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Abstract
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forecasters as well as strategies for improving return forecasts. We focus on U.S. equity pre-
mium forecastability and illustrate key issues via an empirical application based on updated
data. Some studies argue that, despite extensive in-sample evidence of equity premium pre-
dictability, popular predictors from the literature fail to outperform the simple historical av-
erage benchmark forecast in out-of-sample tests. Recent studies, however, provide improved
forecasting strategies that deliver statistically and economically significant out-of-sample gains
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vated model restrictions, forecast combination, diffusion indices, and regime shifts—improve
forecasting performance by addressing the substantial model uncertainty and parameter insta-
bility surrounding the data-generating process for stock returns. In addition to the U.S. equity
premium, we succinctly survey out-of-sample evidence supporting U.S. cross-sectional and in-
ternational stock return forecastability. The significant evidence of stock return forecastability
worldwide has important implications for the development of both asset pricing models and
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1 Introduction

Forecasting stock returns is a fascinating endeavor with a long history. From the standpoint of

practitioners in finance, asset allocation requires real-time forecasts of stock returns, and improved

stock return forecasts hold the promise of enhancing investment performance. It is thus not sur-

prising that finance practitioners employ a plethora of variables in an attempt to forecast stock

returns. Academics in finance are also keenly interested in stock return forecasts, since the ability

to forecast returns has important implications for tests of market efficiency; more generally, under-

standing the nature of stock return forecastability helps researchers to produce more realistic asset

pricing models that better explain the data.

While stock return forecasting is fascinating, it can also be frustrating. Stock returns inher-

ently contain a sizable unpredictable component, so that the best forecasting models can explain

only a relatively small part of stock returns. Furthermore, competition among traders implies that

once successful forecasting models are discovered, they will be readily adopted by others; the

widespread adoption of successful forecasting models can then cause stock prices to move in a

manner that eliminates the models’ forecasting ability (e.g., Lo, 2004; Timmermann and Granger,

2004; Timmermann, 2008). However, rational asset pricing theory posits that stock return pre-

dictability can result from exposure to time-varying aggregate risk, and to the extent that successful

forecasting models consistently capture this time-varying aggregate risk premium, they will likely

remain successful over time.

Along this line, there is a common misconception that stock return predictability is contrary

to market efficiency. The canonical random walk model, used historically by many modelers and

popularized to the broader public by Malkiel (1973, 2011), implies that future stock returns are

unpredictable on the basis of currently available information. While the random walk model is

consistent with market efficiency, so is a predictable return process, insofar as predictability is

consistent with exposure to time-varying aggregate risk. According to the well-known Campbell

and Shiller (1988a) present-value decomposition, deviations in the dividend-price ratio from its

long-term mean signal changes in expected future dividend growth rates and/or expected future
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stock returns; changes in the latter represent time-varying discount rates and return predictability.1

In this context, fluctuations in aggregate risk exposure that produce time-varying discount rates and

return predictability are entirely compatible with market efficiency. In other words, only when the

risk-adjusted time-varying expected return—after further adjusting for transaction costs and other

trading frictions (e.g., liquidity and borrowing constraints, research costs)—is nonzero can we say

that a market is inefficient.

Theoretically, asset returns are functions of the state variables of the real economy, and the

real economy itself displays significant business-cycle fluctuations. If the quantity and price of

aggregate risk are linked to economic fluctuations, then we should expect time-varying expected

returns and return predictability, even in an efficient market. For instance, if agents become more

risk averse during economic contractions when consumption and income levels are depressed, then

they will require a higher expected return on stocks near business-cycle troughs to be willing to

take on the risk associated with holding stocks; variables that measure and/or predict the state

of the economy should thus help to predict returns (e.g., Fama and French, 1989; Campbell and

Cochrane, 1999; Cochrane, 2007, 2011). Indeed, an important theme of this chapter is that stock

return predictability is closely tied to business-cycle fluctuations.

While rational asset pricing is consistent with return predictability, theory does impose cer-

tain bounds on the maximum degree of return predictability that is consistent with asset pricing

models. To the extent that return predictability exceeds these bounds, this can be interpreted as ev-

idence for mispricing or market inefficiencies stemming from, for example, information processing

limitations and/or the types of psychological influences emphasized in behavioral finance. Since

information processing limitations and psychological influences are likely to be exacerbated during

rapidly changing economic conditions, return predictability resulting from market inefficiencies is

also likely linked to business-cycle fluctuations.

The degree of stock return predictability is ultimately an empirical issue. There is ample

in-sample evidence that U.S. aggregate stock market returns are predictable using a variety of

1See Koijen and van Nieuwerburgh (2011) for a survey on the relationship between the present-value identity and
stock return predictability.
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economic variables. While thorny econometric issues complicate statistical inference, such as

the well-known Stambaugh (1986, 1999) bias, there is an apparent consensus among financial

economists that, on the basis of in-sample tests, stock returns contain a significant predictable

component (Campbell, 2000). Bossaerts and Hillion (1999) and Goyal and Welch (2003, 2008),

however, find that the predictive ability of a variety of popular economic variables from the litera-

ture does not hold up in out-of-sample forecasting exercises, a finding eerily reminiscent of Meese

and Rogoff (1983) in the context of exchange rate predictability. Under the widely held view that

predictive models require out-of-sample validation,2 this finding casts doubt on the reliability of

stock return predictability.

The unreliability of return predictability, however, can result from the econometric methods

themselves; as pointed out by Lamoureux and Zhou (1996), many studies of return predictability

implicitly use a strong prior on predictability. Moreover, in highlighting the importance of out-

of-sample tests for analyzing return predictability, Pesaran and Timmermann (1995) demonstrate

the relevance of model uncertainty and parameter instability for stock return forecasting. Model

uncertainty recognizes that a forecaster knows neither the “best” model specification nor its corre-

sponding parameter values. Furthermore, due to parameter instability, the best model can change

over time. Given the connection between business-cycle fluctuations and stock return predictabil-

ity, it is not surprising that model uncertainty and parameter instability are highly relevant for stock

return forecasting, as these factors are also germane to macroeconomic forecasting.

The substantial model uncertainty and parameter instability surrounding the data-generating

process for stock returns render out-of-sample return predictability challenging to uncover. For-

tunately, recent studies provide forecasting strategies that deliver statistically and economically

significant out-of-sample gains, including strategies based on:

• economically motivated model restrictions (e.g., Campbell and Thompson, 2008; Ferreira

and Santa-Clara, 2011);
2Campbell (2008, p. 3) succinctly expresses the prevailing view: “The ultimate test of any predictive model is its

out-of-sample performance.”
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• forecast combination (e.g., Rapach et al., 2010);

• diffusion indices (e.g., Ludvigson and Ng, 2007; Kelly and Pruitt, 2012; Neely et al., 2012);

• regime shifts (e.g., Guidolin and Timmermann, 2007; Henkel et al., 2011; Dangl and Halling,

2012).

These forecasting strategies produce out-of-sample gains largely by accommodating model un-

certainty and parameter instability. We focus on these strategies in this chapter, discussing their

implementation and how they improve stock return forecasts.

We illustrate relevant issues concerning the formation and evaluation of stock return forecasts

via an empirical application based on forecasting the U.S. equity premium with updated data. In

addition to significantly outperforming the simple historical average benchmark forecast according

to the conventional mean squared forecast error (MSFE) statistical criterion, we show that the fore-

casting approaches cited above generate sizable utility gains from an asset allocation perspective.

Although we present the leading themes of this chapter in the context of forecasting the U.S. eq-

uity premium, we also survey the evidence on stock return forecastability in international markets.

Ang and Bekaert (2007) provide compelling in-sample evidence of stock return predictability for

France, Germany, the United Kingdom, and the United States. We discuss recent studies that fur-

nish out-of-sample evidence of return predictability for these and other industrialized countries.

In addition, we survey studies that explore out-of-sample stock return predictability along cross-

sectional dimensions, including portfolios sorted by size, book-to-market value, and industry.3

While stock return forecasting will always be extremely challenging—and we will likely never

explain more than a small part of returns—the take-away message of this chapter is that methods

are available for reliably improving stock return forecasts in an economically meaningful man-

ner. Consequently, investors who account for stock return predictability with available forecasting

procedures significantly outperform those who treat returns as entirely unpredictable.

3While not focusing on forecasting per se, Hawawini and Keim (1995) and Subrahmanyam (2010) provide infor-
mative surveys on international and cross-sectional stock return predictability.
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The remainder of this chapter is organized as follows. Section 2 provides a benchmark by dis-

cussing the degree of stock return predictability that we should expect theoretically in a predictive

regression framework. Section 3 surveys the literature on U.S. aggregate stock market return fore-

castability; this section also contains the empirical application based on forecasting the U.S. equity

premium. Section 4 discusses the evidence on stock return forecastability in international and

cross-sectional contexts. Section 5 concludes.

2 What Level of Predictability Should We Expect?

Stock return predictability is typically examined via the following predictive regression model:

rt+1 = α +βxt + εt+1, (1)

where rt+1 is the return on a broad stock market index in excess of the risk-free interest rate (or

equity premium or excess stock return) from the end of period t to the end of period t + 1, xt

is a variable available at the end of t used to predict the equity premium (such as the dividend-

price ratio), and εt+1 is a zero-mean disturbance term. Given an asset pricing model, how much

predictability should we expect in (1)?

An asset pricing model is almost always uniquely determined by its stochastic discount factor

(SDF, or state-price density or pricing kernel), which is a random variable, mt+1, that satisfies

E(R j,t+1mt+1|It) = 1, j = 1, . . . ,N, (2)

where R j,t+1 is the gross return on asset j and It is the information available at t. A particular asset

pricing model entails a specification of mt+1 (e.g., Cochrane, 2005).4 Assume that the risk-free

rate is constant; this assumption is not a problem, since the risk-free rate changes little relative to

4The SDF corresponds to the representative investor’s intertemporal marginal rate of substitution in consumption-
based asset pricing models.
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stock returns. Ross (2005, p. 56) shows that the regression R2 in (1) has an elegant upper bound:

R2 ≤ R2
f Var(mt), (3)

where R f is the (gross) risk-free rate and mt is the SDF for a given asset pricing model. Following

Ross (2005) by using an annualized risk-free rate of 3.5%, an annualized standard deviation of

20% for the U.S. aggregate stock market, and an upper bound on market risk aversion equaling

five times the observed market risk aversion on asset returns, the R2 bound in (3) is approximately

8% for monthly returns. This bound, however, is too loose to be binding in applications. For

example, in their well-known study, Fama and French (1988) report monthly R2 statistics of 1%

or less for predictive regression models based on dividend-price ratios, and Zhou (2010) reports

monthly R2 statistics of less than 1% for individual predictive regressions based on 10 popular

economic variables from the literature.

Incorporating insights from Kan and Zhou (2007), Zhou (2010) refines the Ross (2005) R2

bound so that it is more relevant for empirical research. The default SDF, which, by construction,

also satisfies (2) and thus prices the N risky assets, is given by

m0,t = µm +(1N−µmµ)′Σ−1(Rt−µ), (4)

where Rt is the vector of gross returns on the N risky assets, µ (Σ) is the mean vector (covariance

matrix) for Rt , E(mt) = µm, and 1N is an N-vector of ones.5 Let zt = (z1,t , . . . ,zK,t)
′ denote a K-

vector of state variables corresponding to a specific asset pricing model and consider the following

linear regression model:

m0,t = a+b′zt + et , (5)

where b is a K-vector of slope coefficients. For a linear regression model, we have E(et) = 0 and

Cov(et ,zt) = 0, by construction. Under the slightly stronger assumption that E(et |zt) = 0,6 Zhou

5We assume that µ is not proportional to 1N and that the N risky assets are not redundant (so that Σ is nonsingular).
6This assumption does not appear to be too restrictive. A sufficient condition for E(et |zt) = 0 is that the returns
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(2010) proves the following result, which tightens the Ross (2005) bound:

R2 ≤ ρ
2
z,m0

R2
f Var[mt(zt)], (6)

where ρz,m0 is the multiple correlation between the state variables, zt , and the default SDF, m0,t .

This R2 bound thus improves the Ross (2005) bound by a factor of ρ2
z,m0

. Since ρz,m0 is typically

small in practice, the reduction in the R2 bound is substantial. For example, Kan and Zhou (2007)

report ρz,m0 values ranging from 0.10 to 0.15 using either the aggregate market portfolio or 25

Fama-French size/value-sorted portfolios for Rt in (4) and consumption growth and the surplus

consumption ratio as the state variables in (5), where the latter correspond to the state variables for

the well-known Campbell and Cochrane (1999) consumption-based asset pricing model with habit

formation. For these ρz,m0 values and Ross’s (2005) assumptions, the R2 bound ranges from 0.08%

to 0.18%. These values for the R2 bound are so low that predictive regressions based on a number

of popular predictors—even though they have monthly R2 statistics of 1% or less—actually violate

the theoretical bounds implied by the Campbell and Cochrane (1999) model.

The upshot of this analysis is that, from the perspective of asset pricing models, we should

expect only a limited degree of stock return predictability. Indeed, a seemingly “small” monthly

R2 of 1% or less can nevertheless signal “too much” return predictability and the existence of

market inefficiencies from the standpoint of existing asset pricing models. Predictive models that

claim to explain a large part of stock return fluctuations imply either that existing asset pricing

models are grossly incorrect or that massive market inefficiencies exist (along with substantial

risk-adjusted abnormal returns); both of these implications appear unlikely. In general, such high

return predictability is simply too good to be true and should be viewed with appropriate suspicion.

This does not mean that we should throw up our hands and give up on stock return forecasting;

instead, it means that the ability to forecast even a seemingly small part of stock return fluctuations

on a reasonably consistent basis is no mean feat.

and state variables are jointly elliptically distributed. The t-distribution is a special case of the elliptical distribution,
and Tu and Zhou (2004) show that the t-distribution fits return data well.
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Furthermore, as shown asymptotically by Inoue and Kilian (2004) and in Monte Carlo simula-

tions by Cochrane (2008), if our ultimate aim is to determine whether we can reject the null hypoth-

esis that the population parameter β 6= 0 in (1), in-sample tests will typically be more powerful than

out-of-sample tests. Intuitively, unlike in-sample tests, out-of-sample tests cannot utilize the entire

available sample when estimating the parameters used to generate return predictions; in-sample

tests inherently make more observations available for estimating parameters, thereby increasing

estimation efficiency and test power.7 The greater number of available observations for in-sample

parameter estimation can also lead to higher in-sample R2 statistics relative to out-of-sample R2

statistics (Campbell and Thompson, 2008). The monthly R2 statistics in the neighborhood of 1%

cited previously in the context of the R2 bound refer to in-sample estimation of predictive regres-

sions. Out-of-sample R2 statistics will frequently be even lower, reiterating the fundamental notion

that we should expect only a limited degree of stock return forecastability.

Although we should expect a limited degree of stock return forecastability, it is important to

realize that a little goes a long way. That is, even an apparently small degree of return predictabil-

ity can translate into substantial utility gains for a risk-averse investor who does not affect market

prices (e.g., Kandel and Stambaugh, 1996; Xu, 2004; Campbell and Thompson, 2008). We illus-

trate this for U.S. equity premium forecasts in Section 3.

3 U.S. Aggregate Stock Market Return Forecastability

This section first provides an overview of the academic literature on aggregate U.S. stock market

return forecastability, highlighting recently proposed strategies for significantly improving stock

return forecasts. After discussing key issues involving the evaluation of stock return forecasts, it

presents the empirical application based on forecasting the U.S. equity premium using updated

7If we are interested in testing the null hypothesis that return predictability exists at some point in the sample,
Clark and McCracken (2005) show that out-of-sample tests can be more powerful than conventional in-sample tests
in the presence of structural breaks near the end of the sample; also see Rossi (2005). We discuss the importance of
accounting for structural breaks when forecasting stock returns in Section 3. See the chapter by Barbara Rossi in this
volume for a detailed survey of recent advances in forecasting in the presence of structural breaks.
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data. The empirical application illustrates a number of relevant issues regarding the formation and

evaluation of stock return forecasts.

3.1 Overview of Return Forecastability

Academic investigation of U.S. aggregate stock market return forecastability begins with Cowles’s

(1933) seminal paper, “Can Stock Market Forecasters Forecast?” Cowles (1933) constructs a

portfolio using Dow Jones industrial average (DJIA) market index forecasts made in editorials by

William Peter Hamilton during his 26-year (1903–1929) tenure as editor of the Wall Street Journal.

Hamilton bases his forecasts on Charles Dow’s then-popular Dow Theory—a type of technical

analysis—of which Hamilton was a strong proponent. The portfolio based on Hamilton’s forecasts

generates a lower annualized average return than a buy-and-hold portfolio based on the DJIA (12%

and 15.5%, respectively). Similarly, Cowles (1933) finds that portfolios based on broad market

recommendations from 24 individual financial publications for 1928–1932 fail to outperform a

passive investment in the DJIA by 4% on average on an annualized basis. Cowles (1933) also

concludes that the performances of the most successful of the 24 individual portfolios do not differ

substantially from what would be expected from pure chance.8 In sum, Cowles (1933) answers the

question posed in his title in the negative.

A spate of prominent studies during the 1960s examines the forecasting power of various

technical indicators, including popular filter rules, moving averages, and momentum oscillators.

Technical indicators seek to provide insights into future returns on the basis of patterns in past

prices. Analyzing a variety of broad market indices, Alexander (1961, 1964) reports that portfo-

lios based on certain filter rules earn higher returns than buy-and-hold portfolios that invest in the

indices. However, after switching the focus from broad market indices to individual stocks, studies

by Cootner (1962), Fama and Blume (1966), and Jensen and Bennington (1970), among others,

present evidence that portfolios constructed from filter rules (and technical indicators more gener-

8In an early—and labor-intensive—Monte Carlo experiment, Cowles (1933) simulates random recommendations
by randomly drawing numbered cards to reach this conclusion.
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ally) frequently fail to outperform buy-and-hold portfolios, especially after accounting for trans-

action costs. These negative findings proved influential in the ascendancy of the efficient market

hypothesis—in the form of the random walk model—among academic researchers, as epitomized

by Fama’s (1970) influential survey and the first edition of Malkiel’s (1973) book, A Random Walk

Down Wall Street.9

Starting in the late 1970s, a vast literature compiles evidence that numerous economic variables

predict monthly, quarterly, and/or annual U.S. aggregate stock returns in the predictive regression

framework given by (1). The most popular predictor in this literature is the dividend-price ra-

tio (Rozeff, 1984; Campbell and Shiller, 1988a, 1998; Fama and French, 1988, 1989; Cochrane,

2008; Lettau and Van Nieuwerburgh, 2008; Pástor and Stambaugh, 2009). Other economic vari-

ables that evince predictive ability include the earnings-price ratio (Campbell and Shiller, 1988b,

1998), book-to-market ratio (Kothari and Shanken, 1997; Pontiff and Schall, 1998), nominal

interest rates (Fama and Schwert, 1977; Breen et al., 1989; Ang and Bekaert, 2007), interest

rate spreads (Campbell, 1987; Fama and French, 1989), inflation (Nelson, 1976; Campbell and

Vuolteenaho, 2004), dividend payout ratio (Lamont, 1998), corporate issuing activity (Baker and

Wurgler, 2000; Boudoukh et al., 2007), consumption-wealth ratio (Lettau and Ludvigson, 2001),

stock market volatility (Guo, 2006), labor income (Santos and Veronesi, 2006), aggregate output

(Rangvid, 2006), output gap (Cooper and Priestly, 2009), expected business conditions (Campbell

and Diebold, 2009), oil prices (Driesprong et al., 2008), lagged industry portfolio returns (Hong et

al., 2007), and accruals (Hirshleifer et al., 2009).10 Fama’s (1991) sequel survey reflects the grow-

ing evidence for stock return predictability in predictive regressions. This evidence also spurred

the development of general equilibrium asset pricing models that feature rational time-varying

expected returns (e.g., Campbell and Cochrane, 1999; Bansal and Yaron, 2004).

The evidence for U.S. aggregate stock return predictability is predominantly in-sample. In-

9More recent studies, including Brock et al. (1992), Brown et al. (1998), Lo et al. (2000), and Neely et al. (2012),
provide evidence that certain technical indicators provide useful signals for forecasting stock returns. However, using
White’s (2000) “reality check” bootstrap, Sullivan et al. (1999, 2001) show that data snooping can account for some
of the predictive ability of technical indicators. (We discuss data snooping in more detail in Section 3.4.) See Park and
Irwin (2005) for a survey of the technical analysis literature.

10The cited studies are representative and do not constitute an exhaustive list.
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sample tests of return predictability in the context of predictive regressions are complicated by the

well-known Stambaugh (1986, 1999) bias. This bias arises when the predictor is highly persistent

and the predictor and return innovations are correlated. Importantly, the Stambaugh bias potentially

leads to substantial size distortions when testing the null hypothesis of no predictability, β = 0,

using a conventional t-statistic approach. A number of studies develop procedures for improv-

ing inference in predictive regressions with persistent predictors, including Amihud and Hurvich

(2004), Lewellen (2004), Torous et al. (2005), Campbell and Yogo (2006), Amihud et al. (2009),

and Pástor and Stambaugh (2009).11 Furthermore, the evidence for stock return predictability

using valuation ratios frequently appears stronger at longer horizons. Studies investigating long-

horizon predictability typically employ overlapping return observations. Overlapping observations

induce severe serial correlation in the disturbance term in predictive regressions, potentially cre-

ating additional size distortions in conventional tests. Studies that analyze the statistical implica-

tions of predictive regressions with overlapping returns and develop econometric procedures for

making more reliable inferences include Hodrick (1992), Goetzmann and Jorion (1993), Nelson

and Kim (1993), Valkanov (2003), Boudoukh et al. (2008), Britten-Jones et al. (2011), and Hjal-

marsson (2012). Despite the formidable econometric difficulties surrounding in-sample predictive

regression tests, Campbell (2000, p. 1512) observes that “most financial economists appear to have

accepted that aggregate returns do contain an important predictable component.”

Bossaerts and Hillion (1999), Goyal and Welch (2003, 2008), Brennan and Xia (2005), and

Butler et al. (2005) argue that the in-sample evidence of return predictability is not robust to out-

of-sample validation. The study by Goyal and Welch (2008), which won the 2008 Michael Brennan

Best Paper Award for the Review of Financial Studies, has been especially influential in this regard.

Considering a variety of economic variables from the literature, Goyal and Welch (2008) show

that out-of-sample equity premium forecasts based on the bivariate predictive regression, (1), fail

to consistently outperform the simple historical average benchmark forecast in terms of MSFE.

The historical average forecast assumes that β = 0 in (1) and corresponds to the constant expected

11Cavanaugh et al. (1995) is an important precursor to studies of predictive regressions with persistent predictors.
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equity premium (or random walk with drift) model, implying that the information in xt is not

useful for predicting the equity premium. A multiple regression forecasting model that includes all

potential predictors—the “kitchen sink” forecast—also performs much worse than the historical

average forecast; this is not surprising, since it is well known that, due to in-sample overfitting,

highly parameterized models typically perform very poorly in out-of-sample forecasting. Overall,

Goyal and Welch (2008) conclude that predictive regressions are unstable and that conventional

forecasting models fail to outperform the historical average.

Fortunately, a collection of recent studies shows that certain forecasting approaches improve

upon conventional predictive regression forecasts and significantly outperform the historical av-

erage forecast in out-of-sample tests. These approaches improve forecasting performance by

addressing the substantial model uncertainty and parameter instability characterizing the data-

generating process for stock returns.

3.1.1 Economically Motivated Model Restrictions

The first approach for improving forecasting performance imposes economically motivated restric-

tions on predictive regression forecasts of stock returns. Recall the bivariate predictive regression

model given by (1),

rt+1 = αi +βixi,t + εi,t+1, (7)

where rt+1 is now the the log excess stock return and the i subscript indexes one of K potential

return predictors (i = 1, . . . ,K). An equity premium forecast based on (7) is naturally computed as

r̂i,t+1 = α̂i,t + β̂i,txi,t , (8)

where α̂i,t and β̂i,t are ordinary least squares (OLS) estimates of αi and βi, respectively, in (7)

based on data from the start of the available sample through t. As discussed in Section 2, since

out-of-sample forecasts can only utilize data up to the time of forecast formation, these parameter

estimates will be less efficient than their in-sample counterparts. The limited available estimation
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sample—and given that stock returns contain a sizable unpredictable component—means that the

forecasting model parameters are potentially very imprecisely estimated, which can lead to poor

forecasting performance. In response, Campbell and Thompson (2008) recommend imposing sign

restrictions on β̂i,t and r̂i,t+1 in (8). In particular, theory typically suggests the sign of βi in (7); if

β̂i,t has an unexpected sign, then we set β̂i,t = 0 in (8) when forming the forecast. In addition, risk

considerations usually imply a positive expected equity premium, so that we set the forecast equal

to zero if r̂i,t+1 < 0 in (8). Such sign restrictions reduce parameter estimation uncertainty and help

to stabilize predictive regression forecasts. Campbell and Thompson (2008) find that, in contrast

to unrestricted bivariate predictive regression forecasts, restricted predictive regression forecasts

based on a number of economic variables outperform the historical average forecast.

Campbell and Thompson (2008), Campbell (2008), and Ferreira and Santa-Clara (2011) con-

sider other types of restrictions on stock return forecasts involving valuation ratios. We focus on

Ferreira and Santa-Clara’s (2011) sum-of-the-parts method. By definition, the gross return on a

broad market index is

Rt+1 =
Pt+1 +Dt+1

Pt
=CGt+1 +DYt+1, (9)

where Pt is the stock price, Dt is the dividend, CGt+1 = Pt+1/Pt is the gross capital gain, and

DYt+1 = Dt+1/Pt is the dividend yield. The gross capital gain can be expressed as

CGt+1 =
(Pt+1/Et+1)

(Pt/Et)

Et+1

Et
=

Mt+1

Mt

Et+1

Et
= GMt+1GEt+1, (10)

where Et denotes earnings, Mt = Pt/Et is the price-earnings multiple, and GMt+1 = Mt+1/Mt

(GEt+1 = Et+1/Et) is the gross growth rate of the price-earnings multiple (earnings). Using (10),

the dividend yield can be written as

DYt+1 =
Dt+1

Pt+1

Pt+1

Pt
= DPt+1GMt+1GEt+1, (11)

where DPt = Dt/Pt is the dividend-price ratio. Based on (10) and (11), the gross return in (9)
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becomes

Rt+1 = GMt+1GEt+1(1+DPt+1), (12)

which, for the log return, can be expressed as

log(Rt+1) = gmt+1 +get+1 +d pt+1, (13)

where gmt+1 (get+1) is the log growth rate of the price-earnings multiple (earnings), and d pt is the

log of one plus the dividend-price ratio.

Ferreira and Santa-Clara (2011) use (13) as the basis for a stock return forecast. Since price-

earnings multiples and dividend-price ratios are highly persistent and nearly random walks, rea-

sonable forecasts of gmt+1 and d pt+1 based on information through t are zero and d pt , respec-

tively. Earnings growth is nearly entirely unpredictable, apart from a low-frequency component

(van Binsbergen and Koijen, 2010), so that Ferreira and Santa-Clara (2011) employ a 20-year

moving average of log earnings growth through t, ge20
t , as a forecast of get+1. Their sum-of-the-

parts equity premium forecast is then given by

r̂SOP
t+1 = ge20

t +d pt− r f ,t+1, (14)

where r f ,t+1 is the log risk-free rate, which is known at the end of t.12 Comparing (14) to (8),

it is evident that the sum-of-the-parts forecast is a predictive regression forecast that restricts the

slope coefficient to unity for xi,t = d pt and sets the intercept to ge20
t − r f ,t+1.13 Ferreira and Santa-

Clara (2011) show that their sum-of-the-parts forecast significantly outperforms the historical av-

12Ferriera and Santa-Clara (2011) report complete results for the log return, but they note that their results are
similar for the log excess return.

13While Ferreira and Santa-Clara (2011) focus on log returns, we can compute a simple (instead of log) return
forecast as follows. Let grm,t+1 (gre,t+1) denote the net growth rate of the price-earnings multiple (earnings). Using
these definitions, (12) becomes Rt+1 = (1+grm,t+1)(1+gre,t+1)(1+DPt+1). Multiplying out the right-hand-side and
treating all cross-product terms as approximately zero, we have Rt+1 = 1+ grm,t+1 + gre,t+1 +DPt+1. Treating the
price-earnings multiple and dividend-price ratio as approximately random walks, a simple excess return forecast is
given by gr20

e,t +DPt minus the risk-free rate, where gr20
e,t is a 20-year moving average of earnings growth through t.

This forecast is analogous to (14). We use this simple excess return forecast for the asset allocation exercise in our
empirical application in Section 3.3.
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erage forecast. Furthermore, Monte Carlo simulations indicate that the sum-of-the-parts forecast

improves upon conventional predictive regression forecasts by substantially reducing estimation

error.

Bayesian approaches provide another avenue for incorporating economically reasonable re-

strictions via prior views. Along this line, a number of important studies, including Kandel and

Stambaugh (1996), Barberis (2000), Wachter and Warusawitharana (2009), and Pástor and Stam-

baugh (2012), employ Bayesian methods to examine the implications of prior views on return

predictability and estimation risk for optimal portfolio choice. An important result emerging from

these studies is that return predictability significantly affects asset allocation, even for investors

with relatively skeptical priors beliefs on the existence of return predictability.

3.1.2 Forecast Combination

Rapach et al. (2010) consider another approach for improving equity premium forecasts based

on forecast combination. Since Bates and Granger’s (1969) seminal paper, it has been know that

combining forecasts across models often produces a forecast that performs better than the best

individual model. As emphasized by Timmermann (2006), forecast combination can be viewed

as a diversification strategy that improves forecasting performance in the same manner that asset

diversification improves portfolio performance. Intuitively, from the standpoint of equity premium

forecasting, particular forecasting models capture different aspects of business conditions; further-

more, the predictive power of individual models can vary over time, so that a given model provides

informative signals during certain periods but predominantly false signals during others. If the in-

dividual forecasts are relatively weakly correlated, a combination of the individual forecasts should

be less volatile, thereby stabilizing the individual forecasts, reducing forecasting risk, and improv-

ing forecasting performance in environments with substantial model uncertainly and parameter

instability (e.g., Hendry and Clements, 2004; Clements and Hendry, 2006; Timmermann, 2006).

A combination (or pooled) forecast takes the form of a weighted average of the individual
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forecasts given by (8) for i = 1, . . . ,K:

r̂POOL
t+1 =

K

∑
i=1

ωi,t r̂i,t+1, (15)

where {ωi,t}K
i=1 are the combining weights based on information available through t and ∑

K
i=1 ωi,t =

1. Simple combining schemes frequently perform surprisingly well. The simplest scheme sets

ωi,t = 1/K for all i to give the mean combination forecast. This is analogous to a “naı̈ve” portfolio

rule that places equal weight on each asset. The advantage of simple rules is that they do not

require the estimation of combining weights. Similar to the situation discussed previously with

respect to parameter estimation, it is typically difficult to precisely estimate weights for more

elaborate combining schemes.

Nevertheless, it can be beneficial to “tilt” the combining weights toward certain individual

forecasts, although it is advisable to hew relatively closely to equal weights. In line with this idea,

Rapach et al. (2010) compute a discount MSFE (DMSFE) combination forecast that computes

weights based on the forecasting performance of individual models over a holdout out-of-sample

period (Stock and Watson, 2004):

ωi,t = φ
−1
i,t /

K

∑
k=1

φ
−1
k,t , (16)

where

φi,t =
t−1

∑
s=m

θ
t−1−s(rs+1− r̂i,s+1)

2, (17)

m+ 1 delineates the start of the holdout out-of-sample period, and θ is a discount factor. The

DMSFE forecast thus attaches greater weight to individual predictive regression forecasts with

lower MSFE (better forecasting performance) over the holdout out-of-sample period. When θ = 1,

there is no discounting, so that all observations are treated equally when computing MSFE over

the holdout out-of-sample period, while θ < 1 allows for greater emphasis on recent forecasting

performance.14 Rapach et al. (2010) show that simple and DMSFE combination forecasts of the

14When the individual forecasts are uncorrelated, θ = 1 corresponds to the optimal combination forecast derived by
Bates and Granger (1969). More generally, when individual forecasts are correlated, the optimal weights depend on
the correlations. Given the difficulties in precisely estimating the parameters for optimal weights, theoretically optimal
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quarterly U.S. equity premium consistently outperform the historical average.

It is curious that the simple combination forecast performs much better than the kitchen sink

forecast, since both approaches entail the estimation of K slope coefficients. Rapach et al. (2010)

show that the simple combination forecast can be interpreted as a “shrinkage” forecast that cir-

cumvents the in-sample overfitting problem plaguing highly parameterized forecasting models.

Consider the multiple predictive regression model underlying the kitchen sink forecast, which, for

transparency, we express in deviation form:

rt+1− r̄ =
K

∑
i=1

β
KS
i (xi,t− x̄i)+ εt+1, (18)

where r̄ and x̄i are the sample means based on data available at the time of forecast formation for

rt and xi,t , respectively. The kitchen sink forecast is then given by

r̂t+1 = r̄+
K

∑
i=1

β̂
KS
i (xi,t− x̄i), (19)

where β̂ KS
i is the OLS estimate of β KS

i in the multiple regression, (18), using data available at the

time of forecast formation. The simple combination forecast can be expressed as

r̂t+1 = r̄+(1/K)
K

∑
i=1

β̂i(xi,t− x̄i), (20)

where β̂i is the OLS slope coefficient estimate for the bivariate regression of rt+1 on (xi,t − x̄)

based on data available at the time of forecast formation. Comparing (20) to (19), we see that

the simple combination forecast replaces β̂ KS
i in (19) with (1/K)β̂i. This stabilizes the forecast

via two channels: (1) reducing estimation variability by substituting the bivariate regression slope

coefficient estimates for the multiple regression estimates; (2) shrinking the forecast toward the his-

torical average forecast by premultiplying each slope coefficient by 1/K. Stabilization permits the

combination forecast to incorporate information from a host of economic variables while avoiding

weights frequently do not perform well in practice. See Timmermann (2006) for a detailed treatment of theoretically
optimal combining weights and their practical limitations.
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in-sample overfitting.

In a similar spirit to forecast combination, Cremers (2002) uses Bayesian model averaging to

incorporate information from a multitude of potential predictors in a predictive regression frame-

work. In essence, Bayesian model averaging provides an alternative procedure for shrinking the

slope coefficients in (19), where the degree of shrinkage is now governed by the posterior probabil-

ities that each of the predictors appears in the model (as well as the prior distributions for the slope

coefficients). The slope coefficients for predictors with “low” posterior inclusion probabilities re-

ceive greater shrinkage toward zero, thereby stabilizing the forecast and preventing overfitting. For

the 1969–1998 forecast evaluation period, Cremers (2002) finds that monthly U.S. equity premium

forecasts based on Bayesian model averaging slightly outperform the historical average bench-

mark, while they substantially outperform forecasts based on models selected via conventional

information criteria such as the AIC and SIC.

3.1.3 Diffusion Indices

Ludvigson and Ng (2007), Kelly and Pruitt (2012), and Neely et al. (2012) adopt a diffusion

index approach to improve equity premium forecasting. Diffusion indices provide a means for

conveniently tracking the key comovements in a large number of potential return predictors. The

diffusion index approach assumes a latent factor model structure for the potential predictors:

xi,t = λ
′
i ft + ei,t (i = 1, . . . ,K), (21)

where ft is a q-vector of latent factors, λi is a q-vector of factor loadings, and ei,t is a zero-mean

disturbance term. A strict factor model assumes that the disturbance terms are contemporaneously

and serially uncorrelated, while an “approximate” factor model permits a limited degree of con-

temporaneous and/or serial correlation in ei,t (e.g., Bai, 2003). Under (21), comovements in the

predictors are primarily governed by fluctuations in the relatively small number of factors (q�K).

For either the strict or approximate factor model, the latent factors can be consistently estimated
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by principal components (e.g., Bai, 2003; Stock and Watson, 2006). Estimates of the latent factors

then serve as regressors in the following predictive regression model:

rt+1 = αDI +β
′
DI ft + εt+1, (22)

where β ′DI is a q-vector of slope coefficients. The basic intuition behind (22) is the following.

All of the K predictors, xi,t (i = 1, . . . ,K), potentially contain relevant information for forecasting

rt+1; however, as previously discussed, individual predictors can also provide noisy signals. Rather

than using the xi,t variables directly in a predictive regression, we use the factor structure in (21)

to identify the important common fluctuations in the potential predictors—as represented by ft—

thereby filtering out the noise in the individual predictors—as captured by ei,t . The factor structure

thus generates a more reliable signal from a large number of predictors to employ in a predictive

regression.

An equity premium forecast based on (22) is given by

r̂DI
t+1 = α̂DI,t + β̂

′
DI,t f̂t,t , (23)

where f̂t,t is the principal component estimate of ft based on data available through t and α̂DI,t and

β̂DI,t are OLS estimates of αDI and βDI , respectively, in (22) from regressing {rs}ts=2 on a constant

and { f̂s,t}t−1
s=1. Implementation of this approach requires the specification of q, the number of latent

factors. Bai and Ng (2002) and Onatski (2010) provide procedures for consistently selecting q,

and these procedures can be applied to data available through t as a first step in computing the

diffusion index forecast, (23). From a forecasting perspective, it is advisable to keep q relatively

small, again to avoid an overparameterized forecasting model.

Ludvigson and Ng (2007) analyze diffusion index models along the lines of (22) for quarterly

data and factors extracted from 209 macroeconomic and 172 financial variables. In addition to de-

tecting significant in-sample predictive power for the estimated factors, Ludvigson and Ng (2007)

find that diffusion index forecasts of the quarterly U.S. equity premium substantially outperform
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the historical average forecast.

Neely et al. (2012) use a diffusion index approach to forecast the monthly U.S. equity premium.

They extract factors from a set of 14 economic variables from the literature and 14 technical indi-

cators computed from moving average, momentum, and volume-based rules. Selecting the number

of factors using the Onatski (2010) ED algorithm, Neely et al. (2012) show that the diffusion index

forecast significantly outperforms the historical average, as well as the 28 predictive regression

forecasts based on the individual economic variables and technical indicators. At present, their

diffusion index approach based on both economic variables and technical indicators appears to

provide the best monthly U.S. equity premium forecast.

An interesting extension of the diffusion index approach relies on “targeted” predictors (Bai

and Ng, 2008).15 From a forecasting standpoint, a potential drawback to the diffusion index model

is that the estimated factors are designed to explain the covariation among the individual predictors

themselves, without explicitly taking into account the relationship between the predictors and the

targeted variable that we want to forecast. Kelly and Pruitt (2011) develop a three-pass regression

filter (3PRF) to estimate the factors that are the most relevant for forecasting the target. In an

application of the 3PRF approach, Kelly and Pruitt (2012) use factors extracted from an array

of disaggregated valuation ratios to generate out-of-sample U.S. equity premium forecasts that

significantly outperform the historical average forecast.

3.1.4 Regime Shifts

A fourth approach for improving equity premium forecastability centers on regime shifts. This

approach recognizes that the data-generating process for stock returns is subject to parameter in-

stability, in line with the results of Paye and Timmermann (2006) and Rapach and Wohar (2006a),

who find significant evidence of parameter instability in predictive regression models of U.S. ag-

gregate stock returns using the structural break tests of Bai and Perron (1998, 2003), Hansen

15See the chapter by Serena Ng in this volume for a detailed analysis of targeted predictors.
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(2000), and Elliott and Müller (2006).16

One strategy for modeling breaks follows the pioneering work of Hamilton (1989) by assum-

ing that parameters take on different values as the economy switches between a relatively small

number of latent states.17 In the context of stock return predictability, it is natural to expect such

states, corresponding, for example, to bull/bear markets or business-cycle expansions/recessions.

Consider the following Markov-switching predictive regression model:

rt+1 = αSt+1 +β
′
St+1

xt +σSt+1ut+1, (24)

where St+1 is a first-order Markov-switching process representing the state of the economy, xt is

a vector of predictors, and ut+1 is a zero-mean variate with unit variance. St+1 can take integer

values between 1 and m, corresponding to the state of the economy, where the transition between

states is governed by an m×m matrix with typical element,

pi j = Pr(St = j|St−1 = i) (i, j = 1, . . . ,m). (25)

Since the state of the economy is unobservable, (24) cannot be estimated using conventional re-

gression techniques. Hamilton (1989) develops a nonlinear iterative filter that can be used to es-

timate the parameters of Markov-switching models via maximum likelihood and make inferences

regarding the state of the economy.

Conditional on the parameter estimates in (24), a forecast of rt+1 for m = 2 is given by

r̂MS
t+1 = Pr(St+1 = 1|It)(α̂1,t + β̂

′
1,txt)+Pr(St+1 = 2|It)(α̂2,t + β̂

′
2,txt), (26)

where Pr(St+1 = j|It) is the probability that St+1 = j given information available through t (which

is produced by the estimation algorithm) and α̂ j,t and β̂ j,t are the estimates of α j and β j, re-

16Paye and Timmermann (2006) also find significance evidence of structural breaks in predictive regression models
of aggregate returns for other G-7 countries.

17Ang and Timmermann (2012) provide an insightful survey of regime switching in financial markets.
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spectively, in (24) using data available through t for j = 1,2. Intuitively, (26) diversifies across

forecasts from the two possible regimes. In periods where it is difficult to determine next period’s

state, Pr(St+1 = 1|It)≈ Pr(St+1 = 2|It)≈ 0.5, so that approximately equal weights are placed on the

two regime forecasts; if there is strong evidence based on data through t that St+1 = 1 (St+1 = 2),

then much more weight is placed on the first (second) regime forecast. In this way, the Markov-

switching forecast accommodates structural breaks in model parameters while accounting for the

uncertainty inherent in identifying the state of the economy.

Guidolin and Timmermann (2007) estimate a multivariate four-regime Markov-switching model

for U.S. stock and bond returns via maximum likelihood, where the dividend yield serves as a pre-

dictor.18 Characterizing the four states as “crash,” “slow growth,” “bull,” and “recovery,” they

present statistical evidence favoring a four-regime structure. Most relevant from our perspective,

they also find that real-time asset allocation decisions guided by Markov-switching model fore-

casts of stock and bond returns yield substantial utility gains relative to asset allocation decisions

based on constant expected excess return forecasts.19

Henkel et al. (2011) estimate (24) as part of a two-regime Markov-switching vector autogres-

sion process that includes the dividend-price ratio, short-term nominal interest rate, term spread,

and default spread in xt . They estimate their model via Bayesian methods and find that the two

states correspond closely to NBER-dated business-cycle expansions and recessions, with in-sample

return predictability highly concentrated during recessions. They also show that monthly U.S. eq-

uity premium forecasts based on (26) outperform the historical average benchmark in terms of

MSFE, and, like the in-sample results, out-of-sample return predictability is concentrated during

economic downturns. Overall, the results in Henkel et al. (2011) suggest that the historical average

forecast is sufficient during “normal” times, while economic variables provide useful signals for

forecasting returns during contractionary episodes.

Markov-switching models appear to be most popular type of nonlinear model for forecast-

18An equation similar to (24) with m = 4 is part of Guidolin and Timmermann’s (2007) multivariate model.
19Ang and Bekaert (2002) find that regime switching has important implications for optimal portfolio choice for an

investor allocating across equities in the United States, the United Kingdom, and Germany.
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ing stock returns. Other well-known nonlinear specifications include threshold models, where

regimes are defined by the values taken by observable transition variables relative to threshold pa-

rameters, and neural nets; see Franses and van Dijk (2000), Teräsvirta (2006), White (2006), and

González-Rivera and Lee (2009) for informative surveys of nonlinear forecasting models. Guidolin

et al. (2009) analyze the circumstances under which nonlinear forecasting models of stock returns

are likely to be useful.20

Instead of parameters switching among a relatively small number of states via a Markov-

switching process, time-varying parameter (TVP) models allow for parameters to evolve from

period to period, so that each period can be viewed as a new regime. Dangl and Halling (2012)

specify the following TVP predictive regression model:

rt+1 = αt +β
′
t xt + εt+1, (27) αt

βt

 =

 αt−1

βt−1

+

 w1,t

w2,t

 , (28)

where

εt ∼ N(0,σ2), (29)

wt ∼ N(0,Wt), (30)

and wt = (w1,t ,w′2,t)
′. According to (28), the intercept and slope coefficients in the predictive

regression, (27), evolve as (driftless) random walks. After placing restrictions on Wt to limit the

parameter space, the TVP model given by (27)–(30) can be estimated using the Kalman filter and

maximum likelihood.
20Non- or semiparametric modeling represents another approach for approximating general functional forms for

the relationship between expected returns and predictors. See Chen and Hong (2010) for recent promising results on
equity premium forecasting using a nonparametric approach. Aı̈t-Sahalia and Brandt (2001) employ semiparametric
methods to directly relate predictors of stock return moments to optimal portfolio weights.
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An equity premium forecast based on the TVP model is given by

r̂TV P
t+1 = α̂t,t + β̂

′
t,txt , (31)

where α̂t,t and β̂t,t are estimates of αt and βt , respectively, in (27) based on data available through t.

The TVP forecast in (31) allows for forecasting model coefficients to evolve in a very general way,

so that the TVP forecast can respond to changes in economic structure resulting from a myriad

of factors, including changes in technology, institutions, and policy. Dangl and Halling (2012)

employ Bayesian methods to estimate (27)–(30) for the monthly U.S. equity premium. They find

that forecasts based on (31) significantly outperform the historical average, and, similarly to Henkel

et al. (2011), the out-of-sample gains are concentrated during recessions.21

Pettenuzzo and Timmermann (2011) adopt a Bayesian approach that allows for a few, large

breaks in predictive regression model coefficients, rather than assuming that the coefficients con-

stantly evolve according to (30). Petteunuzzo and Timmermann (2011) are primarily interested in

the implications of infrequent structural breaks for optimal portfolio choice. Indeed, they show

that structural breaks in predictive regressions have important implications for investors with long

horizons and that ignoring breaks can results in sizable welfare losses.

3.2 Forecast Evaluation

MSFE is the most popular metric for evaluating forecast accuracy, and it is not surprising that

MSFE is routinely reported in studies of stock return forecastability. This raises two important

issues. The first relates to statistical tests of equal MSFE when comparing forecasts from nested

models, while the second concerns the adequacy of the MSFE criterion itself.

To fix ideas, suppose that a sample of T observations for rt and xi,t is available. We divide the

total sample into an initial in-sample estimation period comprised of the first n1 observations and

an out-of-sample period comprised of the last n2 = T − n1 observations. One-step-ahead equity

21Since they consider a large number of potential predictors, Dangl and Halling (2012) also employ Bayesian model
averaging along the line of Cremers (2002) in constructing out-of-sample forecasts for their TVP model structure.
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premium forecasts are computed over these last n2 observations using (8). The MSFE for the

predictive regression forecast over the forecast evaluation period is given by

MSFEi = (1/n2)
n2

∑
s=1

(rn1+s− r̂i,n1+s)
2 . (32)

To analyze out-of-sample stock return predictability, the accuracy of the predictive regression fore-

cast is compared to the historical average benchmark forecast, which assumes constant expected

excess returns,

r̄t+1 = (1/t)
t

∑
s=1

rt , (33)

and its MSFE is given by

MSFE0 = (1/n2)
n2

∑
s=1

(rn1+s− r̄n1+s)
2 . (34)

The out-of-sample R2 (Campbell and Thompson, 2008) is a convenient statistic for comparing

MSFEs. It is analogous to the conventional in-sample R2 and measures the proportional reduction

in MSFE for the predictive regression forecast relative to the historical average:

R2
OS = 1− (MSFEi/MSFE0). (35)

Obviously, when R2
OS > 0, the predictive regression forecast is more accurate than the historical

average in terms of MSFE (MSFEi < MSFE0).

While R2
OS measures the improvement in MSFE for the predictive regression forecast vis-

á-vis the historical average, we are also interested in determining whether the improvement is

statistically significant; that is, we are interested in testing H0: MSFE0 ≤ MSFEi against HA:

MSFE0 > MSFEi, corresponding to H0: R2
OS ≤ 0 against HA: R2

OS > 0.22 The well-known Diebold

and Mariano (1995) and West (1996) statistic for testing the null of equal MSFE (or equal predic-

22Corradi and Swanson (2006), West (2006), and the chapter by Todd Clark and Michael McCracken in this volume
provide instructive surveys of statistical tests of relative forecast accuracy.
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tive ability) is given by

DMWi = n0.5
2 d̄iŜ−0.5

di,di
, (36)

where

d̄i = (1/n2)
n2

∑
s=1

d̂i,n1+s, (37)

d̂i,n1+s = û2
0,n1+s− û2

i,n1+s, (38)

û0,n1+s = rn1+s− r̄n1+s, (39)

ûi,n1+s = rn1+s− r̂i,n1+s, (40)

Ŝdi,di = (1/n2)
n2

∑
s=1

(
d̂i,n1+s− d̄i

)2
. (41)

The DMWi statistic is equivalent to the t-statistic corresponding to the constant for a regression

of d̂i,n1+s on a constant for s = 1, . . . ,n2. When comparing forecasts from nonnested models,

Diebold and Mariano (1995) and West (1996) show that DMWi has a standard normal asymptotic

distribution, so that it is straightforward to test H0: MSFE0≤MSFEi against HA: MSFE0 >MSFEi

by comparing the sample statistic to 1.282, 1.645, and 2.326 for the 10%, 5%, and 1% significance

levels, respectively.

Clark and McCracken (2001) and McCracken (2007), however, show that DMWi has a non-

standard asymptotic distribution when comparing forecasts from nested models. In the context

of predictive regressions, out-of-sample tests of stock return predictability entail a comparison of

nested forecasts, since the predictive regression model, (7), reduces to the constant expected ex-

cess return model when βi = 0. For nested forecast comparisons, the asymptotic distribution of

DMWi is a function of Brownian motion and depends on two parameters: (1) π = n2/n1; (2) the

dimension of the set of predictors, xt (which is one for a bivariate predictive regression). Clark

and McCracken (2001) and McCracken (2007) provide tabulated critical values for a variety of

parameter values that are relevant in applied research. A stark feature of the asymptotic critical

values is that they frequently shift markedly to the left relative to standard normal critical values.
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For example, consider a bivariate predictive regression model and π = 2, which corresponds to

reserving the first third of the total sample for the initial in-sample period. From Table 1 in Mc-

Cracken (2007), the 10%, 5%, and 1% critical values are 0.281, 0.610, and 1.238, respectively,

which are well below their standard normal counterparts. The implication is that tests of equal

predictive ability based on conventional critical values can often be severely undersized, leading

to tests with very low power to detect out-of-sample return predictability. In short, it is crucial to

use appropriate critical values when testing for stock return forecastability; otherwise, statistically

significant evidence of out-sample return predictability can easily be missed.

Clark and West (2007) adjust DMWi to produce a modified statistic, MSFE-adjusted, for com-

paring nested model forecasts that has an asymptotic distribution well approximated by the stan-

dard normal. The MSFE-adjusted statistic also performs well in finite-sample simulations. Clark

and West (2007) thus provide a very convenient method for assessing statistical significance when

comparing nested forecasts that obviates the need to look up a new set of critical values for each

application. The MSFE-adjusted statistic is straightforward to compute by first defining

d̃i,n1+s = û2
0,n1+s−

[
û2

i,n1+s− (r̄n1+s− r̂i,n1+s)
2
]
, (42)

and then regressing d̃i,n1+s on a constant for s = 1, . . . ,n2; MSFE-adjusted is the t-statistic corre-

sponding to the constant. Recent studies of stock return forecastability that employ the MSFE-

adjusted statistic include Rapach et al. (2010), Kong et al. (2011), Dangl and Halling (2012), and

Neely et al. (2012).23

While MSFE is overwhelmingly the most popular measure of forecast accuracy, it is not nec-

essarily the most relevant metric for assessing stock return forecasts. Leitch and Tanner (1991)

consider why many firms purchase professional forecasts of economic and financial variables that

frequently fail to outperform forecasts from simple time-series models in terms of MSFE. They

23The Diebold and Mariano (1995) and West (1996) DMWi and Clark and West (2007) MSFE-adjusted statistics
are tests of population-level predictability. There is a subtle but important distinction between population-level and
finite-sample predictability. Section 3 of the chapter by Todd Clark and Michael McCracken in this volume discusses
this distinction and recently proposed procedures for testing finite-sample predictability that have potentially important
implications for analyzing stock return forecastability.
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argue that forecast profitability is a more relevant metric for assessing forecasts, helping to ex-

plain the value of professional forecasts to firms.24 Comparing professional and simple time-series

model forecasts of interest rates, for which profitability is readily measured, Leitch and Tanner

(1991) find that professional forecasts are often more profitable. Furthermore, there is a weak

relationship between MSFE and forecast profitability. Among the conventional forecast error mea-

sures that they analyze, only the direction-of-change metric appears significantly correlated with

forecast profitability. Henrisksson and Merton (1981), Cumby and Modest (1987), and Pesaran

and Timmermann (1992) provide statistical tests of directional forecasting ability, and academic

researchers often employ these tests when analyzing stock return forecasts (e.g., Breen et al, 1989;

Pesaran and Timmermann, 2002, 2004; Marquering and Verbeek, 2004).

In line with the conclusions of Leitch and Tanner (1991), academic researchers also frequently

analyze stock return forecasts with profit- or utility-based metrics, which provide more direct mea-

sures of the value of forecasts to economic agents. In these exercises, stock return forecasts serve

as inputs for ad hoc trading rules or asset allocation decisions derived from expected utility max-

imization problems. A leading utility-based metric for analyzing U.S. equity premium forecasts

is the average utility gain for a mean-variance investor. Consider a mean-variance investor with

relative risk aversion γ who allocates her portfolio between stocks and risk-free bills based on the

predictive regression forecast, (8), of the equity premium.25 At the end of t, the investor allocates

the following share of her portfolio to equities during t +1:

ai,t =

(
1
γ

)(
r̂i,t+1

σ̂2
t+1

)
, (43)

where σ̂2
t+1 is a forecast of the variance of stock returns.26 Over the forecast evaluation period, the

24Also see Granger and Machina (2006) and Batchelor (2011).
25For asset allocation exercises, we use simple (instead of log) returns, so that the portfolio return is given by the

sum of the individual portfolio weights multiplied by the asset returns.
26Under the assumption of constant return volatility, the variance of stock returns can be estimated using the sample

variance computed from a recursive window of historical returns. To allow for a time-varying variance, a rolling
window or some type of GARCH model can be used. Campbell and Thompson (2008) estimate σ̂2

t+1 using the sample
variance computed from a five-year rolling window of historical returns. See Andersen et al. (2006) for an extensive
survey of return volatility forecasting. Note that a general expected utility maximization problem for an investor
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investor realizes the average utility,

ν̂i = µ̂i−0.5γσ̂
2
i , (44)

where µ̂i (σ̂2
i ) is the sample mean (variance) of the portfolio formed on the basis of r̂i,t+1 and σ̂2

t+1

over the forecast evaluation period. If the investor instead relies on the historical average forecast

of the equity premium (using the same variance forecast), she allocates the portfolio share,

a0,t =

(
1
γ

)(
r̄t+1

σ̂2
t+1

)
, (45)

to equity during t +1 and, over the forecast evaluation period, realizes the average utility,

ν̂0 = µ̂0−0.5γσ̂
2
0 , (46)

where µ̂0 (σ̂2
0 ) is the sample mean (variance) of the portfolio formed on the basis of r̄t+1 and

σ̂2
t+1 over the forecast evaluation period. The difference between (44) and (46) represents the

utility gain accruing to using the predictive regression forecast of the equity premium in place

of the historical average forecast in the asset allocation decision. This utility gain, or certainty

equivalent return, can be interpreted as the portfolio management fee that an investor would be

willing to pay to have access to the information in the predictive regression forecast relative to the

information in the historical average forecast alone. Marquering and Verbeek (2004), Campbell

and Thompson (2008), Cooper and Priestly (2009), Rapach et al. (2010), Ferreira and Santa-Clara

(2011), Dangl and Halling (2012), and Neely et al. (2012) all detect sizable utility gains for mean-

variance investors who rely on equity premium forecasts based on economic variables relative to

the historical average forecast.

Kandel and Stambaugh (1996), Guidolin and Timmermann (2007), Pettenuzzo and Timmer-

mann (2011), and Cenesizoglu and Timmermann (2011) measure utility gains for investors with

requires a forecast of the entire conditional distribution of future returns, including conditional mean and volatility
forecasts.
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power utility defined over wealth who optimally allocate among assets, and they also find signifi-

cant economic gains accruing to equity premium forecasts based on economic variables. Similarly

to Leitch and Tanner (1991), Cenesizoglu and Timmermann (2011) find a weak relationship be-

tween MSFE and utility gains. Hong et al. (2007) examine whether equity premium forecasts

based on lagged industry portfolio returns possess market timing ability. They consider a portfo-

lio that allocates all of the portfolio to equities (Treasury bills) if the equity premium forecast is

positive (negative). For investors with power utility, portfolios formed using equity premium fore-

casts based on lagged industry returns generate sizable utility gains relative to portfolios relying

on equity premium forecasts that ignore lagged industry returns.

3.3 Empirical Application

3.3.1 Monthly U.S. Equity Premium Forecastability

We next consider an application based on forecasting the monthly U.S. equity premium that illus-

trates many of the concepts and methodologies discussed in Sections 3.1 and 3.2. We use updated

data from Goyal and Welch (2008) spanning 1926:12–2010:12.27 The equity premium is the log

return on the S&P 500 (including dividends) minus the log return on a risk-free bill.28 Fourteen

popular economic variables serve as candidate predictors:

1. Log dividend-price ratio [log(DP)]: log of a 12-month moving sum of dividends paid on

the S&P 500 index minus the log of stock prices (S&P 500 index).

2. Log dividend yield [log(DY )]: log of a 12-month moving sum of dividends minus the log

of lagged stock prices.

27We thank Amit Goyal for kindly providing the data on his web page at http://www.hec.unil.ch/agoyal/. The data
and their sources are described in detail in Goyal and Welch (2008). Other than the economic variables compiled by
Goyal and Welch (2008), Han et al. (2012) and Neely et al. (2012) recently show that technical indicators are valuable
as predictors in predictive regression forecasts of stock returns, a new finding in academic research.

28When performing asset allocation exercises, we measure the equity premium as the simple aggregate market
return minus the simple risk-free rate.

30



3. Log earnings-price ratio [log(EP)]: log of a 12-month moving sum of earnings on the S&P

500 index minus the log of stock prices.

4. Log dividend-payout ratio [log(DE)]: log of a 12-month moving sum of dividends minus

the log of a 12-month moving sum of earnings.

5. Stock variance (SVAR): monthly sum of squared daily returns on the S&P 500 index.

6. Book-to-market ratio (BM): book-to-market value ratio for the DJIA.

7. Net equity expansion (NT IS): ratio of a 12-month moving sum of net equity issues by

NYSE-listed stocks to the total end-of-year market capitalization of NYSE stocks.

8. Treasury bill rate (T BL): interest rate on a three-month Treasury bill (secondary market).

9. Long-term yield (LTY ): long-term government bond yield.

10. Long-term return (LT R): return on long-term government bonds.

11. Term spread (T MS): long-term yield minus the Treasury bill rate.

12. Default yield spread (DFY ): difference between BAA- and AAA-rated corporate bond

yields.

13. Default return spread (DFR): long-term corporate bond return minus the long-term gov-

ernment bond return.

14. Inflation (INFL): calculated from the CPI (all urban consumers); we use xi,t−1 in (7) for

inflation to account for the delay in CPI releases.

We first compute bivariate predictive regression forecasts of the equity premium based on (8)

for each predictor. We use 1926:12–1956:12 as the initial in-sample estimation period, so that we

compute out-of-sample forecasts for 1957:01–2010:12 (648 observations). The forecasts employ

a recursive (or expanding) estimation window, meaning that the estimation sample always starts
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in 1926:12 and additional observations are used as they become available. Forecasting model

parameters are also frequently estimated with a rolling window, which drops earlier observations

as additional observations become available. Rolling estimation windows are typically justified

by appealing to structural breaks, although a rolling window generally will not be an optimal

estimation window in the presence of breaks. Pesaran and Timmermann (2007) and Clark and

McCracken (2009) show that, from an MSFE perspective, it can be optimal to employ pre-break

data when estimating forecasting models, a manifestation of the classic bias-efficiency tradeoff.

More generally, they demonstrate that the optimal window size is a complicated function of the

timing and size of breaks. Since these parameters are difficult to estimate precisely, recursive

estimation windows frequently perform better in terms of MSFE than rolling windows or windows

selected on the basis of structural break tests when forecasting stock returns.29

The 1957:01–2010:12 forecast evaluation period covers most of the postwar era, including the

oil price shocks of the 1970s; the deep recession associated with the Volcker disinflation in the

early 1980s; the long expansions of the 1960s, 1980s, and 1990s; and the recent Global Financial

Crisis and concomitant Great Recession. The selection of the forecast evaluation period is always

somewhat arbitrary. Hansen and Timmermann (2012) recently develop an out-of-sample test of

forecasting ability that is robust to the in-sample/out-of-sample split.30

Table 1 reports results for out-of-sample horse races pitting the individual bivariate predic-

tive regression forecasts against the historical average. Panels A and B of Table 1 give results

for unrestricted predictive regression forecasts and predictive regression forecasts that implement

the Campbell and Thompson (2008) sign restrictions described in Section 3.1.1, respectively.31

In addition to the full 1957:01–2010:12 forecast evaluation period, we present results computed

29We confirmed this in our application. Rossi and Inoue (2012) develop out-of-sample tests of forecasting ability
that are robust to the estimation window size.

30Section 5 of the chapter by Todd Clark and Michael McCracken in this volume examines issues relating to the
choice of in-sample/out-of-sample split when evaluating forecasts. In Figures 1 and 3, we employ a graphical device
from Goyal and Welch (2003, 2008) to assess the consistency of out-of-sample predictive ability.

31Specifically, the Campbell and Thompson (2008) restrictions entail setting the slope coefficient used to generate
the bivariate predictive regression forecast to zero if the sign of the estimated slope coefficient differs from its theoreti-
cally expected sign, and a nonnegativity constraint is imposed by setting the forecast to zero if the predictive regression
forecast is negative.
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separately during NBER-dated business-cycle expansions and recessions.32

TABLE 1 HERE

The R2
OS statistics in the second column of Table 1, Panel A succinctly convey the message

of Goyal and Welch (2008): individual predictive regression forecasts frequently fail to beat the

historical average benchmark in terms of MSFE. Indeed, 12 of the 14 R2
OS statistics are negative in

the second column of Panel A, indicating that the predictive regression forecast has a higher MSFE

than the historical average. For the two predictors with a positive R2
OS (SVAR and T MS), the Clark

and West (2007) p-values reported in the brackets are greater than 0.10, so that these economic

variables do not display statistically significant out-of-sample predictive ability at conventional

levels.33

Figure 1 further illustrates the generally poor performance of the conventional predictive re-

gression forecasts. The black line in each panel depicts the cumulative difference in squared fore-

cast errors for the historical average forecast vis-á-vis the predictive regression forecast:

CDSFEi,τ =
τ

∑
s=1

(rn1+s− r̄n1+s)
2−

τ

∑
s=1

(rn1+s− r̂i,n1+s)
2, (47)

for τ = 1, . . . ,n2. Goyal and Welch (2003, 2008) recommend this highly informative graphical de-

vice to assess the ability of a predictive regression forecast to consistently outperform the historical

average. The figure can be conveniently used to determine if the predictive regression forecast has

a lower MSFE than the historical average for any period by simply comparing the height of the

curve at the beginning and end points of the segment corresponding to the period of interest: if

the curve is higher (lower) at the end of the segment relative to the beginning, then the predictive

regression forecast has a lower (higher) MSFE than the historical average during the period. A

32The NBER business-cycle peak and trough dates defining expansions and recessions are available at
http://www.nber.org/cycles.html. The U.S. economy was in recession for approximately 17% of the months during
1957:01–2010:12.

33Interestingly, three of the economic variables with negative R2
OS statistics in Table 1—log(DP), log(DY ), and

T BL—actually have p-values less than or equal to 0.10, so that we reject the null that R2
OS ≤ 0 in favor or R2

OS > 0
at conventional levels, even though the sample R2

OS is negative. This is a manifestation of the Clark and McCracken
(2001) and McCracken (2007) result discussed in Section 3.2.
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predictive regression forecast that always outperforms the historical average will thus have a slope

that is positive everywhere. Of course, realistically, this ideal will not be reached in practice, but

the closer the curve is to this ideal the better. The black lines in Figure 1 all fall far short of the

ideal. All of the lines are predominantly negatively sloped or flat, with relatively short and infre-

quent positively sloped segments. In fact, numerous segments are steeply and negatively sloped,

indicating that the historical average substantially outperforms the predictive regression forecasts

during these periods. At best, the predictive regression forecasts provide episodic—or “ elusive”

(Timmermann, 2008)—evidence of out-of-sample stock return predictability.34 In sum, Figure 1,

along with the R2
OS statistics in the second column of Table 1, Panel A, support a bearish view of

predictive regression forecasts of the U.S. equity premium.

FIGURE 1 HERE

Closer inspection of Figure 1 reveals a pattern to the episodic nature of equity premium fore-

castability. In a number of instances, the curves are relatively steeply and positively sloped during

and around NBER-dated recessions (depicted by the vertical bars in Figure 1), indicating that out-

of-sample stock return predictability is largely a recessionary phenomenon. Additional evidence

of this is provided in the fourth and sixth columns of Table 1, Panel A, which report R2
OS statistics

computed separately during expansions and recessions, respectively. For seven of the predictors,

the R2
OS statistics move from being negative (and typically below −1%) during expansions to 1%

or above during recessions. Furthermore, five of these R2
OS statistics are significant at conventional

levels during recessions according to the Clark and West (2007) p-values, despite the decreased

number of available observations. The difference in relative out-of-sample forecasting perfor-

mance across business-cycle phases is particularly evident for log(DP) and log(DY ), where the

R2
OS statistics go from −1.24% and −2.28% during expansions to 2.41% and 3.56%, respectively,

during recessions.

34Giacomini and Rossi (2010) provide a measure of relative local forecasting performance and tests of the stability
of forecasting gains (also see Giacomini and Rossi, 2009). Their tests, however, require rolling estimation windows
when comparing nested forecasts, while we focus on recursive estimation windows in our application.
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Up to this point, we have analyzed equity premium forecasts in terms of MSFE. As discussed

in Section 3.2, however, MSFE is not necessarily the most relevant metric for assessing stock re-

turn forecasts. The third column of Table 1, Panel A reports average utility gains (in annualized

percent return) for a mean-variance investor with relative risk coefficient of five who allocates

among equities and risk-free bills using predictive regression forecasts in place of the historical

average.35 Relative to the R2
OS statistics in the second column, the predictive regression fore-

casts appear significantly more valuable according to the average utility gains, with 10 of the 14

economic variables offering positive gains. The annualized gain is above 0.5% for seven of the

economic variables, meaning that the investor would be willing to pay more than 50 basis points

to have access to the information in the predictive regression forecasts compared to the historical

average forecast. The utility gains are greater than 100 basis points for log(DY ), T BL, LTY , and

T MS. Similarly to the pattern in the R2
OS statistics, the average utility gains are typically higher

during recessions than expansions (see the fifth and seventh columns of Table 1, Panel A). In fact,

the differences in forecasting performance as measured by the utility gains are more pronounced

than for the R2
OS statistics. For 12 of the 14 predictors, the average utility gain is higher dur-

ing recessions than expansions, and the differences are especially large for log(DP) and log(DY ),

where the average utility gains increase from −1.47% and −1.98% during expansions to 11.87%

and 16.17%, respectively, during recessions. Overall, the average utility gains in Table 1, Panel

A provide stronger support for stock return forecastability, highlighting the need to supplement

standard statistical criteria with more direct value-based measures when analyzing out-of-sample

stock return predictability.36

Panel B of Table 1 presents R2
OS statistics and average utility gains for predictive regression

forecasts that impose the Campbell and Thompson (2008) sign restrictions. Comparing the sec-

ond column of Panel B to Panel A, we see that the theoretically motivated restrictions generally

35The results are qualitatively similar for other reasonable risk aversion coefficient values. We follow Campbell
and Thompson (2008) and estimate the variance of stock returns using the sample variance computed from a five-year
rolling window of historical returns.

36An important outstanding issue is assessing the statistical significance of average utility gains; see McCracken
and Valente (2011) for insightful initial theoretical results.
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improve the predictive regression forecasts in terms of MSFE. Eleven of the 14 R2
OS statistics in

Panel B are greater than their Panel A counterparts, and the R2
OS statistics turn from negative to

positive for log(DP), log(DY ), T BL, and LT R as we move from Panel A to B. The R2
OS statistics

in the fourth and sixth columns of Panel B help to explain the overall increase in forecast accuracy

corresponding to the restrictions. The R2
OS statistics in the sixth column of Panels A and B are

reasonably similar; if anything, there is a tendency for the restrictions to decrease the R2
OS statistics

during recessions. In contrast, the R2
OS statistics become substantially less negative during expan-

sions for a number of predictors, especially log(DP) and log(DY ) (see the fourth column of Panels

A and B). The restrictions thus appear to improve overall forecasting performance by ameliorating

the underperformance of the predictive regression forecasts during expansions. The results in Panel

B indicate that the restrictions have relatively little effect on forecasting performance as measured

by the average utility gains.

Figure 2, which graphs the individual bivariate predictive regression forecasts, sheds additional

light on the role of sign restrictions. The sign restrictions on the estimated slope coefficients for

the predictive regression forecasting models are rarely binding.37 Instead, as shown in Figure 2,

the predictive regression forecasts are negative for many periods for a number of predictors, so that

it is the sign restrictions on the predictive regression forecasts themselves that are relevant. For ex-

ample, the predictive regression forecasts based on valuation ratios—log(DP), log(DY ), log(EP),

and BM—are often negative during the mid-to-late 1990s. The corresponding lines in Figure 1

are predominantly steeply and negatively sloped during this period, indicating that the predictive

regression forecasts perform very poorly relative to the historical average. The gray lines in Figure

1 correspond to differences in cumulated squared forecast errors for the historical average forecast

relative to the restricted predictive regression forecasts. The gray lines for the valuation ratios lie

above the black lines starting in the mid 1990s, so that the restrictions are particularly useful in

improving forecast performance around this time. In general, the sign restrictions stabilize the

predictive regression forecasts by truncating them from below, helping to avoid more implausible

37The major exception is SVAR, where theory suggests βi > 0, but the estimated slope coefficient is always negative.
This is evident from the R2

OS of exactly zero for SVAR in Panel B.
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equity premium forecasts.

FIGURE 2 HERE

Panel A of Table 2 reports R2
OS statistics and average utility gains for monthly equity premium

forecasts based on multiple economic variables, with no sign restrictions placed on the forecasts.

Figure 3 graphs the cumulative differences in squared forecast errors for the historical average

forecast relative to forecasts based on multiple economic variables, while Figure 4 depicts the

forecasts themselves.

The first forecast in Table 2, the kitchen sink, corresponds to a multiple predictive regression

model that includes all 14 economic variables as regressors. Confirming the results in Goyal and

Welch (2008) and Rapach et al. (2010), the kitchen sink forecast performs very poorly according

to the MSFE metric, with an R2
OS of −8.43% over the full forecast evaluation period. The line in

Figure 3, Panel A is nearly always negative sloped, showing that the kitchen sink forecast con-

sistently underperforms the historical average in terms of MSFE. Panel A of Figure 4 indicates

that the kitchen sink forecast is highly volatile, more so than any of the individual bivariate pre-

dictive regression forecasts (note the difference in the vertical axis scales in Figure 2 and Figure

4, Panel A). The monthly kitchen sink forecast reaches nearly 4%—implying an annualized ex-

pected equity premium of nearly 48%—and falls below −4%—implying an annualized expected

equity premium near −50%. These extreme values are highly implausible, clearly demonstrating

the in-sample overfitting problem that causes highly parameterized models to produce large fore-

cast errors; such errors are stringently penalized by the MSFE criterion. Despite the very poor

performance of the kitchen sink forecast in terms of MSFE, it does deliver a positive overall aver-

age utility gain, although the gain is less than 25 basis points on an annualized basis. This again

illustrates how different evaluation criteria can lead to different conclusions regarding stock return

forecasting performance.

TABLE 2 HERE

FIGURE 3 HERE
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FIGURE 4 HERE

In the spirit of Pesaran and Timmermann (1995) and Bossaerts and Hillion (1999), the next

forecast in Table 2 selects the forecasting model using the SIC, from among the 2K possible speci-

fications for the K = 14 potential predictors, based on data available at the time of forecast forma-

tion.38 The idea is to use the SIC to guard against in-sample overfitting, since the SIC penalizes

models with more parameters. While the R2
OS increases for the full forecast evaluation period for

the SIC relative to the kitchen sink forecast, it is still well below zero (−5.61%), and Figure 3,

Panel B indicates that it is consistently outperformed by the historical average. Panel B of Figure

4 shows that, while the SIC forecast is less volatile than the kitchen sink forecast (as expected), it

remains quite volatile, so that the SIC forecast still appears to be plagued by in-sample overfitting.

The SIC forecast also fails to outperform the historical average in terms of average utility gain.

The last four forecasts considered in Table 2 employ three of the recently proposed approaches

for improving equity premium forecasts reviewed in Section 3.1. The first two of these forecasts

are combination forecasts based on (15), which we implement in two ways: (1) a simple combining

scheme, ωi,t = 1/K for i = 1, . . . ,K (POOL-AVG); (2) combining weights that depend on recent

forecasting performance, (16) for θ = 0.75 (POOL-DMSFE).39 The next forecast is the diffusion

index forecast given by (23), where we use the first principal component extracted from the 14

economic variables. The final forecast is the sum-of-the-parts forecast in (14).

The results in Table 2, Panel A demonstrate the usefulness of recently proposed forecasting

strategies. The POOL-AVG, POOL-DMSFE, diffusion index, and sum-of-the parts forecasts all

deliver positive R2
OS statistics for the full 1957:01–2010:12 forecast evaluation period, and each of

the corresponding Clark and West (2007) p-values indicates significance at the 5% level.40 The

R2
OS statistics for these four forecasts range from 0.44% (POOL-AVG) to 0.93% (sum-of-the-parts),

38We obtain similar results for other information criteria, such as the AIC.
39We use 1947:01–1956:12 as the initial holdout out-of-sample period when computing the POOL-DMSFE forecast.
40Strictly speaking, Clark and West (2007) analyze the MSFE-adjusted statistic for forecasts generated from lin-

ear predictive regressions estimated via OLS. The POOL-AVG, POOL-DMSFE, and sum-of-the-parts forecasts do
not exactly conform to this structure, so that we use the MSFE-adjusted statistic as an approximation to statistical
significance.
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all of which are larger than any of the R2
OS statistics for the individual bivariate predictive regres-

sion forecasts in the second column of Table 1. In marked contrast to Figure 1 and Panels A and

B of Figure 3, these four forecasts produce out-of-sample gains on a quite consistent basis over

time, as demonstrated in Panels C–F of Figure 3. The POOL-AVG and POOL-DMSFE forecasts,

in particular, deliver very consistent gains, with slopes in Figure 3 that are nearly always positive.

Although the lines are briefly negatively sloped during the late 1990s, the deterioration in perfor-

mance during this time is much milder than that exhibited by a number of the individual bivariate

predictive regression forecasts in Figure 1 (not to mention the kitchen sink and SIC forecasts in

Panels A and B of Figure 3). While it generates a higher R2
OS for the full forecast evaluation pe-

riod, the diffusion index forecast performs more erratically than the combination forecasts, with

a much sharper dropoff during the late 1990s. The sum-of-the-parts forecast generates a higher

R2
OS for the full evaluation period than the combination and diffusion index forecasts, while pro-

viding less (more) consistent gains than the combination forecasts (diffusion index forecast). The

POOL-AVG, POOL-DMSFE, diffusion index, and sum-of-the-parts forecasts also generate sizable

average utility gains for the 1957:01–2010:12 forecast evaluation period, ranging from 125 to 247

basis points on an annualized basis. These four forecasts thus perform well according to both

MSFE and direct utility-based criteria.

Panels C–F of Figure 4 provide insight into the success of the POOL-AVG, POOL-DMSFE,

diffusion index, and sum-of-the-parts forecasts. Relative to many of the individual bivariate pre-

dictive regression forecasts in Figure 2 and the kitchen sink and SIC forecasts in Panels A and B

of Figure 4, these four forecasts tend to be considerably more stable (again, note the differences

in vertical axis scales). Stabilization is accomplished by shrinkage for the combination forecasts

(Section 3.1.2), by filtering noise from predictors for the diffusion index forecast (Section 3.1.3),

and by reducing estimation error for the sum-of-the-parts forecast (Section 3.1.1). Such stabiliza-

tion is necessary due to the substantial model uncertainty and parameter instability surrounding

stock return forecasting. Successful stock return forecasting strategies incorporate information

from multiple economic variables—information ignored by the historical average forecast—but
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in a manner that accommodates model uncertainty and parameter instability, thereby producing

return forecasts that are economically plausible.

Supporting the economic plausibility of the POOL-AVG, POOL-DMFSE, diffusion index, and

sum-of-the parts forecasts, the behavior of these forecasts appears linked to business-cycle fluc-

tuations in Figure 4. In particular, during the mid-1970s and 1990–1991 recessions, and espe-

cially the severe recession of the early 1980s, the forecasts descend to distinct local minima near

business-cycle peaks and then increase sharply during the course of recessions, reaching distinct

local maxima near business-cycle troughs.41 This countercyclical pattern in expected returns is

very much in line with the time-varying risk aversion explanation of return predictability in Fama

and French (1989), Campbell and Cochrane (1999), and Cochrane (2007, 2011), among others:

economic agents have relatively low risk aversion at the end of economic expansions—and there-

fore require a lower equity risk premium—but agents’ risk aversion increases during contractions

as income and consumption levels fall—necessitating a higher equity risk premium. While the

behavior of the diffusion index forecasts also conforms to this pattern during the recent Great Re-

cession, the behavior of the POOL-AVG, POOL-DMSFE, and sum-of-the-parts forecasts diverges

somewhat from this pattern during this period, as the latter three forecasts typically decline over

the course of the recession and subsequently increase sharply after the cyclical trough in 2009:06.

This could be due to the severe disruptions in financial markets and unprecedented policy interven-

tions associated with the Global Financial Crisis and very weak economic recovery from the Great

Recession.

The last four columns of Table 2, Panel A show that the out-of-sample gains, in terms of both

the R2
OS statistics and average utility gains, are concentrated during recessions for the POOL-AVG,

POOL-DMSFE, diffusion index, and sum-of-the-parts forecasts. The R2
OS statistics are positive

for three of these four forecasts during expansions (the exception is the diffusion index), but none

of these is significant at conventional levels. The R2
OS statistics range from 1.10% (POOL-AVG)

to 4.15% (diffusion index) during recessions, and all of these statistics are significant at the 1%

41Some of the bivariate predictive regression forecasts in Figure 2 also exhibit this pattern, in particular, log(DP),
log(DY ), and T MS.
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level, despite the reduced number of available observations. The average utility gain during reces-

sions is a very substantial 16.42% for the diffusion index. The economically plausible behavior

of the POOL-AVG, POOL-DMSFE, diffusion index, and sum-of-the-parts forecasts over the busi-

ness cycle accords with the substantial out-of-sample gains associated with these forecasts during

recessions.42

Panel B of Table 2 reports results for forecasts based on multiple economic variables with non-

negativity restrictions, where we set the forecast to zero if a given method produces a negative

forecast. By stabilizing the relatively volatile kitchen sink and SIC forecasts, the nonnegativity re-

strictions substantially increase the R2
OS statistics for these forecasts, although they remain well be-

low zero. The nonnegativity constraints are never binding for the POOL-AVG and POOL-DMSFE

forecasts (see Figure 4, Panels C and D), so that the R2
OS statistics are identical for these forecasts

across Panels A and B. For the diffusion index and sum-of-the-parts forecasts, the nonnegativity

restrictions only lead to slight increases in the R2
OS statistics. Overall, nonnegativity restrictions

have limited impact on the performance of the POOL-AVG, POOL-DMSFE, diffusion index, and

sum-of-the-parts forecasts, presumably due to the stabilizing nature of these strategies.43

While positive, the R2
OS statistics for the POOL-AVG, POOL-DMSFE, diffusion index, and

sum-of-the-parts forecasts in the second column of Table 2 seem small at first blush. As discussed

in Section 2, however, theory predicts that the predictable component in the monthly equity pre-

mium will be small. Moreover, the monthly R2
OS statistics for these four forecasts, while below

1%, still represent excessive stock return predictability from the standpoint of leading asset pricing

models, making them economically relevant.

The average utility gains in Table 2 point to substantial economic value for the POOL-AVG,

POOL-DMSE, diffusion index, and sum-of-the-parts forecasts. Nevertheless, an important word

42Of course, we identify enhanced return predictability during recessions ex post, since the NBER dates business-
cycle peaks and troughs retrospectively. As discussed in Section 3.1.4, Markov-switching models provide a natural
framework for switching between forecasting models according to estimated probabilities of the state of the economy,
helping to exploit enhanced return predictability during recessions in real time. Another possibility is to rely on a
real-time index of business conditions, such as Aruoba et al. (2009), to guide switching between forecasts over the
business cycle.

43Since the asset allocation exercise places a lower bound of zero on the equity portfolio weight, the average utility
gains are identical across Panels A and B of Table 2.
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of caution is in order. The mean-variance investor for whom we compute utility gains is assumed to

have a constant relative risk aversion coefficient over time. To the extent that return predictability

is generated by time-varying risk aversion over the business cycle, the utility gains computed under

the assumption of constant risk aversion only obtain for a “small” (i.e., nonrepresentative) investor

who does not affect market prices. In essence, a nonrepresentative investor can exploit the return

predictability created by the time-varying risk aversion of the representative investor.44

3.3.2 U.S. Equity Premium Forecastability at Longer Horizons

Since the literature on in-sample return predictability frequently analyzes predictability at longer

horizons, we also compute R2
OS statistics and average utility gains for quarterly and annual (nonover-

lapping) forecasts.45 Results for quarterly equity premium forecasts based on individual bivariate

prediction regressions are reported in Table 3. The R2
OS statistics for the unrestricted predictive re-

gression forecasts in Panel A are reasonably similar to the corresponding statistics for the monthly

forecasts in Table 1. The average utility gains in Table 3, Panel A are often more sizable than

those in Table 1, Panel A, so that the economic significance of out-of-sample return predictability

appears stronger at we move from a monthly to quarterly horizon. Following the pattern in Table

1, return predictability at the quarterly horizon is concentrated during business-cycle recessions for

the valuation ratios and T MS. When we impose Campbell and Thompson (2008) restrictions in

Table 3, Panel B, log(DP) and log(DY ) both have positive and significant R2
OS statistics, and the

R2
OS for log(DY ) is well above 1%.

TABLE 3 HERE

Table 4 reports results for quarterly forecasts based on multiple economic variables. Panel A

(B) reports results for unrestricted forecasts (forecasts with nonnegativity restrictions imposed).

The R2
OS statistics and average utility gains for the quarterly kitchen sink and SIC forecasts in both

44This brings to mind Warren Buffett’s well-known quote: “We simply attempt to be fearful when others are greedy
and to be greedy only when others are fearful.”

45Quarterly and annual data are also available from Amit Goyal’s web page at http://www.hec.unil.ch/agoyal/.
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panels of Table 4 deteriorate relative to the corresponding monthly values in Table 2. In contrast,

the R2
OS statistics and average utility gains increase for the POOL-AVG, POOL-DMSFE, diffusion

index, and sum-of-the-parts forecasts as we move from a monthly to quarterly horizon (and the R2
OS

statistics remain significant). In both panels of Table 4, the R2
OS statistics for the POOL-DMSFE,

diffusion index, and sum-of-the-parts forecasts are now all greater than 1%, and the latter two are

above 2%. Similarly to Table 2, imposing nonnegativity restrictions on the quarterly forecasts

substantially improves the R2
OS statistics for the kitchen sink and SIC forecasts, although the R2

OS

statistics both remain well below zero, while the restrictions have little effect on the POOL-AVG,

POOL-DMSFE, diffusion index, and sum-of-the-parts forecasts.

TABLE 4 HERE

Table 5 reports results for individual bivariate prediction regression forecasts (Panel A), as

well as forecasts based on multiple economic variables (Panel B), at an annual horizon. Among

the unrestricted individual forecasts, only log(DP) has a positive R2
OS (1.76%). Campbell and

Thompson (2008) restrictions generally raise the R2
OS statistics for the individual forecasts—the

R2
OS increases to 3.51% for log(DP)—although the majority remain negative. Nearly all of the

the average utility gains for the individual forecasts increase as we move from Table 3 to Table

5, so that out-of-sample return predictability again becomes more economically significant as the

forecasting horizon lengthens.

TABLE 5 HERE

The R2
OS statistics for the kitchen sink and SIC forecasts are substantially lower in Table 5 vis-

á-vis Table 4, indicating that the accuracy of these forecasts continues to deteriorate as the horizon

lengthens. The kitchen sink and SIC forecasts also produce negative average utility gains at an

annual horizon. In line with the previous pattern, the R2
OS statistics for the POOL-AVG, POOL-

DMSFE, diffusion index, and sum-of-the parts forecasts increase as we move from a quarterly

horizon in Table 4 to an annual horizon in Table 5. The R2
OS statistics for both the diffusion index
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and sum-of-the parts forecasts are now well above 5% (and the R2
OS for the former is above 7%).

The average utility gains fall somewhat for the POOL-AVG, POOL-DMSFE, and sum-of-the parts

forecasts in Table 5 relative to Table 4, while the average utility gain increases to a very sizable

4.89% for the diffusion index forecast in Table 5.

Focusing on the POOL-AVG, POOL-DMSFE, diffusion index, and sum-of-the-parts fore-

casts, larger R2
OS statistics—and, hence, greater out-of-sample return predictability according to

the MSFE criterion—are available at longer horizons. This increase in out-of-sample return pre-

dictability accords with in-sample results from the literature. The theoretical bounds on return

predictability discussed in Section 2, however, also increase as the horizon lengthens, so that new

economic information is not necessarily available at longer horizons.

3.4 Data Snooping

Data-snooping concerns naturally arise when considering a large number of potential predictors of

stock returns. Lo and MacKinlay (1990b), Foster et al. (1997), and Ferson et al. (2003) analyze

data snooping in the context of in-sample tests of stock return predictability. White (2000) develops

a “reality check” bootstrap to control for data snooping when testing whether any forecast from a

group of competing forecasts significantly outperforms a benchmark forecast. White’s (2000) pro-

cedure is based on a test statistic that is a function of the maximum of the average loss differentials

between the benchmark forecast and each competing forecast. A p-value for the maximum statistic

is computed via a nonparametric stationary bootstrap that resamples from the original time series

of loss differentials.46 As emphasized by Clark and McCracken (2012), however, the asymptotic

properties of the nonparametric stationary bootstrap do not generally apply when all of the com-

peting forecasting models nest the benchmark model. This is relevant for testing out-of-sample

stock return predictability. It is often the case that all of the competing forecasts essentially nest

the benchmark, since the benchmark typically corresponds to a constant expected return model

that excludes the information in the predictors that appear in the competing forecasts, similarly to

46Hansen (2005) develops a more powerful refinement of the White (2000) reality check.
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our application in Section 3.3.

Inoue and Kilian (2004) derive the asymptotic distribution of the maximum Diebold and Mar-

iano (1995) and West (1996) statistic,

maxDMW = max
i=1,...,K

DMWi, (48)

where DMWi is given by (36), under the null hypothesis that βi = 0 in (7) for all i = 1, . . . ,K.

This provides an asymptotic framework for controlling for data snooping when testing for out-

of-sample stock return predictability. While Inoue and Kilian (2004) focus on asymptotic results,

they observe that potential finite-sample size distortions can be handled in practice by bootstrap

methods. Using annual data for 1927–1999, Rapach and Wohar (2006b) use a data-snooping-

robust bootstrap procedure to test whether nine popular economic variables evince significant out-

of-sample predictive ability for S&P 500 and CRSP equal-weighted aggregate returns for the 1964–

1999 forecast evaluation period. Rapach and Wohar (2006b) compute bootstrapped critical values

for

maxMSE-F = max
i=1,...,K

MSE-Fi, (49)

where MSE-Fi = n0.5
2 d̄i/MSFEi is a more powerful version of DMWi from Clark and McCracken

(2001). To implement the bootstrap, a pseudo sample of stock return observations matching the

original sample size is generated under the null of no predictability by estimating (7) with βi = 0

and resampling (with replacement) from the fitted residuals. Autoregressive (AR) processes are

estimated for each of the predictors, xi,t (i = 1, . . . ,K), and a pseudo sample of predictor observa-

tions is built up by resampling from the fitted AR process residuals. Importantly, the residuals for

the return and predictor processes are drawn in tandem, thereby preserving the contemporaneous

correlations in the original data. The maximum statistic is computed for the pseudo sample and

stored. Repeating this process many times, bootstrapped critical values are computed from the em-

pirical distribution of maximum statistics. Rapach and Wohar (2006b) find that maximum statistics

are significant at conventional levels according to the bootstrapped critical values, signaling that

45



out-of-sample stock return predictability is reasonably robust to data snooping.

Clark and McCracken (2012) recently prove that a wild fixed-regressor bootstrap delivers

asymptotically valid critical values for the maxDMW and maxMSE-F statistics when compar-

ing multiple forecasts that nest a benchmark. The wild fixed-regressor bootstrap accommodates

conditional heteroskedasticity and performs well in finite-sample simulations. The bootstrap is

straightforward to implement and provides a theoretically justified bootstrap procedure for con-

trolling for data snooping in tests of out-of-sample stock return predictability.

To implement the wild fixed-regressor bootstrap, a general model that includes all possible

predictors is estimated. A pseudo sample of return observations is generated under the null of no

predictability by setting r∗t = α̂0,T +ηt ε̂t , where r∗t is the pseudo observation for rt , α̂0,T is the

sample mean of rt , ηt is a draw from the standard normal distribution, and ε̂t is the fitted residual

from the general model. Simulating the disturbance term using ηt ε̂t makes this a wild bootstrap.

The predictors, xi,t (i = 1, . . . ,K), from the original sample also serve as the observations for the

predictors in the pseudo sample, making this a fixed-regressor bootstrap. By generating a large

number of pseudo samples for rt and storing the maximum statistics for each pseudo sample, an

empirical distribution of maximum statistics is built up that can be used to compute critical values

or a p-value for the maximum statistic corresponding to the original sample.

As mentioned in Section 3.1.3, Neely et al. (2012) calculate monthly U.S. equity premium

forecasts using individual bivariate predictive regression models based on 14 economic variables

and 14 technical indicators, as well as a diffusion index forecast, (23), that employs principal

components to extract a small number of factors from the 28 predictors. Since they consider a

large number of forecasting models, each of which nests the historical average benchmark, Neely

et al. (2012) use the Clark and McCracken (2012) wild fixed-regressor bootstrap to assess the

significance of the maxMSE-F statistic. The bootstrapped p-value is 4.71%, so that the significant

evidence of equity premium predictability is not readily ascribed to data snooping.
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4 Stock Return Forecastability Along Other Dimensions

4.1 International Stock Returns

While the literature on aggregate stock return predictability focuses on U.S. returns, a number of

studies investigate return predictability for other countries. Papers examining stock return pre-

dictability for countries outside of the United States include Cutler et al. (1991), Harvey (1991),

Bekaert and Hodrick (1992), Campbell and Hamao (1992), Ferson and Harvey (1993), Solnik

(1993), Rapach et al. (2005), Ang and Bekaert (2007), Cooper and Priestley (2009), Della Corte

et al. (2010), Hjalmarsson (2010), Kellard et al. (2010), and Henkel et al. (2011). All of these

studies estimate in-sample predictive regressions for individual country returns using a variety of

domestic and/or U.S. economic variables as predictors. The consensus from these studies is that

stock returns are predictable worldwide. In an examination of lead-lag relationships in monthly

international stock returns—in the spirit of studies investigating such relationships in portfolios

of individual U.S. stocks sorted on size, analyst coverage, volume, and/or industry (e.g., Lo and

MacKinlay, 1990a; Brennan et al., 1993; Chordia and Swaminathan, 2000; Hou, 2007)—Rapach

et al. (2012) find that lagged U.S returns predict non-U.S. returns, but that the reverse generally

does not hold.

Fewer studies consider out-of-sample tests of international stock return predictability. Among

the previously cited studies, Solnik (1993), Rapach et al. (2005), Cooper and Priestly (2009), Della

Corte et al. (2010), Hjalmarrson (2010), Kellard et al. (2010), Henkel et al. (2011), and Rapach

et al. (2012) conduct out-of-sample tests. Solnik (1993) forms predictive regression forecasts of

monthly aggregate stock returns for eight developed countries using domestic dividend yields,

short- and long-term nominal interest rates, and a January dummy as predictors. He finds that a

dynamic trading strategy that allocates across stocks in the eight countries based on the predictive

regression forecasts significantly outperforms a strategy that assumes constant expected returns.

Rapach et al. (2005) investigate out-of-sample stock return predictability for 12 developed

countries using up to 10 domestic economic variables as predictors for each country. Nominal
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interest rates exhibit the most consistent forecasting ability across the 12 countries. Cooper and

Priestley (2009) test out-of-sample monthly stock return predictability for the United States and the

other G-7 countries using predictive regression forecasts based on domestic output gaps. They de-

tect significant evidence of return forecastability using the R2
OS and MSE-Fi statistics, and they find

positive average utility gains for a mean-variance investor with relative risk aversion coefficient of

three.

Della Corte et al. (2010) analyze the forecasting power of Lettau and Ludvigson’s (2001)

consumption-wealth ratio in long spans of annual data for stock returns in the United States, the

United Kingdom, Japan, and France. After accounting for “look-ahead” bias in the estimation of

the long-run consumption-wealth relationship (Brennan and Xia, 2005; Hahn and Lee, 2006), they

fail to find significant evidence of out-of-sample return predictability using the R2
OS and MSE-Fi

statistics. According to a variety of performance measures, however, portfolios formed from return

forecasts that incorporate information from the the consumption-wealth ratio substantially outper-

form portfolios that ignore the consumption-wealth ratio. This again illustrates the importance

of supplementing conventional statistical measures of forecast accuracy with direct profit- and/or

utility-based metrics. Again highlighting the value of economically motivated model restrictions,

Della Corte et al. (2010) also find that imposing restrictions on predictive regression forecasts á la

Campbell and Thompson (2008) improves forecasting performance.

Hjalmarsson (2010) analyzes bivariate predictive regression forecasts of monthly stock returns

for a large number of primarily developed countries, where the individual bivariate predictive re-

gressions use the dividend-price ratio, earnings-price ratio, short-term nominal interest rate, and

term spread as predictors. Overall, Hjalmarrson (2010) finds that the interest rate variables, espe-

cially the term spread, display the most out-of-sample predictive ability. Interestingly, Hjalmarsson

(2010) shows that forecasts generated from pooled predictive regressions that impose slope homo-

geneity restrictions typically produce higher R2
OS statistics than conventional predictive regression

forecasts. While the slope homogeneity restrictions are unlikely to be literally true, their imposition

permits more efficient parameter estimation that can lead to improved forecasting performance in

48



terms of MSFE. This is another example of the usefulness of sensible model restrictions for fore-

casting stock returns.

Kellard et al. (2010) compare stock return predictability in the United States and United King-

dom on the basis of dividend-price ratios. They find that the dividend-price ratio exhibits stronger

out-of-sample forecasting ability in terms of MSFE in the United Kingdom vis-á-vis the United

States, and they attribute the difference to the higher proportion of dividend-paying firms in the

United Kingdom. As discussed in Section 3.1.4, Henkel et al. (2011) document strong evidence of

out-of-sample stock return predictability in the United States using a regime-switching predictive

regression based on popular economic variables from the literature. However, they find weaker

evidence that regime switching produces out-of-sample gains in other G-7 countries.

Finally, Rapach et al. (2012) find that lagged U.S. stock returns have substantial out-of-sample

predictive power for returns in non-U.S. developed countries. Bivariate predictive regression fore-

casts based on lagged U.S. returns deliver monthly R2
OS statistics of up to nearly 4% for non-U.S. re-

turns over the 1985:01–2010:12 out-of-sample period, and lagged U.S. returns produce especially

sizable out-of-sample gains during the recent Global Financial Crisis. While lagged U.S. returns

evince predictive power for non-U.S. returns, Rapach et al. (2012) also find that lagged non-U.S. re-

turns display little predictive ability for U.S. returns, pointing to a leading role for the United States

in the international equity market.

4.2 Cross-Sectional Stock Returns

In addition to U.S. aggregate stock returns, an ample literature examines return predictability for

component portfolios of the aggregate market, including portfolios sorted by market capitaliza-

tion, book-to-market value, and industry. Ferson and Harvey (1991, 1999), Ferson and Korajczyk

(1995), and Kirby (1998), among others, estimate in-sample predictive regressions for compo-

nent portfolios based on the same types of predictors used in studies of aggregate market return

predictability.

Analysis of out-of-sample return predictability for component portfolios, however, is rela-
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tively rare. Avramov (2002) adopts a Bayesian approach to investigate return predictability for six

size/value-sorted portfolios based on 14 popular economic variables from the literature. Avramov

(2002) employs Bayesian model averaging to account for model uncertainty, and he finds that

Bayesian model averaging forecasts of monthly component portfolio returns outperform forecasts

based on the constant expected component portfolio return assumption in terms of MSFE. In ad-

dition, asset allocation exercises reveal sizable utility gains for investors who incorporate return

predictability, although it is crucial to account for model uncertainty in the asset allocation decision

to realize these gains. Subsequently, Avramov (2004) also uses a Bayesian approach to investigate

optimal asset allocation across the 25 Fama-French size/value-sorted portfolios and industry port-

folios, respectively, with a smaller set of five economic variables serving as return predictors. For

a wide range of prior beliefs, allowing for time variation in monthly expected component portfo-

lio returns produces substantial out-of-sample asset allocation gains relative to assuming constant

expected component portfolio returns.

Kong et al. (2011) compute combination forecasts of monthly returns for the 25 Fama-French

portfolios from individual bivariate predictive regression forecasts based on the 14 economic vari-

ables from Section 3.3 and lagged size/value-sorted portfoilo returns. R2
OS statistics are positive for

all 25 of the combination forecasts of component portfolio returns, and 22 of the R2
OS statistics are

significant at the 5% level according to the Clark and West (2007) test. Furthermore, out-of-sample

component return predictability is notably stronger during business-cycle recessions vis-á-vis ex-

pansions, similarly to the situation for U.S. aggregate market returns. Return forecastability is

also substantially stronger for portfolios comprised of small, value firms; for example, the monthly

R2
OS is 5.73% (0.36%) for the S1/BM5 (S5/BM1) portfolio comprised of firms with the lowest

market capitalization and highest book-to-market value (highest market capitalization and lowest

book-to-market value). In asset allocation exercises, Kong et al. (2011) show that a variety of

component-rotation portfolios based on combination forecasts of component returns outperform

portfolios based on historical average forecasts of component returns. Component-rotation port-

folios based on the combination forecasts also exhibit significant alpha (after controlling for the
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three Fama-French factors), as well as significant timing ability according to Lo’s (2008) test.47

Rapach et al. (2011) compute diffusion index forecasts of 33 industry portfolio returns by

extracting the first two principal components from the same 14 economic variables and lagged

industry portfolio returns. R2
OS statistics are positive for nearly all industries, and 26 are signifi-

cant at conventional levels based on the Clark and West (2007) test. Textiles, apparel, furniture,

printing and publishing, and transportation equipment are among the most predictable industries,

with monthly R2
OS statistics above 3%. In addition, industry-rotation portfolios that utilize diffu-

sion index forecasts of industry returns generate sizable utility gains relative to historical average

forecasts for an investor with power utility.

Another interesting forecasting application in the cross-sectional domain is Han et al. (2012),

who examine the use of technical indicators to inform asset allocation decisions across portfolios

sorted by volatility. They find that moving-average rules generate investment timing portfolios

that substantially outperform a buy-and-hold strategy. Furthermore, the timing portfolios have

negative or little risk exposures to the three Fama-French factors, signaling abnormal returns from

the perspective of the Fama-French three-factor model, with annual alphas exceeding 20% for

high-volatility portfolios.

5 Conclusion

The key themes of this chapter can be summarized as follows:

• Theory tells us that the predictable component in stock returns will be small and that monthly

R2
OS statistics below 1% can be economically relevant. Forecasting models that purport to

explain a large portion of stock return fluctuations imply substantial risk-adjusted abnormal

returns and are simply too good to be true.

• As forcefully demonstrated by Goyal and Welch (2008), conventional predictive regression

47Although not employing a predictive regression framework per se, Tu (2010) finds that responding to regime
switching between “bull” and “bear” markets substantially improves portfolio performance for an investor allocating
across the 25 Fama-French portfolios.
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forecasts of stock returns fail to consistently outperform the simple historical average fore-

cast in terms of MSFE. Model uncertainty and parameter instability render conventional

predictive regression forecasts unreliable.

• Recently proposed strategies significantly improve upon conventional predictive regression

forecasts. These procedures, which improve forecasting performance by accommodating

model uncertainty and parameter instability, include economically motivated model restric-

tions, forecast combination, diffusion indices, and regime shifts.

• Inferences concerning out-of-sample stock return predictability typically involve compar-

isons of nested forecasts. Unless statistical tests designed for nested forecast comparisons

are used, significant evidence of stock return forecastability can easily be missed.

• It is important to supplement conventional statistical criteria of forecast accuracy with direct

profit- or utility-based criteria, since the two types of measures are not necessarily strongly

related. In particular, utility-based measures can indicate clear economic significance, even

if conventional statistical measures fail to detect out-of-sample gains.

• Stock return forecastability is strongly linked to business-cycle fluctuations, with a substan-

tially greater degree of forecastability evident during recessions vis-á-vis expansions.

• In addition to the U.S. aggregate market, there is significant out-of-sample evidence of stock

return predictability for countries outside of the United States, as well as component port-

folios of the U.S. market. Exploiting the out-of-sample predictability in international and

cross-sectional returns can produce sizable utility gains from an asset allocation perspective.

We conclude by suggesting avenues for future research. The literature on stock return fore-

casting primarily relies on popular economic variables as predictors. However, other variables that

potentially contain relevant information for forecasting stock returns have received less attention.

Such variables include options, futures, and other derivative prices; microstructure measures of
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liquidity; and institutional trading variables such as trading volumes and money flows for mu-

tual and hedge funds. Furthermore, recent studies find significant in-sample evidence of a pos-

itive relationship between expected returns and risk (e.g., Guo and Whitelaw, 2006; Lanne and

Saikkonen, 2006; Lundblad, 2007; Bali, 2008). It would be interesting to examine whether these

approaches could be used to generate reliable out-of-sample stock return forecasts based on the ex-

pected return-risk relationship; Ludvigson and Ng (2007) report promising results in this direction.

Finally, learning appears to play an important role in stock return predictability (e.g., Timmermann,

1993, 1996; Pástor and Veronesi, 2009). Theoretical models that explain how investors form return

forecasts in light of available information and respond to their forecasting errors serve as promising

building blocks for forecasting models based on learning.
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Table 1 Monthly U.S. equity premium out-of-sample forecasting results based on individual economic variables, 1957:01–
2010:12

Overall Expansion Recession

Economic variable R2
OS (%) ∆ (annual %) R2

OS (%) ∆ (annual %) R2
OS (%) ∆ (annual %)

Panel A: Unrestricted predictive regression forecasts

log(DP) −0.05 [0.10] 0.87 −1.24 [0.42] −1.47 2.41 [0.00] 11.87
log(DY ) −0.37 [0.07] 1.18 −2.28 [0.40] −1.98 3.56 [0.00] 16.17
log(EP) −1.88 [0.28] 0.57 −2.21 [0.31] −0.41 −1.20 [0.38] 4.99
log(DE) −2.04 [0.97] −0.44 −1.26 [0.80] 0.06 −3.67 [0.97] −2.73
SVAR 0.32 [0.17] −0.11 −0.02 [0.50] −0.37 1.01 [0.16] 1.08
BM −1.74 [0.31] −0.72 −2.56 [0.44] −2.01 −0.04 [0.28] 5.12
NT IS −0.91 [0.41] −0.21 0.50 [0.03] 0.72 −3.82 [0.94] −4.71
T BL −0.01 [0.09] 1.53 −0.84 [0.30] 0.24 1.71 [0.10] 7.58
LTY −1.17 [0.12] 1.29 −2.37 [0.38] −0.21 1.32 [0.11] 8.38
LT R −0.08 [0.20] 0.57 −0.85 [0.63] −0.35 1.52 [0.05] 4.74
T MS 0.06 [0.16] 1.15 −0.40 [0.34] 0.01 1.00 [0.09] 6.49
DFY −0.04 [0.59] 0.29 −0.06 [0.64] 0.00 −0.01 [0.48] 1.48
DFR −0.01 [0.38] 0.39 0.12 [0.25] 0.15 −0.28 [0.48] 1.53
INFL −0.09 [0.50] 0.34 0.10 [0.22] 0.19 −0.48 [0.66] 1.16

Panel B: Predictive regression forecasts with Campbell and Thompson (2008) restrictions

log(DP) 0.15 [0.07] 0.87 −0.92 [0.38] −1.47 2.36 [0.00] 11.87
log(DY ) 0.17 [0.04] 1.18 −1.33 [0.40] −1.98 3.26 [0.00] 16.17
log(EP) −0.82 [0.24] 0.57 −1.19 [0.30] −0.41 −0.06 [0.32] 4.99
log(DE) −1.74 [0.98] 0.01 −1.19 [0.78] 0.01 −2.88 [0.98] 0.00
SVAR 0.00 [−] −0.26 0.00 [−] −0.36 0.00 [−] 0.18
BM −1.17 [0.29] −0.72 −1.68 [0.40] −2.01 −0.13 [0.30] 5.12
NT IS −0.91 [0.41] −0.21 0.50 [0.03] 0.72 −3.82 [0.94] −4.71
T BL 0.21 [0.10] 1.53 −0.25 [0.27] 0.24 1.16 [0.10] 7.58
LTY −0.01 [0.09] 1.29 −0.67 [0.29] −0.21 1.36 [0.07] 8.38
LT R 0.22 [0.12] 0.63 −0.47 [0.52] −0.36 1.64 [0.03] 5.15
T MS 0.12 [0.15] 1.15 −0.42 [0.37] 0.01 1.23 [0.06] 6.49
DFY −0.01 [0.50] 0.29 −0.03 [0.55] 0.00 0.01 [0.45] 1.48
DFR −0.16 [0.49] 0.56 0.09 [0.27] 0.15 −0.68 [0.66] 2.51
INFL −0.06 [0.46] 0.34 0.10 [0.22] 0.19 −0.38 [0.63] 1.16

Notes: R2
OS measures the percent reduction in mean squared forecast error (MSFE) for the predictive regression forecast based

on the economic variable given in the first column relative to the historical average benchmark forecast. Brackets report p-
values for the Clark and West (2007) MSFE-adjusted statistic for testing the null hypothesis that the historical average MSFE
is less than or equal to the predictive regression MSFE against the alternative that the historical average MSFE is greater than
the predictive regression MSFE (corresponding to H0: R2

OS ≤ 0 against HA: R2
OS > 0). Average utility gain (∆) is the portfolio

management fee (in annualized percent return) that an investor with mean-variance preferences and risk aversion coefficient
of five would be willing to pay to have access to the predictive regression forecast based on the economic variable given
in the first column relative to the historical average benchmark forecast. 0.00 indicates less than 0.005. R2

OS statistics and
average utility gains are computed for the entire 1957:01–2010:12 forecast evaluation period and separately for NBER-dated
expansions and recessions.



Table 2 Monthly U.S. equity premium out-of-sample forecasting results based on multiple economic variables, 1957:01–
2010:12

Overall Expansion Recession

Method R2
OS (%) ∆ (annual %) R2

OS (%) ∆ (annual %) R2
OS (%) ∆ (annual %)

Panel A: Unrestricted forecasts

Kitchen sink −8.43 [0.42] 0.24 −9.41 [0.68] −1.60 −6.38 [0.28] 8.94
SIC −5.61 [0.99] −1.77 −5.80 [1.00] −3.24 −5.21 [0.79] 5.00
POOL-AVG 0.44 [0.03] 1.25 0.12 [0.21] 0.41 1.10 [0.01] 5.14
POOL-DMSFE 0.51 [0.02] 1.52 0.08 [0.25] 0.40 1.39 [0.01] 6.76
Diffusion index 0.68 [0.01] 1.65 −1.00 [0.27] −1.46 4.15 [0.00] 16.42
Sum-of-the-parts 0.93 [0.01] 2.47 0.29 [0.13] 0.27 2.24 [0.01] 12.87

Panel B: Forecasts with nonnegativity restrictions

Kitchen sink −2.57 [0.59] 0.24 −3.38 [0.64] −1.60 −0.89 [0.45] 8.94
SIC −4.47 [0.99] −1.77 −4.73 [0.99] −3.24 −3.03 [0.85] 5.00
POOL-AVG 0.44 [0.03] 1.25 0.12 [0.21] 0.41 1.10 [0.01] 5.14
POOL-DMSFE 0.51 [0.02] 1.52 0.08 [0.25] 0.40 1.39 [0.01] 6.76
Diffusion index 0.70 [0.01] 1.65 −0.68 [0.24] −1.46 3.47 [0.00] 16.42
Sum-of-the-parts 0.99 [0.00] 2.47 0.31 [0.12] 0.27 2.40 [0.00] 12.87

Notes: R2
OS measures the percent reduction in mean squared forecast error (MSFE) for the forecasting method given in

the first column relative to the historical average benchmark forecast. Brackets report p-values for the Clark and West
(2007) MSFE-adjusted statistic for testing the null hypothesis that the historical average MSFE is less than or equal to the
forecasting method MSFE against the alternative that the historical average MSFE is greater than the forecasting method
MSFE (corresponding to H0: R2

OS ≤ 0 against HA: R2
OS > 0). Average utility gain (∆) is the portfolio management fee (in

annualized percent return) that an investor with mean-variance preferences and risk aversion coefficient of five would be
willing to pay to have access to the forecasting method relative to the historical average benchmark forecast. 0.00 indicates
less than 0.005. R2

OS statistics and average utility gains are computed for the entire 1957:01–2010:12 forecast evaluation
period and separately for NBER-dated expansions and recessions.



Table 3 Quarterly U.S. equity premium out-of-sample forecasting results based on individual economic variables, 1957:1–
2010:4

Overall Expansion Recession

Economic variable R2
OS (%) ∆ (annual %) R2

OS (%) ∆ (annual %) R2
OS (%) ∆ (annual %)

Panel A: Unrestricted predictive regression forecasts

log(DP) −0.80 [0.07] 2.40 −6.92 [0.43] −1.88 7.23 [0.00] 19.19
log(DY ) 0.36 [0.07] 3.00 −4.71 [0.47] −1.19 7.02 [0.00] 19.39
log(EP) −6.51 [0.26] 1.61 −10.19 [0.36] −0.05 −1.68 [0.29] 7.43
log(DE) −4.93 [0.97] −0.02 −2.98 [0.75] −0.17 −7.48 [0.97] 0.57
SVAR −0.47 [0.92] 0.27 −0.40 [0.93] 0.18 −0.57 [0.80] 0.50
BM −6.87 [0.20] 0.19 −13.53 [0.45] −1.59 1.87 [0.13] 6.43
NT IS −5.38 [0.48] −1.12 1.01 [0.02] 0.44 −13.76 [0.95] −7.32
T BL −0.56 [0.16] 2.38 −1.96 [0.31] 0.36 1.28 [0.19] 10.22
LTY −3.43 [0.20] 2.25 −5.62 [0.36] 0.17 −0.55 [0.22] 10.39
LT R −0.72 [0.38] 0.14 0.70 [0.14] 0.20 −2.58 [0.73] −0.33
T MS −0.12 [0.25] 1.44 −1.71 [0.49] −0.24 1.95 [0.13] 7.77
DFY 0.15 [0.31] 1.33 0.00 [0.40] 0.51 0.34 [0.33] 4.04
DFR −4.79 [0.95] −1.71 −1.93 [0.51] −0.24 −8.54 [0.98] −7.33
INFL 0.16 [0.33] 1.89 −0.25 [0.72] −0.35 0.70 [0.23] 10.64

Panel B: Predictive regression forecasts with Campbell and Thompson (2008) restrictions

log(DP) 0.66 [0.04] 2.40 −3.90 [0.42] −1.88 6.66 [0.00] 19.19
log(DY ) 1.48 [0.03] 3.00 −2.68 [0.38] −1.19 6.94 [0.00] 19.39
log(EP) −2.22 [0.21] 1.61 −4.68 [0.36] −0.05 1.00 [0.22] 7.43
log(DE) −4.22 [0.97] 0.04 −2.74 [0.71] −0.10 −6.17 [0.98] 0.66
SVAR −0.07 [0.87] 0.27 −0.01 [0.52] 0.18 −0.16 [0.91] 0.50
BM −3.75 [0.22] 0.19 −6.68 [0.42] −1.59 0.09 [0.21] 6.43
NT IS −5.34 [0.48] −1.12 1.03 [0.02] 0.44 −13.70 [0.95] −7.32
T BL 0.50 [0.14] 2.38 −0.74 [0.30] 0.36 2.12 [0.16] 10.22
LTY 0.09 [0.11] 2.25 −1.43 [0.25] 0.17 2.08 [0.15] 10.39
LT R −0.31 [0.30] 0.14 0.86 [0.13] 0.20 −1.85 [0.66] −0.33
T MS 0.10 [0.23] 1.44 −1.63 [0.49] −0.24 2.37 [0.09] 7.77
DFY 0.15 [0.31] 1.33 0.00 [0.40] 0.51 0.34 [0.33] 4.04
DFR −0.13 [0.60] −0.01 0.27 [0.25] 0.00 −0.64 [0.91] −0.03
INFL 0.17 [0.32] 1.89 −0.23 [0.70] −0.35 0.70 [0.23] 10.64

Notes: R2
OS measures the percent reduction in mean squared forecast error (MSFE) for the predictive regression forecast based on

the economic variable given in the first column relative to the historical average benchmark forecast. Brackets report p-values for
the Clark and West (2007) MSFE-adjusted statistic for testing the null hypothesis that the historical average MSFE is less than
or equal to the predictive regression MSFE against the alternative that the historical average MSFE is greater than the predictive
regression MSFE (corresponding to H0: R2

OS ≤ 0 against HA: R2
OS > 0). Average utility gain (∆) is the portfolio management

fee (in annualized percent return) that an investor with mean-variance preferences and risk aversion coefficient of five would
be willing to pay to have access to the predictive regression forecast based on the economic variable given in the first column
relative to the historical average benchmark forecast. 0.00 indicates less than 0.005. R2

OS statistics and average utility gains are
computed for the entire 1957:1–2010:4 forecast evaluation period and separately for NBER-dated expansions and recessions.



Table 4 Quarterly U.S. equity premium out-of-sample forecasting results based on multiple economic variables, 1957:1–2010:4

Overall Expansion Recession

Method R2
OS (%) ∆ (annual %) R2

OS (%) ∆ (annual %) R2
OS (%) ∆ (annual %)

Panel A: Unrestricted forecasts

Kitchen sink −29.82 [0.76] 0.01 −25.89 [0.43] −2.07 −34.97 [0.85] 8.22
SIC −19.16 [0.95] −3.64 −15.27 [0.59] −4.40 −24.28 [0.97] −1.31
POOL-AVG 0.73 [0.09] 1.74 0.40 [0.20] 0.98 1.15 [0.13] 4.42
POOL-DMSFE 1.09 [0.05] 2.27 0.23 [0.26] 0.68 2.22 [0.05] 8.41
Diffusion index 2.10 [0.01] 3.40 −3.58 [0.23] −1.26 9.56 [0.00] 21.81
Sum-of-the-parts 2.02 [0.03] 3.61 0.24 [0.22] 0.63 4.35 [0.03] 15.34

Panel B: Forecasts with nonnegativity restrictions

Kitchen sink −10.35 [0.77] 0.01 −8.06 [0.45] −2.07 −13.34 [0.87] 8.22
SIC −15.37 [0.91] −3.64 −12.36 [0.55] −4.40 −19.31 [0.95] −1.31
POOL-AVG 0.73 [0.09] 1.74 0.40 [0.20] 0.98 1.15 [0.13] 4.42
POOL-DMSFE 1.09 [0.05] 2.27 0.23 [0.26] 0.68 2.22 [0.05] 8.41
Diffusion index 2.06 [0.01] 3.40 −2.09 [0.23] −1.26 7.51 [0.00] 21.81
Sum-of-the-parts 2.26 [0.02] 3.61 0.51 [0.18] 0.63 4.55 [0.02] 15.34

Notes: R2
OS measures the percent reduction in mean squared forecast error (MSFE) for the forecasting method given in the first

column relative to the historical average benchmark forecast. Brackets report p-values for the Clark and West (2007) MSFE-
adjusted statistic for testing the null hypothesis that the historical average MSFE is less than or equal to the forecasting method
MSFE against the alternative that the historical average MSFE is greater than the forecasting method MSFE (corresponding to
H0: R2

OS ≤ 0 against HA: R2
OS > 0). Average utility gain (∆) is the portfolio management fee (in annualized percent return)

that an investor with mean-variance preferences and risk aversion coefficient of five would be willing to pay to have access
to the forecasting method relative to the historical average benchmark forecast. 0.00 indicates less than 0.005. R2

OS statistics
and average utility gains are computed for the entire 1957:1–2010:4 forecast evaluation period and separately for NBER-dated
expansions and recessions.



Table 5 Annual U.S. equity premium out-of-sample forecasting results, 1957–2010

Campbell and
Thompson (2008) Nonnegativity

Unrestricted restrictions restrictions

Economic variable
or method R2

OS (%) ∆ (annual %) R2
OS (%) ∆ (annual %) R2

OS (%) ∆ (annual %)

Panel A: Forecasts based on individual economic variables

log(DP) 1.76 [0.09] 4.13 3.51 [0.07] 4.13 − −
log(DY ) −17.34 [0.21] 4.28 −1.26 [0.13] 4.28 − −
log(EP) −4.18 [0.16] 1.30 0.76 [0.09] 1.30 − −
log(DE) −7.89 [0.95] −0.66 −0.05 [0.84] 0.02 − −
SVAR −2.34 [0.94] −0.02 0.00 [−] 0.02 − −
BM −8.16 [0.17] 1.63 −4.99 [0.14] 1.63 − −
NT IS −16.89 [0.71] −1.32 −16.89 [0.71] −1.32 − −
T BL −4.86 [0.20] 2.88 0.95 [0.14] 2.88 − −
LTY −9.13 [0.18] 2.46 0.74 [0.11] 2.46 − −
LT R −6.35 [0.04] 1.92 −5.03 [0.04] 1.92 − −
T MS −0.34 [0.22] 1.48 0.00 [0.22] 1.48 − −
DFY −2.07 [0.97] 0.00 −0.01 [0.91] 0.02 − −
DFR −4.69 [0.58] −0.04 −4.34 [0.57] −0.04 − −
INFL −1.06 [0.70] −0.22 −1.06 [0.70] −0.22 − −

Panel B: Forecasts based on multiple economic variables

Kitchen sink −99.18 [0.70] −2.93 − − −57.39 [0.66] −2.93
SIC −45.37 [0.56] −1.02 − − −32.74 [0.53] −1.02
POOL-AVG 3.11 [0.07] 1.36 − − 3.11 [0.07] 1.36
POOL-DMSFE 1.71 [0.17] 1.29 − − 1.71 [0.17] 1.29
Diffusion index 7.14 [0.03] 4.89 − − 6.98 [0.03] 4.89
Sum-of-the-parts 5.60 [0.04] 2.85 − − 5.85 [0.04] 2.85

Notes: R2
OS measures the percent reduction in mean squared forecast error (MSFE) for the predictive regression forecast based

on the economic variable or forecasting method given in the first column relative to the historical average benchmark forecast.
Brackets report p-values for the Clark and West (2007) MSFE-adjusted statistic for testing the null hypothesis that the historical
average MSFE is less than or equal to the predictive regression or forecasting method MSFE against the alternative that the
historical average MSFE is greater than the predictive regression or forecasting method MSFE (corresponding to H0: R2

OS ≤ 0
against HA: R2

OS > 0). Average utility gain (∆) is the portfolio management fee (in annualized percent return) that an investor with
mean-variance preferences and risk aversion coefficient of five would be willing to pay to have access to the predictive regression
forecast or forecasting method relative to the historical average benchmark forecast. 0.00 indicates less than 0.005.
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Figure 1 Cumulative differences in squared forecast errors, monthly U.S. equity premium out-of-sample forecasts based on individual economic variables, 1957:01–
2010:12. Black (gray) lines in each panel delineate the cumulative difference in squared forecast errors for the historical average forecast relative to the unrestricted
predictive regression forecast (predictive regression forecast with Campbell and Thompson (2008) restrictions imposed) based on the economic variable given in
the panel heading. Vertical bars depict NBER-dated recessions.
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Figure 2 Monthly U.S. equity premium out-of-sample forecasts (in percent) based on individual economic variables, 1957:01–2010:12. Black (gray) lines delineate
unrestricted predictive regression forecasts based on the economic variable given in the panel heading (historical average forecast). Vertical bars depict NBER-dated
recessions.
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Figure 3 Cumulative differences in squared forecast errors, monthly U.S. equity premium out-of-sample forecasts based on multiple economic variables, 1957:01–
2010:12. Black (gray) lines in each panel delineate the cumulative difference in squared forecast errors for the historical average forecast relative to the forecasting
method given in the panel heading (forecasting method with nonnegativity restrictions imposed). Vertical bars depict NBER-dated recessions.
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Figure 4 Monthly U.S. equity premium out-of-sample forecasts (in percent) based on multiple economic variables, 1957:01–2010:12. Black (gray) lines delineate
forecasts based on the forecasting method given in the panel heading (historical average forecast). Vertical bars depict NBER-dated recessions.


