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Being Naive about Naive Diversification:

Can Investment Theory Be Consistently Useful?

The modern portfolio theory pioneered by Markowitz (1952) is widely used in practice

and taught in MBA texts. DeMiguel, Garlappi and Uppal (2007), however, show that, due

to estimation errors, existing theory-based portfolio strategies are not as good as we once

thought, and the estimation window needed for them to outperform the naive 1/N rule (that

invests equally across N risky assets) is “around 3000 months for a portfolio with 25 assets

and about 6000 months for a portfolio with 50 assets.” In this paper, based on an optimal

combination of the 1/N rule with the three-fund rule of Kan and Zhou (2007), we provide the

first theory-based portfolio strategy that performs consistently well across various simulated

data sets and real data sets, with estimation window as small as 120 months, while all others

cannot do so and can even lose money on a risk-adjusted basis. Our results suggest that

investment theory can be consistently useful in practice if properly applied.



ALTHOUGH MORE THAN HALF A CENTURY has passed since Markowitz’s (1952) sem-

inal work, the mean-variance framework is still the major model used in practice today in

asset allocation and active portfolio management despite many sophisticated models devel-

oped by academics.1 One of the main reasons is that many real-world issues, such as factor

exposures and trading constraints, can be accommodated easily within this framework with

analytical insights and fast numerical solutions. Another reason is that the intertemproal

hedging demand is typically small. However, as is the case with any model, the true param-

eters in the mean-variance setup are unknown and have to be estimated from data, which

introduces a parameter uncertainty problem since the estimated optimal portfolio rules are

subject to random errors and can be substantially different from the true optimal rule. Brown

(1976), Bawa, Brown, and Klein (1979), and Jorion (1986) are examples of earlier work that

provide portfolio rules accounting for parameter uncertainty. Recently, Kan and Zhou (2007)

compare the performances of various strategies including their three-fund rule that uses a

third portfolio to hedge the estimation risk in the usual sample-based two-fund strategy.2

DeMiguel, Garlappi, and Uppal (2007), in their thought-provoking paper, find, however,

that the parameter uncertainty problem can be so severe that existing sophisticated and

estimated portfolio rules cannot even outperform the naive diversification strategy – the 1/N

rule that invests equally across N risky assets, even when the sample size is unrealistically

large. In particular, they state in their paper that “Based on parameters calibrated to the

U.S. equity market, our analytical results and simulations show that the estimation window

needed for the sample-based mean-variance strategy and its extensions to outperform the

1/N benchmark is around 3000 months for a portfolio with 25 assets and about 6000 months

for a portfolio with 50 assets. This suggests that there are still many ‘miles to go’ before

the gains promised by optimal portfolio choice can actually be realized out of sample.”

Their finding challenges researchers to develop new methods for overcoming the estimation

problem.3

1See Grinold and Kahn (1999), Litterman (2003) and Meucci (2005) for practical applications of the
mean-variance framework; and see Brandt (2004) for an excellent survey of the academic literature.

2Pástor (2000), Pástor and Stambaugh (2000), Harvey, Liechty, Liechty, and Müller (2004), and Tu and
Zhou (2004) are examples of recent Bayesian studies on the parameter uncertainty problem. We focus here
on the classical framework and leave the search for suitable priors that work for general situations elsewhere.

3The finding also challenges the wisdom of the recently fast-growing 130-30 strategy (see, e.g., Lo and
Patel (2008)), which, involving trillions of dollars, is one of Wall Street quantitative equity strategies based
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Before addressing this challenge, we should point out first that it is inconsequential if the

sample-based mean-variance strategy and other theory-based ones cannot outperform the

1/N only in some special cases. This is because the 1/N rule is the best one when the true

optimal portfolio happens to be equal to it. In this case, it has a zero error from the optimal

portfolio and cannot be improved any further, while any estimated rule must be subject to

random errors with a positive variance, and therefore must perform worse than the 1/N .

Hence, in cases when the 1/N is close to the true optimal portfolio as is the case in the exact

one-factor model of DeMiguel, Garlappi, and Uppal (2007), it is expected that the estimated

strategies will underperform the 1/N . Thus, a random rule that only underperforms the

1/N when the 1/N is good by design is not sufficient to say that the rule is bad.

However, if the theory-based strategies are of value consistently across models and data

sets, we would also expect that their performances should be close to that of the 1/N when

the 1/N is set to be good, and better when the 1/N is set to be poor. Unfortunately, this is

not the case for the real data sets examined by DeMiguel, Garlappi, and Uppal (2007) as well

as for our simulated data sets from various models. For example, for some of the data sets,

all of the existing theory-based strategies (under our consideration) not only underperform

the 1/N , but also have negative risk-adjusted returns!4 (The 1/N fails to produce positive

risk-adjusted returns sometimes too). Moreover, in a three-factor model even when the

1/N is significantly different from the true optimal portfolio, we find that the theory-based

strategies can still underperform the 1/N substantially. That is, investors can be worse off

by following the theory-based strategies than by simply putting 100% of the money into the

riskless asset, due to presence of estimation errors. This raises the serious need for proposing

new theory-based strategies that can perform well consistently across models and data sets.

To address this need, we, in this paper, propose a number of new theory-based portfolio

strategies based on various assumptions on the data-generating process. All of the new rules

have simple analytical expressions and can be estimated easily in practice. While it is likely

that one strategy may be the best in some scenarios but not so in others, we do find that

almost entirely on the mean-variance portfolio theory (see, e.g., Chincarini and Kim (2006), and Qian, Hua,
and Sorensen (2007)).

4In particular, the rules do not even work well for a few assets, raising questions for using the standard
rule to allocate funds to a few asset classes by pensions and endowments.
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an optimal combination of the 1/N rule with the three-fund rule of Kan and Zhou (2007)

performs consistently well across models and data sets. It performs as well as or better than

all other theory-based rules on a consistent basis. It also outperforms substantially the 1/N

across almost all models: in a one-factor model with mispricing, in multiple factor models

with and without mispricing, and in models calibrated from real data without any factor

structures, even when the estimation window (sample size) T is as small as 120. For example,

in a one-factor model with 25 assets and with pricing error alphas ranging from −5% to 5%

per year, it achieves average expected utility 5.81%, 7.44%, 10.02%, and 12.99% per year,

respectively, while the 1/N rule has a constant level of 3.89% per year, as T goes up from

120 months to 240, 480, and 960 months. In a model calibrated with Fama and French’s

(1993) 25 assets without any factor structures, its utility values are 12.99%, 21.53%, 30.74%,

and 37.49% per year, in contrast to a much smaller value of 4.28% per year for the 1/N .

Moreover, it is the only rule that never loses money (on a risk-adjusted basis) across models

and data sets.

Why does the combination rule perform so well? First, combination always helps. To see

the intuition, imagine that, for some data sets, one rule is good and the other rule is bad,

and for other data sets, the reverse happens. Then, the combination obtains the average

performance. For a concave utility, the average performance is preferred to both good and

bad. This also parallels to diversification with two risky assets. A suitable combination

or an optimal portfolio of them is always preferred to holding either one alone. Second,

the combination rule here takes advantage of the good properties of both the 1/N and

the three-fund rules. Economically, in the CAPM world with the sum of the betas being

equal to one, the 1/N rule holds the market portfolio plus an average noise across assets.

Statistically, the 1/N is an excellent shrinkage point for improving the estimation of the

mean of a multivariate distribution. On the other hand, the 1/N is biased since it will never

converge to the true optimal rule unless it happens to be equal to it. But it is a rule with

zero variance, and hence it contributes the utility loss from using it only by its bias. The

three-fund rule of Kan and Zhou (2007) is designed to diversify the estimation risk with the

use of two sample frontier portfolios. It is asymptotically unbiased, but can have sizable

variance in small samples. Therefore, the combination of the 1/N rule with the three-fund
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rule is to make the optimal tradeoff between adding bias and reducing variance. When the

sample size is small, the variance of the three-fund rule is large. Increasing the weight on the

1/N in the combination will increase the bias, but decrease the variance. Thus, the optimal

sample-dependent weight should make the combination better than using either the 1/N or

the three-fund rule alone. Clearly, though, as the sample size goes up, more weight will be

placed on the three-fund rule. With an infinite amount of data, the weight will eventually

go to one, and the combination rule will converge to the true optimal portfolio.

The central question of this paper is whether investment theory can be consistently

useful.5 Our proposed optimal combination rule is theory-based and performs consistently

well across all models and real data sets under our study, with sample sizes of only 120 and

240 months, far less than the incredible sample sizes of “around 3000 months for a portfolio

with 25 assets and about 6000 months for a portfolio with 50 assets.” Our results therefore

support firmly the proposition of our paper that investment theory can be consistently useful

for practical sample sizes, despite of parameter uncertainty, as long as it is applied in the

way like the new strategy.

The remainder of the paper is organized as follows. Section I provides the various new

estimators of the true but unknown optimal portfolio rule. Section II compares the per-

formance of the 1/N with rules proposed here and some of the existing ones. Section III

discusses directions for future research. Section IV concludes.

I. Portfolio Strategies Under Parameter Uncertainty

In this section, we review first the mean-variance framework, then introduce the combi-

nation or shrinkage rules and a rule based on the assumption of factor model structure, and

finally present two new three- and four-fund strategies.

A. The Portfolio Choice Problem

Consider the standard portfolio choice problem in which an investor chooses his optimal

5This question is related but different from the question whether investment theory can outperform the
1/N , which, as explained earlier, is impossible in some specific scenarios. As a matter of fact, this is true for
any fixed constant rule that is independent of data.
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portfolio among N risky assets and a riskless asset. Let rft and rt be, respectively, the rates

of returns on the riskless asset and the N risky assets at time t. We define Rt ≡ rt − rft1N

as the excess returns, i.e., the returns in excess of the riskless asset, where 1N is an N -vector

of ones. Note that allowing for the riskless asset is not only practical in asset allocation

problems, but also meaningful to fund managers. If a fund is restricted to equity only,

the returns on utility companies should be a close proxy of the riskless asset. Since the

performances of most institutional managers are benchmarked by an index, say the S&P500,

the S&P500 index portfolio is the riskless asset and the returns in excess of it are what matter

in their investment decisions. In this case, mathematically, the return on the S&P500 plays

the role of rft below, and the framework developed here applies without any problems.6

For the probability distribution of Rt, we make the common assumption that Rt is in-

dependent and identically distributed over time, and has a multivariate normal distribution

with mean µ and covariance matrix Σ. To obtain analytical solutions, we focus our analysis

on the standard mean-variance framework. In this framework, the investor at time T chooses

his portfolio weights w so as to maximize the quadratic objective function

U(w) = E[Rp]− γ

2
Var[Rp] = w′µ− γ

2
w′Σw, (1)

where Rp = w′RT+1 is the future uncertain portfolio return and γ is the coefficient of relative

risk aversion. It is well-known that, when both µ and Σ are assumed known, the portfolio

weights are

w∗ =
1

γ
Σ−1µ, (2)

and the maximized expected utility is

U(w∗) =
1

2γ
µ′Σ−1µ =

θ2

2γ
, (3)

where θ2 = µ′Σ−1µ is the squared Sharpe ratio of the ex ante tangency portfolio of the risky

assets.

However, w∗ is not computable in practice because µ and Σ are unknown. To implement

the above mean-variance theory of Markowitz (1952), the optimal portfolio weights are usu-

ally estimated by using a two-step procedure. First, the mean and covariance matrix of the

6See, e.g., Grinold and Kahn (1999) for active portfolio management with benchmarks.
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asset returns are estimated based on the observed data. The standard estimates are

µ̂ =
1

T

T∑
t=1

Rt, (4)

Σ̂ =
1

T

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′, (5)

which are the maximum likelihood (ML) estimator. Second, these sample estimates are then

treated as if they were the true parameters, and are simply plugged into (2) to compute the

popular ML estimator of the optimal portfolio weights,

ŵML =
1

γ
Σ̂−1µ̂. (6)

Since ŵML is a random variable that is distributed around w∗ at most, this gives rise to a

parameter uncertainty problem because the utility associated with using ŵML is different from

U(w∗) due to using the estimated rule rather than the true one. As shown by Brown (1976),

Bawa, Brown, and Klein (1979), Jorion (1986) and Kan and Zhou (2007), the difference can

be quite substantial in realistic applications.

Since the true portfolio weights w∗ are unknown, the task is how to best estimate them

based on available observations R1, . . . , RT . Any estimator must be a function of the data;

say w̃ = w̃(R1, . . . , RT ) is such an estimator. The classical criterion for its performance is

the expected loss function

L(w∗, w̃) = U(w∗)− E[Ũ(w̃)], Ũ(w̃) ≡ w̃′µ− γ

2
w̃′Σw̃, (7)

where U(w∗) is the expected utility of knowing the true parameters, and E[Ũ(w̃)], as nicely

put by DeMiguel, Garlappi, and Uppal (2007), is the average utility realized by an investor

who plays the estimated strategy w̃ infinitely many times. One can also imagine that playing

the same strategy works in different markets, such as the US and other countries. Brown

(1976), Jorion (1986), Frost and Savarino (1986), Stambaugh (1997), TerHorst, DeRoon,

and Werkerzx (2002), Kan and Zhou (2007), and DeMiguel, Garlappi, and Uppal (2007) are

examples of using L(w∗, w̃) to evaluate portfolio rules. In practice, even though there is a

long time series of data in the US equity market, the utilities from simulated data based on

similar sample lengths can still be substantially smaller than the true hypothetical utility
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(see, e.g., Section II). Hence, parameter uncertainty is an important issue in practice (see.,

e.g., Meucci, 2005).

For any portfolio rule, we note first that the loss can be written as

L(w∗, w̃) =
γ

2

[
1

γ2
µ′Σ−1µ− 2

γ
µ′[E(w̃)] + E[w̃′Σw̃]

]

=
γ

2
E

[
(
1

γ
Σ−1µ− w̃)′Σ(

1

γ
Σ−1µ− w̃)′

]

=
γ

2
E [(w̃ − w∗)′Σ(w̃ − w∗)] , (8)

i.e., a quadratic function of the errors in estimating w∗. In contrasting this with the usual

statistical optimal estimation, there are two differences. First, it is a function of the primitive

parameters of the data-generating process that is of interest, not the parameters themselves.

Second, the weighting matrix, Σ, is unknown. These differences make a simple and analytical

solution to the best possible estimator of w impossible, as will be clear from the analysis

below.

B. Optimal Combinations

The naive 1/N rule is a special estimator of w∗ that ignores all data information, and

can be expressed as

we ≡ ce1N , (9)

where ce is a scalar determining the total allocation to risky assets per dollar. The simple

naive diversification 1/N rule takes ce = 1/N , and so we = 1N/N , which invests 1/N of each

dollar into each of the N risky assets. In general, we allocates funds equally among the N

risky assets with the total allocation equal to Nce, and it allocates the rest, 1 − Nce, into

the riskless asset. Since DeMiguel, Garlappi, and Uppal (2007) focus their studies on the

naive 1/N rule, we will also do so in what follows.

Although the naive 1/N rule is quite simple, DeMiguel, Garlappi, and Uppal (2007)

show that it can perform remarkably well under certain conditions. Indeed, when the assets

returns have equal means and variances and when they are independent, 1/N is the best one

with suitable risk aversion adjustment. As is well known in statistics (see, e.g., Lehmann,

E. L., and George Casella, 1998), 1/N is the common choice of a good shrinkage point for
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improving the estimation of the mean of a multivariate distribution.

Another economic reason, which seems not recognized in the literature, is that it is

proportional to the market portfolio in a one-factor model with the market as the factor. To

see this, consider the standard market model regression,

Rjt = αj + βjRmt + εjt, j = 1, 2, ..., N, (10)

where Rjt is the excess return on the j-th asset, Rmt is the market excess return, and εjt’s

are the regression residuals with a covariance matrix Σε. Averaging the model over j, we

obtain the following portfolio of the 1/N rule,

w′
eRt = ᾱ + β̄Rmt + ε̄, (11)

where ᾱ, β̄ and ε̄ are the average alpha, beta and residuals, respectively. When the CAPM

is true, ᾱ must be zero. In this case, w′
eRt is proportional to the market portfolio except

the average residual term which can be much smaller than the individual ones. If β̄ is also

one, w′
eRt deviates from the market portfolio only by ε̄. Empirically, the CAPM is clearly

a staring point for understanding the data.7 Given that the market portfolio is not easy to

beat, the 1/N will be a good starting portfolio as well.

However, there is an important problem with the 1/N rule. It makes no use of sample

information, and will always fail to converge to the true optimal rule when it does not happen

to be equal to it. If it has a large difference from the true optimal rule, especially when the

data-generating process is complex and when the market portfolio is far from efficiency, its

performance must be poor.

To improve the 1/N rule with sample information, consider the following combination of

the 1/N with an unbiased ML estimator of w∗,

ŵs = (1− δ)we + δw̄, (12)

where

w̄ =
1

γ
Σ̃−1µ̂ (13)

7Black and Litterm’s (1992) popular asset allocation model starts from the CAPM and updates it with
an investor’s views. But their analysis is ad hoc Bayesian without using the data-generating process.
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is simply a scale adjustment of ŵML so that it is unbiased to satisfy Ew̄ = w∗, and Σ̃ =

T Σ̂/(T −N − 2). δ is the combination parameter, 0 ≤ δ ≤ 1. Intuitively, an optimal

combination of we and w̄ should be at least as good as any of them used alone. Since we

is constant, its loss will remain the same even if we have an infinite amount of data. On

the other hand, w̄ performs well when the available sample size is large enough. Hence,

a combination of we with w̄ can make use of the sample information to pin down where

the true rule is, and in so dosing improves the 1/N . The combination is also known as a

shrinkage estimator in statistics, which shrinks the 1/N rule toward the true rule.

Formally, because of (8) and Ew̄ = w∗, the expected loss associated with using ŵs is

L(w∗, ŵs) =
γ

2

[
(1− δ)2(we − w∗)′Σ(we − w∗) + δ2E ((w̄ − w∗)′Σ(w̄ − w∗))

]

=
γ

2

[
(1− δ)2π1 + δ2π2

]
, (14)

where

π1 = w′
eΣwe − 2

γ
w′

eµ +
1

γ2
θ2, (15)

π2 =
1

γ2
(c1 − 1)θ2 +

c1

γ2

N

T
(16)

with θ2 = µ′Σ−1µ and

c1 =
(T − 2)(T −N − 2)

(T −N − 1)(T −N − 4)
. (17)

Equation (15) is trivial, and equation (16) follows from both equation (30) of Kan and

Zhou (2007) and equation (14) here. Equation (14) is quite intuitive. The 1/N rule is

an estimator of w with bias π1, but zero variance, while w̄ is unbiased, but with nonzero

variance π2. Therefore, the loss depends on δ, which determines the tradeoff between bias

and variance. If the bias is large, the 1/N should be weighted less and vice versa.

Interestingly, as long as we is not exactly equal to w∗, δ can always be chosen to be a

number small enough to make the loss of the combination rule smaller than it would be using

the 1/N rule alone. Summarizing this, we have

Proposition 1: If 0 < δ < 2π1/(π1 + π2), then the combination estimator ŵs has a

strictly smaller loss than the 1/N rule.
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Proposition 1 (proofs of all propositions are given in the appendix) says that the 1/N

can be dominated by the combination estimator as long as the true w∗ lies outside any given

neighborhood of 1/N . For example, in an application in which we are confident that we

must have at least some bias so that π1 > a1, a given positive constant, and if the weighted

variance of w̄, as measured by π2, is less than a2, another given positive constant, then any

positive δ that is less than 2a1/(a1 +a2) will always make the combination estimator to have

a smaller loss than the 1/N rule.8

However, improving upon 1/N is not the goal. What we need is a good rule that can

perform well across models. For this purpose, we optimize δ in equation (14) to get a new

rule. It is clear that the optimal choice of δ is

δ∗ =
π1

π1 + π2

, (18)

the midpoint of the bound given by Proposition 1. But this value is unknown, and has to

be estimated. Given the data, π1 and π2 can be estimated by

π̂1 = w′
eΣ̂we − 2

γ
w′

eµ̂ +
1

γ2
θ̃2, (19)

π̂2 =
1

γ2
(c1 − 1)θ̃2 +

c1

γ2

N

T
, (20)

where θ̃2 is an accurate estimator θ2, proposed by Kan and Zhou (2007) and given by

θ̃2 =
(T −N − 2)θ̂2 −N

T
+

2(θ̂2)
N
2 (1 + θ̂2)−

T−2
2

TBθ̂2/(1+θ̂2)(N/2, (T −N)/2)
, (21)

where θ̂2 = µ̂′Σ̂−1µ̂ and

Bx(a, b) =

∫ x

0

ya−1(1− y)b−1dy (22)

is the incomplete beta function. Then, we obtain δ̂, an estimator of δ∗, by plugging π̂1 and

π̂2 into (18). This will give us a completely new rule. We summarize the result as

Proposition 2: Among the combination rules ŵs = (1 − δ)we + δw̄, the estimated

optional one is

ŵCML = (1− δ̂)we + δ̂w̄, (23)

8Proposition 1 can be extended to any fixed constant rule.
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where the combination coefficient δ̂ = π̂1/(π̂1 + π̂2) with π̂1 and π̂2 given by (19) and (20).

Proposition 2 provides a simple and practical way to combine the 1/N with the unbiased

ML estimator w̄. Theoretically, if δ∗ were known, the combination rule must dominate 1/N

unless w∗ = 1/N . But δ∗ is unknown and has to be estimated in practice. This will introduce

a loss in the expected utility due to errors in estimating δ∗, making it uncertain whether

ŵCML can still outperform 1/N . Although the magnitude of the estimation error varies over

empirical applications, ŵCML does outperform 1/N with T as small as 120 in most scenarios

of later simulations, and has close performances in other scenarios. Clearly, as T goes to

infinity, ŵCML converges to the true optimal portfolio.

As alternatives, we can also consider an optimal combination of the 1/N with either the

three-fund rule of Jorion (1986) or the three-fund rule of Kan and Zhou (2007). Since the

latter two rules are better than the unbiased ML one, the new combinations are likely to

be even better. However, terms like 1′N Σ̂−11N and µ̂Σ̂−1µ̂ enter Jorion’s estimator nonlin-

early in both numerators and denominators of the function of interest (see, e.g., (A34) in

the Appendix). As a result, analytical expressions for the combination coefficients are not

feasible, and hence we will derive here only the combination of the 1/N with Kan and Zhou’s

three-fund rule,

ws = (1− δk)we + δkŵ
KZ, (24)

where ŵKZ denotes the three-fund rule of Kan and Zhou (2007), which plays the role of the

earlier unbiased ML rule in equation (12). ŵKZ is motivated by adding the global minimum

variance portfolio into the usual ML estimator to hedge the estimation risk, and can be

analytically written as

ŵKZ =
T −N − 2

γc1T

[
η̂Σ̂−1µ̂ + (1− η̂)µ̂gΣ̂

−11N

]
, (25)

where

η̂ = ψ̂2/(ψ̂2 + N/T ), ψ̂2 = (µ̂− µ̂g1N)′Σ̂−1(µ̂− µ̂g1N) (26)

and µ̂g = µ̂′Σ̂−11N/1′N Σ̂−11N .

The optimal combination parameter δk can be analytically solved. For practical appli-

cations, however, what we care the most is its estimator. To estimate it, we introduce the
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following auxiliary parameter estimators (whose meaning is evident from the proof in the

Appendix),

π̂13 =
1

γ2
θ̃2 − 1

γ
w′

eµ̂ +
1

γc1

(
[η̂w′

eµ̂ + (1− η̂)µ̂gw
′
e1N ]

−1

γ
[η̂µ̂′Σ̃−1µ̂ + (1− η̂)µ̂gµ̂

′Σ̃−11N ]
)
, (27)

π̂3 =
1

γ2
θ̃2 − 1

γ2c1

(
θ̃2 − N

T
η̂

)
. (28)

With these preparations, we are ready to summarize the result as

Proposition 3: Among the combination rules ŵs = (1− δk)we + δkŵ
KZ of the 1/N with

ŵKZ, the estimated optional one is

ŵCKZ = (1− δ̂k)we + δ̂kŵ
KZ, (29)

where the combination coefficient δ̂k = (π̂1 − π̂13)/(π̂1 − 2π̂13 + π̂3) with π̂1, π̂13 and π̂3 given

by (19), (27) and (28), respectively.

Proposition 3 provides the estimated optimal combination rule that combines the 1/N

optimally with ŵKZ. By design, it should be better than the 1/N if the errors in estimating

δk are small and if the 1/N is not exactly identical to the optimal rule. This is indeed often

the case in our later simulations. Overall, in fact, ŵKZ will emerge as the best rule that

performs well consistently across models and data sets.

C. Rules Based on Factor Models

Consider a general K-factor model,

Rtq = α + βFt + εt, t = 1, 2, ..., T, (30)

where Ft is a K-vector of excess returns on K investable factors, Rtq is an (N −K)-vector of

excess returns on non-factor risky assets, and εt are the residuals with diagonal covariance

matrix Σε. Putting the K factor returns in the first component, then we have the mean and

covariance of the N risky assets,

µ =

(
µF

µR

)
=

(
0K

α

)
+

(
µF

βµF

)
(31)
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and

Σ =

(
ΣF ΣF β′

βΣF βΣF β′ + Σε

)
, (32)

where µF and ΣF are the mean and covariance matrix of Ft, and µR is the mean of Rtq.

The question here is that, given the K-factor model for the return generating process,

how one can make use of this information in forming the optimal portfolio in the presence

of parameter uncertainty? Let µ̂F and Σ̂F be the sample mean and covariance matrix of

the factors, and α̂, β̂ and Σ̂ε be the standard ML estimator of the parameters. Then, it is

easy to write out the ML estimator of the optimal rule in terms of these sample statistics.

While the K-factor model is likely to improve the estimate accuracy on Σ, it does little in

estimating the asset means. To provide a better estimator for the means which are related

to the pricing errors, we use a James-Stein estimator for α,

α̂JS =

[
1− (N − 3)(1 + µ̂′F Σ̂−1

F µ̂F )

T α̂′Σ̂−1
ε α̂

]+

α̂. (33)

With the above preparations, we can summarize our K-factor model based rule as:

Proposition 4: Given the K-factor model, the ML rule that uses both the factor structure

and the James-Stein estimator for the alphas is

ŵFAC =
1

γ

(
Σ̂−1

F µ̂F − β̂′Σ̂−1
ε α̂JS

Σ̂−1
ε α̂JS

)
, (34)

where α̂JS is the James-Stein estimator given by (33).

McKinlay and Pastor (2000) propose a similar rule for factor models. They assume a

latent factor structure that can be more reasonable in practice. In contrast, ŵFAC assumes a

factor model not only with a known number of factors, but also known factor observations.

If the factors are misidentified in an application, it is unlikely to perform well, as shown later.

Hence, ŵFAC will be useful only in comparisons for knowing how much the factor structure

can help. It should be used with caution unless one is sure of the known factor models.

D. Optimal Three- and Four-fund Rules

Consider first ŵCML, the combination rule that combines 1/N with the unbiased estima-

tor. This rule is a particular two-fund rule that invests money into funds determined by
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weights we and w̄. As an extension, we consider

ŵ = φ1w̄e + φ2w̄, (35)

where φ1 and φ2 are free parameters. If we restrict φ2 ≥ 0 and φ1 = 1 − φ2 ≥ 0, we obtain

ŵCML. Without that restriction, we invest per dollar an amount of φ1 in fund w̄e, φ2 in fund

v, and the difference 1 − φ1 − φ2 (positive or negative) in the riskfree asset. Hence, ŵ is a

three-fund rule, of w̄, ŵ and the riskfree asset.

The utility maximizing optimal choice of φ1 and φ2 is given by

Proposition 5: Among the rules given by (A7), the optional combination parameters,

φ1 and φ2, that maximize the expected utility, are

(
φ∗1
φ∗2

)
=

(
1′NΣ1N c21

′
Nµ

c21
′
Nµ c3(θ

2 + N/T )

)−1 (
N
γ
1′Nµ

c2
2θ

2

)
, (36)

where c1 is given by (17), c2 = T/(T −N − 2) and c3 = T 2(T−2)
(T−N−1)(T−N−2)(T−N−4)

.

Proposition 5 provides the optimal three-fund rule that allocates money into the three

funds. Although φ∗1 and φ∗2 depend on unknown parameters, they can be estimated from

data. We will refer to the estimated optimal three-fund rule as

ŵ3F = φ̂1we + φ̂2w̄, (37)

where φ̂1 and φ̂2 are the sample analogues of φ∗1 and φ∗2 by replacing the unknown parameters

with their sample estimates.

Analogously, we can also consider an extension of ŵCKZ. This will be a four fund rule

because there is an addition fund determined by the global minimum variance portfolio.

That is, we examine

ŵ = φ1kwe + φ2kw̄ + φ3kw̄g, (38)

where w̄g = Σ̂−11N is proportional to the estimated global minimum mean-variance portfolio,

and the φ’s are constant parameters. This rule contains all previous rules as special cases.

For the optimal choice of the φ’s, we summarize the result as
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Proposition 6: Among the rules given by (A13), the optional coefficients φ1k, φ2k, and

φ3k, that maximize the expected utility, are given by




φ∗1k

φ∗2k

φ∗3k


 =




1′NΣ1N c21
′
Nµ c2N

c21
′
Nµ c3(θ

2 + N/T ) c31
′
NΣ−1µ

c2N c31
′
NΣ−1µ c31

′
NΣ−11N



−1 


N
γ
1′Nµ

c2
2θ

2

γc1c
2
21
′
Nw∗


 . (39)

Proposition 6 provides the optimal allocation among the four funds: cash, we, w̄ and w̄g,

with the cash position of 1 − φ∗1k1
′
Nwe − φ∗2k1

′
N w̄ − φ∗3k1

′
N w̄g. As before, although φ1k, φ2k,

and φ3k depend on unknown parameters, they can be estimated from data. We will refer to

the estimated optimal four-fund rule as

ŵ4F = φ̂1k1N + φ̂2kw̄ + φ̂3kw̄g, (40)

where φ̂1k, φ̂2k, and φ̂3k are the sample analogues of φ1k, φ2k, and φ3k. Theoretically, if the

optimal φ’s are known, the four-fund rule must outperform all of the other three combination

rules. However, the four-fund rule must be estimated, and it has one or two more parameters

to estimate than the others. Hence, empirically, whether it outperforms the others depends

on the estimation errors in obtaining the φ∗’s. This is an issue addressed in the next section.

II. Performance Evaluation

In this section, we evaluate the performances of various rules (the 1/N , some of the best

existing rules and those proposed here) with data simulated from a range of possible models

of the asset returns as well as with real data sets.

A. Comparison in A One-factor Model

DeMiguel, Garlappi, and Uppal (2007) simulated data from a one-factor model only.

Their approach is similar to that of MacKinlay and Pastor (2000). In their simulations, they

assume that the factor, ft = Ft in equation (30) with K = 1, has an annual excess return of

8% and an annual standard deviation of 16%. The mispricing α is set to zero, and the factor

loadings, β, are evenly spread between 0.5 and 1.5. Finally, the variance-covariance matrix

of noise, Σε, is assumed to be diagonal, with elements drawn from a uniform distribution

15



with support [0.10, 0.30] so that the cross-sectional average annual idiosyncratic volatility is

20%. We follow their procedure exactly in what follows with two extensions. The first is

that we examine not only a case of risk-aversion γ = 3, but also a case of γ = 1. The second

is that we allow the case of nonzero alphas as well to assess the impact of mispricing on

the results. The latter seems of practical interest because no known one-factor or K-factor

models hold exactly in the real world.

Table I provides the average expected utilities of various rules in the one-factor model

without mispricing and with N = 25 assets. The results both here and later are all based on

10,000 simulated data sets. Panel A of the table corresponds to the case studied earlier by

DeMiguel, Garlappi, and Uppal (2007) with γ = 3. The true expected utility is 4.17, while

the 1/N rule achieves a close value of 3.89 (all utilities are annualized and in percentage

points). In contrast, the combination rules, ŵCML and ŵCKZ, have utility values of only 1.68

and 3.71, respectively, when T = 120. Although the values from ŵCKZ are close to those of the

1/N , they are smaller until T reaches 3000. Theoretically, if the true combination coefficient

were known, ŵCKZ must outperform the 1/N . But the coefficient is unknown and has to be

estimated from data. As a result, the estimation errors make ŵCKZ underperform. However,

the differences are small and negligible. It should be noted that the underperformances occur

only in this special simulation setup, as will be clear later.

Why does the 1/N perform so well in the above simulation? This is because that the

1/N rule is equivalent roughly to a 100% investment in holding the factor portfolio in the

assumed factor model. To see why, we note first that the betas are evenly spread between

0.5 and 1.5, and so the 1/N , an equal-weighted portfolio of the risky assets, should be close

to the factor portfolio. Second, under the assumption of no mispricing, the factor portfolio

is on the efficient frontier, and hence the optimal portfolio must be proportional to it. The

proportion depends on γ. The optimal weights on the factor portfolio are

w∗
m =

1

γ

µf

σ2
f

, (41)

where µf and σ2
f are the factor excess return and variance, respectively. When µf = 8% and

σf = 16%, and when γ = 3, w∗
m ≈ 0.33 × 0.08/0.162 = 1.03. This means that with γ = 3

the optimal portfolio is 103% of the factor portfolio. Hence, the 1/N portfolio should be
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close to the optimal one. This is also evident by its utility value of 3.89. Since this value is

close to the maximum possible, it is therefore true that the 1/N performs well, and it will

be difficult for any other rules that are estimated from the data to outperform it.

Theoretically, ŵ3F and ŵ4F should dominate ŵCML and ŵCKZ, respectively, if the combi-

nation coefficients were known. But the combination coefficients have to be estimated, and

there is one more parameter to be estimated in comparison with the earlier two rules. As

a result, the performances of ŵ3F and ŵ4F depend on the tradeoff between the gains from

using one additional parameter with the losses from the estimation errors in estimating the

additional parameter. The underperformance results of Panel A simply say that the estima-

tion errors in this case are more important than the gains. However, it will not always be

the case, as soon be shown in Panel B of Table I.

Of the existing estimated rules examined by Kan and Zhou (2007) and DeMiguel, Gar-

lappi, and Uppal (2007), we study only four of them here. The first three are the better

ones: MacKinlay and Pastor’s (2000) rule, Jorion’s (1986) three-fund rule (see the Appendix

for the details of these two rules) and Kan and Zhou’s (2007) ŵKZ. The fourth one is the

popular ML estimator, ŵML. Results on these four rules as well as ŵFAC (denoted as Factor

ML), are reported in the last five column of Panel A in Table I.

Among the five rules, both the MacKinlay and Pastor (2000) and ŵFAC perform very

well. It seems that the factor structure information is valuable if the data are indeed drawn

from a factor model. For example, when T = 120, due to the estimation errors, both Jorion’s

and Kan-Zhou’s rule have negative utilities of −12.85 and −2.15, and the standard ML is

the worst with a utility value of −85.72. This means that the three rules lose money on a

risk-adjusted basis, and they make an investor worse off than putting money in the riskfree

asset. In contrast, the MacKinlay and Pastor (2000) rule and ŵFAC have positive utilities

of 2.11 and 2.29. As T increases, the five rules perform better. However, consistent with

DeMiguel, Garlappi, and Uppal’s (2007) finding, they except ŵFAC still underperform the

1/N even when the sample size is as large as 6000. Overall, when T ≤ 480, the 1/N rule

performs the best among all the 10 rules, the 1/N and the nine estimated rules. But this

will not be the case in other models, as pointed out earlier.

17



Equation (41) reveals also that, when γ = 1, the 1/N rule will not be close to the optimal

one. This is also evident from Panel B of Table I. In this case, the optimal investment is more

aggressive and uses leverage. The expected utility is 12.50 from holding the true optimal

portfolio. In contrast, if the 1/N rule is followed, the expected utility is much lower: 6.63.

Note that, although the 1/N is not optimal, it still outperforms other rules with the exception

of ŵFAC when T = 120. The reason is that it holds correctly the right efficient portfolio,

though the proportion is incorrect. In contrast, the other rules must hold a portfolio based

on estimated weights, which approximate the efficient portfolio weights with potentially large

estimation errors. However, when T ≥ 240, ŵCKZ along with three other estimated rules

outperforms the 1/N . Nevertheless, the utility from ŵCKZ has a very close value of 6.36 when

T = 120, and it outperforms the 1/N when T ≥ 240. Overall, ŵCKZ continues to perform

well consistently in all the cases. Although not reported here, the results are qualitatively

similar when γ is set to 6. Therefore, we find that, even without mispricing, the 1/N can

perform poorly for certain risk aversion parameters. After understanding the sensitivity of

the 1/N to γ, we assume γ = 3 in what follows.

When there is mispricing, the 1/N rule will get the composition of the optimal portfolio

incorrect as well, since the factor portfolio will no longer be on the efficient frontier. In this

case, the expected utility of the 1/N rule can be far away from the true expected utility.

Table II reports the results for two cases of the pricing errors in which the annualized alphas

are evenly spread over −2% and 2%, and over −5% and 5%, respectively. In the first case

(Panel A), the 1/N rule has an expected utility of 3.89, about 40% less than 6.50, the true

expected utility. Now even when T = 120, ŵCKZ has an almost identical value as the 1/N .

As T increases, it outperforms the 1/N easily. In the second case (Panel B), as the pricing

errors become larger, the 1/N rule has still an expected utility of 3.89, which becomes about

80% less than 18.73, the true expected utility. In this case, both ŵCML and ŵCKZ outperform

the 1/N substantially, even when T = 120, and much more so as T increases. Moreover,

when T = 480, all the other rules, including the standard ML estimator, outperform the

1/N . The concern of DeMiguel, Garlappi, and Uppal (2007) in the need of more than 3000

samples vanishes completely in this larger pricing errors case.

Overall, among all the four scenarios examined thus far, the combination rule ŵCKZ
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performs as well as the 1/N in special cases, and much better in general. This suggests that

there is indeed value-added when using portfolio theory to guide portfolio choice over the

use of the naive 1/N diversification. In addition, when T is less than or equal to 240, ŵCKZ,

though occasionally outperformed by others slightly, is the best among all the rules across

all scenarios and sample sizes. The above conclusion is also true when the number of assets

is 50, as shown in Table III.

Following DeMiguel, Garlappi, and Uppal (2007), we also compare the performances of

different rules in terms of Sharpe ratios. Table IV provides the results in the one-factor

model. Panel A of the table corresponds to the case studied earlier by DeMiguel, Garlappi,

and Uppal (2007). The 1/N rule achieves a value of 13.95, which is close to the true

Sharpe ratio of 14.43 (all Sharpe ratios are monthly and in percentage points, following the

practice in the literature). In contrast, ŵCML and ŵCKZ have values of only 12.04 and 13.70,

respectively, when T = 120. Although these two rules have close Sharpe ratios that of the

1/N , they and other rules, with the exception of ŵFAC, have smaller values until T reaches

3000. Similar to the case of utility comparison, the results are driven by the fact that the

1/N portfolio was set roughly equal to the true optimal one.

There are two surprising facts about the performances in terms of Sharpe ratios. In the

absence of parameter uncertainty, the optimal portfolio that maximizes the expected util-

ity must also maximize simultaneously the Sharpe ratio. But, in the presence of parameter

uncertainty, this is no longer the case. For example, Kan and Zhou (2007) show that an opti-

mal scaling of the covariance matrix can be applied to improve the ML rule to obtain higher

expected utility because the scaling affects the mean linearly, but the variance nonlinearly.

However, any such scaling is irrelevant here since the same Sharpe ratio will be retained.

Because of this, it is surprising that the estimated rules that are designed to maximize the

expected utility also have good Sharpe ratios. Second, the usual ML estimator of the true

portfolio rule has close Sharpe ratios to the 1/N when T = 960, a much better performance

than the case in terms of the utilities.

When there is mispricing, for brevity, we consider only the case in which the annualized

pricing errors (α’s) are evenly spread over −2% and 2%. Panel B of Table IV reports the

results. Now the 1/N rule has an average Sharpe ratio of 13.95, about 22% less than 18.02,
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the true Sharpe ratio. In contrast, even when T = 120, ŵCKZ has a higher value than the

1/N . As T increases, it outperforms the 1/N even more. In general, other rules perform well

too. Table V provides similar results when N = 50. Hence, in terms of Sharpe ratios, the

use of portfolio theory over the naive 1/N diversification rule becomes even more attractive.

B. Comparison in A Three-factor Model

Let us see now how the rules perform in a three-factor model. We use the same as-

sumptions as before, except now we have three factors, which are the market portfolio plus

the Fama-French’s size and book-to-market portfolios. In the simulation, the means and

covariance matrix of factors are calibrated from the monthly data from July 1963 to August

2007. The factor loadings of the non-benchmark risky assets are randomly paired and evenly

spread between 0.9 and 1.2 for the market β’s, -0.3 and 1.4 for the size portfolio β’s, and

-0.5 and 0.9 for the book-to-market portfolio β’s.9

In the three-factor model, the 1/N rule is no longer close to the optimal portfolio. This

is evident from Table VI, which reports the results for the two cases of the pricing errors,

with the annualized α’s at zero and evenly spread over −2% and 2%, respectively. In the

first case, the 1/N rule has an expected utility of 3.85, about 70% less than 12.97, the true

expected utility. Now even when T = 120, ŵCKZ has a higher expected utility, 5.03, than

the 1/N . As T increases, both ŵCML and ŵCKZ outperform the 1/N substantially. In the

second case, when there are some pricing errors, the 1/N rule still has an expected utility of

3.85, which becomes about 75% less than 14.60, the true expected utility. In this case, both

ŵCML and ŵCKZ outperform the 1/N by a much greater amount when T = 240 and beyond.

Moreover, when T = 960, and both with and without mispricing, all the other rules except

MacKinlay and Pastor’s rule, outperform the 1/N . Similar results are found in Table VII

when N = 50.

Table VIII reports the Sharpe ratios in the three-factor model when N = 25. Now the

1/N has a Sharpe ratio about half of the true one. In contrast, most of the rules outperform

it substantially even when T = 120. This is consistent with our earlier observation that

9These three ranges for the factor loadings are based on the ranges of the sample factor loadings of
Fama-French’s 25 size and book-to-market assets for the monthly data from July 1963 to August 2007.
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outperforming the 1/N is easier in terms of Sharpe ratios than in terms of utilities. When

N = 50, Table IX provides similar results. Overall, in the three-factor model, we find even

stronger evidence for outperforming the 1/N than in the one-factor model. The reason is

that the 1/N portfolio deviates more from the optimal portfolio in the three-factor model

than in the one-factor one. As the case with utilities, ŵCKZ performs well consistently.

C. Comparison with Calibrated Parameters

The comparison so far assumes a factor model structure for the return-generating process.

In general, investors may have doubts about the validity of any given factor models since

no such models can capture fully the dynamics of the returns. It is therefore of interest

to compare the performance without imposing any factor model structures. To do so, we

consider two cases of using real data to calibrate the parameters. The first case is to use the

monthly excess returns of the Fama-French 25 portfolios sorted on size and book-to-market

ratio from July 1963 to August 2007, and the second is to use the 49 industry portfolios from

July 1969 to August 2007 provided on French’s web site. The sample means and covariance

matrix are treated as the true parameters in the calibration, and then 10,000 data sets are

simulated from the normal distribution with the calibrated parameters.

Table X reports the results for both of the cases. In the first case when N = 25, the 1/N

rule has an expected utility of 4.28, about 90% less than 44.96, the true expected utility. Now

even when T = 120, ŵCML and ŵCKZ have utilities of 17.40 and 12.99, more than three times

larger than 1/N . In addition, except the McKinlay and Pastor (2000) rule and especially the

factor ML and ML rules, all the others outperform the 1/N significantly. When T = 960,

their utilities are quickly approaching 44.96. Since now there are no factor structures, this

is why the McKinlay and Pastor (2000) rule and ŵFAC do not perform as well as before. A

similar conclusion also holds for the second case when N = 49. However, when T = 120,

ŵCML and ŵCKZ do not outperform the 1/N as greatly as before. This is because as N

increases, their estimation errors are larger for a given T . Nevertheless, as T increases, they

perform much better.

In terms of Sharpe ratios, Table XI reports the results. The Sharpe ratios are about twice

or more as that of the 1/N for most of the other rules. Now the ML rule has an impressive
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performance given that how bad it was in terms of utilities. Overall, in comparison with the

factor models, the performance of the 1/N rule worsens greatly in the calibrated models.

Therefore, there is an unambiguous evidence for the use of the proposed portfolio rules over

the naive 1/N one, and, again, ŵCKZ performs well consistently.

D. Comparison with Real Data

The results so far are based on simulated data sets. As emphasized by DeMiguel, Gar-

lappi, and Uppal (2007), the advantage of using simulated data is to insulate the comparison

results from the small-firm effect, calendar effects, momentum, mean-reversion, fat tails, or

other anomalies that have been documented in the literature. In other words, because of

the anomalies, results from real data do not constitute a proof that one rule is theoretically

better than another. Nevertheless, due to the inclusion of real data in other studies, we in

this subsection examine how the rules perform relative to one another with real data. The

real data sets used in our analysis below are those used by DeMiguel, Garlappi, and Uppal

(2007),10 as well as the earlier Fama-French 25 portfolios with the three-factors, and the 49

industry portfolios plus the three factors.11

Following DeMiguel, Garlappi and Uppal (2007), we use a “rolling-sample” approach in

the estimation. Given a T -month-long dataset of asset returns, we choose an estimation

window of length M = 120 and 240 months. In each month t, starting from t = M , we

use the data in the most recent M months up to month t to compute the various portfolio

rules, and apply them to determine the investments in the next month. For instance, let

wz,t be the estimated optimal portfolio rule in month t for a given rule ‘z’, and let rt+1 be

the excess return on the risky assets realized in month t + 1. The realized excess return on

the portfolio is rz,t+1 = w
′
z,trt+1. We then compute the Sharpe ratio associated with z by

dividing the average value of the T −M realized returns, µ̂z, by the standard deviation, σ̂z;

and calculate the certainty-equivalent return as

CERz = µ̂z − γ

2
σ̂2

z ,

10We thank Victor DeMiguel for the data, a detailed description of which can be found in DeMiguel,
Garlappi, and Uppal (2007).

11Following Wang (2005), one can exclude the five largest of the Fama-French portfolios to make their
linear combinations are not so close to the factors. But doing so has little impact on the results below.
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which can be interpreted as the risk-free rate that an investor is willing to accept in stead

of adopting a given risky portfolio rule z. Clearly the higher the CER, the better the rule.

As before, we set the risk aversion coefficient γ be 3.

With the real data, the true optimal rule is unknown, but can be approximated by using

the ML estimator based on the entire example. This will be referred as the in-sample ML

rule. Although this rule is not implementable in practice, it is the rule that one would have

obtained based on the ML estimator had he known all the data. Its performance serves as

a useful benchmark to see how the estimation errors affect the out-of-sample results. Table

XII reports the results for the five data sets used by DeMiguel, Garlappi, and Uppal (2007)

in their Table 3, and the two additional data sets mentioned earlier.12 Indeed, due to the

limited sample size used in their estimation, all rules have CERs (annualized as before) less

than half of those from the in-sample ML rule in most cases.

The first data set, the 10 industry returns plus the market, is a good example that

highlights the problem of existing estimated rules. When M = 120, the in-sample ML has

a CER of 8.42, the 1/N rule has a decent value of 3.66, and ŵCKZ has 3.02. But the others

have negative CERs, ranging from -38.18 to -0.76. For the international portfolios, the 1/N

remains hard to beat. Unlike other estimated optimal rules, the CER of ŵCKZ is significantly

positive, but its difference with the 1/N widens. However, for all the remaining five data

sets, ŵCKZ, always performs the best among estimated rules, and outperforms the 1/N by a

large margin, with CERs about twice or much more. In contrast, the other estimated rules

have varying performances, and lose money at least for one of the five data sets. This is

really a serious problem with existing rules that have to be estimated from data.

The 1/N rule is not immune either. When the data set is FF-4-factor (the twenty size- and

book-to-market portfolios and the MKT, SMB, HML, and UMD factors), the 1/N performs

so poorly to have a negative return the first time. Interestingly, in this case, all estimated

optimal rules except the ML, have significantly positive CERs, and ŵCKZ even has an CER

of 25.40. This is an example where 1/N should not be used, while the estimated rules have

12Note that, in comaprison with DeMiguel, Garlappi, and Uppal’s (2007) Table 3, there is one missing
column of results on the S&P sector data set, which is proprietary and not available here. In addition, the
estimated rules are not normalized here, i.e., the weights on risky assets will not necessarily equal to one.
This is desired from the way they are derived.
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positive economic values. Once again, ŵCKZ is the best among all estimated rules, and is the

only one that never loses money.

When the sample size increases to M = 240, the performances of all the estimated rules

become better in many cases. Note that, unlike in simulation models, the 1/N rule now has

different values. Theoretically, the performance of the 1/N rule should be invariant to M .

However, when we increase M from 120 to 240, we have to drop 120 observations to make

a fair comparison with other rules, resulting a new CER value for the 1/N . Nevertheless,

ŵCKZ remains the best among all the estimated rules, and it has a close performance in one

case with the 1/N and outperforms it in all other cases.

A related question is whether any of the portfolio strategies can beat the market out-of-

sample. Suppose that one uses the standard ML rule to allocate his wealth among cash and

the market index portfolio. The out-of-sample CERs are -0.88 and 2.40 when M = 120 and

240, respectively. This has two implications. First, the standard ML rule requires M > 120

to be meaningful even with the market as the single risky asset. Second, when M = 240,

most of the estimated rules are better than investing into the market alone. It suggests that

there are potential gains in devising rules that account for parameter uncertainty to beat

the market.13

Similar to the simulation case, Table XIII shows that the estimated rules perform much

better in terms of Sharpe ratios than in terms of the CERs. For example, most of them have

close values to the 1/N for the last five data sets even when M = 120. Again, the usual ML

rule has remarkable performance and sometimes becomes close to the best when M = 240.

In short, conclusions about Sharpe ratios from the simulations largely carry through to the

real data case.

E. Further Analysis

In this subsection, we analyze the strategies further in two ways. First, we provide the

standard errors for both the utilities and Sharpe ratios of all the strategies. Second, we report

the average estimated combination parameters for all of the four strategies that contain the

13While beyond the scope of this paper, it will be of interest to adapt the strategies here to form optimal
130-30 funds.
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1/N as part of the components.

So far, ŵCKZ emerges as the best rule that performs well consistently across simulation

models. Hypothetically, this might happen with high standard errors in the utilities across

data sets. To address this issue, Table XIV reports the standard errors of all the strategies

when the data are drawn from a three-factor model with mispricing between −2% to 2%,

the case corresponding to Panel B of Table VI.14 Both the true and the 1/N rules are data-

independent, and so their expected utilities are the same regardless of what data sets are

used. For the estimated rules, their expected utilities are data-dependent, and their standard

errors across data sets range from 0.29% to 12.37%, when T = 120. Interestingly, ŵCKZ has

the smallest standard error while the ML has the largest. However, when T ≥ 480, due

to the factor structure, the McKinlay and Pastor (2000) and wFAC have the best standard

errors, while the ML still has the worst. Similar results are also true for the errors of the

Sharpe ratios, as reported in Panel B of Table XIV.

Finally, it will be of interest to see how the 1/N contributes to the other strategies when

they are optimally combined. Table XV reports both the true and the average estimated

combination parameters, in the same simulation model as in Table XIV, for all of the four

strategies that contain the 1/N as part of the components. Let us consider first ŵCML

and ŵCKZ. When T = 120, the true optimal δ for ŵCML, denoted simply by δ in the

table, is 15.74%, and the average estimated one 20.56%, biased upward. So it uses 79.44%

(= 1− 20.56%) of the 1/N rule. In contrast, the δ for ŵCKZ is much larger, 53.78%, and the

average estimated estimated value is 56.18%, slightly biased upward with much less usage of

the 1/N . The standard error of the δ estimate is also much smaller for ŵCKZ. This might also

help to explain why ŵCKZ performs well consistently. As T increases, the δ’s are increasing

as expected. It is of interest to note that the 1/N remains to possess a few percentage points

in the weighting even when the sample size is 6000.

Consider now ŵ3F and ŵ4F. In contrast with ŵCML, ŵ3F relaxes the constraint that the

sum of the two φ’s is one. Interestingly, the sums of both the optimal and estimated φ’s are

less than one, respectively. Without the constraint, we have to estimate both φ’s, and the

standard errors are much larger than the case with ŵCML. For the same reason, ŵ4F also has

14Results in other simulation models are similar, and are omitted for brevity.
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large standard errors with its estimates on φ1k and φ2k. However, the standard errors for

both φ2 and φ2k are relatively much smaller than φ1 and φ1k, suggesting that the weighting

on the 1/N is more difficult to determine by the data than on the other funds.

III. Future Research

In this section, we explore two directions for future research. The first is to obtain in

some sense the best possible rule. The second is to find the optimal number of assets for

asset allocation given a finite sample size.

In statistical decision theory (see Berger, 1985, or Lehmann and Casella, 1998), one way

for judging an estimator is its admissibility. An estimator portfolio ŵ of the true optimal

one is admissible if there is no other estimator w̃ such that

L(w∗, w̃) ≤ L(w∗, ŵ) (42)

and if the inequality holds strictly for some true parameter values. Hence, if an estimator

is admissible, one cannot find another estimator that is better sometimes and never worse.

The ML rule estimator is an example of an inadmissible estimator, since, as shown by Kan

and Zhou (2007), for all possible unknown parameters,

L(w∗, w̃) < L(w∗, ŵm) (43)

where w̃ = cmŵML, a scaling adjustment of the ML rule with cm as the scalar. However,

whether w̃ is admissible or not is still an open question.

The common tool for proving admissibility of an estimator is to relate it to a generalized

Bayes estimator (GBE), which is defined as the estimator that minimizes the expected loss:

min
ŵb

E[L(w∗, ŵb)] =
γ

2

∫ ∫
p(µ, Σ) [(ŵb − w∗)′Σ(ŵb − w∗)] dµ dΣ, (44)

where p(µ, Σ) is a prior density on µ and Σ. Theoretically, if the prior is proper, and if

there is a unique GBE, then the GBE must be admissible. It follows that any constant rule

estimator, including the 1/N rule, is admissible. This is because any other estimator must

have a nonzero error when the true and unknown rule happens to be equal to the constant,
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and hence it cannot dominate the constant estimator always. The constant estimators are

known as trivial admissible estimators, which are often discarded in the statistical literature

because they can be arbitrarily poor if the true true lies far away from it. This is the

inconsistency problem: they do not converge to the true parameter even if there are infinite

samples. Hence, in a statistical sense, a good estimator of the rule should be both admissible

and consistent.

Although the two combination rules and the three- and four-fund rules are excellent

investment strategies and do converge to the true optimal rule as the sample size increases

to infinity, it is an open question whether or not they are admissible. In fact, it is unclear at

all how a nontrivial admissible rule can be obtained in the context of mean-variance utility

maximization. To see the difficulty, consider an estimator of the following type,

ŵa =
1

γ
Σ̂−1

a µ̂a, (45)

where µ̂a and Σ̂a are GBEs of µ and Σ to be determined below. Under any proper Bayes

prior p(µ, Σ), the associated GBE for µ can be solved,

µ̂a = [E(Σ̂−1
a ΣΣ̂−1

a )]−1E(Σ̂−1
a µ), (46)

where the expectation is taken under p(µ, Σ) and Σ̂a is not unique, and can in fact be

arbitrary. Hence, the usual theory about the GBE does not apply.

To obtain an approximate admissible rule estimator, we assume that Σ is known for a

moment. Then, the loss function, by equation (8), can be written as:

L(w∗, ŵa) =
1

2γ
E

[
(µ̂a − µ)′Σ−1(µ̂a − µ)

]
, (47)

which is a problem of estimating µ with a quadratic loss. Lin and Tsai (1973) provide an

admissible estimator for this reduced loss function, even with Σ unknown,

µ̂a = (1− c4/θ̂
2)µ̂, (48)

where

c4 =
N − 2

T −N + 2
− 2

T −N + 2

[∫ 1

0

(1 + θ̂2)T/2

(1 + θ̂2t)(T+2)/2
t(N−4)/2 dt

]−1

. (49)
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(see Appendix A for a proof) A combination of this mean estimator with an estimator of Σ,

Σ̂a, obtains an estimated rule ŵa = Σ̂−1
a µ̂a/γ. Future research is needed to find an estimator

of Σ such that ŵa can outperform the rules proposed in this paper.

In the parameter uncertainty literature, given N and T , one often solves the optimal

investment strategy for investing money into all N risky assets, and this paper is no exception.

In practice, though, the sample size may be considered as given, but we can devise strategies

for investing into L, L ≤ N , assets given T . Then, it is a matter of how one chooses the

optimal L to invest. The greater the L, the better the investment opportunity set, but

the greater the estimation errors. This is evident not only from the formulas for the rules,

but also from Tables I and III. Hence, there must be an optimal tradeoff between L (the

optimally selected number of assets to invest) and the estimation errors. This is another

interesting direction for future research.

Broadly speaking, the parameter uncertainty problem appears in almost all financial

decision-making problems, and there is no reason to limit its studies to asset allocation, one

of the oldest topics in finance. For example, how an investor values and hedges derivatives in

the presence of parameter uncertainty is an important problem both in theory and practice,

as is the question of how a corporate manager makes optimal investment and capital structure

decisions when investors’ expectations or the projects’ opportunity sets or the macroeconomic

determinants are unknown and have to be estimated. In short, a number of topics are related

to the parameter uncertainty problem and call for future research.

IV. Conclusion

The modern portfolio theory pioneered by Markowitz (1952) is widely used in practice

and taught in MBA texts. However, DeMiguel, Garlappi and Uppal (2007) raise serious

doubts on its value. They show that the naive 1/N investment strategy performs much

better than those recommended from theory, and the estimation window needed for the

latter to outperform the 1/N benchmark is “around 3000 months for a portfolio with 25

assets and about 6000 months for a portfolio with 50 assets.” Note that existing theory-

based strategies are expected to underperform the 1/N when the latter happens to be close
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to the true optimal portfolio, as is the case in the exact one-factor model of DeMiguel,

Garlappi, and Uppal (2007), but the problem is that they still underperform when the 1/N

is substantially different from the true optimal portfolio. Moreover, they also perform poorly

with many real data sets. This raises a serious question on the usefulness of the investment

theory.

In this paper, we provide many new theory-based portfolio strategies, one of which, the

optimal combination of the 1/N rule with the three-fund rule of Kan and Zhou (2007), can

perform well consistently across models and data sets for practical sample sizes of 120 and

240. In particular, this proposed strategy not only performs well relative to the 1/N rule

in an exact one-factor model that favors the 1/N , but also outperforms it substantially in

a one-factor model with mispricing, in multi-factor models with and without mispricing, in

models calibrated from real data without any factor structures, and in applications with an

array of real data sets. Overall, in comparison with existing rules, the key point is that

the new strategy is the first and only one that performs well consistently, reaffirming the

usefulness of the investment theory.

Our results are interesting not only in addressing the theoretical challenge posed by

DeMiguel, Garlappi and Uppal (2007), but also in providing potentially useful insights into

adapting actual quantitative investing strategies (see, e.g., Grinold and Kahn (1999), Litter-

man (2003) and Lo and Patel (2008)) to accommodate parameter estimation errors. However,

there remain many theoretical issues. Whether or not our new portfolio strategies are the

best (admissible) is still an open question, as is the problem of optimally choosing both the

number of assets to be invested and the estimation strategy. Moreover, since parameter un-

certainty problem appears in almost all financial decision-making problems, it is of interest

to apply the ideas and techniques of this paper to a number of areas, such as how to value

and hedge derivatives in the presence of parameter uncertainty, and how to make optimal

investment and capital structure decisions when investors’ expectations or the projects’ op-

portunity sets or the macroeconomic determinants are unknown and have to be estimated.

While studies of these questions go beyond the scope of this paper, they comprise important

topics for future research.
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Appendix A: Proofs

A.1. Proof of Proposition 1

Based on (14), we need only to show

(1− δ)2π1 + δ2π2 = π1 − 2δπ1 + δ2(π1 + π2) < π1 (A1)

when 0 < δ < 2π1/(π1 + π2). The Proposition then follows. Q.E.D.

A.2. Proof of Proposition 2

We simply plug the estimates into the formula for the optimal combination coefficient,

δ∗ = π1/(π1 + π2). Q.E.D.

A.3. Proof of Proposition 3

Now, we have

L(w∗, w̃s) =
γ

2
E

[[
(1− δ)(we − w∗) + δ(w̃ − w∗)

]′
Σ

[
(1− δ)(we − w∗) + δ(w̃ − w∗)

]]
,

where w̃ denotes ŵKZ for brevity. Letting a = we−w∗ and b = w̃−w∗, the following identity

holds,

[(1− δ)a + δb]′Σ[(1− δ)a + δb] = (1− δ)2a′Σa + 2δ(1− δ)a′Σb + δ2b′Σb.

Taking the first-order derivative of this identity, we get the optimal choice of δ,

δ =
a′Σa− a′ΣE[b]

a′Σa− 2a′ΣE[b] + E[b′Σb]
. (A2)

It is clear that π1 = a′Σa. Let π13 = a′ΣE[b] = w′
eΣE[w̃] − w′

eµ − µ′E[w̃] + µΣ−1µ. Since

E[Σ̂−1] = TΣ−1/(T − N − 2), we can estimate π13 with π̂13 as given by (27). Finally, let

π3 = E[b′Σb]. Using equation (63) of Kan and Zhou (2007), we can estimate π3 with π̂3 as

given by (28). Q.E.D.

A.4. Proof of Proposition 4

The partition matrix Σ as given by (32) can be inverted analytically. Based on this and

(31), the optimal weights are

w∗ =
1

γ
Σ−1µ =

1

γ

(
Σ−1

F µF − β′Σ−1
ε α

Σ−1
ε α

)
. (A3)
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Let θ̂2
f = µ̂′F Σ̂−1

F µ̂F . Conditional on θ̂2
f , it is well known that

√
T/(1 + θ̂2

f )α̂ ∼ N(
√

T/(1 + θ̂2
f )α, Σε). (A4)

Therefore,

X = Σ−1/2
ε

√
T/(1 + θ̂2

f )α̂ ∼ N(
√

T/(1 + θ̂2
f )Σ

−1/2
ε α, I). (A5)

Applying the James-Stein shrinkage estimator to the mean of X, we have

µ̂JS
X =

[
1− N − 3

‖X‖2

]+

X. (A6)

This implies (33). Replacing α by α̂JS and replacing Σε, etc, by their ML estimators, we get

(34) from (A3).

A.5. Proof of Proposition 5

For notational convenience, we rewrite the rule as

ŵ = q11N + q2w̄p, (A7)

where q1 = φ1/N , q2 = φ2/(γc2), w̄p = Σ̂−1µ̂. The loss function is then

L(w∗, ŵ) =
γ

2
E [(q11N + q2w̄p − w∗)Σ(q11N + q2w̄p − w∗)] . (A8)

Expanding this out and taking the derivatives with respect to the q’s, we get the first-order

conditions,

0 = q11
′
NΣ1N + q2E[1′NΣw̄p]− 1′NΣw∗, (A9)

0 = q2E[w̄′
pΣw̄p] + q1E[1′NΣw̄p]− E[w̄′

pΣw∗]. (A10)

Since E[w̄p] = c2Σ
−1µ, we have E[1′NΣw̄p] = c21

′
Nµ and E[w̄′

pΣw∗] = 1
γ
c2θ

2. Using equation

(16) and (22) of Kan and Zhou (2007), we obtain

E[w̄′
pΣw̄p] = E[µ̂′Σ̂−1ΣΣ̂−1µ̂] (A11)

= c3(θ
2 + N/T ). (A12)

The Proposition follows easily from here. Q.E.D.

A.6. Proof of Proposition 6
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Similar to the proof of Proposition 5, we rewrite the rule in a simpler form,

ŵ = q11N + q2w̄p + q3w̄g, (A13)

where q1k = φ1k/N , q2k = φ2k/(γc2), and q3k = φ3k/(γc1c2). The loss function is then

L(w∗, ŵ) =
γ

2
E [(q11N + q2w̄p + q3w̄g − w∗)Σ(q11N + q2w̄p + q3w̄g − w∗)] . (A14)

Expanding this out and taking the derivatives with respect to the q’s, we get the first-order

conditions,

0 = q11
′
NΣ1N + q2E[1′NΣw̄p] + q3E[1′NΣw̄g]− 1′NΣw∗, (A15)

0 = q2E[w̄′
pΣw̄p] + q1E[1′NΣw̄p] + q3E[w̄′

pΣw̄g]− E[w̄′
pΣw∗], (A16)

0 = q3E[w̄′
gΣw̄g] + q1E[1′NΣw̄g] + q2E[w̄′

pΣw̄g]− E[w̄′
gΣw∗]. (A17)

Since E[w̄g] = E[Σ̂−1]1N , we have E[1′NΣw̄g] = c21
′
N1N = c2N and E[w̄′

gΣw∗] = c2
γ
µ′Σ−11N =

c21
′
Nw∗. Using equation (22) of Kan and Zhou (2007), we obtain

E[w̄′
gΣw̄g] = E[1′N Σ̂−1ΣΣ̂−11N ] (A18)

= c31
′
NΣ−11N (A19)

and

E[w̄′
gΣŵ′

p] = E[µ̂′Σ̂−1ΣΣ̂−11N ] (A20)

= c31
′
NΣ−1µ. (A21)

Then the Proposition follows. Q.E.D.

A.7. MacKinlay and Pastor’s (2000) Rule and Its Analytical Solution

MacKinlay and Pástor (2000) impose an exact one-factor structure to provide a more

efficient estimator of the expected returns by assuming

Σ = σ2IN + aµµ′, (A22)

where a and σ2 are positive scalars. The ML estimator of a, σ2 and µ are obtained by

maximizing the log-likelihood function

lnL = −NT

2
ln(2π)− T

2
ln

(|aµµ′ + σ2IN |
)− 1

2

T∑
t=1

(Rt−µ)′(aµµ′+σ2IN)−1(Rt−µ). (A23)
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This is an N + 2 dimensional problem whose numerical solution is difficult.

Since we need to implement the rule hundreds and thousands of times, an analytical

solution to the problem is critical.15 Let Û = Σ̂ + µ̂µ̂′. Since

ln
(|aµµ′ + σ2IN |

)
= (N − 1) ln(σ2) + ln(σ2 + aµ′µ). (A24)

and

T∑
t=1

(Rt − µ)′(aµµ′ + σ2IN)−1(Rt − µ)

= tr

(
(aµµ′ + σ2IN)−1

T∑
t=1

(Rt − µ)(Rt − µ)′
)

= T
[
tr((aµµ′ + σ2IN)−1Σ̂) + (µ̂− µ)′(aµµ′ + σ2IN)−1(µ̂− µ)

]

=
T

σ2

[
tr(Σ̂)− aµ′Σ̂µ

σ2 + aµ′µ
+ (µ̂− µ)′(µ̂− µ)− a[(µ̂− µ)′µ]2

σ2 + aµ′µ

]

=
T

σ2

[
tr(Û) +

σ2(µ′µ− 2µ̂′µ)− aµ′Ûµ

σ2 + aµ′µ

]
, (A25)

we can minimize

f(µ, a, σ2) = (N − 1) ln(σ2)+ ln(σ2 +aµ′µ)+
1

σ2

[
tr(Û) +

σ2(µ′µ− 2µ̂′µ)− aµ′Ûµ

σ2 + aµ′µ

]
(A26)

to obtain the ML estimator.

Let Q̂Λ̂Q̂′ be the spectral decomposition of Û , where Λ̂ = Diag(λ̂1, . . . , λ̂N) are the

eigenvalues in descending order and the columns of Q̂ are the corresponding eigenvectors.

Further, let ẑ = Q̂′µ̂. For any c, λ̂1 ≥ c ≥ λ̂N , it can be shown that

p(φ) =
N∑

i=1

(λ̂i − c)ẑ2
i

[1− φ(λ̂i − c)]2
= 0 (A27)

has a unique solution, which can be trivially found numerically, in the interval (uN , u1) with

ui = 1/(λ̂i − c). Then, the following objective function,

g(c) = ln

(
c−

N∑
i=1

ẑ2
i

1− φ̃(c)(λ̂i − c)

)
+ (N − 1) ln

(
N∑

i=1

λ̂i − c

)
, (A28)

15We are grateful to Raymond Kan for sharing his analytical solution (that involves only one trivial
1-dimensional optimization) with us.
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is well defined, and can be solved easily because it is a one-dimensional problem. Let c∗ be

the solution, then the ML estimator of µ is given by

µ̃ = Q̂[IN − φ̃(c∗)(Λ̂− c∗IN)]−1ẑ, (A29)

and hence the ML estimators of σ2 and a are

σ̃2 =

∑N
i=1 λi − c∗

N − 1
, (A30)

ã =
c∗ − σ̃2

µ̃′µ̃
− 1. (A31)

The MacKinlay and Pástor (2000) portfolio rule is thus given by

ŵMP =
µ̃

γ(σ̃2 + ãµ̃′µ̃)
=

µ̃

γ(c∗ − µ̃′µ̃)
. (A32)

A.8. Jorion (1986) Rule

Jorion (1986) develops a Bayes-Stein estimator of µ,

µ̂BS = (1− v)µ̂ + vµ̂g1N , (A33)

where

v =
N + 2

(N + 2) + T (µ̂− µ̂g1N)′Σ̃−1(µ̂− µ̂g1N)
, µ̂g =

1′N Σ̂−1µ̂

1′N Σ̂−11N

. (A34)

His rule is then given by

wBS =
1

γ
(Σ̂BS)−1µ̂BS, (A35)

where

Σ̂BS =

(
1 +

1

T + λ̂

)
Σ̃ +

λ̂

T (T + 1 + λ̂)

1N1′N
1′N Σ̃−11N

(A36)

and λ̂ = (N + 2)/[(µ̂− µ̂g1N)′Σ̃−1(µ̂− µ̂g1N)].

A.9. Proof of Equation (48)

The expression is based on Kubokawa (1991, p. 126). Note that X and S of that paper

are µ̂ ∼ N(µ, Σ/T ) and Σ̂ ∼ WN(T − 1, Σ/T ), respectively. Then the equation follows.

Q.E.D.
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Table I

Utilities in A One-factor Model without Mispricing (N=25)

This table reports the average utilities of a mean-variance investor under various investment rules: the true
optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator,
with 10,000 sets of sample size T simulated data from a one-factor model with zero alphas and with N = 25
assets. Panels A and B assume that the risk aversion γ is 3 and 1, respectively.

T

Rules 120 240 480 960 3000 6000

Panel A: γ = 3

True 4.17 4.17 4.17 4.17 4.17 4.17

1/N 3.89 3.89 3.89 3.89 3.89 3.89

ŵCML 1.68 2.95 3.42 3.60 3.81 3.90
ŵCKZ 3.71 3.77 3.81 3.85 3.91 3.95

ŵ3F 0.85 2.41 3.11 3.41 3.73 3.87
ŵ4F -0.33 1.75 2.74 3.19 3.65 3.83

McKinlay-Pastor 2.11 3.00 3.44 3.65 3.79 3.83
Jorion -12.85 -3.79 -0.18 1.55 2.98 3.47
Kan-Zhou -2.15 -0.00 1.13 1.90 2.97 3.47

Factor ML 2.29 3.27 3.73 3.95 4.10 4.13
ML -85.72 -25.81 -8.35 -1.61 2.42 3.30

Panel B: γ = 1

True 12.50 12.50 12.50 12.50 12.50 12.50

1/N 6.63 6.63 6.63 6.63 6.63 6.63

ŵCML 1.14 4.79 6.39 7.47 9.50 10.62
ŵCKZ 6.36 6.70 6.99 7.41 8.78 9.97

ŵ3F 2.55 7.23 9.32 10.23 11.20 11.60
ŵ4F -0.98 5.26 8.21 9.58 10.96 11.49

McKinlay-Pastor 6.33 9.00 10.31 10.94 11.37 11.48
Jorion -38.55 -11.38 -0.55 4.66 8.95 10.42
Kan-Zhou -6.44 -0.01 3.38 5.69 8.92 10.40

Factor ML 6.86 9.81 11.18 11.84 12.29 12.39
ML -257.16 -77.42 -25.05 -4.83 7.25 9.91
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Table II

Utilities in A One-factor Model with Mispricing (N=25)

This table reports the average utilities of a mean-variance investor under various investment rules: the true
optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator,
with 10,000 sets of sample size T simulated data from a one-factor model with N = 25 assets. Panels A and
B assume that the mispricing α’s, spread evenly between -2% to 2% per year and between -5% to 5% per
year, respectively. The risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α in [−2%, 2%]

True 6.50 6.50 6.50 6.50 6.50 6.50

1/N 3.89 3.89 3.89 3.89 3.89 3.89

ŵCML 2.02 3.32 3.91 4.43 5.38 5.82
ŵCKZ 3.84 3.95 4.12 4.41 5.14 5.62

ŵ3F 1.15 2.74 3.56 4.24 5.33 5.80
ŵ4F 0.55 2.84 3.93 4.60 5.50 5.88

McKinlay-Pastor 2.34 3.23 3.67 3.88 4.02 4.06
Jorion -12.36 -2.99 0.95 3.09 5.06 5.71
Kan-Zhou -2.35 0.02 1.64 3.14 5.06 5.71

Factor ML 2.32 3.32 3.81 4.16 4.92 5.40
ML -84.75 -23.84 -6.18 0.65 4.73 5.62

Panel B: α in [−5%, 5%]

True 18.73 18.73 18.73 18.73 18.73 18.73

1/N 3.89 3.89 3.89 3.89 3.89 3.89

ŵCML 5.13 8.30 11.57 14.34 17.06 17.86
ŵCKZ 5.81 7.44 10.02 12.99 16.62 17.70

ŵ3F 4.10 7.66 11.28 14.23 17.05 17.85
ŵ4F 6.25 9.97 12.73 14.91 17.16 17.89

McKinlay-Pastor 2.70 3.60 4.04 4.25 4.40 4.43
Jorion -6.32 5.21 10.76 14.10 17.03 17.85
Kan-Zhou 2.23 6.80 10.90 14.10 17.03 17.85

Factor ML 3.31 5.67 8.88 11.86 14.68 15.49
ML -79.30 -13.62 5.23 12.52 16.85 17.80
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Table III

Utilities in A One-factor Model (N=50)

This table reports the average utilities of a mean-variance investor under various investment rules: the true
optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator,
with 10,000 sets of sample size T simulated data from a one-factor model with N = 50 assets. Panels A and
B assume that the mispricing α’s are zeros or between -2% to 2% per year, respectively. The risk aversion
coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 4.17 4.17 4.17 4.17 4.17 4.17

1/N 4.03 4.03 4.03 4.03 4.03 4.03

ŵCML 1.36 2.87 3.51 3.75 3.91 3.98
ŵCKZ 3.95 3.93 3.94 3.95 3.97 4.00

ŵ3F 0.57 2.36 3.21 3.57 3.84 3.94
ŵ4F -0.70 1.69 2.84 3.37 3.77 3.90

McKinlay-Pastor 2.27 3.19 3.60 3.81 3.96 4.00
Jorion -39.77 -12.03 -3.74 -0.25 2.20 2.96
Kan-Zhou -3.15 -0.85 0.38 1.16 2.32 2.98

Factor ML 2.34 3.31 3.73 3.95 4.10 4.13
ML -458.29 -83.43 -25.69 -8.39 0.58 2.42

Panel B: α in [−2%, 2%]

True 8.71 8.71 8.71 8.71 8.71 8.71

1/N 4.03 4.03 4.03 4.03 4.03 4.03

ŵCML 1.80 3.46 4.31 5.08 6.62 7.41
ŵCKZ 4.07 4.18 4.38 4.79 6.06 6.98

ŵ3F 0.97 2.91 3.96 4.89 6.57 7.39
ŵ4F -0.31 2.21 3.58 4.70 6.53 7.38

McKinlay-Pastor 2.29 3.21 3.62 3.83 3.98 4.01
Jorion -39.22 -10.05 -1.12 2.90 6.16 7.25
Kan-Zhou -2.49 0.24 2.02 3.66 6.19 7.25

Factor ML 2.34 3.32 3.75 4.02 4.80 5.60
ML -467.35 -81.31 -21.88 -4.15 5.04 6.93
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Table IV

Sharpe Ratios in A One-factor Model (N=25)

This table reports the average Sharpe ratios of a mean-variance investor under various investment rules:
the true optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor
(2000), Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML
estimator, with 10,000 sets of sample size T simulated data from a one-factor model with N = 25 assets.
Panels A and B assume that the mispricing α’s are zeros or between -2% to 2% per year, respectively. The
risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 14.43 14.43 14.43 14.43 14.43 14.43

1/N 13.95 13.95 13.95 13.95 13.95 13.95

ŵCML 12.04 12.88 13.34 13.53 13.83 13.98
ŵCKZ 13.70 13.79 13.86 13.91 14.00 14.07

ŵ3F 10.21 12.23 13.22 13.49 13.79 13.97
ŵ4F 9.20 11.36 12.61 13.13 13.66 13.90

McKinlay-Pastor 12.19 13.51 13.86 13.89 13.89 13.89
Jorion 4.54 6.46 8.40 10.18 12.38 13.24
Kan-Zhou 4.97 7.03 8.80 10.27 12.34 13.24

Factor ML 12.81 14.06 14.39 14.42 14.43 14.43
ML 3.88 5.59 7.54 9.54 12.19 13.18

Panel B: α in [−2%, 2%]

True 18.02 18.02 18.02 18.02 18.02 18.02

1/N 13.95 13.95 13.95 13.95 13.95 13.95

ŵCML 12.81 13.69 14.30 15.02 16.45 17.09
ŵCKZ 14.02 14.23 14.54 15.04 16.21 16.91

ŵ3F 11.13 13.10 14.12 14.93 16.44 17.09
ŵ4F 10.95 13.44 14.76 15.53 16.68 17.19

McKinlay-Pastor 12.70 13.98 14.28 14.30 14.31 14.31
Jorion 5.61 8.03 10.69 13.16 16.03 16.95
Kan-Zhou 4.77 7.15 10.09 12.97 16.02 16.95

Factor ML 12.89 14.14 14.54 14.78 15.82 16.53
ML 5.92 8.34 10.94 13.32 16.06 16.97
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Table V

Sharpe Ratios in A One-factor Model (N=50)

This table reports the average Sharpe ratios of a mean-variance investor under various investment rules:
the true optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor
(2000), Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML
estimator, with 10,000 sets of sample size T simulated data from a one-factor model with N = 50 assets.
Panels A and B assume that the mispricing α’s are zeros or between -2% to 2% per year, respectively. The
risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 14.43 14.43 14.43 14.43 14.43 14.43

1/N 14.19 14.19 14.19 14.19 14.19 14.19

ŵCML 11.90 12.87 13.49 13.77 14.00 14.11
ŵCKZ 14.09 14.07 14.10 14.11 14.14 14.17

ŵ3F 9.37 11.95 13.28 13.74 13.97 14.10
ŵ4F 8.22 11.00 12.64 13.39 13.85 14.04

McKinlay-Pastor 12.54 13.84 14.17 14.20 14.20 14.20
Jorion 2.68 4.33 6.16 8.08 10.96 12.29
Kan-Zhou 2.91 4.81 6.66 8.34 10.95 12.28

Factor ML 12.77 14.09 14.40 14.43 14.43 14.43
ML 2.39 3.87 5.59 7.53 10.69 12.17

Panel B: α in [−2%, 2%]

True 20.87 20.87 20.87 20.87 20.87 20.87

1/N 14.19 14.19 14.19 14.19 14.19 14.19

ŵCML 12.91 14.12 15.01 16.09 18.26 19.29
ŵCKZ 14.31 14.54 14.95 15.72 17.79 19.01

ŵ3F 10.68 13.34 14.79 16.00 18.23 19.28
ŵ4F 9.45 12.36 14.16 15.70 18.17 19.26

McKinlay-Pastor 12.58 13.89 14.20 14.23 14.23 14.23
Jorion 5.18 8.17 11.18 14.06 17.72 19.10
Kan-Zhou 5.16 8.24 11.16 13.97 17.71 19.10

Factor ML 12.78 14.10 14.44 14.55 15.63 16.87
ML 4.91 7.74 10.75 13.75 17.64 19.07
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Table VI

Utilities in A Three-factor Model (N=25)

This table reports the average utilities of a mean-variance investor under various investment rules: the true
optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator,
with 10,000 sets of sample size T simulated data from a three-factor model with N = 25 assets. Panels
A and B assume that the mispricing α’s are zeros or between -2% to 2% per year, respectively. The risk
aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 12.97 12.97 12.97 12.97 12.97 12.97

1/N 3.85 3.85 3.85 3.85 3.85 3.85

ŵCML 3.41 5.42 7.30 9.21 11.42 12.14
ŵCKZ 5.03 5.84 6.96 8.51 11.01 11.96

ŵ3F 2.45 4.78 6.97 9.08 11.40 12.13
ŵ4F 2.59 5.35 7.41 9.34 11.46 12.15

McKinlay-Pastor 1.84 2.73 3.16 3.37 3.51 3.54
Jorion -8.34 2.05 6.55 9.09 11.42 12.14
Kan-Zhou 1.54 4.71 7.02 9.10 11.41 12.13

Factor ML 6.92 10.13 11.59 12.28 12.75 12.86
ML -81.77 -18.48 -0.13 6.94 11.14 12.06

Panel B: α in [−2%, 2%]

True 14.60 14.60 14.60 14.60 14.60 14.60

1/N 3.85 3.85 3.85 3.85 3.85 3.85

ŵCML 3.84 6.15 8.44 10.63 13.02 13.76
ŵCKZ 5.09 6.06 7.57 9.59 12.56 13.58

ŵ3F 2.87 5.51 8.12 10.51 13.00 13.75
ŵ4F 2.53 5.63 8.26 10.61 13.02 13.76

McKinlay-Pastor 1.78 2.66 3.09 3.30 3.44 3.48
Jorion -7.85 2.84 7.65 10.45 12.99 13.75
Kan-Zhou 1.61 5.12 7.96 10.45 12.99 13.75

Factor ML 6.92 10.13 11.60 12.30 12.92 13.29
ML -81.09 -17.11 1.39 8.52 12.76 13.69
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Table VII

Utilities in A Three-factor Model (N=50)

This table reports the average utilities of a mean-variance investor under various investment rules: the true
optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator,
with 10,000 sets of sample size T simulated data from a three-factor model with N = 50 assets. Panels
A and B assume that the mispricing α’s are zeros or between -2% to 2% per year, respectively. The risk
aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 12.97 12.97 12.97 12.97 12.97 12.97

1/N 3.87 3.87 3.87 3.87 3.87 3.87

ŵCML 2.15 4.23 5.76 7.55 10.32 11.45
ŵCKZ 4.22 4.71 5.46 6.72 9.52 10.99

ŵ3F 1.38 3.68 5.43 7.39 10.28 11.44
ŵ4F 0.68 3.73 5.70 7.62 10.36 11.46

McKinlay-Pastor 1.73 2.64 3.06 3.27 3.41 3.44
Jorion -38.43 -7.80 1.79 6.30 10.14 11.40
Kan-Zhou -1.45 1.93 4.41 6.84 10.16 11.40

Factor ML 6.97 10.13 11.58 12.28 12.74 12.86
ML -474.00 -79.17 -18.33 -0.18 9.22 11.14

Panel B: α in [−2%, 2%]

True 16.06 16.06 16.06 16.06 16.06 16.06

1/N 3.87 3.87 3.87 3.87 3.87 3.87

ŵCML 2.59 5.07 7.26 9.77 13.19 14.46
ŵCKZ 4.38 5.14 6.39 8.41 12.27 14.01

ŵ3F 1.79 4.50 6.93 9.62 13.16 14.46
ŵ4F 1.24 4.68 7.26 9.86 13.22 14.48

McKinlay-Pastor 1.70 2.61 3.03 3.24 3.38 3.42
Jorion -37.96 -6.19 3.93 8.84 13.08 14.44
Kan-Zhou -0.75 3.13 6.23 9.28 13.09 14.44

Factor ML 6.97 10.13 11.58 12.29 12.96 13.64
ML -480.46 -77.71 -15.72 2.71 12.26 14.21
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Table VIII

Sharpe Ratios in A Three-factor Model (N=25)

This table reports the average Sharpe ratios of a mean-variance investor under various investment rules:
the true optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor
(2000), Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML
estimator, with 10,000 sets of sample size T simulated data from a three-factor model with N = 25 assets.
Panels A and B assume that the mispricing α’s are zeros or between -2% to 2% per year, respectively. The
risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 25.46 25.46 25.46 25.46 25.46 25.46

1/N 13.89 13.89 13.89 13.89 13.89 13.89

ŵCML 15.35 17.19 19.44 21.66 23.97 24.67
ŵCKZ 16.06 17.49 19.35 21.45 23.91 24.65

ŵ3F 14.00 16.72 19.28 21.59 23.96 24.67
ŵ4F 15.10 17.75 19.85 21.87 24.02 24.69

McKinlay-Pastor 11.47 12.91 13.33 13.37 13.38 13.38
Jorion 12.59 16.37 19.43 21.69 23.97 24.67
Kan-Zhou 13.35 16.76 19.37 21.62 23.97 24.67

Factor ML 22.07 23.73 24.60 25.02 25.32 25.39
ML 11.09 14.99 18.57 21.32 23.92 24.66

Panel B: α in [−2%, 2%]

True 27.02 27.02 27.02 27.02 27.02 27.02

1/N 13.89 13.89 13.89 13.89 13.89 13.89

ŵCML 16.07 18.25 20.89 23.26 25.58 26.26
ŵCKZ 16.15 17.85 20.24 22.81 25.50 26.24

ŵ3F 14.79 17.80 20.73 23.20 25.57 26.26
ŵ4F 15.10 18.13 20.87 23.28 25.59 26.27

McKinlay-Pastor 11.33 12.77 13.20 13.25 13.25 13.25
Jorion 13.30 17.37 20.72 23.19 25.57 26.26
Kan-Zhou 13.55 17.37 20.55 23.13 25.56 26.26

Factor ML 22.08 23.73 24.62 25.05 25.49 25.82
ML 12.30 16.49 20.22 22.99 25.54 26.25
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Table IX

Sharpe Ratios in A Three-factor Model (N=50)

This table reports the average Sharpe ratios of a mean-variance investor under various investment rules:
the true optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor
(2000), Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML
estimator, with 10,000 sets of sample size T simulated data from a three-factor model with N = 50 assets.
Panels A and B assume the mispricing α’s, are zeros or between -2% to 2% per year, respectively. The risk
aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 25.46 25.46 25.46 25.46 25.46 25.46

1/N 13.96 13.96 13.96 13.96 13.96 13.96

ŵCML 13.85 15.56 17.36 19.61 22.78 23.96
ŵCKZ 14.55 15.45 16.85 18.97 22.50 23.85

ŵ3F 11.79 14.88 17.15 19.54 22.76 23.96
ŵ4F 11.63 15.18 17.54 19.83 22.85 23.98

McKinlay-Pastor 11.26 12.72 13.13 13.19 13.19 13.19
Jorion 7.66 11.80 15.62 18.90 22.63 23.92
Kan-Zhou 7.93 12.13 15.65 18.84 22.63 23.92

Factor ML 22.01 23.73 24.59 25.02 25.32 25.39
ML 7.09 11.04 14.96 18.50 22.55 23.89

Panel B: α in [−2%, 2%]

True 28.34 28.34 28.34 28.34 28.34 28.34

1/N 13.96 13.96 13.96 13.96 13.96 13.96

ŵCML 14.66 16.89 19.43 22.30 25.75 26.93
ŵCKZ 14.82 16.22 18.43 21.49 25.54 26.86

ŵ3F 12.80 16.31 19.26 22.23 25.73 26.92
ŵ4F 12.81 16.72 19.66 22.49 25.79 26.94

McKinlay-Pastor 11.19 12.67 13.08 13.14 13.14 13.14
Jorion 9.35 14.15 18.40 21.90 25.67 26.91
Kan-Zhou 9.63 14.40 18.37 21.85 25.67 26.91

Factor ML 22.01 23.73 24.59 25.03 25.53 26.16
ML 8.68 13.32 17.75 21.55 25.61 26.89
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Table X

Utilities without Factor Structure

This table reports the average utilities of a mean-variance investor under various investment rules: the true
optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator,
with 10,000 sets of sample size T simulated data without assuming any factor model structure. Panels A and
B simulate data sets based on the sample means and covariance matrix calibrated from the monthly excess
returns of Fama-French 25 assets sorted on size and book-to-market ratio and Fama-French’s 49 industry
portfolios, respectively. The risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: N = 25 size and book-to-market portfolios

True 44.96 44.96 44.96 44.96 44.96 44.96

1/N 4.28 4.28 4.28 4.28 4.28 4.28

ŵCML 17.40 27.07 34.46 39.17 42.97 43.95
ŵCKZ 12.99 21.53 30.74 37.49 42.69 43.87

ŵ3F 16.29 26.53 34.28 39.12 42.97 43.95
ŵ4F 16.76 26.88 34.44 39.17 42.98 43.95

McKinlay-Pastor 2.08 3.02 3.48 3.70 3.84 3.88
Jorion 10.28 26.38 34.52 39.22 42.98 43.95
Kan-Zhou 18.26 27.56 34.66 39.24 42.98 43.95

Factor ML -57.75 -46.72 -42.72 -44.59 -49.08 -51.09
ML -67.13 8.07 29.68 37.93 42.85 43.92

Panel B: N = 49 industry portfolios

True 27.39 27.39 27.39 27.39 27.39 27.39

1/N 2.31 2.31 2.31 2.31 2.31 2.31

ŵCML 3.55 8.64 14.05 18.93 24.06 25.63
ŵCKZ 3.56 5.91 10.23 15.82 23.08 25.29

ŵ3F 2.98 8.15 13.81 18.84 24.05 25.63
ŵ4F 2.17 7.86 13.74 18.84 24.05 25.63

McKinlay-Pastor 0.42 1.36 1.80 2.02 2.16 2.20
Jorion -34.14 0.41 12.39 18.67 24.05 25.63
Kan-Zhou 2.05 8.19 13.93 18.91 24.06 25.63

Factor ML -341.92 -408.68 -507.89 -592.62 -669.56 -691.07
ML -469.51 -68.70 -5.35 13.66 23.46 25.48
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Table XI

Sharpe Ratios without Factor Structure

This table reports the average Sharpe ratios of a mean-variance investor under various investment rules:
the true optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor
(2000), Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML
estimator, with 10,000 sets of sample size T simulated data without assuming any factor model structure.
Panels A and B simulate data sets based on the sample means and covariance matrix calibrated from the
monthly excess returns of Fama-French 25 assets sorted on size and book-to-market ratio and Fama-French
49 industry portfolios, respectively. The risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: N = 25 size and book-to-market portfolios

True 47.41 47.41 47.41 47.41 47.41 47.41

1/N 14.63 14.63 14.63 14.63 14.63 14.63

ŵCML 31.14 37.58 41.88 44.43 46.41 46.90
ŵCKZ 27.00 35.26 41.17 44.26 46.39 46.90

ŵ3F 30.52 37.30 41.78 44.40 46.40 46.90
ŵ4F 30.85 37.45 41.87 44.43 46.41 46.90

McKinlay-Pastor 12.26 13.55 13.97 13.98 13.98 13.98
Jorion 32.25 38.14 42.06 44.48 46.41 46.91
Kan-Zhou 32.20 37.95 42.00 44.47 46.41 46.91

Factor ML 11.81 14.18 16.62 17.32 16.59 16.33
ML 30.64 37.33 41.77 44.40 46.40 46.90

Panel B: N = 49 industry portfolios

True 37.01 37.01 37.01 37.01 37.01 37.01

1/N 11.26 11.26 11.26 11.26 11.26 11.26

ŵCML 16.66 21.70 26.94 30.97 34.75 35.83
ŵCKZ 13.33 17.36 23.71 29.68 34.59 35.79

ŵ3F 15.48 21.42 26.86 30.93 34.74 35.83
ŵ4F 14.93 21.08 26.76 30.92 34.74 35.83

McKinlay-Pastor 7.82 9.45 10.35 10.55 10.56 10.56
Jorion 15.03 21.69 27.08 31.02 34.75 35.83
Kan-Zhou 15.00 21.57 26.96 30.99 34.75 35.83

Factor ML 14.41 19.15 20.48 20.49 20.49 20.48
ML 14.31 20.96 26.63 30.84 34.73 35.82
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Table XII

Certainty-equivalent Returns Based on Real Data
This table reports the certainty-equivalent returns of a mean-variance investor under various investment
rules: the in-sample ML rule, the 1/N , the two combination rules, the three- and four-funds, McKinlay and
Pastor (2000), Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard
ML estimator. While the in-sample ML rule uses all the data for its estimation, other rules are based on
a rolling sample with an estimation window M = 120 or 240, respectively. The real data sets are the five
data sets used by DeMiguel, Garlappi, and Uppal (2007), and two additional data sets, the Fama-French
25 size and book-to-market portfolios with the Fama-French three-factors and the Fama-French 49 industry
portfolios with the Fama-French three-factors. The risk aversion coefficient γ is 3.

Industry Inter’l Mkt/ FF- FF- FF25 Indu49
portfolios portfolios SMB/HML 1-factor 4-factor 3-factor 3-factor

Rules N=11 N=9 N=3 N=21 N=24 N=28 N=52

Panel A: M=120

ML (in-sample) 8.42 7.74 13.61 46.04 54.55 45.24 57.67

1/N 3.66 3.26 4.33 5.27 -8.74 5.51 5.14

ŵCML -1.39 -0.34 6.39 22.25 13.17 14.62 -6.40
ŵCKZ 3.02 1.79 8.54 28.97 25.40 19.36 8.51

ŵ3F -2.77 -2.18 5.63 20.47 23.48 13.05 -8.05
ŵ4F -2.51 -3.02 5.62 19.64 20.84 10.36 -14.36

McKinlay-Pastor -0.76 0.86 -0.20 0.47 2.58 1.02 1.45
Jorion -9.21 -5.80 9.51 0.82 1.58 -20.72 -152.10
Kan-Zhou -3.59 -3.42 9.51 20.75 21.84 9.15 -17.77

Factor ML -1.59 -0.44 5.45 -3.20 9.73 4.57 1.24
ML -38.18 -18.30 4.90 -100.69 -128.59 -194.33 -1173.78

Panel B: M=240

ML (in-sample) 8.42 7.74 13.61 46.04 54.55 45.24 57.67

1/N 5.04 0.92 3.46 4.44 -16.67 5.09 5.48

ŵCML 4.58 0.29 11.96 18.73 1.58 16.70 6.29
ŵCKZ 5.40 0.88 11.03 26.84 17.81 20.09 16.28

ŵ3F 3.71 -0.49 11.84 18.23 11.22 16.34 5.49
ŵ4F 3.80 0.27 3.83 24.79 11.04 15.03 15.75

McKinlay-Pastor 2.84 -0.02 0.44 2.78 3.24 3.37 4.32
Jorion -0.76 -1.38 12.40 23.15 9.81 10.44 -18.70
Kan-Zhou 1.89 -0.17 12.21 26.60 18.92 14.08 12.43

Factor ML 1.73 -0.56 9.50 5.37 12.21 9.92 5.01
ML -14.30 -6.94 12.08 -5.10 -38.63 -20.80 -158.40
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Table XIII

Sharpe Ratios Based on Real Data
This table reports the Sharpe ratios of a mean-variance investor under various investment rules: the in-
sample ML rule, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator.
While the in-sample ML rule uses all the data for its estimation, other rules are based on a rolling sample
with an estimation window M = 120 or 240, respectively. The real data sets are the five data sets used by
DeMiguel, Garlappi, and Uppal (2007), and two additional data sets, the Fama-French 25 size and book-to-
market portfolios with the Fama-French three-factors and the Fama-French 49 industry portfolios with the
Fama-French three-factors. The risk aversion coefficient γ is 3.

Industry Inter’l Mkt/ FF- FF- FF25 Indu49
portfolios portfolios SMB/HML 1-factor 4-factor 3-factor 3-factor

Rules N=11 N=9 N=3 N=21 N=24 N=28 N=52

Panel A: M=120

ML (in-sample) 20.52 19.67 26.09 47.98 52.23 47.56 53.70

1/N 13.53 12.77 22.40 16.23 23.40 16.87 16.41

ŵCML 8.23 6.76 18.09 38.50 41.57 32.32 14.32
ŵCKZ 12.37 10.00 21.24 38.56 37.45 32.62 22.45

ŵ3F 7.43 4.18 17.64 37.25 40.28 31.10 12.18
ŵ4F 8.58 4.60 21.23 37.37 39.59 30.51 16.54

McKinlay-Pastor 7.65 8.69 5.22 8.38 18.49 9.31 9.93
Jorion 5.64 2.58 22.13 37.98 39.69 29.80 14.74
Kan-Zhou 7.06 3.62 22.07 37.93 38.64 29.99 15.66

Factor ML 6.00 7.25 18.72 8.38 29.82 18.93 16.55
ML 2.74 -0.27 19.66 36.78 40.59 29.39 12.22

Panel B: M=240

ML (in-sample) 20.52 19.67 26.09 47.98 52.23 47.56 53.70

1/N 16.33 8.00 20.48 14.90 20.67 16.39 17.79

ŵCML 15.29 6.57 24.56 37.31 40.52 33.72 21.75
ŵCKZ 16.80 7.89 24.42 36.72 36.86 31.73 32.09

ŵ3F 14.03 5.39 24.45 36.81 39.68 33.33 20.94
ŵ4F 14.62 8.30 17.38 39.22 39.45 32.81 31.47

McKinlay-Pastor 12.04 6.32 5.54 11.86 17.64 12.98 15.18
Jorion 11.48 5.27 24.91 41.19 42.14 34.62 26.24
Kan-Zhou 12.71 6.91 24.71 40.10 41.18 32.54 29.94

Factor ML 9.76 5.13 21.96 16.39 29.75 22.52 18.25
ML 8.31 0.26 24.79 41.15 43.85 37.13 19.78
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Table XIV

Standard Errors of CERs and Sharp Ratios
This table reports the standard errors (in percentage points) of the utilities (Panel A) and the Sharpe ratios
(Panel B) for all the strategies with 10,000 sets of sample size T simulated data from a three-factor model
with N = 25 assets and with mispricing α’s between -2% to 2% per year. The risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: Std of CERs

True 0 0 0 0 0 0

1/N 0 0 0 0 0 0

ŵCML 1.24 0.62 0.47 0.31 0.13 0.07
ŵCKZ 0.29 0.35 0.40 0.36 0.17 0.08

ŵ3F 1.25 0.67 0.50 0.32 0.13 0.07
ŵ4F 1.44 0.75 0.52 0.32 0.13 0.07

McKinlay-Pastor 0.75 0.36 0.17 0.09 0.03 0.01
Jorion 3.55 1.26 0.61 0.33 0.13 0.07
Kan-Zhou 1.44 0.72 0.50 0.32 0.13 0.07

Factor ML 1.61 0.71 0.34 0.16 0.07 0.06
ML 12.37 3.29 1.24 0.53 0.15 0.08

Panel B: Std of Sharp Ratios

True 0 0 0 0 0 0

1/N 0 0 0 0 0 0

ŵCML 2.44 2.22 1.85 1.12 0.42 0.22
ŵCKZ 1.66 1.88 1.84 1.30 0.45 0.23

ŵ3F 4.23 2.70 1.93 1.15 0.42 0.22
ŵ4F 4.43 2.77 2.00 1.15 0.42 0.22

McKinlay-Pastor 6.87 3.54 1.16 0.27 0.04 0.03
Jorion 4.18 2.87 1.84 1.12 0.42 0.22
Kan-Zhou 4.51 2.82 1.90 1.16 0.42 0.22

Factor ML 3.81 1.86 0.89 0.45 0.23 0.21
ML 4.02 3.01 2.00 1.19 0.43 0.22
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Table XV

Combination Parameters

The table reports both the true, the average estimated combination parameters and their standard errors
(in percentage points) for all of the four strategies that uses the 1/N . The data are simulated as in Table
XIV.

T

Parameters 120 240 480 960 3000 6000

Panel A: wCML

δ 15.74 29.93 47.57 65.12 85.60 92.27

δ̂ 20.56 29.38 45.16 63.73 85.35 92.20
(10.87) (13.44) (12.49) ( 7.61) ( 2.05) ( 0.80)

Panel B: wCKZ

δk 53.78 68.09 79.87 88.35 95.81 97.84

δ̂k 56.18 57.37 63.49 72.26 86.43 92.27
( 6.37) ( 7.70) ( 7.88) ( 6.49) ( 3.09) ( 1.52)

Panel C: w3F

φ1 79.60 66.20 49.55 32.97 13.61 7.30

φ̂1 60.94 61.56 50.18 34.00 13.85 7.38
(42.81) (32.50) (20.62) (10.87) ( 2.74) ( 1.04)

φ2 15.72 29.91 47.54 65.09 85.59 92.27

φ̂2 18.82 27.73 44.05 63.21 85.25 92.17
(10.96) (13.74) (12.86) ( 7.78) ( 2.07) ( 0.80)

Panel D: w4F

φ1k 73.20 61.64 47.56 32.83 14.21 7.75

φ̂1k 57.42 58.99 49.65 34.70 14.64 7.88
(45.74) (35.48) (23.25) (12.63) ( 3.31) ( 1.28)

φ2k 12.72 25.11 41.66 59.55 82.43 90.41

φ̂2k 13.25 20.22 35.66 56.23 81.80 90.22
(12.78) (16.26) (16.01) (10.17) ( 2.87) ( 1.13)

φ3k 0.09 0.07 0.06 0.04 0.02 0.01

φ̂3k 0.09 0.08 0.06 0.04 0.02 0.01
( 0.09) ( 0.06) ( 0.04) ( 0.02) ( 0.00) ( 0.00)
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