
Incorporating Economic Objectives into Bayesian Priors:
Portfolio Choice Under Parameter Uncertainty

Jun Tu and Guofu Zhou∗

JEL classification: G11; G12; C11
Keywords: Portfolio choice; Parameter uncertainty; Bayesian priors

Current version: March, 2008

∗Singapore Management University and Washington University in St. Louis, respectively. We
are grateful to Yacine Aı̈t-Sahalia, Doron Avramov, Anil Bera, Henry Cao, Victor DeMiguel,
Lorenzo Garlappi, Eric Ghysels, Bruce Hansen, Yongmiao Hong, Ravi Jagannathan, Raymond
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Incorporating Economic Objectives into Bayesian Priors:

Portfolio Choice Under Parameter Uncertainty

Economic objectives are often ignored when estimating parameters, though the loss of

doing so can be substantial. This paper proposes a way to allow Bayesian priors to reflect

the objectives. Using monthly returns of the Fama-French 25 size and book-to-market port-

folios and their three factors from January 1965 to December 2004, we find that investment

performance under the objective-based priors can be significantly different from that under

alternative priors, with differences in terms of annual certainty-equivalent returns greater

than 10% in many cases. In terms of out-of-sample performance, the Bayesian rules under

the objective-based priors can outperform substantially some of the best rules developed in

the classical framework.



I. Introduction

Many finance problems have well-defined economic objectives, but model estimation usually

makes no connection to such objectives and is done primarily based on statistical criteria.

In the classic framework, different loss functions might be proposed to account for different

objectives (Lehmann and Casella, 1998), but the associated parameter estimates are difficult

to obtain. In the Bayesian framework, priors are supposed to reflect available information

on the problem, but the information on economic objectives is often ignored by diffuse and

data-based priors (see, e.g., Shanken, 1987, Harvey and Zhou, 1990, and Kandel, McCulloch,

and Stambaugh, 1995). While Pástor (2000) proposes a new class of priors that incorporates

an investor’s varying beliefs on an asset pricing model, his study does not address the linkage

between priors and the economic objectives at hand nor do other studies in the economics

literature, despite increasing applications of Bayesian decision theory to finance, e.g., Kandel

and Stambaugh (1996), Barberis (2000), Brennan and Xia (2001), Avramov (2002, 2004),

Cremers (2002), Cohen, Coval and Pástor (2005), Tu and Zhou (2004), and Wang (2005).1

This paper is Bayesian. We explore a general approach to form priors based on economic

objectives. We focus our analysis on the optimal portfolio selection problem in the standard

mean-variance framework due to its simplicity and its wide use in practice. Ever since the

publication of Markowitz’s (1952) seminal work, extensive research and results have been

available in the mean-variance framework that permits analytical insights on the role played

by economic objectives. Zellner and Chetty (1965), Brown (1976, 1978), Klein and Bawa

(1976), and Jorion (1986) are earlier Bayesian studies on the portfolio selection problem

that account for parameter uncertainty. In contrast to their studies and to more recent ones

reviewed earlier, we propose in this paper new innovative priors that are closely tied to the

first-order conditions (FOCs) of maximizing the economic objectives. We show that such

objective-based priors place useful restrictions on model parameters, and these restrictions

are fundamentally different from those implied by either diffuse or data-based priors.

To see intuitively how an economic objective function may matter, consider allocating

1See Kan and Zhou (2007) and references therein for recent studies on parameter uncertainty in the
classical framework.
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funds between a riskless asset and a risky one. The optimal portfolio weight is known to be

proportional to µ/σ2 for a mean-variance investor, where µ and σ2 are the mean and variance

of the return on the risky asset in excess of the riskless one. Even before the investor observes

any data or does any formal statistical analysis, it is likely that he might have some idea

about the range of the optimal portfolio weight, w , should be, say 0 < w < 1. This implies

that µ and σ2 cannot be arbitrarily assigned, but are related in such a way that the ratio

µ/σ2 falls into the given range. This restriction is a prior originated from choosing w to

maximize the objective function. The prior restriction on the optimal solution (between

zero and one) imposes a prior restriction on µ and σ2. Since the latter is based on the FOC

of the utility maximization problem, the associated prior is objective-based. Intuitively, the

objective-based prior is likely more useful than the diffuse one. Since the prior places greater

weight on those parameter values whose implied portfolio weights are likely to maximize

the objective function, the resulting expected utility is likely higher. As it turns out, our

applications do indeed show that such objective-based restrictions can make a substantial

difference in portfolio decisions as compared with other priors. For example, using monthly

returns of the popular Fama-French 25 size and book-to-market portfolios and their three

factors from January 1965 to December 2004, we find that the difference in investment

performance under the objective-based priors versus other priors can be more than 10% in

many cases. The objective-based priors can also be formed with data. When some data

are available, the researcher can use them to form new informative priors on the portfolio

weights, which can in turn be used, based on the FOC relation, to form new objective-based

priors on the parameters.

The Bayesian approach under the objective-based priors is well-suited to address ques-

tions related to portfolio weights. In particular, it can be applied to assess the economic

importance of asset pricing anomalies2 (see Schwert, 2003, for an excellent survey on anoma-

lies). Following Pástor (2000), we assess the importance of asset pricing anomalies by exam-

ining the significance of utility losses when an investor avoids investing in assets associated

with anomalies. The investor’s degrees of belief on the usefulness of anomalies can naturally

2It can shed light on whether investing in a subset of assets is equivalent to investing in all of them,
which is related to the ‘home bias’ puzzle in international finance that investors invest mainly in their own
countries. This line of study goes beyond the scope of the paper.
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be represented by the investor’s prior weights on assets associated with the anomalies. For

instance, if the investor is highly skeptical about the anomalies, he can set his prior weights

as zeros on the anomaly assets. This prior can then be updated by data via the Bayesian

approach. We find that the utility losses can be of significant importance even for an investor

with a strong skeptical belief about the profitability of anomalies.

The remainder of the paper is organized as follows. Section II provides the objective-based

priors and the associated Bayesian framework. Section III extends the analysis to the case

in which asset returns are predictable. Section IV compares various Bayesian portfolio rules

based on a Bayesian criterion, and Section V compares these Bayesian rules with classical

rules based on an out-of-sample criterion. Section VI analyzes asset pricing anomalies in a

Bayesian framework. Section VII concludes.

II. The Bayesian Framework

In this section, we first review the portfolio choice problem, its standard Bayesian solution

and existing prior formulations. Then, we propose our objective-based priors, and discuss

the Bayesian criterion for comparing the differences in investment decisions based on various

priors.

A. The Portfolio Choice Problem

Consider the standard portfolio choice problem in which an investor chooses his optimal

portfolio among N risky assets and a riskless asset. Let rft and rt be the rates of returns on

the riskless asset and the N risky assets at time t, respectively. We define Rt ≡ rt − rft1N

as the excess returns, i.e., the returns in excess of the riskless asset, where 1N is an N -vector

of ones, and make the standard assumption on the probability distribution of Rt that Rt is

independent and identically distributed over time, and has a multivariate normal distribution

with mean µ and covariance matrix V .

To have analytical solutions, we focus our analysis on the standard mean-variance frame-

work, whereas the case of non-quadratic utilities will be discussed briefly later. In the
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mean-variance framework, the investor at time T chooses his portfolio weights w so as to

maximize the quadratic objective function

(1) U(w) = E[Rp]− γ

2
Var[Rp] = w′µ− γ

2
w′V w,

where Rp = w′RT+1 is the future uncertain portfolio return and γ is the coefficient of relative

risk aversion (which is set at 3 in our empirical applications below). It is well-known that,

when both µ and V are assumed known, the portfolio weights are

(2) w∗ =
1

γ
V −1µ,

and the maximized expected utility is

(3) U(w∗) =
1

2γ
µ′V −1µ =

θ2

2γ
,

where θ2 = µ′V −1µ is the squared Sharpe ratio of the ex ante tangency portfolio of the risky

assets.

However, w∗ is not computable in practice because µ and V are unknown. To implement

the above mean-variance theory of Markowitz (1952), the optimal portfolio weights are usu-

ally estimated by using a two-step procedure. First, the mean and covariance matrix of the

asset returns are estimated based on the observed data. Second, these sample estimates are

then treated as if they were the true parameters, and are simply plugged into (2) to compute

the optimal portfolio weights. This gives rise to a parameter uncertainty problem because

the utility associated with the plug-in portfolio weights can be substantially different from

U(w∗) due to using the estimated parameters that can be substantially different from the

true ones.

B. The Standard Bayesian Solution

The Bayesian approach provides a natural solution to the parameter uncertainty problem.

Following Zellner and Chetty (1965), the Bayesian optimal portfolio is obtained by maxi-

mizing the expected utility under the predictive distribution, i.e.,

ŵBayes = argmaxw

∫

RT+1

Ũ(w)p(RT+1|ΦT ) dRT+1

= argmaxw

∫

RT+1

∫

µ

∫

V

Ũ(w)p(RT+1, µ, V |ΦT ) dµdV dRT+1,(4)
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where Ũ(w) is the utility of holding a portfolio w at time T +1, p(RT+1|ΦT ) is the predictive

density, ΦT is the data available at time T , and

(5) p(RT+1, µ, V |ΦT ) = p(RT+1|µ, V,ΦT )p(µ, V |ΦT ),

where p(µ, V |ΦT ) is the posterior density of µ and V . In comparison to Equation (4)

with Equation (1), the expected utility is maximized in both the Bayesian and classical

framework under the predictive and true distributions, respectively. However, the evaluation

of Equation (1) requires treating the two-step estimates as the true parameters and is hence

subject to estimation error, while the Bayesian approach accounts for the estimation error

automatically. Brown (1976), Klein and Bawa (1976), and Stambaugh (1997), among others,

using the standard diffuse prior on µ and V ,

(6) p0(µ, V ) ∝ |V |−N+1
2 ,

show that the resulting optimal portfolio weights are always better than the classical plug-in

approach in terms of out-of-sample performance. Kan and Zhou (2007) verify this analyti-

cally.

However, the diffuse prior improves the plug-in results by only a very small amount since

the portfolio weights differ only by 1/(T +1) percent. This is not surprising from a statistical

point of view. Neither the classical method nor the diffuse prior approach utilizes any prior

information about the parameters. Because of diffuse information in both cases, their results

should be close. On the other hand, Kan and Zhou (2007) show that the Bayesian solution

can be dominated by alternative estimators, which clearly indicates that the diffuse prior is

not optimal in solving the optimal portfolio problem in the presence of parameter uncertainty.

The question is then how to construct useful priors that can improve the investor’s expected

utility beyond the use of the diffuse prior.

C. Priors Based on Asset Pricing Theory

Pástor (2000) and Pástor and Stambaugh (2000)) introduce interesting priors that reflect an

investors’ degree of belief in an asset pricing model. To see how this class of priors is formed,

assume Rt = (yt, xt), where yt contains the excess returns of m non-benchmark positions
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and xt contains the excess returns of K (= N −m) benchmark positions. Consider a factor

model multivariate regression

(7) yt = α + Bxt + ut,

where ut is an m×1 vector of residuals with zero means and a non-singular covariance matrix

Σ = V11 −BV22B
′, and α and B are related to µ and V through

(8) α = µ1 −Bµ2, B = V12V
−1
22 ,

where µi and Vij (i, j = 1, 2) are the corresponding partition of µ and V ,

(9) µ =

(
µ1

µ2

)
, V =

(
V11 V12

V21 V22

)
.

For a factor-based asset pricing model, such as the three-factor model of Fama and French

(1993), the restriction is α = 0.

To allow for mispricing uncertainty, Pástor (2000) and Pástor and Stambaugh (2000)

specify the prior distribution of α as a normal distribution conditional on Σ,

(10) α|Σ ∼ N

[
0, σ2

α

(
1

s2
Σ

Σ

)]
,

where s2
Σ is a suitable prior estimate for the average diagonal elements of Σ. The above alpha-

Sigma link is also explored by MacKinlay and Pástor (2000) in the classical framework. The

magnitude of σα represents an investor’s level of uncertainty about the pricing ability of a

given model. When σα = 0, the investor believes dogmatically in the model and there is

no mispricing uncertainty. On the other hand, when σα = ∞, the investor believes that

the pricing model is entirely useless. Although they provide useful insight, the asset pricing

theory based priors are not necessarily connected with the investor’s objective function. This

is the issue addressed below.

D. The Prior Based on Economic Objectives

Consider now how to form the objective-based priors formally, the innovation of the current

paper. Assume for the moment that there is no data available. We would like to illustrate
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how one can construct informative priors based on the objective function. Suppose that we

are interested in forming a normal prior on µ,

(11) µ ∼ N(µ0, V0),

where µ0 and V0 are the prior mean and covariance matrix. To reflect the economic objective,

it is natural to link the prior mean to what is implied by the first-order condition (2),

(12) µ ∼ N(γV w̄0, V0),

where w̄0 is our prior mean of the portfolio weights. This says that the prior mean is

proportional to both the covariance matrix of the asset returns and w̄0. Conditional on V ,

the prior expected returns are high on those assets whose risks are high, and the implied mean

portfolio weights are w̄0. The magnitude of V0 determines how close the implied portfolio

weights are to w̄0. The remaining question is how to determine a value for w̄0.

In choosing a suitable prior vector w̄0, we assign first a prior value for the sum of its

components. This is our prior wealth allocation on the risky assets. To reflect a wide range,

we consider two alternative values of 50% and 100%, respectively.3 Although the total

allocation to risky assets is assigned, the portfolio weights across the assets are unknown

and should be assigned too. Without any data and without knowing the differences between

the assets, it is reasonable to use a diffuse or an uninformative value. It treats all assets

equally and hence it assigns an equal prior weight across them.

Another sensible prior might be to take w0 as the value-weighted market portfolio weights,

wm. So doing leads to an interesting relation to Black and Litterman’s (1992) asset allocation

method which has received considerable attention from many practitioners (see, e.g., Grinold

and Kahn, 1999, Litterman, 2003, and Meucci, 2005). They argue that, once taking w0 as

the market portfolio weights,

(13) µm = γmV wm

are the equilibrium expected returns as investors hold the market in equilibrium (with γm

as the risk aversion parameter of the representative investor). It is these expected returns

3Notice that 50% and 100% are the implied mean allocations on the risky assets. To impose the condition
that the allocation must be in a fixed range, a truncated normal distribution for µ may be used.
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that are used in their asset allocation model that yields more balanced portfolios than the

standard solution of the mean-variance framework. Like their model, our approach here

can also use the equilibrium expected returns as the prior means. However, there are three

major differences between their approach and ours. First, their prior is formed with a view

on the equilibrium returns and updated by investors’ proprietary views. In the absence of

the proprietary views, their portfolio decision is based on the equilibrium expected returns,

and there is no Bayesian updating. In our case, our prior is a prior on the solution, the

portfolio weights. Even if we use the market portfolio weights to determine the equilibrium

expected returns, these values will be updated by data. Second, their Bayesian procedure is

ad hoc in the sense that their Bayesian updating with views does not rely on the posterior

that factors into the uncertainty about the covariance matrix. Third, their approach, as

seen in their last stage for computing the optimal portfolio weights, ignores the parameter

uncertainty problem whereas the predictive distribution used here accounts for it.4

Now we need also to have a prior specification for V0. A simple way of doing so is to use

the identity matrix that implies

(14) µ ∼ N(γV w0, σ
2
ρIN),

where σ2
ρ reflects the degree of uncertainty about µ. A zero value of σ2

ρ implies a dogmatic

belief in µ0 = γV w0 as the true mean conditional on a given w0. A value of σ2
ρ = ∞ suggests

that µ0 is not informative at all about the true mean. Other than these two extremes, σ2
ρ

places some modest informative belief on the degree of uncertainty as to how µ is close to

µ0.

However, the identity matrix specification has an undesired property. It measures the

difference between µd, an alternative value of µ, and µ0,

(15) µd − µ0 6= 0,

by placing equal importance on the deviations of each element of µd from that of µ0. While

this weighting may be plausible in some applications, it does not measure adequately the

investor’s assessment of the deviations given his utility function. To see this, let wd and w0

4A formal treatment of their model is beyond the scope of this paper. Zhou (2008) provides a framework
for combining the Black and Litterman (1992) model with the data.
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be the portfolio weights associated with µd and µ0 based on the objective function. It is easy

to show that (see Appendix A)

U(wd)− U(w0) ≈ −1

2
[µd − µ0]

′Ω−1[µd − µ0],(16)

where

(17) Ω = −
{{

∂2U

∂w∂µ′
[w0]

}′ {
∂2U

∂w∂w′ [w0]

}−1 {
∂2U

∂w∂µ′
[w0]

}}−1

.

Hence, from the perspective of utility evaluation, the investor weighs the importance of the

deviations by Ω−1 rather than by the identity matrix. This suggests that a potentially better

prior on µ is

(18) µ ∼ N

[
γV w0, σ

2
ρ

(
1

s2
Ω

Ω

)]
,

where s2
Ω is the average of the diagonal elements of Ω. In this way, the investors’ objective

function, the utility function here, also plays a role in the specification of the prior covariance

matrix for µ, in addition to its role in the mean specification by the FOC. Note that the prior

given by (18) is invariant to any positive monotonic transformations of the utility function.

In the case of the mean-variance utility here, it is easy to verify that Ω = γV . Hence, the

above prior can be simply written as

(19) µ ∼ N

[
γV w0, σ

2
ρ

(
1

s2
V

)]
,

where V is the covariance matrix of the asset returns, and s2 is the average of the diagonal

elements of V .

Consider now the case in which part or all of the data are available for forming priors

on the parameters.5 For simplicity, we assume that there are ten years of monthly data

available. Let µ̂10 and V̂10 be the sample mean and covariance matrix, respectively. Then,

the standard Bayesian informative prior on µ based on the ten years data may be written as

(20) µ ∼ N

[
µ̂10, σ

2
µ

(
1

ŝ2
10

V̂10

)]
,

5Empirical Bayesian analysis allows for such flexible use of data to form priors. See Berger (1985) and
references therein.
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where ŝ2
10 is the average of the diagonal elements of V̂10, and σ2

µ is a scale parameter that

indicates the degree of uncertainty.

Given the data, a Bayesian who uses the objective-based priors can start from the non-

data prior (19), update it based on the ten years data, and then use this updated prior for

his future decision making. The approach is analogous to the way of updating the diffuse

prior to get (20). The updated prior on µ is given by

(21) µ ∼ N

[
µ̂∗10, σ

2
ρ

(
1

s2
V

)]
,

where µ̂∗10 = γV ŵ10, and ŵ10 is the objective-based Bayesian optimal portfolio weights based

on the ten years data. It is interesting that the conjugate prior, equation (20), provides a

similar covariance structure to that of the objective-based prior. However, their means are

entirely different, and they can make important differences in portfolio decisions as shown

later.

So far we have assumed the quadratic utility for simplicity because the first-order condi-

tion can be solved analytically in this case. For a more general utility function, however, a

numerical approach has to be used to solve it. In this case, one can place a truncated prior

around the first-order condition, rather than a simple normal prior as we did here. Due to

its technical nature, we will study these issues elsewhere. In a nutshell, our idea of the paper

is to use the FOC for the problem at hand to generate a prior on the parameters. It is these

economics motivated restrictions that are found helpful in our later applications.

E. Performance Measure

It will be of interest to see what the possible gains are when one switches from one prior

to another. As other cases follow straightforwardly, we illustrate how to measure the gains

only from the diffuse prior to the objective-based prior. Following Kandel and Stambaugh

(1996) and Pástor and Stambaugh (2000), a plausible measure is the utility gain given by

the difference in the expected utilities of the two priors under the predictive distribution of

the latter.6 Let E∗ and V ∗ be the predictive mean and covariance matrix of the asset returns

6A classical statistician may prefer to use the true distribution of the data to differentiate the priors. This
out-of-sample measure will be analyzed in Section V.
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under the objective-based prior, equation (19), and wO be the associated optimal portfolio

allocation. Then the expected utility is given by

(22) EUO = w
′
OE∗ − 1

2
γw

′
OV ∗wO,

where γ is the degree of the investor’s relative risk aversion. The allocation, wD, which is

optimal under the diffuse prior, should have an expected utility of

(23) EUD = w
′
DE∗ − 1

2
γw

′
DV ∗wD.

Notice that this expected utility is evaluated based on the same E∗ and V ∗ of the objective-

based prior. Because of this, the difference

(24) CE = EUO − EUD

is interpreted as the ‘perceived’ gains of utilizing the objective-based prior, or as the ‘per-

ceived’ losses in terms of the certainty-equivalent return to an investor who is forced to

accept the optimal portfolio selection based on the diffuse prior. Since wO is optimal under

the objective-based prior, CE is always positive or zero by construction. The issue is how

big this value can be. Generally speaking, values over a couple of percentage points per year

are deemed as economically significant.7

III. Objective-based Priors Under Predictability

Kandel and Stambaugh (1996) and Barberis (2000) show that incorporating return pre-

dictability plays an important role in portfolio decisions. Avramov (2004) extends this in a

multivariate setting. The questions we address here are how the objective-based prior can

be constructed and whether it can still produce significant economic gains in the presence of

predictability.

Following aforementioned studies, we assume that excess returns are related to M pre-

dictive variables by a linear regression8

(25) Rt = µ0 + µ1zt−1 + vt,

7Fleming, Kirby and Ostdiek (2001) provide a similar but different measure in the classical framework.
8Pástor and Stambaugh (2006), and Wachter and Warusawitharana (2007) are recent Bayesian studies

on predictability.
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where zt−1 is a vector of M predictive variables, vt ∼ N(0, ΣRR), and the predictive variables

follow a VAR(1) process

(26) zt = ψ0 + ψ1zt−1 + ut,

with ut ∼ N(0, ΣZZ).

In a more compact matrix form, we can write the equations as

(27) R = XΓ + UR,

(28) Z = XAZ + UZ ,

where R = [R1, R2, · · · , RT ]′ is a T ×N matrix formed from the returns, X = [1T , Z−1] is a

T×(M +1) matrix formed from a T -vector of ones and Z−1 = [z0, z1, · · · , zT−1]
′, Γ = [µ0, µ1]

′

is a (M + 1) × N matrix of the regression coefficients, Z = [z1, z2, · · · , zT ]′, AZ = [ψ0, ψ1]
′

is a (M + 1)×M matrix of the coefficients in the VAR(1) process, and UR and UZ are the

corresponding residuals with vec(UR) ∼ N(0, ΣRR ⊗ IT ) and vec(UZ) ∼ N(0, ΣZZ ⊗ IT ).

To highlight the intuition, consider the case of one predictive variable with M = 1.

Assume further that the dividend yield, denoted as DY, is used in the predictive regression

such that

(29) Rt = µ0 + µ1DYt−1 + vt.

To reflect a certain degree of predictability, we use a simple normal prior for µ1,

(30) p0(µ1) ∝ N

[
µp

1, σ
2
P

(
1

s2
RR

ΣRR

)]
,

where µp
1 is the prior mean on µ1, σ2

P measures the uncertainty about predictability, and

s2
RR is the average of the diagonal elements of ΣRR. Assuming a diffuse prior on all other

parameters, we have a complete prior

(31) p0(Γ, AZ , ΣRR, ΣZZ) ∝ p0(µ1)× |ΣRR|−N+1
2 × |ΣZZ |−M+1

2 .

This joint prior is informative on predictability, but diffuse otherwise. We henceforth refer

to it as the predictability-diffuse prior.
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To achieve the goal of utility maximization, the first-order condition imposes the following

informative prior on µ0 + µ1DYT or

(32) p0(µ0|µ1) ∝ N

[
γΣRRw0 − µ1DYT , σ2

ρ

(
1

s2
RR

ΣRR

)]
,

where w0 is the prior portfolio weight, DYT is the observed DY at time T that is available

for portfolio selection at time T , and σ2
ρ is the prior scalar of the variance that measures the

degree of reliance on the first-order condition. Hence, we define the objective-based prior

as the one by adding this additional conditional density into the righthand side of Equation

(31). In contrast with the predictability-based prior, the objective-based one reflects not only

predictability, but also the economic objective. The marginal prior density of Γ = [µ0, µ1]
′

can be written succinctly as

(33) p(Γ|ΣRR) ∝ |ΣRR|− 1
2 exp

{
−1

2
tr[Σ−1

RR(Γ− Γ0(µ
p
1))

′Υ(Γ− Γ0(µ
p
1))]

}
,

where Γ′0(µ
p
1) = [γw0ΣRR − µp

1DYT , µp
1] is an N × 2 matrix, and Υ = s2∆Ψ−1∆′ is a 2 × 2

matrix with

∆ =

(
1 0

DYT 1

)
, Ψ =

(
σ2

ρ 0
0 σ2

P

)
.

With this simplification, we can combine the objective-prior for all of the parameters with

the likelihood function of the data, and obtain the posterior densities for Γ and ΣRR:

(34) vec(Γ)|ΣRR,DT ∼ N [vec(Γ̃), ΣRR ⊗ (X ′X + Υ)−1],

(35) ΣRR|DT ∼ IW [SR, T − 1],

where

(36) Γ̃ = (X ′X + Υ)−1(X ′R + ΥΓ0(µ
p
1)], SR = R′R− Γ̃′X ′XΓ̃,

and IW [·] denotes the inverted Wishart distribution. With these results, it is easy to ob-

tain the predictive distribution of the returns for our objective-based prior as well as other

functions of interest such as optimal portfolio weights.
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IV. Comparison Based on Bayesian Criterion

In this section, we compare first the objective-based priors with their usual alternatives based

on the Bayesian criterion of Equation (24). Then, based on the same criterion, we examine

the performance under the various priors when the asset returns are assumed predictable.

The data are monthly returns of the well-known Fama-French 25 book-to-market and

size portfolios and their three factors from January 1965 to December 2004 plus ten years of

earlier data for forming data-based priors.9

A. Utility Gains under Various Priors

Table 1 reports the utility gains of switching from the diffuse prior to the objective-based

one in the case in which no prior data is used in forming the prior. When we apply the priors

to five years worth of data (T = 60), the utility gains are overwhelmingly large. They range

from an annual rate of 22% to 125%. The large difference is driven by the fact that the

predictive moments are very sensitive to prior specifications when T = 60. This can also be

understood by the simulation results of Kan and Zhou (2007), who show that, with a sample

size of T = 60, the estimated parameters can be far away from the true ones. There are two

additional interesting facts in the table. First, the greater the σρ, the smaller the gains. This

is because a higher value of σρ moves the objective prior closer to the diffuse one. Second, the

prior exposure to risky assets has little effect on the gains. As the exposure varies from 50%

to 100%, the gains change only from 123.93% to 125.47% when σρ = 1%, and from 22.36%

to 22.66% when σρ = 5%. This simply says that the data are informative enough about

the risk exposures despite the seemingly large prior differences in them. In other words, the

scaling of the total investment is easily updated or corrected by the data, while the relative

positions on the assets require much data to estimate correctly their covariance matrix.

As sample size grows, the influence of the priors decreases. This is not surprising because

both the posterior and the predictive distributions are completely determined by the data

when the sample size is infinity, regardless of the priors. However, with a sample size of as

9We are grateful to Ken French for making this data available on his website.
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large as T = 480, Table 1 shows that the utility gains are still substantial. At σρ = 1%, the

gain is greater than 8%, although it eventually decreases to an insignificant amount of 0.04%

at σρ = 5%. Overall, it is clear that the objective-based prior makes a significant economic

difference in portfolio selections.

Consider now the case in which some of the data, those ten years prior to the estimation

window, are used to form informative priors. In this case, the data-based prior, equation

(20), plays the role of the earlier diffuse prior, while the corresponding objective-based prior

is the one, given by equation (21), that updates the previous (no data) prior, given by

equation (19), by the same length of data. For simplicity, we set σµ = σρ in the comparison.

Table 2 provides the results. The objective-based prior outperforms the data-based prior

substantially when T ≤ 180 or σµ ≤ 2%. Like the diffuse prior case, the gains are a

decreasing function of σρ. However, unlike the diffuse prior case, they are not necessarily

smaller as T increases. For example, quite a few of the gains when T = 480 are even

greater than those with fewer samples. There are two explanations for this. First, in a given

application, the entire sample is only one path of all possible realizations of the random asset

returns and factors. Since the Bayesian criterion is path dependent, the associated expected

utilities will not necessarily be a monotonic function of the sample size.10 Second, even if

they were, their differences, the gains here, may not necessarily be so.

Finally, consider the performance of the objective-based priors in comparison to those

based on asset pricing models. With xt being the Fama-French three-factors, the degree

of belief on the validity of the Fama-French three-factor model is represented by the alpha

prior, equation (10). For simplicity, we assume σα = σρ in the comparison. Table 3 provides

the results. Similar to the data-based prior case, the utility gains are economically significant

for all the sample sizes when σρ ≤ 2%. However, they are small when T ≥ 360 and σρ ≥ 3%.

In summary, maximizing a utility function provides important guidance for choosing

priors in Bayesian decision making. Using the Fama-French data, we find that such objective-

based priors perform differently from both standard statistical and asset-pricing-based priors

significantly. Even with sample size as large as T = 480, there are cases where the differences

10For the classical criterion to be discussed in Section V, the monotonicity holds because all the sample
paths are integrated out.
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in terms of utility gains are still economically significant.

B. Utility Gains under Predictability

Consider now what happens to the performance under the various priors when the returns

are assumed predictable. For interest of comparison, we allow σP , the degree of uncertainty

about predictability, to take two values, infinity and 50%. When σP = ∞, the investor

imposes a no-predictability prior. This is an extreme case, whereas σP = 50% may be more

reasonable. Table 4 provides the results for σP = ∞ and 50%, respectively. In both cases,

the utility gains are substantial and more pronounced than in Table 1. For example, with

σρ = 1%, the gains are 207.22% and 74.10% compared with 123.93% and 8.87% of the iid

case, when T = 60 and 480, respectively. Like the iid case, the gains decrease as either σρ

or T increases. Overall, the presence of predictability does not weaken the earlier gains, but

strengthens them.

V. Out-of-sample Performance

The Bayesian evaluation of the rules presented thus far is conditional on the data at hand,

and the Bayesian utility gains measure the economic significance of the differences between

investment decisions based on one prior versus another. They do not speak to the perfor-

mances of the decisions out-of-sample. On the other hand, a classical statistician may prefer

to see how the rules perform for all possible data sets. In this section, based on the out-

of-sample criterion (detailed below), we compare the Bayesian rules among themselves, and

also compare them with some of the classical rules studies by Kan and Zhou (2007).

For the general case in which µ and V are any arbitrarily given parameters, the expected

utilities associated with most of the portfolio rules are difficult to obtain analytically. How-

ever, they can be easily computed via simulation for any prespecified parameters. To be

realistic, we set the true parameters of the model as the sample mean and covariance matrix

of the observed monthly data (as used in Section IV). Then, we can simulate a large number

of data sets from the assumed normal distribution of asset returns. For any one draw of

the data set with a sample size T , each of the rules provides its estimated optimal portfolio
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weights. Based on the weights, the expected utility can be computed from (1). The average

of these expected utility values over all the draws is the out-of-sample performance of the

rule (see Kan and Zhou (2007) and references therein for more theoretical discussions). In

other words, if one plays the rule over and over again for a large number of times, 1,000

used here, the average is the average utility the rule ensures. In the present mean-variance

framework, this is the average risk-adjusted return.

Table 5 reports the differences of the average expected utilities from the objective-based

prior to the diffuse prior rules. They can be interpreted as the out-of-sample average utility

gains of switching from the diffuse prior to the objective-based one. With sample size varying

from 60 to 480, it is seen that the objective-based prior outperform consistently. When

T = 60, the gains are much greater than the other cases due to the poor performance of

the diffuse prior with a small sample size. However, as the sample size increases, the gains,

though economically significant, decrease substantially. Nevertheless, even when the sample

size is as large as T = 480, the gains can still be greater than 3.5%, certainly of significant

economic importance.

When ten years worth of data are used to form the priors, Table 6 provides the the out-

of-sample average utility gains of switching from the data-based prior to the objective-based

one. Qualitatively, we have a similar conclusion as to Table 5. When T ≤ 180, the gains

range 2.04% to 98.58%. These are clearly economically significant, but smaller than the

diffuse prior case. This simply states that the data-based prior provides useful information

to portfolio selection, and so it does better than the diffuse prior by having smaller utility

differences with the objective-based prior. Moreover, when T = 480, some of the gains are

no longer economically significant, suggesting that the sample size now helps the data-based

prior to perform as well as the objective-based one.

When the objective-based prior is compared with the asset-pricing prior derived from

the Fama-French three-factor model, Table 7 provides the results. This prior, like others,

underperforms the objective-based one substantially. In addition, in comparison with others

as reported earlier in Table 5 and 6, the asset pricing prior does better than both diffuse and

the data-based priors when σρ = 1%. Hence, it seems that the three-factor model is not a

bad approximation for the true model. Overall, we find that the objective-based prior has
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superior performances, and is a better decision rule than all other priors as judged by the

classical statistical criterion.

Finally, we compare the Bayesian objective-based prior rule with the classical rules stud-

ied by Kan and Zhou (2007). For brevity, we analyze three of the classical rules here. The

first is the maximum likelihood (ML) estimator of the optimal portfolio weights, a popular

rule in practice. The other two are the shrinkage rule of Jorion (1986) and the three-fund

rule of Kan and Zhou (2007), which are the better performing rules among those compared

in Kan and Zhou (2007). Table 8 reports the average expected utilities for each of the rules.

As is well known, the ML rule performs poorly when the sample is small, say less than 240.

Its performance becomes comparable with the others only when the sample size is as large as

480. The shrinkage and the three-fund rules are designed to improve upon the ML, and are

optimal in certain metrics, and hence it is no surprise that they do much better than the ML

rule. However, they depend on a set of estimated parameters that makes their performances

still worse than the Bayesian objective-based prior rule when T ≤ 120. But, when T ≥ 240,

they have comparable performances with the Bayesian rule. It may be noted that, similar to

earlier Bayesian comparison, the sum of the prior weights has little impact on performances

because the data are quite informative on the total risky position, though much less so on

their relative positions.

In summary, the proposed objective-based prior rule performs impressively against both

the other Bayesian rules and the classical rules. The results highlight the importance for

investors to use their priors on the solution to an optimizing problem. In our case here, the

objective-based prior essentially says that our starting point is to diversify our investments so

that the prior weights are equal across assets. This implies suitable prior constraints on the

parameter values, and then we let the data update our prior toward the true and unknown

optimal portfolio. Because the prior contains useful information on the whereabouts of the

true solution, it turns out to be very valuable. While beyond the scope of this paper, this

seems to have important implications to Bayesian decision making in a number of areas.
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VI. Assessing the Importance of Anomalies

In this section, we apply our Bayesian framework to study the importance of Fama and

French’s (1993) book-to-market portfolio when treated as an anomaly to the CAPM. Since

our prior starts from portfolio weights, it is well suited for examining the question of whether

or not a given subset of assets is important in the investment decision. In particular, the

framework can be used to analyze international diversification and asset pricing anomalies.

We focus on anomalies in this paper.

Following Pástor (2000), we assume that the anomalies can be transformed into investable

assets, and then examine whether including them offers any gains in an asset allocation

problem. For simplicity, we consider the case of a single anomaly and assume that the last

return, RNt, is the return associated with the anomaly. If an investor is absolutely skeptical

about the anomaly, he could assign a zero weight to RNt. While this view is difficult to

express by using either the diffuse or the asset pricing theory prior, it fits well into our

proposed framework. Let w1, (N − 1)× 1, be his prior portfolio weights on the other assets.

The earlier prior,

(37) µ ∼ N

[
γV wa, σ

2
ρ

(
1

s2
V

)]
,

then represents the prior centered upon the belief wa = (w′
1, 0)′. If the investor is dogmatic

about his belief, he will then choose his optimal portfolio based on the N − 1 assets only,

and not invest in the anomaly asset at all. The associated optimal portfolio weights for the

(N − 1) assets are easily computed based on the predictive moments of those N − 1 assets,

with the weight on RNt being set at zero. In other words, the investor updates only the first

N − 1 component of wa in light of the data, but does not update his prior weight on the

anomaly. Let EUa be the expected utility associated with this optimal portfolio weight.

Consider now an alternative investment strategy, in which the investor updates wa as

usual, based on the predictive moments of all the N risky assets, despite his prior on RNt

being set at zero. Let EUb be the expected utility with this updated portfolio. Then

the difference between EUb and EUa provides a measure for the utility gains of utilizing

the anomaly. This is because, although both EUa and EUb are computed under the same

skeptical prior, EUb allows investing in RNt, while EUa does not.
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While the skeptical prior is reasonable for someone who casts a strong doubt on the

anomaly, it does not necessarily reflect well the belief of someone else who is open to investing

in the anomaly asset even before looking at the data. This means that one may compute EUb

under a more balanced prior. The obvious candidate is the prior that assigns equal weights

to all the risky assets. We denote the associated expected utility by EUc. Then, another

measure for the gains of utilizing the anomaly is to compare EUa with EUc. Intuitively,

the difference between EUc and EUa should usually be greater than that between EUb and

EUa. This is because EUc and EUb are computed in the same way except that the former is

using a generally better prior than the latter. However, as shown by later applications, the

difference between EUb and EUc are in fact small. Hence, either EUb −EUa or EUc −EUa

will provide a fairly robust measure for the gains of utilizing the anomaly.

Fama and French’s (1993) book-to-market portfolio, HML (high minus low), is a well-

known anomaly relative to the CAPM. Zhang (2005) explores, among others, some of the

theoretical reasons. Here we, following Pástor (2000), examine the economic importance of

the HML portfolio based on the approach outlined in Section II.E. In this case, we have

N = 2 since the market index and HML are the only risky assets.

Table 9 reports the utility gains, EUb −EUa, in which EUa is computed by ignoring the

anomaly completely under the skeptical prior. It is seen that, as long as the prior precision is

not too tight, with σρ ≥ 2%, the gains are over 3.72% across sample sizes and risk exposures.

The reason that the gains are getting greater as σρ increases is that the prior avoids investing

in the HML, and this skeptical prior can be mitigated by a larger value of σρ. As in the

previous section, the risk exposure, either
∑

w0i = 0.5 or 1, has little to do with the gains.

Overall, the results suggest strongly that the HML portfolio is of great economic significance

that yields substantial utility gains in the asset allocation problem.

Intuitively, an investor who avoids investing entirely in the anomaly under the skeptical

prior should do even worse than the one who invests in the anomaly under a more balanced

prior that assigns an equal weight to both the market and HML. This is indeed the case,

as shown by Table 10. However, the additional gains are small. Table 11 makes it more

apparent. The utility differences between the skeptical prior and the balanced one are less

than 1% except in three scenarios, and are less than 0.46% whenever σρ ≥ 3%. The results

20



say that even when one starts from such a poor prior that one avoids investing in the HML

asset entirely, but is willing to let the data to update this prior, then the harm is less than

one would have expected. In summary, the priors about the degree of investments in the

anomaly asset have little impact, and what drives the utility gains most is the dogmatic

belief that the investors will not update their prior investments in the anomaly asset at all

after seeing the data.

VII. Conclusion

This paper explores the link between Bayesian priors and economic objective functions. Once

incorporating the economic objectives into priors to estimate unknown parameters, we find

that the utility gains are substantial in a standard portfolio allocation problem, whether the

stock returns are predictable or not. Moreover, we find that the objective-based priors offer

the superior performance not only when we judge them by an in-sample Bayesian criterion,

but also by an out-of-sample classical criterion. In addition, while the shrinkage rule of Jorion

(1986) and the three-fund rule of Kan and Zhou (2007) are excellent rules in the classical

framework, we find that the Bayesian objective-prior can outperform them substantially,

suggesting there is real value-added in using prior solution information for the economic

problem at hand. We also apply the methodology to examine asset pricing anomalies and

find that Fama and French’s (1993) book-to-market portfolio, HML (high minus low), can

add substantial value to an investor’s allocation decision.

Although our study focuses on a portfolio choice problem, the methodology suggests that

economic objective-based priors can be explored in almost any financial decision-making

problems with parameter uncertainty. In particular, in cases where a Bayesian framework

is deemed as appropriate, it is highly likely that the decision maker will have some ideas

or a broad range about the optimal solution to a given economic objective even without

processing any data for formal Bayesian inference. The point of our paper is that this broad

range can be used to form objective-based priors that provide information on the plausible

values of model parameters so as to maximize the objective at hand.
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Appendix A: Proofs

Proof of Equation (16)

Recall that the investor’s objective is to maximize his expected utility. If µd and µ0

imply weights of wd and w0, respectively, then the utility loss caused by the deviation of wd

from w0 is

U(wd|µ0)− U(w0|µ0)

=
∂U

∂w′ [w0|µ0][wd − w0] +
1

2
[wd − w0]

′ ∂2U

∂w∂w′ [w0|µ0][wd − w0]

+
1

6

N∑
i=1

N∑
j=1

N∑

k=1

∂3U

∂wi∂wj∂wk

[w0|µ0][wdi − w0i][wdj − w0j][wdk − w0k] + · · · .

(A1)

Ignoring the higher order terms and using the first order condition ∂U
∂w′ [w0|µ0] = 0, we have

U(wd|µ0)− U(w0|µ0) ≈ 1

2
[wd − w0]

′ ∂2U

∂w∂w′ [w0|µ0][wd − w0].(A2)

Standard calculus implies

[wd − w0] ≈
{

∂2U

∂w∂w′ [w0|µ0]

}−1 {
∂U

∂w
[wd|µ0]− ∂U

∂w
[w0|µ0]

}
,(A3)

and
{

∂U

∂w
[wd|µ0]− ∂U

∂w
[w0|µ0]

}
≈

{
∂2U

∂w∂µ′
[w0|µ0]

}
[µd − µ0].(A4)

Therefore, we have (16), which says that the utility loss is approximately equal to the

weighted average of the deviation of µd from µ0, with weighting matrix determined by the

utility function.

In the case of mean-variance utility, the approximation holds exactly, and it is also easy

to verify that

(A5)

{
∂2U

∂w∂µ′
[w0|µ0]

}
= IN ,

(A6)

{
∂2U

∂w∂w′ [w0|µ0]

}
= −γV,

where V is the covariance matrix of the asset returns. Therefore, in the mean-variance case,

Ω = γV . Q.E.D.
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TABLE 1
Utility Gains of Switching from Diffuse to Objective-based Priors

The table reports the utility gains (annualized) of switching from the standard diffuse prior,

p0(µ, V ) ∝ |V |−N+1
2

to the objective-based prior

p0(µ, V ) ∝ N

[
γV w0, σ

2
ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

where σ2
ρ reflects the degree of uncertainty about µ and w0 is proportional to a constant with∑

w0i = 0.5 or 1, respectively. The data are Fama-French 25 size and book-to-market portfolios
and their three factors from January 1965 to December 2004. T is the sample size from January
1965 to a future month.

∑
w0i T σρ

1% 2% 3% 4% 5%

0.5 60 123.93 90.23 58.47 36.17 22.36
1 60 125.47 91.36 59.18 36.68 22.66

0.5 120 76.97 31.80 12.54 5.42 2.61
1 120 75.57 31.20 12.33 5.33 2.57

0.5 180 53.45 14.62 4.54 1.74 0.78
1 180 52.54 14.39 4.45 1.71 0.77

0.5 240 38.72 8.45 2.36 0.85 0.38
1 240 38.00 8.27 2.33 0.84 0.37

0.5 360 15.95 2.66 0.67 0.24 0.10
1 360 15.28 2.54 0.65 0.22 0.10

0.5 480 8.87 1.26 0.31 0.10 0.04
1 480 8.70 1.24 0.30 0.10 0.04



TABLE 2
Utility Gains of Switching from Data-based to Objective-based Priors

The table reports the utility gains (annualized) of switching from the data-based prior

p0(µ, V ) ∝ N

[
µ̂10, σ

2
µ

(
1

ŝ2
10

V̂10

)]
× |V |− νV +N+1

2 exp

{
−1

2
trHV −1

}

to the objective-based prior

p0(µ, V ) ∝ N

[
µ̂∗10, σ

2
ρ

(
1
s2

V

)]
× |V |− νV +N+1

2 exp

{
−1

2
trHV −1

}
,

where µ̂10 is the sample mean of the ten year prior data, and µ̂∗10 = γV ŵ10, ŵ10 is the Bayesian
optimal portfolio weights based on ten years prior data; w0 is proportional to a constant with∑

w0i = 0.5 or 1, respectively; σ2
ρ reflects the degree of uncertainty about µ, H = T10V̂10, νV = T10,

T10 = 120, and V̂10 is the sample covariance of the prior data. The data are Fama-French 25 size
and book-to-market portfolios and their three factors from January 1965 to December 2004. T is
the sample size from January 1965 to a future month.

∑
w0i T σρ

1% 2% 3% 4% 5%

0.5 60 54.25 30.36 18.32 12.28 8.80
1 60 53.17 29.57 17.89 12.15 8.66

0.5 120 44.57 44.56 31.44 19.37 12.16
1 120 42.72 43.70 31.16 19.41 12.19

0.5 180 34.25 14.34 7.50 4.14 2.39
1 180 33.88 14.20 7.49 4.12 2.37

0.5 240 17.76 4.28 1.62 0.73 0.35
1 240 17.02 4.25 1.60 0.71 0.36

0.5 360 6.54 1.97 0.77 0.34 0.17
1 360 6.37 1.92 0.75 0.34 0.17

0.5 480 42.83 8.68 2.37 0.95 0.47
1 480 42.85 8.72 2.37 0.95 0.46



TABLE 3
Utility Gains of Switching from Fama-French Three-factor Model-based to

Objective-based Priors

The table reports the utility gains (annualized) of switching from a prior reflecting the degree of
belief in the Fama-French three-factor model,

p0(α,B, V ) ∝ N(Bµ2, σ
2
α

1
s2
Σ

Σ)× |V |−N+1
2 ,

where Σ = V11 − V12V
−1
22 V21 and s2

Σ is the average of the diagonal elements of Σ, to the objective-
based prior

p0(µ, V ) ∝ N

[
γV w0, σ

2
ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

where σ2
ρ reflects the degree of uncertainty about µ and w0 is proportional to a constant with∑

w0i = 0.5 or 1, respectively. The data are Fama-French 25 size and book-to-market portfolios
and their three factors from January 1965 to December 2004. T is the sample size from January
1965 to a future month.

∑
w0i T σρ

1% 2% 3% 4% 5%

0.5 60 84.32 120.18 125.20 114.53 102.71
1 60 83.19 118.94 123.68 113.31 101.47

0.5 120 42.53 39.94 26.21 18.26 14.11
1 120 40.26 38.64 25.49 17.92 13.82

0.5 180 33.86 18.97 10.05 6.53 4.93
1 180 32.65 18.51 9.83 6.41 4.85

0.5 240 28.62 11.63 5.54 3.45 2.57
1 240 27.68 11.30 5.43 3.39 2.52

0.5 360 14.76 4.04 1.72 1.04 0.76
1 360 13.92 3.83 1.65 0.99 0.74

0.5 480 8.42 1.87 0.74 0.43 0.30
1 480 8.16 1.81 0.72 0.41 0.30



TABLE 4
Utility Gains of Switching from Predictability-diffuse to Objective-based Priors

The table reports the utility gains (annualized) of switching from the predictability-diffuse prior,

(A7) p0(µ1) ∝ N

[
µ̂1

p, σ2
P

(
1

s2
RR

ΣRR

)]
,

to the objective-based prior

(A8) p0(µ0, µ1) ∝ p0(µ1)×N

[
γΣRRw0 − µ1DYT , σ2

ρ

(
1

s2
RR

ΣRR

)]
,

where µ̂1
p is the slope of the predictive regression rt = µ0 + µ1DYt−1 + vt, vt ∼ N(0, ΣRR), based

on previous ten years data, σ2
P measures the degree of uncertainty about predictability, DYT is the

dividend yield at T , σ2
ρ reflects the degree of uncertainty in the objective-based prior and w0 is

proportional to a constant with
∑

w0i = 0.5 or 1, respectively. The data are Fama-French 25 size
and book-to-market portfolios and their three factors from January 1965 to December 2004. T is
the sample size from January 1965 to a future month.

∑
w0i T σρ

1% 2% 3% 4% 5%
σP = ∞
0.5 60 207.22 155.36 109.65 73.29 48.53
1 60 198.32 150.32 104.96 71.92 46.82

0.5 120 168.07 82.86 37.64 17.38 9.22
1 120 167.51 81.79 37.25 17.73 9.40

0.5 180 157.67 65.02 26.73 11.86 5.70
1 180 154.80 63.50 25.73 11.46 5.69

0.5 240 138.21 52.53 20.22 8.70 4.05
1 240 140.35 53.62 20.66 9.17 4.57

0.5 360 96.76 31.76 11.12 4.65 2.26
1 360 95.36 31.05 10.75 4.50 2.15

0.5 480 74.10 22.34 7.49 3.02 1.36
1 480 74.72 22.66 7.48 3.04 1.38

(To be continued)



TABLE 4 (continued)
Utility gains of switching from predictability-diffuse to objective-based Priors

∑
w0i T σρ

1% 2% 3% 4% 5%
σP = 50%
0.5 60 357.36 262.51 179.97 114.22 74.64
1 60 345.84 256.91 174.46 114.55 73.40

0.5 120 158.64 77.46 35.00 16.15 8.52
1 120 157.79 76.50 34.60 16.34 8.65

0.5 180 124.64 46.19 17.74 7.54 3.61
1 180 122.65 45.33 17.25 7.36 3.55

0.5 240 97.55 32.42 11.55 4.79 2.14
1 240 99.50 33.45 11.82 5.08 2.48

0.5 360 102.32 32.30 11.01 4.58 2.24
1 360 100.61 31.55 10.74 4.42 2.14

0.5 480 57.75 16.00 5.15 2.02 0.90
1 480 59.16 16.59 5.23 2.10 0.93



TABLE 5
Out-of-sample Utility Gains of Switching from Diffuse to Objective-based

Priors

This table reports the average utility gains of switching from a diffuse prior to objective-based
priors with data sets simulated from a multivariate normal distribution whose mean and covariance
matrix are calibrated from the monthly returns of the Fama-French 25 assets and the associated
three factors from January 1965 to December 2004. For each of the varying sample sizes T below,
there are 1000 simulated data sets.

∑
w0i T σρ

1% 2% 3% 4% 5%

0.5 60 185.14 185.19 168.42 143.16 118.04
1 60 186.06 185.77 168.78 143.39 118.11

0.5 120 42.50 44.95 35.16 25.68 18.87
1 120 43.21 45.25 35.28 25.77 18.89

0.5 180 18.99 21.88 15.67 10.80 7.66
1 180 19.55 22.07 15.79 10.84 7.65

0.5 240 10.08 13.03 8.91 5.93 4.11
1 240 10.54 13.16 8.92 5.97 4.13

0.5 360 3.64 6.18 3.97 2.56 1.76
1 360 3.97 6.25 3.99 2.57 1.75

0.5 480 1.33 3.52 2.19 1.39 0.95
1 480 1.56 3.55 2.20 1.39 0.96



TABLE 6
Out-of-sample Utility Gains of Switching from Data-based to Objective-based

Priors

This table reports the average utility gains of switching from the data-based to the objective-based
priors with data sets simulated from a multivariate normal distribution whose mean and covariance
matrix are calibrated from the monthly returns of the Fama-French 25 assets and the associated
three factors from January 1965 to December 2004. For each of the varying sample sizes T below,
there are 1000 simulated data sets.

∑
w0i T σρ

1% 2% 3% 4% 5%

0.5 60 71.52 98.15 87.66 68.40 52.92
1 60 72.32 98.58 87.56 68.28 52.60

0.5 120 21.38 20.07 13.53 9.02 6.16
1 120 21.97 20.24 13.67 8.96 6.44

0.5 180 16.38 9.49 5.15 2.94 2.00
1 180 16.61 9.41 5.10 3.04 2.04

0.5 240 12.77 5.16 2.38 1.42 0.89
1 240 12.97 5.21 2.38 1.34 0.85

0.5 360 8.04 1.81 0.67 0.40 0.14
1 360 8.11 1.80 0.69 0.41 0.23

0.5 480 4.70 0.70 0.26 0.16 0.14
1 480 4.73 0.67 0.28 0.16 0.12



TABLE 7
Out-of-sample Utility Gains of Switching from Fama-French Three-factor

Model-based to Objective-based Priors

This table reports the average utility gains of switching from the Fama-French three-factor model-
based priors to the objective-based priors with data sets simulated from a multivariate normal
distribution whose mean and covariance matrix are calibrated from the monthly returns of the
Fama-French 25 assets and the associated three factors from January 1965 to December 2004. For
each of the varying sample sizes T below, there are 1000 simulated data sets.

∑
w0i T σρ

1% 2% 3% 4% 5%

0.5 60 53.47 187.62 237.01 242.54 233.47
1 60 54.39 188.21 237.37 242.78 233.54

0.5 120 21.33 55.66 55.95 50.49 45.63
1 120 22.04 55.96 56.07 50.58 45.66

0.5 180 9.67 25.95 23.39 19.92 17.45
1 180 10.23 26.14 23.51 19.96 17.44

0.5 240 5.22 15.58 13.33 11.06 9.58
1 240 5.68 15.71 13.34 11.10 9.60

0.5 360 1.15 6.87 5.41 4.27 3.61
1 360 1.48 6.94 5.43 4.29 3.60

0.5 480 0.26 4.24 3.32 2.67 2.30
1 480 0.49 4.28 3.33 2.67 2.30



TABLE 8
Out-of-sample Utilities of Classical Rules and a Bayesian One

This table reports the average utilities of the Bayesian rule under the objective-based prior, the
shrinkage rule of Jorion (1986), the three-fund rule of Kan and Zhou (2007), and the maximum
likelihood rule, with data sets simulated from a multivariate normal distribution whose mean and
covariance matrix are calibrated from the monthly returns of the Fama-French 25 assets and the
associated three factors from January 1965 to December 2004. For each of the varying sample sizes
T below, there are 1000 simulated data sets.

∑
w0i T Bayesian σρ Classical rules

1% 2% Jorion Kan-Zhou 1
γ V̂ −1µ̂

0.5 60 8.58 8.63 -57.67 1.78 -932.13
1 60 9.50 9.21 -57.67 1.78 -932.13

0.5 120 16.75 19.20 7.17 16.03 -92.29
1 120 17.46 19.50 7.17 16.03 -92.29

0.5 180 22.45 25.34 20.36 23.58 -19.76
1 180 23.02 25.53 20.36 23.58 -19.76

0.5 240 26.74 29.70 27.02 28.58 4.99
1 240 27.20 29.82 27.02 28.58 4.99

0.5 360 32.34 34.88 33.79 34.36 24.06
1 360 32.67 34.95 33.79 34.36 24.06

0.5 480 36.00 38.18 37.63 37.89 32.22
1 480 36.22 38.22 37.63 37.89 32.22



TABLE 9
Utility Gains of Utilizing Anomaly under a Skeptical Prior

Based on the market (MKT) and the high minus low book-market (HML) portfolios from January
1965 to December 2004, the table reports the utility gains (annualized) of switching from investing
only in the MKT to investing in both MKT and HML under the skeptical prior,

p0(µ, V ) ∝ N

[
γV w0, σ

2
ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

where σ2
ρ reflects the degree of uncertainty about µ and w0 is proportional to the 2×1 vector (1 0)′

with
∑

w0i = 0.5 or 1, respectively. T is the sample size from January 1965 to a future month.

∑
w0i T σρ

1% 2% 3% 4% 5%

0.5 60 0.55 3.79 7.73 10.77 12.73
1 60 0.54 3.72 7.72 10.72 12.76

0.5 120 1.35 5.21 7.70 9.04 9.84
1 120 1.32 5.18 7.73 9.06 9.88

0.5 180 1.98 5.26 6.70 7.45 7.70
1 180 1.97 5.26 6.73 7.35 7.72

0.5 240 2.70 6.00 7.27 7.80 8.11
1 240 2.70 6.03 7.27 7.80 8.07

0.5 360 4.82 8.65 9.84 10.25 10.46
1 360 4.78 8.60 9.73 10.22 10.47

0.5 480 4.59 7.28 8.00 8.22 8.36
1 480 4.55 7.20 8.00 8.27 8.42



TABLE 10
Utility Gains of Utilizing Anomaly under a More Balanced Prior

Based on the market (MKT) and the high minus low book-market (HML) portfolios from January
1965 to December 2004, the table reports the utility gains (annualized) of switching from investing
only in the MKT but not investing in the HML anomaly asset under the skeptical prior

p0(µ, V ) ∝ N

[
γV wa, σ

2
ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

where σ2
ρ reflects the degree of uncertainty about µ and wa is proportional to the 2×1 vector (1 0)′

with
∑

w0i = 0.5 or 1, respectively; to investing in both MKT and HML under a more balanced
prior

p0(µ, V ) ∝ N

[
γV w0, σ

2
ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

where w0 is proportional to a constant with
∑

w0i = 0.5 or 1, respectively. T is the sample size
from January 1965 to a future month.

∑
w0i T σρ

1% 2% 3% 4% 5%

0.5 60 1.66 4.94 8.77 11.41 13.39
1 60 3.93 6.76 10.07 12.37 13.80

0.5 120 2.20 5.78 8.12 9.46 10.04
1 120 3.65 6.49 8.47 9.55 10.13

0.5 180 2.59 5.61 6.93 7.54 7.86
1 180 3.50 5.98 7.13 7.64 7.87

0.5 240 3.24 6.34 7.43 7.91 8.15
1 240 4.01 6.60 7.58 8.02 8.23

0.5 360 5.35 8.83 9.89 10.30 10.54
1 360 5.88 8.99 10.03 10.33 10.57

0.5 480 4.98 7.37 8.04 8.27 8.41
1 480 5.40 7.51 8.15 8.33 8.45



TABLE 11
Utility Gains of Switching from a Skeptical Prior to a More Balanced Prior

Based on the market (MKT) and the high minus low book-market (HML) portfolios from January
1965 to December 2004, the table reports, while allowing to invest in both MKT and HML, the
utility gains (annualized) of switching from a skeptical prior

p0(µ, V ) ∝ N

[
γV wa, σ

2
ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

where σ2
ρ reflects the degree of uncertainty about µ and wa is proportional to the 2×1 vector (1 0)′

with
∑

w0i = 0.5 or 1, respectively; to a more balanced prior

p0(µ, V ) ∝ N

[
γV w0, σ

2
ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

where w0 is proportional to a constant with
∑

w0i = 0.5 or 1, respectively. T is the sample size
from January 1965 to a future month.

∑
w0i T σρ

1% 2% 3% 4% 5%

0.5 60 0.58 0.24 0.12 0.03 0.03
1 60 2.32 1.07 0.46 0.21 0.09

0.5 120 0.30 0.08 0.02 0.01 0.01
1 120 1.22 0.27 0.09 0.03 0.01

0.5 180 0.15 0.02 0.01 0.00 0.00
1 180 0.58 0.10 0.02 0.01 0.00

0.5 240 0.10 0.02 0.00 0.00 0.00
1 240 0.41 0.06 0.01 0.00 0.00

0.5 360 0.06 0.01 0.00 0.00 0.00
1 360 0.22 0.03 0.01 0.00 0.00

0.5 480 0.03 0.00 0.00 0.00 0.00
1 480 0.14 0.01 0.00 0.00 0.00


