +E, (A1)

where R is a T (observations) by N (assets) matrix of returns, R, is a T' by 2
matrix with the first column a vector of ones and the second the portfolio
returns, B is a 2 by N coefficient matrix with the N alphas, a, in the first
row and the N betas, B, in the second and E is the T' by N model residual
matrix.

We want to prove that W, is invariant if E is replaced by EC, where C is
any N X N nonsingular matrix. To do so, let I be the following 2 X 2 matrix:

In= B -B)3 (B - B), (A2)
where B and 3 are the ML estimators of B and 3:

B=®R,R,) 'R,R=B + (R,R,) 'R,E, (A3)
3 1 D)/ > ’
$=(R-R,B)(R-R,B)-EME (A4)

with M =1, — R, (R,R,)"'R/,. Since @'371& is the (1,1) element of II
under the null, it is sufficient to show that II is invariant. Indeed, if E is
replaced by EC, the inverse of the covariance estimator is

$-1= (C’E'MEC) ' = C"(E'ME) 'C~V
and the coefficients estimator minus the true parameter is
> ’ —1p
B-B=®R,R)) R,EC.

It follows then that II remains unchanged after the transformation. Finally,
by (A3) and (A4), we know that, under the null, the GRS statistic is a
function of the residuals alone. If samples from the residuals are drawn, the
GRS statistic can be computed. Q.E.D.

Appendix B

In this appendix, we provide the methods for drawing samples from
multivariate ¢, mixture normal, and Kotz distributions. Because Y = 6 + LX
will have arbitrary parameters 0 and X = LL/, it is enough to show only how
to generate X where the parameters = 0 and % = I,.

A. Drawing Samples from a Multivariate t Distribution

We draw Z; ~ N(0,1) for i = 1,..., N, and ¢ ~ X, where c is independent
of Z, then, by Fang, Kotz, and Ng (1990, p. 85), X = Z/(c/v)¥/? follows a
multivariate ¢ distribution with degree of freedom v.
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B. Drawing Samples from a Mixture-Normal Distribution

We draw U from a uniform distribution over [0, 1], and X from N(0, I,). If
U< (@1 - ¢), done. Otherwise, let X = ﬁX Then, from Johnson (1987,
p. 56), the resulting X has a mixture-normal distribution.

C. Drawing Samples from a Kotz Distribution

We draw U from an N-uniform distribution, U, = Z,/(Z + -+ +Z2)V?,
where Z; ~ N(0,1),i = N, and g? from a gamma distribution I'(v + N/2 —
1), then, by Fang, Kotz, and Ng (1990, pp. 76, 77) and Johnson (1987, p. 127),
X =r"Y2gU, r = 1/2, follows a Kotz distribution with degree of freedom .
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