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This paper proposes & way to allow Bayesian priors to refiect the objectives of an economic
problem. That is, we impose priors on the solution to the problem rather than on the prim-
itive parameters whose implied priors can be backed out from the Euler equation. Using
monthly returns on the Fama-French 25 size and book-to-market portfolios and their 3
factors from January 1965 to December 2004, we find that investment performances ander
the objective-based priors can be significantly different from those under alternative priors,
with differences in terms of annual certainty-equivalent returns greater than 10% in many
cases. In terms of an out-of-sample loss function measure, portfolio strategies based on the
objective-based priors can substantially cutperform both strategics under alternative priors
and some of the best strategics developed in the classical framework.

. Introduction

Many finance problems have well-defined economic objectives. but usually
no connection has been made between parameter estimation and such objectives.
In portfolio choice problems, Zellner and Chetty (1965). Brown (1976), (1978),
Klein and Bawa (1976), and Jorion {1986) are earlier Bayesian studies under
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parameter uncertainty that rely on diffuse and data-based priors.! Shanken (1987),
Harvey and Zhou {1990), and Kandel, McCulloch, and Stambaugh (1995) use
similar priors for asset pricing tests. While Pédstor (2000) proposes a new class of
priors that incorporates an investor’s varying beliefs on an asset pricing model,
his study does not address the linkage between priors and the economic objec-
tives at hand, nor do other studies in the economics literature, despite increas-
ing applications of Bayesian decision theory to finance (e.g., Kandel and Stam-
baugh (1996}, Barberis (2000), Brennan and Xia (2001), Avramov (2002), (2004),
Cremers (2002), (2006), Cohen, Coval, and Pastor (2003), Tu and Zhou (2004),
Wang (2005), Tu (2010), and Pdstor and Veronesi (2009)). On the literature about
Bayesian portfolio analysis, Bawa, Brown, and Klein (1979) provide an excellent
earlier survey, while Fabozzi, Huang, and Zhou (2010) and Avramov and Zhou
(2010) review the recent developments.

In this paper, we explore a general approach to forming priors based on eco-
nomic objectives. To see intuitively how an economic objective function may mat-
ter, consider how one may allocate funds between a riskless asset and arisky asset.
The optimal portfolio weight w is known to be proportional to /o for a mean-
variance investor. where p and o? are the expected excess mean and the variance
of the risky asset, respectively. Even before the investor observes any data, it is
likely that he might have some idea of the range for w, say within 0 and 1 with
high probability. This implies that g and o7 cannot be arbitrarily assigned. but
should be related in such a way that the ratio z2/c” falls mostly into a certain
range. This prior on g and o is different from other priors, since it links the prior
to the economic objective at hand. As it turns out, our applications below show
that such objective-based priors can make a substantial difference in portfolio de-
cisions as compared with other priors. For example, using monthly returns on the
Fama-French (1993} 25 size and book-to-market (BM) portfolios and their 3 fac-
tors from January 1965 to December 2004, we (ind that investment performances
under objective-based priors can be significantly different from those under alter-
native priors, with differences in terms of annual “certamty-equivalent” returns
(CERs) greater than 10% in many cases.

The CER measures the difference in Bayesian utilities had one switched from
1 prior to another, without the ability to decide which of the priors is better. in
general, it is difficult to argue that 1 prior is beiter than another, because what
is good or bad has to be defined, and the definition may not be agreeable to all
investors. Nevertheless, following the literature on statistical decision (see, e.g..
Lehmann and Casella (1998)), we use a loss function approach to distinguish the
outcomes of using various priors. The prior that generates the minimum loss is
viewed as the best prior. In the portfolio choice problem below, the loss function
is well defined. In terms of this loss function, we find that the portfolio strategies
based on the objective-based priors significantly outperform the strategies based

'n the classical framework, different loss functions might be proposed to account for dif-
ferent objectives (see, e.g., Lehmann and Casella (1998)), but the associated parameter estimates
are difficult to obtain, Some of these issues are addressed by Tu and Zhou (2010) and references
therein.




Tuand Zhou 961

on other priors. It is in this sense that the objective-based priors are better than
others. and are valuable in the context of making portlolio decisions. Intuitively,
the objective-based priors incorporate the economic objective at hand into the
prior design, and hence they are likely to be useful, since they place greater em-
phasis on those parameter values whose implied portfolio weights are more likely
to maximize the objective function.

Portfolio weights are the parameters of primary interest in the use of
the objective-based priors. The importance of focusing on portfolio weights
was recognized at least as early as Brandt (1999) and Britten-Jones (1999).
Okhrin and Schmid (2006) provide the distributional properties of portfolio
weights. In contrast to these studies in the classical framework (which solve
the weights and derive their distribution), we impose priors on the portfolio
weights, use the first-order condition (FOC) (the Euler equation) to infer priors
on the primitive parameters, and then optimize the utility under the predictive
density of the data accounting for parameler estimation errors. Bayesian priors
on the portfolio weights have received more attention recently. DeMiguel,
Garlappi. Nogales, and Uppal (2009) propose a constrained norm approach
for portfolio choice and interpret it as a result of using a suitable prior belief
on the portfolio weights. Based on a Markov chain Monte Carlo approach.
Chevrier and McCulloch (2008) provide a feasible Bayesian portfolio selection
framework that directly translates priors on the portfolio weights into portfolio
decisions.

The Bayesian approach under objective-based priors is well suited to ad-
dress questions related to portfolio weights. In particular. it can be applied to
assess the economic importance of asset pricing anomalies® (see Schwert (2003)
for an excellent survey on anomalies). Following Péstor (2000), we assess the im-
portance of asset pricing anomalies by examining the significance of the CERs
when an investor avoids investing in assets associated with anomalies. The in-
vestor’s degree of belief in the usefulness of anomalies can naturally be repre-
sented by the investor’s prior weights on assets associated with the anomalies.
For instance, if the investor is highly skeptical about the anomalies, he can set his
prior weights as 0 on the anomaly assets. This prior can then be updated by data
via the Bayesian approach. We find that the CERs can be of significant impor-
tance even for an investor with a strong skeptical belief about the profitability of
anomalies.

The remainder of the paper is organized as follows. Section 11 provides the
objective-based priors and the associated Bayesian framework. Section I extends
the analysis to the case in which asset returns are predictable. Section IV compares
various Bayesian portfolio rules based on a Bayesian criterion, and Section V
compares these Bayesian rules among themselves and with sorme classical rules
based on an out-of-sample criterion. Section V1 analyzes asset pricing anomalies
in a Bayesian framework. Section VII concludes.

“Itcan shed light on whether investing in a subset of assets is equivalent to investing in all of them,
which is related to the “home bias™ puzzie in international finance that investors invest mainly in their
own countries. This line of study goes beyond the scope of this paper.
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lI.  The Bayesian Framework
A.  The Portfolic Choice Problem

Consider the standard portfolio choice problem in which an investor chooses
his optimal portfolio among N risky assets and a riskless asset. Let ry and r, be
the rates of returns on the riskless asset and N risky assets at time 7. respectively.
We define R, = r, — rply as the excess returns (i.e., the returns in excess of the
riskless asset), where 1y is an N-vector of 1s, and we make the standard assump-
tion on the probability distribution of R, that R, is independent and identically
distributed (i.1.d.) over time and has a multivariate normal distribution with mean
s and covariance matrix V.

To have analytical solutions, we focus our analysis on the standard mean-
variance framework. since it is one of the most important models and is widely
used in practice.” However, our approach can be applied to nonquadratic utilities.
This will be discussed briefly below.

In the mean-variance framework, the investor at time 7 chooses his portfolio
weights 1w 80 as to maximize the quadratic objective function

i Yoy
= Wi sw Vi,

(H Ulw) =

where R, == w' Ry, is the future uncertain portfolio return and ~ is the coefficient
of relative risk aversion. It is well known that, when both i and V are assumed
known, the portfolio weights are
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and the maximized expected utility is
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where 67 = 1/ V™~ 1 is the squared Sharpe ratio of the ex ante tangency portfolio
of the risky assets.

However, w* is not computable in practice because ¢ and V are unknown. To
implement the previously mentioned mean-variance theory of Markowitz (1952),
the optimal portfolio weights are usually estimated by using a 2-step procedure.
First. the mean and covariance matrix of the asset returns are estimated based on
the observed data. Second, these sample estimates are treated as if they were the
true parameters and are simply plugged into equation (2) to compute the optimal
portfolio weights. This gives rise to a parameter uncertainty problem because the
utility associated with the plug-in portfolio weights can be substantially differ-
ent from U(w™) due to using the estimated parameters that can be substantially
ditferent from the true ones.

*See Grinold and Kahn (1999), Litterman {2003). and Meucei (2005) for practical wpplications
of the mean-variance framework; and sce Brandt (20093 for an excellent survey of the academic
literature.



Like all the studies cited in the introduction, this paper will provide a par-
tial equilibrivin analysis of the parameter uncertainty problem. The solutions are
derived from the investment perspective of an investor whose trading has no im-
pact on the asset prices. An equilibrium analysis, such as the study of the risk
premium on parameter uncertainty in an economy with all Bayesian investors. is
an important problem but beyond the scope of this paper.

B. The Standard Bayesian Solution

The Bayesian approach provides a natural solution to the parameter uncer-
tainty problem. Following Zellner and Chelty (1965), the Bayesian optimal port-
folio is obtained by maximizing the expected utility under the predictive
distribution, that is,

@ WP = argmax,, / Uwip(Ry.1|Pr) dRy4
Ry

EArgImax,, / / / TOw)p(Rysrs i Vidy) dudVdRy,
rer S SV

where U(w) is the utility of holding a portfolio w at time 7'+ 1, p(Ry.: [Py} is the
predictive density, 7 is the data available at time T, and

5 PRy, 1, VIDPr)y = p{Ryaip, V. $riplp, Vidr),
. \ / PL 127

where p{u, 7} is the posterior density of x and V. In comparing equation (4)
with equation (1), the expected utility is maximized in the Bayesian and classi-
cal framework under the predictive and true distributions, respectively. However.
the evaluation of equation (1) requires treating the 2-step estimates as the true
parameters and is hence subject to estimation error, while the Bayesian approach
accounts for the estimation error automatically. Brown (1976), Klein and Bawa
(1976}, and Stambaugh (1997), among others, using the standard diffuse prior on
pand V.

(6) poli, V) o V7
show that the resulting optimal portfolio weights,
/T —-N=-2\ .
7 Bayes _ ) _\:»I i
¢ W ( T+1 H

are always better than the classical plug-in approach in terms of out-of-sample
performance. Kan and Zhou (2007) verify this analytically.

However, neither the classical method nor the diffuse prior approach utilizes
any prior information about the parameters. Kan and Zhou (2007) show that the
Bayesian solution under a diffuse prior can be dominated by alternative estima-
tors, which indicates clearly that the diffuse prior is not optimal in solving the
optimal portfolio problem in the presence of parameter uncertainty. In fact, as
shown in Section 1V, the diffuse prior implies a strong and unreasonable prior
on the cross-sectional variation in the portfolio weights. This seerns to be the key
reason why the diffuse prior fails to do well. The question then is how to construct
useful priors that can improve the investor’s expected utility.
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C. Priors Based on Asset Pricing Theory

Pastor (2000} and Pédstor and Stambaugh (2000) introduce interesting priors
that reflect an investor’s degree of belief in an asset pricing model. To see how this
(v, 7). where v, contains the excess returns
of m nonbenchmark positions and x, contains the excess returns of K (= N — m)

benchmark positions. Consider a factor model maltivariate regression

() v, o= e+ Bxy 4,

where i, is an m < 1 vector of residuals with () means and a nonsingular covariance
matrix X = Vi - BVay B, and o and B are related to 4 and V through

(9) a =y — B, B = v]:vgy,

where y; and Vy (4, f = 1, 2} are the corresponding partition of ¢z and V,

. py Viie Vi
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For u factor-based asset pricing model. such as the 3-factor model of Fama and
French (1993). the restriciion is o = 0.

To allow for mispricing uncertainty, Pdstor (2000) and Péstor and Stambaugh
2000) specify the prior distribution of « as a normal distribution conditional on

X,
‘ ~
(1 wll ~ N ]i()7 @, ( J\)jl ,

where 53 is a suitable prior estimate for the average diagonal elements of 3. The
previous - link is also explored by MacKinlay and Pdstor (2000) in the classi-
cal framework. The magnitude of o, represents an investor’s level of uncertainty
about the pricing ability of a given model when o, == 0, the investor believes
dogmatically in the model, and there is no mispricing uncertainty. On the other

less. Although they provide useful insight. the asset-pricing-theory-based priors
are not necessarily connected with the investor’s objective function. This issue is
addressed later.

D. Priors Incorporating Objectives

Consider now how we construct the objective-based priors formally, the in-
novation of this paper. The idea is to form an informative prior on model parame-
ters such that the implied optimal portfolio is distributed around some reasonable
value. Theoretically, because of certain 1-to-1 mapping, this can also be inter-
preted as we start from 4 prior on the optimal portfolic weights first, and then we
back out the prior on model parameters.

The idea is analogous to those used by Kandel et al. {(1995) and Lamoureux
and Zhou (1996), among others. In the context of tesiing portfolio efficiency,



Tuand Zhou 865

Kandel et al. find that the diffuse prior in fact implies a strong prior on inefficiency
of a given portfolio.* In the context of market return decomposition, Lamoureux
and Zhou find that the diffuse prier implies a concentration on extreme values
about predictability. These are examples in which supposedly innocuous diffuse
priors on some basic model parameters can actually imply rather strong prior
convictions about particular economic dimeunsions of the problem. That is, diffuse
priors can be unreasonable in an economic sense in some applications. As aresult,
both of the cited studies suggest using informative priors on the model parameters
that can imply reasonable priors on functions of interest.

The optimal portfolio weights w are the functions of our interest here and
are also the solution to the utility maximization problem. Assume for the moment
that no data are available and V is a known matrix. Suppose we have a normal
prior on g,

(12) oo~ N{vVwg, V),

where Vy is the prior covariance matrix ol ji. Both wy and Vy are prior constants
to be determined later. Based on the objective [unction (the quadratic utility here),
we know, from the FOC or the Euler equation, that w and g are related by

13 o= vV,
which implies w must have the following prior distribution:
(14) woo~ N(wg, VoV /).

This says that w has a prior mean of wy. The magnitude of Vy determines how
close the distribution of the implied portfolio is around wy. Hence, conditional
on V and starting from wy, we can construct a normal prior on g such that the
implied prior on w is concentrated around wy. I wy 1s chosen as a desired value,
the implied prior distribution on w should be more reasonable than otherwise, as
shown in our applications later.

Mathematically, we can also interpret that we start from a prior density on
w, equation (14), and then, based on the objective function that provides equation
(13), we back out the prior on the primitive parameter . equation (12). The map-
ping is clearly 1-to-1 and unique. When V is treated as unknown, as is the case
in general, we can set V as a standard Wishart random variable. Then equation
(14) implies some sort of mixture normal (unconditional) distribution for w. but
t¢ is still normal conditional on V. Moreover. (w, V) and (i, V) still have a 1-to-1
mapping, and a prior on the former uniquely determines a prior on the latter, or
vice versa. We make 2 remarks. First, we use a normal prior on z conditional on
V so that it is conjugate. Then. the prior cun be easily combined with the like-
lihood function. Second, the previous procedure works for any utility function.
This is because equation (13) is the solution to the Buler equation in the special
case of the quadratic utility. For nonguadratic wtilities, we can numerically solve

4Klein and Brown (1984) provide a gencric way to obfain an uninformative prior on nonprimitive
parameters, which can potentially be applied to derive an uninformative prier on efficiency.
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w0 Tor any given w and V. In this case. if we start from a prior on w, we can always
determine the prior on g A simple approach for doing so is via simulation. A
draw of w defermines a draw of p based on the Euler equation, and this prior in
turn can be combined with the likelihood function of the data.

Deferring the choice of Vi, we consider first how to determine a sensible
value for wg. In choosing wg, without observing any data and without knowing
the differences between the risky assets, it is reasonable to treat all the risky as-
sets equally. A diversification consideration would suggest that we assign an equal
prior weight across all the risky assets. that is. wg is proportional to 1y, a vector
of 1s. In other words, wy is proportional to the well-known naive 1/N rule that in-
vests equally across all the risky assets. which is the focus of DeMiguel, Garlappi,
and Uppal (2009) in their comparison with other rules. The sum of the weights
across all the risky assets is the total dollar amount invested in risky assets. To re-
flect a wide range of this allocation to risky assets, we will consider 2 alternative
values, 50% and 100% in later applications.

Another sensible value of wy is to take it as the value-weighted market
portfolio weights, w,,. Doing so leads to an interesting relation to Black and
Litterman’s (1992) asset allocation method, which has received considerable at-
tention {rom many practitioners (see, e.g.. Litterman (2003), Meucci (2005)).
They argue that, once taking wy as the market portfolio weights,

(15) o = “mVwy

are the equilibrium expected returns as investors hold the market in equilibrium
(with v, as the risk aversion parameter of the representative investor). These ex-
pected returns, which are used in their asset allocation model, yield more balanced
portfolios than the standard solution of the mean-variance framework. Like their
model, our approach can also use the equilibrium expected returns as the prior
means. However, there are 3 major differences between their approach and ours.
First, their prior is formed with a view on the equilibrium returns and is updated by
investors’ proprietary views. In the absence of the proprietary views, their portfo-
lio decision is based on the equilibrium expecied returns. and there is no Bayesian
updating. In our case, even if we use the market portfolio weights to determine
the equilibrium expected returns, these values will be updated by the data. Sec-
ond, their procedure ignores uncertainty about the covariance matrix. Third, their
procedure does not make use of the predictive distribution.”

For the prior specification of Vi, a simple way is to use a value proportional
to the identity matrix that implies

(16) oo~ NV, ally),

where Jf, reflects the degree of uncertainty about g, A 0 value of ('p implies a
dogmatic belief in g = v Vwy as the true mean conditional on a given wa. A value

SA formal treatment of their model is bevond the scope of this paper. Zhou (2009) provides a
framework for combining their model with the data.
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than these 2 extremes, cr% places some modest informative beliet on the degree of
uncertainty as to how g is close to jug.

However. the identity matrix specilication has an undesired property. It mea-
sures the difference between 2. an alternative value of p, and py,

(17) g — e #U,

by placing equal importance on the deviation of each element of gy from that
of pp. While this weighting may be plausible in some applications. it does not
measure adequately the investor’s assessment of the deviations given his utility
function. To see this, let w, and wq be the portfolio weights associated with
and pg. respectively, based on the objective function. It is easy to show that (see
Appendix)

I )
(18) Ulwg) — Ulwp) =~ - Sk qu/!Z l1eg = 1ol
where
_ Fu . Y [ ou !
(11()) .(2 = - (—(—‘—H/{) #7%31’()
Owop T dhwiw'

Hence, from the perspective of utility evaluation, the investor weighs the impor-
tance of the deviations by 27! rather than by the identity matrix. This suggests
that a potentially better prior on p is

20) oo~ N {“ /

where 57, is the average of the diagonal elements of (2. In this way, the investor’s
objective function, the utility function here, also plays a role in the specification of
the prior covariance matrix for i, in addition to its role in the mean specification
based on the FOC. Note that the prior given by expression (20) is invariant o
any positive monotonic transformations of the utility function. In the case of the
roean-variance ultility here, it is easy to verify that £2 = ~V. Hence, the previous
prior can be written simply as

[ S

where V is the covariance matrix of the asset returns and 57 is the average of the
diagonal elements of V. As mentioned earlier, we will use a standard Wishart
prior for V. Then, we will have a complete prior specification on all the primitive
parameters je and V.

Consider now the case in which part or all of the data are available for form-
ing priors on the parameters.® For simplicity, we assume that 10 vears of monthly

®Empirical Bayesian analysis allows for such flexible use of data to form priors. Sec Berger (1985)
and references therein. Jorion (1986) seews to be one of the first studies using a Bayesian empirical
prios.
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data are available. Let f1q and Vi, be the sample mean and covariance matrix,
respectively. Then, the standard Bayesian informative prior on 4 based on the 10
vears’ data may be written as

7
N I .
(22) o~ N (Hm:(f,‘}, (:‘:"' /10
§7
2 13

where §3; is the average of the diagonal elements of Vi, and 7
eter that indicates the degree of uncertainty.

Given the data, a Bayesian who uses the objective-based priors can start
from the nondata prior (21), update it based on the 10 years™ data, and then use
this updated prior for his future decision making. The approach is analogous to
updating the diffuse prior to get equation (22). The updated prior on g is given by

YA A
(23) o~ N {;2}'(3,0*,‘; (-;V)
P\ )

where /if, = vV, and Wy is the objective-based Bayesian optimal portfolio
weights based on the 10 years’ data. Itis interesting that the conjugate prior, equa-
tion (22), provides a similar covariance structure to that of the objective-based
prior. However, their means are entirely different, and they can imply significant
differences in portfolio decisions. as shown later.

So far we have assumed the quadratic utility for simplicity because the FOC
can be solved analytically in this case. For a more general utility function, how-
ever, a numerical approach has to be used to solve it. In this case. one can place a
truncated prior around the FOC, rather than a simple normal prior as we did here.
Due to its technical nature, we will study these issues elsewhere. In a nutshell, our
idea 1s to use the FOC to generate a prior on the primitive parameters. It is these
economics-motivated restrictions that are found helpful in our later applications.

[S——

2
"

ié

is a scale param-

E. Performance Measure

It will be of interest to see what the possible performance differences are
when one switches from 1 prior to another. As other cases follow straightfor-
wardly, we illustrate only how to measure the differences in the case when an
investor switches from the diffuse prior to the objective-based prior. Following
Kandel and Stambaugh (1996) and Pastor and Stambaugh (2000), a plausible
measure is the difference in the expected utilities of the 2 priors under the pre-
dictive distribution of the latter. Let £ and V* be the predictive mean and covari-
ance maltrix of the asset returns under the objective-based prior, respectively, and
let wy, be the associated optimal portfolio allocation. Then the expected utility of
using wg is given by

. y ’ .
(24) EUp = wuE ~3—14.’0V"w(,,

where v is the degree of the investor’s relative risk aversion. The allocation, wp,
which is optimal under the diffuse prior, should have an expected utility of

(25) EU, = w}_)Eu%w;)v*wD.
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Notice that this expected utility is evaluated based on the same E” and V* of the
objective-based prior. Because of this, the difference

(26) CER = HUp—EUp

is interpreted as the “perceived” CER loss to an investor who is forced 1o aceept
the optimal portiolio selection based on the diffuse prior, or the “perceived” CER
gain of using the objective-based prior instead of the diffuse prior. Since wp 1s
optimal under the objective-based prior, the CER is always positive or 0 by con-
struction. The issue is how big this value can be. Generally speaking, values of
more than a couple of percentage points per year are deemed as economically
significant.”

It should be acknowledged that the CER measure tells us only the atility
differences from switching one prior inte another. It does not say that the prior to
be switched from is the better, nor that the one to be switched to is the better. As a
result, we will also examine performance differences in terms of an out-of-sample
loss function measure in Section V, from the perspective of a frequentist.

1. Objective-Based Priors under Predictability

Kandel and Stambaugh (1996) and Barberis (2000) show that incorporat-
ing return predictability plays an important role in portfolio decisions. Avramov
{2004) extends this in a multivariate setting. The questions we address here are
how the objective-based prior can be constructed and whether it can still make
significant differences in portfolio decisions in the presence of predictability.

Following the aforementioned studies, we assume that excess returns are
related to M predictive variables by a linear regression®

(27 Ry = po+ iz + v,

where 7, is a vector of M predictive variables, v, ~ N{0. Xz}, and the predic-
tive variables follow a vector autoregression {VAR(1)) process

(28) Zr == o+ W Zeey + Uy,

with g, ~ N0, Xz
In a more compact matrix form. we can write the equations as

(29) R = XI'+ Up,
(30) Z = XA+ Uy,

where R Ry) s a T x N matrix formed from the returns, X =
My, Z 4] is a T x {M + 1) matix formed from a T-vector of Is and 7. =

"Fleming, Kirby, and Ostdiek (2001} provide a similar measure in the classical framework.

Spastor and Stambaugh (20093 and Wachter and Warusawitharana (2009) arc examples of recent
studies on predictability, while Rapacl, Strauss. and Zhou (2010} find that the predictability even
holds up out of sample.




efficients, Z = z1.22,.... A
coefficients in the VAR(1) process, and Uy and U7z are the corresponding residu-
als with vec(Ug) ~ N{0, Xpp&tr) and vec(Uy) ~ N(0. Xy & 1y), respectively.

To highlight the intuition, consider the case of 1 predictive variable with
M == 1. Assume further that the dividend yield, denoted as DY, is used in the
predictive regression such that

3D R, = po+ DY, + v,

To reflect a certain degree of uncertainty about predictability, we use a simple
normal prior for gy,

., - {1
(32) polyer) o N {l“lj:‘fﬁ( 5 ->~'k1¢)}-,

- . a . « .
where 1] is the prior mean on g, o measures the uncertainty about predictabil-
ity. and sg 18 the average of the diageonal elements of g, Assuming a diffuse
prior on all other parameters, we have a complete prior

RTINS NS

(33) poll Ay Xgg. Xyz) o polpn) x

This joint prior is informative on predictability, but diffuse otherwise. We hence-
forth refer to it as the predictability-diffuse prior.

To achieve the goal of utility maximization, the FOC imposes an informative
prior on pig + 16 DY, or

(34) poljioipn)

:z
pre—

[ I——

Ly Xoppewo — (DY 7, (ff, ( . )
YRR p

where wy is the prior portfolio weight, DY is the observed DY at time 7 that is
available for portfolio selection at time 7', and f)'z, is the prior scalar of the variance
that measures the degree of reliance on the FOC. Hence, we define the objective-
based prior as the prior constructed by adding this additional conditional density
into the right-hand side of equation (33). In contrast with the predictability-diffuse
prior, the objective-based prior reflects not only predictability, but also the eco-
nomic objective. The marginal prior density of I" = [y, 1" can be written suc-
cinctly as

(35) p{["L}{K} <K _\4]\)!3 x

 exp {";“W/}}e{(r — Doy - ﬂ>(/z’{));},

where I5(ji7) = [vwoXpr — f{DYr, 48] is an N x 2 matrix, and 7 == 2 A0 1 A
is a2 x 2 matrix with

‘/ 1 0 . ol 0
Z — = &
4 \ DY, 1) » ¥ ( 0 ,-;,%) :
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With this simplification, we can combine the objective prior for all of the param-
eters with the likelihood function of the data and obtain the posterior densities for
I and Xgp:

(3()) \UQ{I)L,{/\» D; ~ V \/CL{[) Ll\’!\’ &N (X'Y -+ T)i‘j

(37) Yre Dy~ IW[Sg, T - 1],

where

B8 I = (XX+T7)""XR+TLGE), Sk RR-I"X'XT

Dy denotes the data available at time 7, and IW}| denotes the inverted Wishart
distribution. With these results, it is easy to obtain the predictive distribution of
the returns for our objective-based prior as well as other functions of interest such
as optimal portfolio weights.

IV. A Bayesian Comparison

Inthis section, we first compare the objective-based priors with their usual al-
ternatives based on the Bayesian criterion of equation (26) under the standard 1.1.d.
assumption. Then, based on the same criterion. we examine the performances
under the various priors when the asset returns are assumed predictable.

The data are monthly returns of the well-known Fama-French (1993) 25 size
and BM portfolios and their 3 factors (the market, size, and value factors) from
January 1965 to December 2004 plus 10 years of earlier data for forming the
data-based priors.”

A. CERs under Various Priors

Panel A of Table 1 reports the CERs of switching from the diffuse prior to
the objective-based prior in the case in which the sum of the weights is 100%
(i.e.. wy = 15/N). When we apply the priors to 5 years of monthly data (T = 60),
the CERs are overwhelmingly large (the reason behind this is analyzed below
in detail). They range from an annual rate of 22.66% 10 125.47%. However,
the greater the «,,. the smaller the gains. This is because a greater value of o
moves the objective-based prior closer 1o the diffuse prior. In the case in which
the sum of the weights is 50%. the results are quite similar. For example. the
first entry of 125,47 in Table 1 would become 123.93. We omit those results for
brevity.

As the sample size grows, the influence of the priors decreases. This is not
surprising because both the posterior and the predictive distributions are con-
pletely determined by the data when the sample size is infinity, regardless of the
priors. However, with a sample size as Jarge as 7 =480, Panel A of Table 1 shows

We are grateful to Ken French for making this data available on his Web site (http://
mba. ek dartmouth.edu/pages/faculty/ken french/data Jibrary himi),
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TABLE 1
CERs and CSTDs of Switching from Diffuse 1o Objective-Based Priors

ed) o5

that the CERs can still be substantial. At o, == 1%, the CER is greater than 8%,
although it eventually decreases to an insignificant amount of 0.04% at 7, = 5%.
Overall, it is clear that the objective-based prior, when compared with the diffuse
prior, makes a significant difference in portfolio selections.

Now, to understand the large CERs, we want to assess the differences in
priors on the implied optimal portfolio weights. Let w = (wy, ..., wy)’ be the
portfolio weights. We denote CSTD the cross-section standard deviation,

39) CSTD

where W is the cross-section mean. It is clear that CSTD measures the relative
holdings across assets. If it is too large, the portfolio weights are obviously unrea-
sonable. Under the objective-based prior. the prior mean of CSTD is straightfor-
ward to compute based on random draws of ; and V from their prior distributions.



Under the diffuse prior, however, because of its singularity, its properties can only
be examined by using an approximation. We use a normal approximation on p,

]
{40y u o~ N {7\71\/\]\} .

where A is set at 100% to ensure diffuseness. The mean 15 /N is immaterial. Note
that 1 key feature of the ditfuse prior is that g and V are independent. The diffuse
prior on V is approximated by an inverted Wishart distribution

“1 vl o~ Wiy,

with degrees of freedom = 50, so that the prior contains only information in a
small sample of 50 observations. By the properties of the inverted Wishart distri-

1) Vs /5%, so that E(V) = Vs0/5%,. The value of §%, is set equal to the average of
the diagonal elements of the sample covariance matrix Vsy. Based on priors (40)
and (41), we can make M = 10,000 draws of ¢ and V easily and then use them to
determine the prior mean of CSTD.

The 1st row of Panel B of Table 1 reports the prior means of CSTD. The
last entry, 457,215.43, which is incredibly large, is the prior mean of the CSTD
implied by the diffuse prior. Clearly the scemingly diffuse prior on ¢ and V im-
plies too much cross-section variation in asset positions. In contrast, the prior
means of the CSTD implied by the objective-based prior with varying o, are
much smaller. For instance, the first entry, 45.46, implied by the objective-based
prior with o, = %%, though still large, is much smaller and more reasonable.

It is of interest o see how the prior means of CSTDs are updated by the data
as more and more data are used, similar to Kandel et al. (1993), Lamoureux and
Zhou (1996), and Cremers (2006) in analyzing their functions of interest. Since
and V can be readily drawn from their posterior distributions, the posterior means
of CSTDs are easy to compute. As shown by the rest of the rows of Panel B of
Table 1, the posterior means are updated quickly. With a sample size 7" = 60, the
posterior means become much smaller than their priors. However, the posterior
mean based on the diffuse prior is still large compared with those based on the
objective prior with small o5, despite its sharp decrease refative to the prior mean.
As the sample size increases, the posterior means decrease further. In addition, the
relative differences among themn decrease as well when the sample size increases.
as shown more clearly in Panel C using the ratios detailed below.

An alternative way of assessing the difference of a pair of prior means or a
pair of posterior means of CSTDs under the 2 priors, namely. the diffuse prior
and the objective prior with a given 7, is to examine the ratio between them,
denoted as RATIO in Panel C of Table 1. The 1st row of Panel C reports the ratio
of implied prior means of CSTDs. With o, = 1%, the prior means of 457.215.43
and 45.46 under the 2 priors implies a RATIO of 10,058.39. which is incredi-
bly large, indicating the sharp difference between the 2 priors. With ¢, = 5%,
the objective-based prior becomes closer to the diffuse prior, and the RATIO de-
creases 1o 1,978.57, still a huge value. When updated by some data, such as with
a sample size 7 = 60, as implied by the earlier comparison in prior and posterior
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means, the RATIOs become much smaller, indicating smaller differences in their
portfolio implications. As the sample size increases, the updated RATIOs hecome
even smaller, confirming the earlier increasingly smaller differences in the CERs,
In the limit, since the implied optimal portfolio weights should converge under
either type of priors, the posterior means of CSTDs should become identical and
the RATIOs should approach 1.

Consider now the case in which some of the data, those for the 10 years prior
to the estimation window, are used to form informative priors. In this case, the
data-based prior, equation (22), plays the role of the earlier diffuse prior, while the
corresponding objective-based prior is given by equation (23), which is updated
from the previous (no data) prior, equation (21), by the same 10 years’ data, For
simplicity. we set 0, == o, in the comparison. Panel A of Table 2 provides the
results, The CERs of switching from the data-based prior to the objective-based
prior are substantial when 7 < 180 or ¢, < 2%. As in the diffuse prior case in
Table 1, the CERSs in Table 2 are a decreasing function of &,,. However, unlike the
diffuse prior case, they are not necessarily smaller as 7" increases. For example,
quite a few of the CERs when T == 480 are even greater than those with fewer
samples. There are 2 explanations [or this. First, in a given application. the entire
sample is only 1 path of all possible realizations of the random asset returns. Since
the Bayesian criterion is path dependent, the associated expected utilities will not
necessarily be a monotonic function of the sample size.'” Second, even if they
were, their differences, the CERs, may not necessarily be so.

For the same reason as before. the CERs are driven by the prior differences
in the optimal portfolio weights. As reported in Panel B of Table 2, the RATIOs
are quite large.!! However. in contrast to the diffuse prior case, they are generally
much smaller. This is expected, since the data-based prior already uses part of the
data in the prior to reduce its uninformativeness. Qualitatively, though. the results
are similar to the earlier case in that they are aimost always larger than 1, become
smaller. and are approaching | as the sample size becomes larger.

Finally, consider the performances of the objective-based prior in compar-
ison to those based on asset pricing models. With x, as the Fama-French (1993)
3 factors, the degree of belief on the validity of the Fama-French 3-factor model is
represented by the alpha prior, equation (11). For simplicity, we assume o, == o,
in the comparison. Panel A of Table 3 provides the results. Similar to the data-
based prior case in Table 2, the CERs are economically significant f'or T < 240
when 7, < 2%. However, they are small when 7 > 360 and T, 2 %,( The
RATIOS. reported in Panel B of Table 3, explain why there are suhs{dmmli\ large
CERs, and they also suggest that the objective-based prior implies smaller cross-
section variation on the optimal portfolio weights than the asset-pricing-model-
ba<ed priors. However, the RATIOs do not converge to 1 even when o, = 5% and

""" = 480. An intuitive explanation is that the validity of asset pricing theory is

OFor the loss function eriterion to be discussed in Section V, the monotonicity holds because all
the sample paths are integrated out.

HFor brevity, we omit results similar to Panel B of Table } because there are now 5 cases {of the
data-based priors) instead of 1 case {of the diffuse prior) in Table 1.
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TABLE 2

CERs and CSTDs of Switching from Data-Based to Objective-Based Priors
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fundamentally different from the other priors, and, therefore, it requires much
more data to make the RATIOs converge.

In summary, the economic objective of maximizing a utility function pro-
vides useful guidance for choosing priors in Bayesian decision making, Under
the Bayesian CER measure, we find that such objective-based priors can make
significant differences in portfolio performances compared with both the standard
statistical and the asset-pricing-theory-based priors. Even with the sample size as
large as == 480, there are still cases where the CERs are economically significant.

B. CERs under Predictability

Consider now what happens to the performances under the various priors
when the retumns are assumed predictable. For comparison, we allow op, the de-
gree of uncertainty about predictability, to take 2 values, infinity and 50%. When
op c, the investor imposes a no-predictability prior. This is an extreme case,
whereas op = 50% may be more reasonable, Table 4 provides the results for
op = o and 50%, respectively. In both cases, the CERs are substantial and more
pronounced than in Table 1. For example, with o, = 1%, the gains are 198.32%
and 74.72%, compared with 125.47% and 8.70% of the i.i.d. case, when T = 60
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TABLE 3

CERs and CSTDs of Switching from Fama-French 3-Factor Model-Based to
Objective-Based Priors

froem th

i the objsctive-bas:

and 480. respectively. Like the i.i.d. case, the CERs decrease as either o, or 7 in-
creases. Overall, the presence of predictability does not weaken the earlier results.
but strengthens them.

V. Out-of-Sample Performance

The Bayesian evaluation on the performances of the various priors presented
thus far is conditional on the data at hand. The comparison does not speak (o
the performances of the implicd portfolio rules for all possible data sets, which a
classical statistician may prefer to see. In this section, based on an out-of-sample
criterion, we compare the Bayesian rules among themselves and with some of the
classical rules studied by Kan and Zhou (2007).

The new comparison is of interest because the Bayesian CER measure pro-
vides only the CER difference had one switched from 1 prior to another, and does
not say that T prior is better or worse than another. The measure is always positive
or { by definition. As long as 2 priors (good or bad) are significantly different
from each other, the measure will be large and positive. To take a stand, following
the statistical decision literature (see, e.g., Lehmann and Casella (1998)), we use a
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TABL
CERs of Swiiching from Predictability-Diffuse to Objective-Based Priors

loss function approach below to distinguish the outcomes of using various priors.
The prior thal generates the minimum loss is viewed as the best prior.

Any estimated portfolio strategy is a function of the data. Let w™ and % be
the true and estimated optimal portfolios, respectively. The expected utility loss
from vsing w rather than w” s

42) plw™ W, X

where the first term on the right-hand side is the true expected utility with the use
of the true optimal portfolio. Hence, p{w™ ;.. 27} is the utility loss if one plays
infinite times the investment game with the estimated rule. whether estimated by
a Bayesian approach or a non-Bayvesian approach. According to this criterion,
the difference in the expected utilities between any 2 estimated rules, Ww! and #°,
should be

(43) Gain =

This is an objective utility gain (loss) of using portfolio strategy W' versus W
(if using w? instead), which is an out-of-sample measure since its value is inde-
pendent of any single set of observation. If it is 2%, it means that the use of w!
instead of w* will yield a 2% gain in the expected utility. In this case, if W' is ob-
tained under prior 1 and ¥ is obtained under prior 2, we would say that prior 1 is
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better than prior 2. This is a criterion widely used in classical statistics to evaluate
2 estimators.'?

The expected utilities associated with most of the Bayesian portfolio rules
are difficult to obtain analytically but can be computed numerically via simula-
tion. To be realistic, we sel the true parameter values of the model as the sam-
ple mean and covariance matrix of the Fama and French (1993) data used in
Section IV. Then, we can simulate a large number of data sets from the assumed
normal distribution of asset returns. For any 1 draw of the data set with a sample
size 7', we conduct a Bayesian analysis for all the Bayesian rules under various
priors. Each of the rules provides its estimated optimal portfolio weights. Based
on the weights, the expected utility can be computed under the true parameters.
Then, the average over all the draws, 10,000 of them, is the expected utility or the
out-of-sample performance of the rule (i.e.. B[{/{(3) 2. X7). Kan and Zhou (2007)
and references therein solve this analytically for some of the popular classical
rules. In our comparison below with some classical rules, we use the analytical
results whenever available.

Table 3 reports the out-of-sample utility gains if an investor switches from
the diffuse prior to the objective-based prior. With the sample size varying from 60

less of o,. the gains are much greater than other cases when 7> 120, suggesting
very poor performance of the diffuse prior with a small sample. However, as the
sample size increases, the gains, though economically significant, decrease sub-
stantially. Nevertheless, even when the sample size is as large as T = 480, the
gains can still be greater than 3.5%, certainly of significant economic importance.
For the same reason as discussed earlier about the large CERs, the large gains
here are also due to the fact that the diffuse prior implies an unreasonable prior on
the optimal portfolio weights.

TABLE &
Qut-of-Sampie Utility Gains of Swilching from Diffuse to Objective-Based Priors

II7he weakness of this criterion ts that the gain depends on the true parameters. It is difficult to
analytically prove that 1 rule is dominated by another for all possible parameter values or for a set of
parameter values of interest. Numerically, we can only claim that | rule is better or worse than another
for the parameter values under consideration.
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When 10 years of monthly data are used to form the priors, Table 6 provides
the utility gains of switching from the data-based prior to the objective-based
prior. Qualitatively. we reach a similar conclusion as for Table 5. When 7' 180,
the gains range from 2.04% to 98.58%. These values are clearly economically
significant, but smaller than the diffuse prior case in Table 5. This simply states
that the data-based prior provides useful information to portfolio selection, and
so it does better than the diffuse prior and has smaller utility differences with
the objective-based prior. Moreover, when T == 480. some of the gains are no
longer economically significant, suggesting that the sample size now becomes
large enough to make the data-based prior perform as well as the objective-based
prior.

TABLE &
Out-of-Sample Utility Gains of Switching from Data-Based o Objective-Based Priors

When the objective-based prior is compared with the asset-pricing-model-
based prior derived from the Fama-French (1993) 3-factor model, Table 7 pro-
vides the results. This prior, like others. underperforms the objective-based prior
substantially. However. in comparison with the cases reported earlier in Tables
5 and 6, the asset-pricing-model-based prior does better than the diffuse prior
when o, is small, but worse than the data-based prior. Since the 3-factor model
is not the true data-generating process, it provides less useful information than
the data-based prior. On the other hand, since the 3-factor model is still not a bad
approximation for the data, it is more useful than the diffuse prior. Overall, we
find that the objective-based prior has superior performance and provides a better
decision rule than all other priors as judged by the loss function criterion, a widely
used approach in the statistical decision literature.

Finally, we compare the Bayesian objective-based prior rule with the clas-
sical rules studied by Kan and Zhou (2007). For brevity, we analyze 3 of them
here. The first is the maximum likelihood (ML) estimator of the optimal portiolio
weights, a popular rule in practice. The other 2 are the shrinkage rule of Jorion
(1986) and the 3-fund rule of Kan and Zhou, which are the better performing rules
among those compared in Kan and Zhou. Table 8 reports the expected utilities for
each of the rules. As is well known, the ML rule performs poorly when the sample
is small, say less than 240. Its performance becomes comparable with others only
when the sample size is as large as 480. The shrinkage and the 3-fund rules are
designed to improve upon the ML and are optimal in certain metrics; hence it is
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TABLE 7

Out-of-Sample Utility Gains of Switching from Fama-French 3-Factor
Model-Based to Objective-Based Priors

no surprise that they do much better than the ML rule. However, they depend on
a set of estimated parameters that makes their performances still worse than the
rule implied by the objective-based prior when T < 120. But, when 7 > 240,

they have comparable performances with the latter.

TABLE 8
Out-of-Sample Utilities of Classical Rules and a Bayesian Bule

The last column of Table 8 reports vet another comparison with the con-
stant 1/N rule. DeMiguel et al. (2009) show that if is difficult for the invesiment
strategies developed thus far to outperform the 1/N rule, and they conclude that
“there are still many ‘miles to go” before the gains promised by optimal portfolio
choice can actually be realized out of sample.” The results in Table 8 show that the
Bayesian objective-based prior rule outperforms not only the 3 classical rules, but
also the 1/N rule consistently across all sample sizes from 7' = 60 to 7 = 480."

Overall, the proposed objective-based prior rule performs impressively
against both other Bayesian rules and the classical rules. The results highlight
the importance for investors of basing their priors on the solution to an economic
optimization problem. In our study, the objective-based prior essentially says that

37y and Zhou (2010) propose rules that are based on optimal combinations of the 1/V rule with
major existing rules and find these new rules outperform the 1/N rule in general.
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our starting point is a simple approximate solution that diversifies our mvestments
across assets., which imposes suitable constraints on model parameters. Then,
we let the data update our prior toward the true but unknown optimal portfolio.
Because the prior contains uselul information on the whereabouts of the true so-
lution (relative to other priors). it turns out to be very valuable.

VI. Assessing the Importance of Anomalies

In this section. we apply our Bayesian framework to study the importance of
Fama and French’s (1993) BM portfolio when treated as an anomaly to the capital
asset pricing model (CAPM). Since our prior starts from portfolio weights, it is
well suited for examining the question of whether or not a given subset of assets
is important in the investment decision. In particular, the framework can be used
to analyze international diversification and asset pricing anomalies. We focus on
anomalies in this paper.

Following Pastor (2000). we assume that the anomalies can be transformed
into investable assets and then examine whether inclading them offers any signif-
icant CERs in an asset allocation problem. For simplicity, we consider the case of
a single anomaly and assume that the last return, Ry, is the return associated with
the anomaly. If an investor is absolutely skeptical about the anomaly, he could
assign a 0 weight to Ry,. While this view is difficult to express by using either the
diffuse or the asset pricing theory prior, it fits well into our proposed framework.
Letiw;. {N — 1) x 1, be his prior portfolio weights on the other assets. The earlier
prior,

(44) S N {‘ VW,,—.(Ti (_'lfv)]i :

S

then represents the prior centered upon the belief w, (wh,0)/. If the investor is
dogmatic about his belief. he will choose his optimal portfolio based on the N — 1
assets only, and not invest in the anomaly asset at all. The associated optimal
portfolio weights for the N — 1 assets are easily computed based on the predictive
moments of those N — 1 assets, with the weight on Ry, being set at 0. In other
words, the investor updates only the first ¥ — 1 component of wy,, in light of the
data but does not update his prior weight on the anomaly. Let EU, be the expected
utility associated with this optimal portfolio weight.

Consider now an alternative investment strategy. in which the investor up-
dates w,, as usual, based on the predictive moments of all the N risky assets,
despite his prior on Ry, being set at 0. Let EUj be the expected utility with this
updated portfolio. Then the difference between EU, and EU, provides the CERs
of utilizing the anomaly. This is because, although both EU, and EU, are com-
puted under the same skeptical prior, EU, allows investing in Ry, while EU,
does not.

While the skeptical prior is reasonable for someone who casts a strong doubt
on the anomaly, it does not necessarily reflect well the belief of someone who is
open to investing in the anomaly asset even before looking at the data. This means
that one may compute EU, under a more balanced prior. The obvious candidate 1s
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the prior that assigns equal weights to all the risky assets. We denote the associated
expected utility by EU.. Then, another measure for the impact of wilizing the
anomaly is to compare EU, with EU.. Intuitively, the difference between EU. and
12U, should usually be greater than that between EU, and EUL. This is because
EU, and EU, are computed in the same way except that the former generally
uses a better prior than the latter. However, as shown by later applications, the
difference between EU, and EUL is in fact small. Hence, either EU, — EU, or
EU, — EU, will provide a fairly robust measure for the impact of utilizing the
anomaly.

Fama and French’s (1993) BM portfolio, HML (high minus low), is a well-
known anomaly relative 1o the CAPM. Zhang (2005) explores, among others,
some of the theoretical reasons. Here, following Pdstor (2000), we examine the
economic importance of the HML portfolio based on the approach outlined in
Section 11, In this case, we have N = 2. since the market index and HML. are the
only risky assets.

Table 9 reports the CERs, EU, ~ BU,, in which EU, is computed by ignoring
the anomaly completely under the skeptical prior. It is seen that, as long as the
prior precision is not too tight, with o, > 2%, the gains are over 3.72% across
sample sizes. The reason that the CERs are getting greater as o, increases is that
the prior avoids investing in the HML, and this skeptical prior can be mitigated by
a larger value of o,. As in the previous section, the risk exposure. either > wy; =
0.5 or 1. has little to do with the CERs. and we repost only the results for the
latter case. Overall, the results suggest strongly that the HML portfolio is of great
economic significance that makes substantial differences in the asset allocation
problem.

TABLE 9
CERs of Utilizing Anomaly under a Skeptical Prior

Intuitively, an investor who avoids investing entirely in the anomaly under
the skeptical prior should do even worse than the one-who invests in the unomaly
under a more balanced prior that assigns an equal weight to both the market and
HML. This is indeed the case. as shown by Table 10. However, the additional
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impacts are small. Table 11 makes it more apparent. The CERs or the utility
differences between the skeptical prior and the balanced prior are less than 1%
except in 3 scenarios and are less than 0.46% whenever o, > 3%. The results
say that even when one starts from such a strong prior that one avoids investing
in the HML asset entirely. the impact is less than one would expect. In summary,
what drives the CERs here is not the priors about whether or not to invest in the
anomaly, but rather whether or not to invest in the anomaly asset at ail.

TABLE 10
CERs of Utilizing Anomaly under a More Balanced Prior

G NV

TABLE 11

CERs of Switching from a Skeptical Prior to a More Balanced Prior
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VIl. Conclusion

This paper explores the link between Bayesian priors and economic objec-
tive functions. Once incorporating the economic objectives into priors to estimate
anknown parameters, we find that the performance impacts are economically sub-
stantial in a standard portfolio allocation problem, whether the stock returns are
predictable or not. Moreover, we find that the objective-based priors offer the su-
perior performance not only when we judge them by using an in-sample Bayesian
criterion, but also by using an out-of-sample loss function criterion. In addition,
while the shrinkage rule of Jorion (1986) and the 3-fund rule of Kan and Zhou
(2007) are excellent rules in the classical framework, we find that the Bayesian
rule under the objective-based priors can outperform them substantially, suggest-
ing there is real value in using a prior based on the economic objective at hand.
We also apply the methodology o examine asset pricing anormalies, and find that
Fama and French’s (1993) BM (book-to-market) and ML ( high minus low) port-
folio factors can make substantial differences in an investor’s portfolio decision.

Although our study focuses on a portfolio choice problem, the methodol-
ogy suggests that economic objective-based priors can be explored in almost any
financial decision-making problems with parameter uncertainty. In particular, in
cases where a Bayesian framework is deemed appropriate. it is highly likely that
the decision maker will have some ideas or a broad range about the optimal so-
Jution to a given economic objective even without processing any data for formal
Bayesian inference. The point of our paper is that this broad range can be used
to form objective-based priors that provide information on the plausible values of
model parameters so as Lo help maximize the objective at hand.

Appendix

Proof of equation (183, Recall that the investor’s objective is to maximize his expected
utility. If jis and po imply weights of wy and wy, respectively, then the utility loss caused
by the deviation of wy front wg I8

(A-1)

o) — Ulwalpio)

Wy - W

wyi ol

N

Ignoring the higher-order terms and using the first-order condition {3U /8w’ } v
we have

- i TR . : i U g 3
(A-2) Ulwalpn) — Ulwolpo) == zlwe — wol 5= ol Jollwa = wol.
: D Bwdw' " "

Standard calculus implies

i ;
(A-3) [, ""i‘/v‘a‘;},ux:)[
aw "
and
(A-4) :W(ﬂﬂfa]} [t po)-



Therefore. we have equation (18). which says that the utidity loss is approximately equal t©
the weighted average of the deviation of s from g, with the weighting matrix determined
by the utility function.

In the case of mean-variance utility, the approximation holds exactly, and it is also
casy to verify that

(;‘\_5} - g b = 1,‘4' .
Owip! ’

L U . ,

{(A-6) { Db Iwoifio! = —V,

where V is the covariance matrix of the assct returns. Therefore. in the mean-variance case.
2=~V 3
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