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Abstract

This paper proposes small sample tests for rank restrictions that arise in many asset
pricing models, economic fields and others, complementing the usual asymptotic theory
which can be unreliable. Using monthly portfolio returns grouped by industry and using two
sets of instrumental variables, we cannot reject a one-factor model for the industry returns.

Keywords: Rank test; Small sample test; Asset pricing; Factor model

JEL classification: G12; G11; C11; C31

1. Introduction

The regression coefficient matrix is often assumed to be of full rank in the
classical multivariate regression model. If the rank is not full, then we have the so
called reduced rank regression model. To test for the regression coefficient matrix
to have a given rank, Anderson (1951) derived in his seminal contribution,
maximum likelihood estimators and the associated asymptotic test. Subsequently,
Joreskog and Goldberger (1975), Izenman (1975), Tso (1981), Davies and Tso
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(1982), among others, have developed further procedures for estimation and tests
in the reduced rank regression model. The recent work of Velu (1992) has
generalized this analysis to models with- two sets of regressors where both have
reduced rank restrictions. The statistical inference in all of these studies rely on the
asymptotic chi-squared distribution of the likelihood ratio test. However, to the
author’s knowledge, there have not been any studies about the appropriateness of
the asymptotic approximation in small sample size. Indeed, as demonstrated in this
paper, the asymptotic chi-squared test can be unreliable. In some cases, for
example, the asymptotic P-value is less than 0.001 whereas the exact P-value is
greater than 0.10.

Although the reduced rank models were first motivated as an interesting
statistical problem, they have wide applications in both economics and physical
sciences. In macroeconomics, for example, Zellner (1970) and Sargent and Sims
(1977) used the reduced rank models to study latent or unobservable factors and
indices. Chen (1981) illustrated the application in physical sciences. In finance,
there have been ample applications which may be partly due to the quantity and
quality of data available. Hansen and Hodrick (1983) and Gibbons and Ferson
(1985) used the reduced rank models to examine time-varying factor risk premi-
ums. Subsequently, Campbell (1987), Ferson and Harvey (1991), among others,
used similar models to study stock returns, forward currency premiums, interna-
tional equity returns and capital integration. Stambaugh (1988) developed a latent
variable model to test the Cox, Ingersoll and Ross’ (1985) theory of the term
structure of interest rates.

This paper proposes a Wald test whose exact distribution in small samples can
be computed by using a simple numerical approach. The test is in fact equivalent
to the usual likelihood ratio test, and so it enjoys the usual interpretations. Because
many asset pricing models imply the same rank restrictions, wide applications of
the test are possible. As an example, we investigate the number of ‘priced’ latent
factors in the US equity market by using monthly portfolio returns grouped by
industry. Based on two sets of instrumental variables, we cannot reject the
hypothesis that a one-factor model explains the industry returns reasonably well.

In comparison with the commonly used general method of moments (GMM)
(Hansen (1982)), our approach has at least two important advantages. First, the
inference is exact. There is no concern about whether the asymptotic distributions
are appropriate or not. Second, the sample size can be small which allow us to
examine an asset pricing model over a short time horizon. (The GMM approach
cannot be used in our applications to five-year subperiods because Hansen’s
optimal weighting matrix is singular even with doubling of the sample size.) On
the other hand, the GMM procedure allows the disturbances to have conditionally
time-varying distributions which is sensible in a long time period. But our
approach allows time-varying parameters across subperiods and it should capture
some of the time-varying effects. So, our approach can be a good alternative to the
GMM procedure for testing many asset pricing models.
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The paper is organized as follows. In Section 2, we show that many asset
pricing models imply rank restrictions on regression coefficients. In Section 3, we
propose the Wald test, provide a simple method for the computation of its exact
P-value as well analytical bounds, and discuss its relation with the likelihood ratio
test. In Section 4, we investigate the number of latent factors in the US equity
market. Section 5 concludes the paper.

2. Rank restrictions and asset pricing constraints

In this section, we introduce the rank restriction in general and then give
examples showing that a rank restriction is an implication of many asset pricing
models. Therefore, the rank test developed in this paper may be used to examine
the validity of a wide class of asset pricing models.

Suppose N financial variables Y,,...,Y, are related to L explaining variables
X,,...,X, by the traditional multivariate regression model:

Y,=6,X,+ - +0,X,+€,,i=1,...,N, t=1,...,T, (1)

where T is number of periods (sample size), and ¢;, is the model disturbances or
forecasting errors. Because we often try to use a small number of variables to
explain Y (say, using a few economic variable to explain the hundreds security
returns), it is reasonable to assume that the number of explaining variables is less
than or equal to the number of variables to be explained, i.e., L < N. This implies
that the L X N parameter matrix formed by the regression coefficients of model

(1),
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must have a rank of at most L. As a result, the columns must lie in a space of
dimension no greater than L. As shown later in this section, many asset pricing
models predict that the columns lie in a space of dimension K where K is some
prespecified number less than L. This translates into the following rank restriction
on the regression coefficient matrix:

H,: rank(®) =K. (2)

The procedures for testing the validity of this rank restriction are developed in
the next section. Now we examine the relationships between the rank restriction
and the implications of many asset pricing models.
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2.1. Intertemporal factor pricing models

Following Gibbons and Ferson (1985), a general intertemporal K-factor asset
pricing model has the following form: *

E("i: |Z:—1) = )‘O(erl) + Bil/\l(Zr—l) + - +:BiK/\K(Zt—l)’ (3)
where r,, is the return on asset i between period t—1 and ¢, )\j(Zt, 1) the
market-wide expected risk premium on the j-th factor (of the K latent factors),
Z,_,=(Z,, ,...,Z,, ;) the market-wide information available at ¢, and
Biis---» Bix the conditional betas for asset i. The model allows A(Z,_ \)’s to vary
over time but requires B’s to be constant. In terms of excess returns, (3) can be
written:

E(Ritlzf~1) =bi1/\1(Z1—1) +o +biKAK(Z1—1)’ (4)

where R, =r;, —r,, is the return on the i-th asset in excess of the return on the
0-th asset (chosen arbitrarily), and b;; = 8, — By is the ‘excess’ conditional beta.
To test (4), we assume as in most studies the following returns-generating process:

R,=6,Z,, + - +6,Z , ,+e€,i=1,..,Nt=1,...,T. (5)

i’
It can be shown that the K-factor model restriction (4) is valid if and only if the

L X N regression coefficient matrix @ of (5) has rank K. Therefore, a test of the
K-factor pricing theory is a test of the rank restriction.

2.2. One-period factor asset pricing models

In one-period asset pricing models, rather than (5), the returns or excess returns
(in excess of a risk-free rate or the return on some zero-beta asset) are often
assumed to have a factor structure:

R,=a;+b,fi,+ - +byfyx,+€,i=1,..,N, (6)

1
where f|,..., fg, are the factors or the returns on some benchmark portfolios.
When there exists a riskless asset, an asset pricing model which states that
E(R) = By for some factor premiums v, implies (see, e.g., Shanken, 1985) the
following restriction on the parameters of the linear regression (6):

a=BA, (7

where o an N X 1 vector of the alphas; B an N X K matrix of the bs; and
A =y — E(f) the risk premiums. Let @ be the regression coefficients of (6), then
(7) implies that @ is not of full rank. Therefore, a rejection of @ being of rank
lower than or equal to K is a rejection of the asset pricing model.

? The notation in this and the following two subsections is used to follow the convention in finance.
It is independent of the notation in the rest of the paper.
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If a riskless asset does not exist, the asset pricing restriction has the form:
a= Ay (1, —Bly), (8)

where A, is the return on the zero-beta asset, 1, and 1, are vectors of Is.
Consider the new regression:

Rit—'(flt+ +fKr)/K
=ai+(bi|_l/K)f1z+"'+(biK_1/K)sz+€n- (9)

(8) implies that the regression coefficients of (9) must have a rank lower than or
equal to K. Hence, a rank test can again be used to test the pricing restrictions.

A rejection of the rank restriction is a rejection of the model, but a failure to
reject does not necessarily give rise to support for the model because the rank
restriction is only a necessary condition. Gibbons (1982) was the first to develop
an asymptotic test to test (8) directly without resorting to the rank test. Overcom-
ing problems in using the asymptotic test, Shanken (1985, 1986) derived a small
sample bound test. In the special case where K =1 and the factor is the market
portfolio, (8) reduces to the well known Black’s (1972) zero-beta capital asset
pricing model (CAPM) for which Zhou (1991) obtained an exact eigenvalue test.
However, in the case where K > 1, the eigenvalue test is no longer applicable, but
the rank test still applies.

The factors have so far been assumed to be observable, but they are not so in
Ross’ (1976) arbitrage pricing theory (APT). Nevertheless, we can still develop a
rank test for the APT restrictions:

Q;=Ay+b A+ - Fb A, i=1,...,N. (10)

Motivated by Gibbons and Ferson (1985), we assume, without loss of general-
ity, that the first K X K submatrix of B, B,, is nonsingular. By (6), we obtain a
regression of R,, on R, ,:

R, =(a,-B,B 'a;) +B,B/ 'R, +u,, (11)
where u, = —B,B[ 'e,, + €,,. Partitioning (10) into @, = A,1, +B,A and a, =
Aoly_ kT By A, we get:

a, —B2B, 'a; = A (1y_x — B,B; 1, ). (12)

This is similar to (8), and hence a rank test can be used to test the APT.
2.3. Factor reduction, dimensionality reduction and multiple hedging

In contrast with (6), a slightly more general factor model for the asset returns
is:

R,=6,f,+ - +6,f, e, i=1,....N, (13)



76 G. Zhou / Journal of Empirical Finance 2 (1995) 71-93

where f,,,..., f;, are the factors (f;, may be a constant). If @ has rank K, there
must exist an L X K matrix A and a K XN matrix B such that &= AB.
Therefore, (13) implies that:

E(R)=b,E(f )+ - +bE(f),i=1,...,N, (14)
where (f,",..., f¢ ) are K ‘new’ factors that are linear combinations of the ‘old’
ones, (f"...., f Y =(fi,..., f,YA. Because any non-singular linear transforma-

tion, AC and B™'B, gives rise to the same @, A and B cannot be uniquely
identified; but they are determined up to that linear transformation. If A is
normalized so that (f,",..., f¢' ) are portfolios of the ‘‘old”” factors f,..., f;, B
is uniquely determined and is the matrix of the risk-premiums associated with the
““new’’ factors. Then, (14) states that the expected returns on the assets are
rewarded by only K priced factors (fewer than L). So, a test for the rank of ® can
help to reduce the number of factors that are necessary to describe the returns.

Although the rank test is motivated by a desire to test asset pricing theories, it
also serves as a useful tool for hedging and econometric data modelling. The rank
test directly answers the question whether there exist K portfolios from L
available factors (say, the price changes of L futures contracts) so that a hedge
using the K portfolios can do as well as a hedge using all the L factors. In data
modelling, the greater the number of regressors, the better the model fits the data,
but the worse the sampling behavior of the parameter estimates. So, for a given
level of goodness of fit, we would like the number of explaining variables to be at
a minimum and the rank test determines this minimum number K.

3. The econometric methodology
3.1. A wald test

To motivate, consider the unconstrained estimator of the model parameters. For
notational brevity, we in what follows use the matrix form of model (1):

Y=XO+E, (15)

where Y, X, E are TX N, TX L, and T X N matrices respectively. As usual, we
assume X'X is nonsingular, and the disturbances, each row of E, are independent
and identically distributed multivariate normal with zero mean and nonsingular
covariance matrix ¥. The thetas in the i-th equation are easily estimated from an
OLS regression and the results can be written in matrix form:

O=(X'X)'X'Y, LxN. (16)

The estimator of ¥ is given by the cross products of residuals divided by 7

. 1 A n
$=Z(Y=-XO0)(Y-XB), NxN. (17)
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Notice that @ and 3 are also the maximum likelihood estimator (MLE) under
full rank model, and are both consistent and efficient.

The vector formed by the rows of @ has a covariance matrix (X'X) "' ® 3!
which can be estimated by (X'X)"' ® 37!, Standardizing @, we get a matrix
form of the usual Wald test for the hypothesis that @ is zero: *

W= (X'X/T)""03 ' (XX/T)"* LxL (18)

If @ is zero, this matrix should be close to a zero matrix. However, here we are
interested in the rank of @. Nevertheless, the same intuition is helpful. If @ is of
rank K, its estimator @ should be close to a matrix of rank K, and so shoulAd w.
In this case, we would expect that the (L — K) smallest eigenvalues of W are

small. Formally, let £, > &, > -+ = £ > 0 be the eigenvalues of W, and
L
W= T1 (1+¢) (19)
j=K+1

be the test statistic for the null hypothesis that the rank of ® is K:
H,: rank(@) =K. (2)

As an increasing function of the variables, this statistic summarizes the informa-
tion on the deviations of the eigenvalues from zero. If W is large, it must be the
case that at least one of the eigenvalues is large, implying that W is likely to have
a rank greater than K. Hence, we would reject the null hypothesis that & is of
rank K. To assess the error of making a false rejection, we need to find Wy’s
probability distribution under the null hypothesis. This will be the focus of the
paper, although our approach can yield similarly the test’s distribution under the
alternative hypothesis that the rank of @ is greater than K.

To obtain the distribution of W, under the null, we need to know the
distribution of the eigenvalues. Let A = diag(§,,..., 8,) be the roots of:

(X'X/T)""037'0' (X'X/T)"* - 81,/T| =0, (20)

where 8, > -+ > 8, >0, and denote by W, (N, 1,, 4) and W(T =N, 1,) the
density functions of a non-central and a central Wishart distributions, we have
then:

Theorem 1. If N>L, T> N + L, the joint density of &,,..., £, has exactly
the same form as the joint density of the eigenvalues of UV™', where U~
W/(N,I,, A)and V~W/(T—N,1,).

Proof: Secc Appendix A.

Theorem 1 provides in principle the distribution of the Wald test for rank
hypotheses. Interestingly, it appears exactly like Theorem 10.4.2 of Muirhead

*In an actual computation of the Wald matrix W, it may be more convenient if (X'X /T)/? is
replaced by the L matrix of the standard Cholesky LU-decomposition for the matrix (X'X /7).
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(1982), showing that the distribution of the rank test is determined by the joint
density of the eigenvalues of UV ~', which also determines the Wald test for linear
hypotheses. However, in comparison with the test for linear hypotheses, the rank
test is computed differently from the data and its distribution is determined by the
eigenvalues in different functional form. Hence, Theorem 1 should be regarded as
different from Muirhead’s Theorem 10.4.2 in the sense that the former applies to
the rank test, while the latter is developed with the purpose of testing linear
hypotheses.

Based on Theorem 1, a three step approach may be taken to draw Wy from its
exact distribution at a given value of (§,, ..., §,). First, since the deltas are given,
random samples of U and V can be drawn from W, (T — N, I,) and W,(N, I, A)
(see Appendix B for a detailed description). Second, after each draw, the eigenval-
ues of UV ™" can be computed by using standard eigenvalue routines. Third, the
test statistic W, is then evaluated based on the eigenvalues from step 2. This Wy
will be one random draw from its exact distribution. If we repeat this process
10,000 times, for example, we will obtain 10,000 random draws of W;, and hence
the percentage of times that W, is less than a given number x is readily
computed. This percentage is a numerical approximation to Prob(Wy < x) at the
given (8,,..., 8,). In other words, the exact cumulative distribution function of
the Wald test statistic Wy is easily computed by using the Monte Carlo approach
just described. It is worth emphasizing that this approach is different from the
usual Monte Carlo simulation approach. To use the latter, the model parameters
have to be prespecified, the residuals have to be generated, and then hundreds and
thousands of parameter estimations have to be performed. In contrast, our ap-
proach is done by drawing samples from two Wishart distributions, providing a
simple, generic and very practical way to obtain the exact distribution of the Wald
test Wy.

Alternatively, the above approach can be viewed as the standard Monte Carlo
integration approach applied to evaluate the integral:

P(WK<X)='[”'[g(§K+l""’§L)f(§K+]""’§L)d§1(+1 dfu

(21)
where f( &, ..., &) is the density function of & ,,..., &, and g( &, ..., &)
is an indicator function such that g(&,, ..., & )=1 if Wy <x; and zero
otherwise. If (&, ..., £ ) is easily computed, the integral can be computed by

any standard numerical method, but Monte Carlo integration is preferred because a
grid method will have difficulties for large dimensional problems. Now it is in fact
very difficult to compute f(&. |,..., £, ) because it is an integral of matrix zonal
polynomials (Muirhead, 1982) and it is well known that the computation of the
matrix zonal polynomials is extremely complex (almost intractable when the
dimensionality is greater than two). As a result, Monte Carlo integration becomes
the only choice to compute (21). The integral is approximated by the sample mean
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of g(&xyiy,-.., &) evaluated at draws of &y, ,,..., &, from its distribution
f(éxi1s---, &) The draws are accomplished easily, and are exactly done by
using the three step approach. Clearly, the sample mean of g( &, ,,..., &) is
exactly equal to the previous percentage.

One advantage of viewing the numerical approach as Monte Carlo integration is
that standard techniques about the latter (see, e.g, Geweke, 1989) may be used to
assess the numerical error of the former. It follows that the rate of convergence of
the numerical approximation to its exact value is independent of 7, N, L and K,
and is only a function of the number of the Monte Carlo draws. The greater the
number of the draws, the more accurate the numerical approximation. Moreover,
as is well known, 10,000 Monte Carlo draws generally deliver results that are
accurate up to 2 to 3 decimal points.

In practice, the P-value is of interest for making inference. Under the null
hypothesis that the rank restriction holds, o, , = ... = 6, = 0. However, we do
not know é,,..., 8y, which are nuisance parameters on which the P-value
depends. Nevertheless, the P-value can be computed at the maximum likelihood
estimator (MLE) of §,,..., 8; obtained from (34) with ® and X being replaced
by their constrained ML estimators (Section 3.3). The effect of using estimated
deltas can be easily examined because the P-value is an increasing function of
each of the deltas (by Theorem 1 and Perlman and Oklin (1980)). In other words,
if the P-value is evaluated at a value of the deltas lower than the true one, we will
underestimate the true probability; and if evaluated at a value higher than the true
deltas, we will overestimate the true probability. Nevertheless, numerical experi-
ments show that there are no substantial changes in the P-value when small
perturbations in the deltas are allowed. For example, as shown later in our
empirical applications, the first P, entry, 0.1688, of Table 3 is the P-value
evaluated at the MLE of &, (8§, = 34.6367). If re-evaluated at &, + 20 (sizable
perturbations of §,), the P-value becomes 0.1651 or 0.1693, changed only slightly
from 0.1688. For this insensitivity, it is worth mentioning that there is a theoretical
reason that the asymptotic distribution of W, does not depend on the nuisance
parameters.

Because the P-value is computed at the ML estimates, rather than at the true
but unknown value of (8, ..., 8;), this introduces some uncertainty about the true
P-value. However, as the previous example shows, the uncertainty can be easily
quantified by utilizing the monotone dependence of the P-value on the deltas, and
the uncertainty may not matter that much due to the insensitivity of the P-value to
small perturbations in the deltas. Nevertheless, it is of interest to run a Monte
Carlo experiment to see how the P-value computed from the ML estimates
performs. In other words, if we fix the size of the test at the 5% and 10% level, we
want to see whether the empirical rejection rates are close to 5% and 10% in a
simulation where hundreds sets of the data are generated. To generate the data
sets, the parameters & and 3 have to pre-specified. For simplicity, they are set
equal to the ML estimates based on actual returns data (see Section 4) under the
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rank one restriction. Given the parameter specifications, it is straightforward to
generate hundreds sets of the residuals and the returns. Notice that the P-value has
to be evaluated by Monte Carlo integration for each of the data set because the
ML estimates of the deltas are different with different data sets. To make the
computation manageable, we use only 2,000 simulated data sets, and use only
1,000 Monte Carlo draws for evaluating the P-value at each data set. When the
sample size is 7= 60 (a 5-year period for monthly data), the empirical rejection
rates are 4.2% and 7.6%, remarkably close the desired 5% and 10% level. When
we double the sample size to T = 120, the empirical rejection rates are 4.5% and
8.5%, becoming much closer to the 5% and 10% level. To summarize, the
simulation provides evidence for the reliability of the P-value computed from the
MLE of the deltas, although it is performed only in a couple of special cases due
to the computational time required. Once again, in a more general situation where
the simulation result is not directly applicable, the monotone dependence of the
P-value on the deltas can help to assess the uncertainty caused by computing it at
the ML estimates of the deltas.

3.2. Analytical bounds and asymptotic distributions

The monotonicity of the P-value suggests that if the limit of Prob(Wy > x)
exists as all the 8,’s go to infinity, it must be an upper bound on the P-value.
Furthermore, this bound is optimal in the sense that, among all distributions that
do not depend on the delta parameters, this limit is the tightest upper bound
possible. Fortunately, we can obtain this tightest upper bound explicitly:

Theorem 2. Under the null hypothesis that the rank restriction (2) is true, if
N>L, T3> N+ L, the upper bound on the P-value is:

P(We>x) <P(U>x), Vx>0, (22)

where U= |W,|/IW, + W, |, W, and W, are independent, W, ~ W, _ ((N —
K I, _Jand W,~W, (T—N, I, )

Proof. The proof following from our Theorem 1 and Schott (1984) by
replacing @, =W, O =U, s=K+1, m=L, h=N, and e=7T—N in his
Theorem 3. Q.E.D.

The upper bound does not contain non-central delta parameters and can be
easily computed, similar to the P-value, by Monte Carlo integration. If an upper
bound of 4% is found, for example, the true significance level must be less than or
equal to 4%, so we can reject the null at the usual 5% level.

By using again the monotonicity of the P-value, we know that Prob(Wy > x)
evaluated at zero deltas must be the optimal lower bound of the P-value. This
lower bound is useful for accepting the null hypothesis. If a lower bound of 6% is
found, for example, the true significance level must be at least 6%, then we cannot
reject the hypothesis at the usual 5% level.

Explicit analytical expressions for both the optimal upper and lower bounds are
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available in some special cases. They offer insights into the general properties of
the test and serve as tools to verify solutions obtained by Monte Carlo integration.
The first special case is when K =1L — 1. The optimal upper bound is simply
determined by an F-distribution (by Theorem 2 and Anderson, 1984, p. 305):

1-U T—N

U ’ N—K ~Fy_kr-n- (23)

The lower bound is determined by the distribution of the smallest eigenvalue,
£,. Based on Nanda (1947), we have for L =2,

P(&>x) = k(2B (21, + 2, 20, +2)
—x I (1=x)" By + 2, ny + 1)), (24)
and for L = 3,
P(¢&;,>x)
= k3(2B,_(2ny + 4, 20, +2) By _y(ny+ 1, 4+ 1)
~2B,_(na+2, n + 1)By_ (20, + 3, 2n, +2)
—xm (1= x)" " (x)), (25)

where n, =(N—-L—1)/2, n,=(T—N—L—1)/2, B(a, b) is the incomplete
beta function: B (a, b) = [F t*~'(1 —¢)"" ! dt, and k; is a constant:

2@t/z L (2n1+2n2+i+5)

k= I1r >

H|+HZ+L,'=1
2n, +i+1 iy]!
(=)
2 2

Explicit expressions of the lower bound for L = 4 and 5 are available from Nanda
(1947), and for L = 6 to 8 from Pillai (1954).
Another special case is when K =L — 2. Based on Anderson (1984, p. 305)
and Hotelling (1951), the upper bound is:
1-UY? T-N-1
U172 ’ N-—K ~ Fz(N—K),z(TvN—l)- (26)

For additional cases that K =L — 3 and L — 4, there are also analytical expres-
sions for the upper bound. * However, there are no simple formulas for the lower
bound.

The testing procedures discussed so far are small sample procedures which are

L

<x[T| T

i=1

2n+i+1
2

4 Following Consul (1966), analytical expressions can be obtained for U that are infinite series of
the (Gaussian) hypergeometric functions (Anderson, 1984, p. 113).
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valid exactly for any sample size T > N + L. In contrast, the usual approach is to
use the asymptotic test that relies on the large sample x° distribution. An

alternative and better asymptotic test (Bartlett (1947)) is:
asy
[T—3(N+L+1)] log Wy~ X3 _kynx)-

Table 1

A comparison of asymptotic tests with exact test.
The table provides a comparison of the P-values obtained by using the small sample procedure and the
asymptotic approximations. It is a case of testing the rank 1 hypothesis in a model where we allow both
N and T to vary over a number of values and compute the P-values accordingly

(27)

N T P-value using exact P-value using x? P-value using Bartlett’s
distribution approximation approximation
10 60 0.050 0.020 0.055
10 120 0.050 0.034 0.053
10 240 0.050 0.042 0.052
20 60 0.050 0.002 0.046
20 120 0.050 0.016 0.054
20 240 0.050 0.030 0.052
30 60 0.050 0.000 0.031
30 120 0.050 0.005 0.050
30 240 0.050 0.021 0.055
40 60 0.050 0.000 0.009
40 120 0.050 0.001 0.043
40 240 0.050 0.011 0.051
50 60 0.050 0.000 0.000
50 120 0.050 0.000 0.034
50 240 0.050 0.005 0.050
100 120 0.050 0.000 0.000
100 240 0.050 0.000 0.030
200 240 0.050 0.000 0.000
10 60 0.100 0.048 0.108
10 120 0.100 0.070 0.102
10 240 0.100 0.087 0.104
20 60 0.100 0.008 0.094
20 120 0.100 0.037 0.100
20 240 0.100 0.066 0.104
30 60 0.100 0.000 0.066
30 120 0.100 0.014 0.098
30 240 0.100 0.044 0.102
40 60 0.100 0.000 0.024
40 120 0.100 0.003 0.088
40 240 0.100 0.027 0.100
50 60 0.100 0.000 0.000
50 120 0.100 0.000 0.072
50 240 0.100 0.013 0.095
100 120 0.100 0.000 0.000
100 240 0.100 0.000 0.064
200 240 0.100 0.000 0.000
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Unlike the previous y° approximation, this one has an approximation error that is
of order O(1/T?).

Table 1 provides a comparison of the P-values obtained by using the small
sample procedure and by using the asymptotic approximations, respectively. It is a
case of testing the rank one hypothesis in a model where L =3, K=1, §, =25
and &, = 6, =0. We allow both N and T to vary over a number of values and
compute the P-values accordingly. As expected from its high order convergence,
Bartlett’s asymptotic P-values are consistently better than those from the simple
x? approximation. When N is either 10 or 20, there are virtually no differences
between the exact P-values and Bartlett’s P-values. Although they become better
with larger sample size (T), the simple y> P-values are far from accurate.
Moreover, neither of the asymptotic approximations is appropriate as the number
of assets increases. When N = 200, for example, the approximate P-values are
less than 0.001 whereas the exact P-value is 10%. Generally speaking, the
asymptotic approximations tend to under-estimate the exact P-values, and hence
tend to over-reject the null hypothesis if they are used in practice. Notice that the
choice of 8§, =25 reflects the typical value from our empirical applications
(Section 4). If we increase or decrease 8, by 10, the exact P-values will change
only slightly, similar to the example in the previous subsection. This implies that
the asymptotic approximations remain unreliable even with other plausible choices
of 6,. Furthermore, by the monotonicity of the P-value, the asymptotic approxi-
mations worsens if a value of &, larger than 25 is used. Therefore, despite the
simplicity of the asymptotic approximations, the small sample procedures remain
important and may have to be used to make correct statistical inference in
applications where the sample size is small compared to the number of assets.

3.3. Equivalence to the likelihood ratio test

The proposed Wald test is in fact equivalent to the usual likelihood ratio test.
Such an equivalence was first established by Berndt and Savin (1977) for linear
hypotheses and later by Shanken (1985) for testing multi-beta pricing restrictions.
It is interesting that there remains a simple linkage between the likelihood ratio
test and the Wald test even in the case of the rank hypothesis.

To obtain the ML estimator under the rank constraints, > we maximize the

5 After completion of an earlier version of this paper, Peter Robinson alerted the author to the fact
that Anderson (1951), Izenman (1975), Robinson (1973), Velu and Reinsel (1987), and Reinsel (1993),
among others, have obtained explicitly the constrained ML estimator. Although partly similar to Tso
(1981), our approach computes the estimator efficiently and allows one to obtain the finite sample
distribution easily.
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likelihood function conditional on @ and obtain the ‘‘concentrated’’ likelihood
function:

T
log L(O) = —Elog\Q)+C, (28)

where 2=(Y —X®)(Y - X6O) and C = —NT[log(27) — log T + 1]/2. Under
the rank constraints, & = AB for some A, L X K, and B, K X N. Conditional on
A, the estimator of B is B=(I"'T")"'I''Y with "= XA. Hence we need only to
find A that minimizes the ‘concentrated’ determinant:

1021 =(Y-TB)(Y-TB)|=|(Y—-XAB)(Y-XAB)|.

If A and B are a solution, so are AU and U™' B where U is an arbitrary
nonsingular K X K matrix. Thus we can assume, without the loss of generality,
that I'I'= AX'XA =1. Then | £2| can be written:

Q1= 1Y'Y]- [(QAY(L, - Z)(QA) ,
where both Q and Z are L X L matrices:
ZEQ_"X’Y(Y'Y)_]Y’XQ'I,Q’QEX’X. (29)
Hence, we need only to minimize [(QAXI, — Z)QA)| which can be done by
using the Poincare Separation Theorem:
Lemma 1. Let V be an L X K matrix such that V'V=1,, and Uan L XL

positive definite matrix. Then the i-th largest eigenvalue of V' UV is bounded both
below and above by the eigenvalues of U:

A ke (U) < A(V'UV) <A(U),i=1,...,K. (30)

Furthermore, the right-hand side becomes an equality if and only if V is formed
by the eigenvectors corresponding to the K largest eigenvalues of U, and the
left-hand side becomes an equality if and only if V is formed by the eigenvectors
corresponding to the K smallest eigenvalues.

Proof. Rao (1973, P. 64). Q.E.D.

As an immediate consequence of this Lemma, we have [V'UV| >
A~ g+ 0 - - A,(U), implying that the minimum of | £} is a product of Y'Y |
and the K smallest eigenvalues of I, — Z. Let A, > ... > A; > 0 be the eigenval-
ues of Z, and P a matrix of the eigenvectors, then | 2| is minimized if A= Q™ 'P
and the minimum is given by:

QI =[Y'YI(1=A) - (1-2Ag). (31)
A similar formula for the unconstrained | 2] is:
10,1 = 1YY (1= A)(1=Ay) - (1= Ay). (32)

A combination of (31) and (32) yields a formula for the likelihood ratio:

LR=[(1— Ay y) - (1= (33)
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Equations (31)—(33) are well-known results (sece, e.g., Tso, 1981). They are
derived here by a slightly shorter method, and are provided for the completeness
of the paper.

To summarize, the constrained maximum likelihood estimator of @ and X is:

-~ 3 1 ® ! )
O=Q7'PPQ7VX'Y, and 3= (Y -XO) (Y -X6), (34)

where P, L X K, is the matrix formed by the ‘standardized’ eigenvectors (P'P =
I) corresponding to the first K eigenvalues of Z from (29). There are only two
matrix inversions to be performed, the L XL and N XN matrices Q™' and
(Y'Y)"! which are easy to compute in most applications. Since PP’ is invariant
to permutations of the columns of P, the constrained estimator is unique.

By the likelihood ratio principle, LR should be close to 1 if the null hypothesis
(2) is true. In this case, we expect to observe small Ay, .,..., A,. Any function of
the eigenvalues, such as the maximum of Ay, ,,...,A,, can be used as a test
statistic. When the maximum is small, LR should be close to 1 and we cannot
reject the null. However, we use in what follows the W, statistic:

, (35)

for two simple reasons. First, it is the likelihood ratio test [log Wy = —(2/T)
log(LR)]. Second, its distribution has simple analytical bounds for some useful
special cases, providing additional insights on the test and on the use of the Monte
Carlo integration approach. ©

Finally, we want to show that the Wald test is equivalent to the likelihood ratio
test. Because W from (18) and Z from (29) are not identical matrices, we cannot
in general expect that their eigenvalues are related to one another. Interestingly
though, it can be shown that (see Appendix A):

AN=&/(1+E), j=1,...,L. (36)

Hence, the W, defined by (19) must be identical to that defined by (35), i.e.,
the proposed Wald test is equivalent to the likelihood ratio test.

4. Empirical results

In this section, we apply our methodology to examine the number of latent
factors in the US equity market. Following Ferson and Harvey (1991) and others,
we get twelve industry returns (petroleum, finance / real estate, consumer durables,

® An additional test, W, = LY k.14, /(= A, also has simple analytical bounds. This test is an
analogue of the Lawley—Hotelling’s trace test for linear hypotheses.
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Table 2
Means, standard deviations autocorrelations of monthly portfolio returns from October 1941 to
September 1986 (540 observations)

Industry portfolio returns *

Variable Mean Std. dev. Autocorrelation
Pi [ P Py P12 P24

Industry 1 1.199  5.005 0.011 ~0.030 0.049  0.068 0.031 0.000
Industry 2 1.091 4.426 0.061 ~0.013 —0.007 0.038 0.019 0.014
Industry 3 1.115  5.023 0.078 0.025 0.022 0.054 0.010 —0.018
Industry 4 1.001 4.488 0.020 0.000 0.030 0.072 0016 0.013
Industry 5 1.056  3.855 0.117 0.018 0.040 0.054 0.036 —0.029
I[ndustry 6 0.960  5.195 0.113 ~0.026 —-0.006 0.026 0.022 0.026
Industry 7 1.107  4.773 0.103 ~0.007 0.038 0.047 0.041 0.045
Industry 8 1.043  5.692 0.071 0.027 —-0.021 0.099  0.031 0.028
Industry 9 0.921 3.336 0.105 ~0.014 0.039 0.092 0.039 0.053
Industry 10 1.047  4.860 0.132 0.052 0.010 0.053 0.046 —-0.070
Industry 11 1.247  5.688 0.131 0.042 0.023  0.043 0.034 —0.031
Industry 12 1.256  5.757 0.208 0.090 0.034  0.000 0.047 —0.104

* The industry groups are: 1= petroleum, 2 = finance /real estate, 3 = consumer durables, 4 = basic
industries, 5 = food /tobacco, 6 = construction, 7 = capital goods, 8 = transportation, 9 = utilities, 10
= textiles /trade, 11 = services 12 = leisure.

basic industries, food / tobacco, construction, capital goods, transportation, utili-
ties, textiles / trade, services and leisure). By arbitrarily choosing petroleum as the
first asset, eleven excess returns are obtained as the returns in excess of the return
on petroleum. The returns are monthly data from October 1941 to September 1986
(45 years). Although the sample size T can be any number provided T >N + L,
the parameter estimation may not be very accurate if 7 is too small. On the other
hand, concerns about parameter stability suggest that 7 should not be too large.
Following the usual practices, we choose the five-year subperiods. For the sake of
comparison, we also provide results for the entire sample period.

Means, standard deviations and autocorrelations of the data are presented in
Table 2. The means range from 0.92% per month (11.04% per year) for the
utilities industry (industry 9) to 1.26% per month for the leisure industry (industry
12). The lowest standard deviation, a measure of the total industry risk, is found in
the utilities industry and the highest is found in the leisure industry. Although for
both industries 9 and 12, the high or low average returns are associated with their
industry risks, the petroleum industry (industry 1) has lower risk and higher return
than the transportation industry (industry 8). However, this is not in contradiction
with financial theories that high returns should be associated with high systematic
risks which are not necessarily the total risk as measured by the standard
deviation. There is only very small first order autocorrelations and others die out
fast as the lags increase.
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There are two sets of instrumental variables. The first is a small set which
contains returns on the value-weighted and equal-weighted indices plus a constant.
The second is a large set comprising: the returns on the equal-weighted index in
excess of the 30-day Treasury bill rate, a dummy variable for January, the return
for holding a 90-day bill for one month less the return on the 30-day bill (term
premium), the yield on Moody’s BAA-rated bonds less the yield on Moody's
AAA-rated bonds (junk bond premium), the dividend yield on the Standard and
Poor’s 500 stock index less the return on a 30-day bill (dividend yield spread), and
a constant term. To be consistent with the model assumption that investors know
the instrumental variables at the time when forming their expectations about the
stock returns, all the instrumental variables of returns are lagged one month.

Although the number of instrumental variables L can be arbitrary provided
K <L <N, the small set is chosen because it contains market information as
reflected by the indices. The large set is chosen to provide a wide selection of
variables that are potentially those investors may use to forecast stock returns. The
predictability of the term premium on stock returns was established by Fama
(1984) and Campbell (1987), that of the dividend yield spread by Fama and
French (1988, 1989) and Campbell and Shiller (1988), and that of the junk bond
premium by Keim and Stambaugh (1986).

Table 3 summarizes the results of testing whether there is only one ‘priced’
latent factor. Panel A provides the results over each five-year subperiod of the
sample. The second column is the Wald test statistic (W) and the third is the
associated exact P-value (P, ), both of which are the results in the case where the
small instrument set is used. The P-values vary from a low value of 0.169 to a
high value of 0.965. We cannot reject the null hypothesis at the usual 5% level, or
even at the 10% level. To study the sensitivity to the choice of the instrumental
variables, we test the one factor hypothesis again by employing the large instru-
ment set which contains more information variables, such as the junk bond
premium (the credit change of companies), than the small instrument set. The
results are reported in the fourth and fifth columns of the table. At the 5% level,
there is only one P-value, 0.030 for the period 1961/ 10—-1966 /9, that is slightly
below 5%. For all other periods, the P-values are greater than 5%. Overall, there
is almost no evidence at all against the null hypothesis that there is one latent
factor versus the alternative hypothesis that there are at least two factors.

An alternative procedure is Hansen’s (1982) GMM test. As pointed out earlier,
this test cannot be used in our studies over the five-year subperiods due to the
singularity of the optimal weighting matrix. Over the entire period, the test can be
used, and is obtained analytically based on Zhou (1994). Both the test statistic and
the associated asymptotic P-value are reported in Panel B of Table 3. The
P-values from the GMM test are 85% and 6.6% for the two instrument sets,
respectively. We cannot again reject a one-factor model. We also report in Panel B
the evidence of the Wald test over the entire sample period. When the small
instrument set is used, the P-value is 52.9%, favoring a one-factor model.
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Table 3

Tests of one latent factor for stock returns

We test whether the expected industry excess returns are driven by only onc latent factor:
E(R,IZ,_\)=byA(Z, ), i=1,. N,

where A(Z,_,) is the factor risk premium, Z,_, is the information set b;, is the excess conditional
beta. Panel A provides the results over each five-year subperiod of the sample. The second column is
the Wald-type test statistic (W, ) the third is the associated exact P-value (Py;). The fourth fifth are
similar results except that the large instrument set is used instead of the the small instrument set. Panel
B provides the results of using both the Wald-type test the GMM test for the whole period

Period Panel A: Five-year subperiods (T = 60)

Small instrument set Large instrument set

Wy Py Wi Py
1941 /10-1946 /9 1.6415 0.169 2.8454 0.356
1946 /10-1951/9 1.3613 0.703 3.3242 0.137
1951/10-1956 /9 1.3816 0.655 2.8912 0.325
1956 /10-1961 /9 1.4270 0.544 3.5660 0.081
1961,/10-1966 /9 1.5401 0.308 3.9997 0.030
1966 /10-1971 /9 1.5023 0.375 2.9972 0.266
1971 /10-1976 /9 1.2144 0.965 2.5562 0.565
1976 /10-1981/9 1.3578 0.713 3.6727 0.064
1981 /10-1986 /9 1.3154 (.808 3.2691 0.155

Panel B: Whole period (T = 540)

Wald-type test 1.0359 0.529 1.1768 0.002
GMM test 13.567 0.850 65.857 0.066

However, the P-value is only 0.2% when the large instrument set is used.
Concerns of parameter stability over the entire sample period suggest that we
should give more weight to the subperiod results. So, we interpret the overall
evidence as in favor of a one-factor model. ’

The fact that we cannot reject a one-factor model may not be disappointing. In
fact, many asset pricing theories are one-factor models and the difference among
the models is in the specification of the factor. For examples, the classical capital
asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) and the
zero-beta CAPM of Black (1972) are one-factor models, which identify the factor
as the market portfolio. The arbitrage pricing theory (APT) of Ross (1976) has a
L-factor returns generating process but under certain equilibrium conditions, the
return on assets are rewarded by only one factor which is a portfolio of the
L-factors in the returns generating process. In a multi-good, continuous-time
model with uncertain consumption-goods prices and uncertain investment opportu-
nities, Breeden (1979) shows that the multi-beta asset pricing model of Merton

7 To obtain the analytical GMM test in Table 3, we use thecorem 2 of Zhou (1994) first, and then
Theorem 1 there with d = NL-8, where 8 = KIN—K+1L).
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(1973) collapses into a single-beta model with aggregate consumption as the only
“priced’ latent factor. Therefore, one may interpret the evidence here as general
support of one-factor asset pricing theories. But it does not, of course, discriminate
among them.

5. Conclusions

We propose small sample tests for rank restrictions on the regression coefficient
matrix in the classical multivariate regression model. As an application, we
investigate the number of ‘priced’ latent factors in the US equity market by using
monthly portfolio returns grouped by industry. Based on two sets of instrumental
variables, we cannot reject the hypothesis that a one-factor model explains the
industry returns reasonably well.

There are many issues that appear of great interest for further research. It would
be interesting to apply the small sample results to study stock returns, term
structure theories, forward currency premiums, international equity returns and
capital integration, and the reduction of factors in a variety of contexts, and to
compare the results with those obtained by the asymptotic GMM approach. In
addition, because both the estimation and test procedures proposed in this paper
rely on the normality assumption, further studies are needed to assess the
robustness to non-normality. In particular, following Rothenberg (1984), it may be
useful to develop an Edgeworth expansion for the tests in the time series case,
complementing earlier studies by Robinson (1973) and Velu and Reinsel (1987).
Finally, a Bayesian posterior analysis of the deltas and an odds-ratio approach for
testing the rank constraints seem to be an important topic to pursue. This is likely
to be more appealing in the case where the disturbances are Gaussian VARMA.
For the VARMA models, it appears extremely difficult to obtain any small sample
results, but an exact Bayesian inference may be feasible by using Monte Carlo
integration with importance sampling (Geweke (1989)) or by using the Gibbs
sampling approach (Geweke (1994)).

Appendix A: Proofs
1. Proof of Theorem 1.

Although the estimation technique of Zhou (1991) is not applicable in the
K >1 case, the proof can be easily extended to prove Theorem 1 based on the
relationship between the eigenvalues of W from (18) and Z from (29). However,
we provide in what follows an alternative and rather simple proof.

_ Itis well known from multivariate analysis (e.g., Muirhead, 1982, p. 431) that
® and 23 are statistically independent and have multivariate normal and Wishart
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distributions respectively (using the matrix normal notation of Muirhead, 1982, p.
79):

O~N(O(XX) '®X3), TS~ W, (T-L,3).
It follows that:
Y =(XX)O~N(XX)'?0,1, 83).

By (18), &,,..., ¢, are eigenvalues of the matrix Y,"(T3)7'Y,"".
Now notice that (T —L) > N > L, we have from Theorem 10.4.5 of Muirhead
(1982, p. 454) that the joint density function of &,,..., £ is given by:

fO&s-0 &)

1 T N A .
=etr(—gA)]F1 E,E,E,F(I+F)

77_L2/21"L(T/2) L gin, L
. L(L/2)T(N/2)T,((T—N)/2) ZI:Il (1+£)" ',11(51 §),

where A=M, 3 'M), M, =(X’X)"/?0, F=diag(¢,,..., &), n,=(N—L —
/2, n,=(T-=N—L—1)/2, etr is the exponential function of the trace
operator, and | F,(a; b; M; M,) is the hypergeometric function of matrix argu-
ments (see James, 1964 or Chapter 7 of Muirhead, 1982). Because f(¢,,..., &)
depends on A only through its eigenvalues (see (20)), we can write A=
diag($,,..., 8,).

Finally, since Y;" is L XN, A" =Y "' Y," will be singular when N> L. Let
B*=T73. It is seen that £,,..., & are non-zero eigenvalues of A*B* !, a
“‘ratio”” of a possibly singular Wishart matrix to a non-singular Wishart matrix.
By the important results for singular Wishart matrix developed first by James
(1964), the non-zero eigenvalues of A*B* "' are equivalent to those of two
non-singular Wishart matrices with the adjusted degrees of freedom as stated in
Theorem 1 (see the comments on p. 455 of Muirhead (1982) and Theorem 10.4.2
there). Q.E.D.

2. Proof of equation (36):

By definition, &, > &,> --- 2§ =0 are the roots of the determinantal
equation:

(X'X)7%O[(Y -X0) (Y -X8)] '6'(xXX)"* - £1] =0

Using the equality that [UV — &1, | = [VU — €1, | (see, e.g., Zellner, 1971, p.
231), we have, after multiplying |72 | on the lefthand side,

IY'X(X'X)'XY - eV [1, - X(X'X) 'X]Y| =0.
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Combining the terms, dividing the result by (1 + £), we get:
Y'X(X'X) 'XY-[&(1+8)]YY]=0.

Now, multiplying by (YY) ™! on the both sides and using again the equality
that [UV — &I, | = |VU — ¢1, |, we obtain exactly the determinantal equation
for the eigenvalues of Z with ¢/(1 + &) plays the role of A. Therefore we have
A=E/0+¢), j=1,...,L. QED.

Appendix B: Drawing samples from Wishart distributions
1. Drawing samples from a central Wishart distribution

Based on Bartlett’s decomposition (Muirhead (1982), p. 99), we have a
two-step procedure: (i) draw independent L,; ~ N(0, 1), i >j and L, ~ x*(N — i
+ 1) to form a lower triangular matrix L; (i) compute the m X m matrix: § = LL,
then S ~ W, (N, I,). In general, to draw samples from W, (N, 3), we obtain first
the LU decomposition of 3, 3 =PP’. Then PSP' ~ W, (N, X). Notice that if a

number of samples are to be generated, P needs to be computed only once.
2. Drawing samples from a non-central Wishart distribution

By a theorem due to Anderson (Johnson and Kotz (1972), p. 177), we have: (i)
draw a Wishart sample S~ W, (N —m, 1,); (ii) draw m® independent normal
samples z;; ~ N(0, 1) to form a m X m matrix Z; (iii) compute the m X m matrix:
V=8+(Z+MXZ+M), then V~W (N, 1, M).
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