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Optimal Portfolio Choice with Parameter
Uncertainty

Raymond Kan and Guofu Zhou*

Abstract

In this paper, we analytically derive the expected loss function associated with using sam-
ple means and the covariance matrix of returns to estimate the optimal portfolio. Our
analytical results show that the standard plug-in approach that replaces the population pa-
rameters by their sample estimates can lead to very poor out-of-sample performance. We
further show that with parameter uncertainty, holding the sample tangency portfolio and
the riskless asset is never optimal. An investor can benefit by holding some other risky
portfolios that help reduce the estimation risk. In particular, we show that a portfolio that
optimally combines the riskless asset, the sample tangency portfolio, and the sample global
minimum-variance portfolio dominates a portfolio with just the riskless asset and the sam-
ple tangency portfolio, suggesting that the presence of estimation risk completely alters the
theoretical recommendation of a two-fund portfolio.

I. Introduction

Theoretical models often assume that an economic agent who makes an op-
timal financial decision knows the true parameters of the model. But the true
parameters are rarely if ever known to the decision maker. In reality, model pa-
rameters have to be estimated and, hence, the model’s usefulness depends partly
on how good the estimates are. This gives rise to estimation risk in virtually all
financial models. At present, estimation risk is commonly minimized based on
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statistical criteria such as minimum variance and asymptotic efficiency. Can the
parameters be estimated in such a way that the out-of-sample performance of the
model is maximized? This paper provides some answers.

A leading example of parameter uncertainty arises from the classic portfolio
choice problem. Markowitz’s (1952) seminal work shows that the optimal port-
folio for a mean-variance investor is a combination of the tangency portfolio and
a riskless asset (two-fund separation). Despite its limitation as a single-period
model, the mean-variance framework is one of the most important benchmark
models used in practice today (see, e.g., Litterman (2003) and Meucci (2005)).!
However, the framework requires knowledge of both the mean and covariance ma-
trix of the asset returns, which in practice are unknown and have to be estimated
from the data. The standard approach, ignoring estimation risk, simply treats the
estimates as the true parameters and plugs them into the optimal portfolio for-
mula derived under the mean-variance framework. Using predictive distributions
pioneered by Zellner and Chetty (1965), Brown (1976) shows that the plug-in
method is generally outperformed by the Bayesian decision rule under a diffuse
prior (Bawa, Brown, and Klein (1979) provide an extensive survey of the early
work). In fact, as our analytical derivation later will show, the Bayesian decision
rule is uniformly better than the plug-in method in that it always yields higher ex-
pected out-of-sample performance no matter what the true parameter values are.
This provides both direct and indirect theoretical support for a number of recent
studies, such as Kandel and Stambaugh (1996), Barberis (2000), Pastor (2000),
Pastor and Stambaugh (2000), Xia (2001), Tu and Zhou (2004), and Kacperczyk
(2004), that use the Bayesian predictive approach to account for parameter uncer-
tainty. Nevertheless, as we will show, it is possible to estimate the parameters in
such a way as to yield a decision rule that is uniformly better than the Bayesian
approach (under a diffuse prior).

While there exist alternative ways for dealing with parameter uncertainty,?
our study focuses on the well-defined and yet unsolved problem in the classic
mean-variance framework: how should a mean-variance investor optimally esti-
mate the portfolio weights? Although the mean-variance framework is a simple
model, it allows us to obtain analytical results that provide insights into solving
portfolio choice problems in more general settings.

In this paper, the first problem we study is how an investor can optimally
estimate the portfolio weights if he invests only in the usual two funds: the risk-
less asset and the sample tangency portfolio. A similar problem is studied by
ter Horst, de Roon, and Werkerzx (2002) assuming a known covariance matrix,
but this restrictive assumption is not needed here. When asset returns are normally
distributed, we obtain a simple closed-form formula for estimating the optimal
weights in the two-fund universe. In particular, we find that a simplified version
of the formula, whose construction does not rely on any unknown parameters,

!On issues related to this and more general portfolio problems can be found in an excellent survey
by Brandt (2005).

2For examples, Garlappi, Uppal, and Wang (2007) and Lutgens (2004) study robust portfolio rules
that maximize the worst case performance when model parameters fall within a particular confidence
interval, and Harvey, Liechty, Liechty, and Miiller (2004) study the optimal portfolio problem under a
Bayesian setting when the returns follow a skew-normal distribution.
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always yields greater expected out-of-sample performance than both the plug-in
and Bayesian approaches (under a diffuse prior) no matter what the true parameter
values are. A recent paper by Mori (2004) also studies a similar problem under
general linear constraints on portfolio weights.3

The second problem we study is whether a three-fund portfolio can increase
the expected out-of-sample performance even further, i.e., whether a new risky
portfolio can be added into the riskless asset and the sample tangency portfolio
so as to improve the expected out-of-sample performance. If the true parameters
are known, as assumed in theory, then two-fund separation holds and there is
no point in analyzing a three-fund portfolio. However, when the parameters are
unknown, the tangency portfolio is obtained with estimation error. Intuitively,
additional portfolios could be useful if they provide diversification of estimation
risk. Indeed, we show that the optimal portfolio weights can be solved analytically
in a three-fund universe that consists of the riskless asset, the sample tangency
portfolio, and the sample global minimum-variance portfolio. Therefore, a three-
fund portfolio rule can dominate all the previous two-fund rules. This finding has
powerful implications. It says that the recommendation of a theoretical result,
like holding a two-fund portfolio here, can be altered completely in the presence
of parameter uncertainty to holding a three-fund (perhaps even more) portfolio.

To better estimate expected returns, Jorion (1986) provides an interesting
Bayes-Stein shrinkage estimator, and shows by simulation that the resulting port-
folio rule can often generate higher expected out-of-sample performance than the
Bayesian approach (under a diffuse prior). We provide a comparison of Jorion’s
rule with our optimal three-fund rule and show that Jorion’s rule is effectively
also a three-fund portfolio rule. As both Jorion’s rule and our optimal three-fund
rule are not analytically tractable, we use simulations to compare their perfor-
mance. We find that the Bayesian approach under a diffuse prior is outperformed
by Jorion’s rule, and that our optimal three-fund rule even outperforms Jorion’s
rule.

The remainder of the paper is organized as follows. Section II provides
the optimal decision rule when the investment universe is only the riskless asset
and the sample tangency portfolio. Section III solves the optimal portfolio rule
when the investment universe is enlarged by adding the sample global minimum-
variance portfolio. Section IV analyzes Jorion’s shrinkage portfolio rule. Sec-
tion V compares the performance of all the portfolio rules with parameters cali-
brated from real data, and Section VI concludes.

[l.  Two-Fund Portfolio Rules

In this section, we first discuss the mean-variance portfolio problem in the
presence of estimation risk. Then, we analyze the classic plug-in methods for
estimating the optimal portfolio weights of the mean-variance theory, review the
Bayesian predictive solution, and compare it with the classic plug-in estimates.

3 After completion of this paper, we were alerted that some of our results on the first problem can
be found in Mori (2004). Nevertheless, our analysis is intuitive and more relevant to the proposed
problem.



624  Journal of Financial and Quantitative Analysis

Finally, we provide our optimal portfolio rule when the investor is concerned with
investing in the universe of the riskless asset and the sample tangency portfolio.

A. The Problem

Consider the standard portfolio choice problem of an investor who chooses a
portfolio in the universe of a riskless asset and N risky assets. Denote by ry and r,
the rates of returns on the riskless asset and N risky assets at time ¢, respectively.
We define excess returns as R, = r, — rsly, where 1y is an N-vector of ones. The
standard assumption on the probability distribution of R, is that R, is independent
and identically distributed (i.i.d.) over time. In addition, we assume R, follows a
multivariate normal distribution with mean y and covariance matrix .

Given portfolio weights w, an N x 1 vector on the risky assets, the excess
return on the portfolio at time 7 is R,; =w'R;, so its mean and variance are given by
tp=w'p; and ag =w'Xw. The investor is assumed to choose w so as to maximize
the mean-variance objective function,

M Uw) = -2,
where v is the coefficient of relative risk aversion. When y and X are known, the
solution to the investor’s optimal portfolio choice problem is

1
©) who= =Xy
Y
and the resulting expected utility is
1 62
?3) Uw') = —u'2'y = —,
) 2y 2y

where 2=y’ 5~V 1 is the squared Sharpe ratio of the ex ante tangency portfolio of
the risky assets. Given the relative risk aversion parameter 7, this is the maximum
utility that the investor can obtain when the portfolio weights w* are computed
based on the true parameters.

In practice, w* is not computable because y and X are unknown. To im-
plement the mean-variance theory of Markowitz (1952), the optimal portfolio
weights are usually chosen by a two-step procedure. Suppose an investor has
T periods of observed returns data 7 = {R1. Ry, ....Rr} and would like to
form a portfolio for period T + 1. First, the mean and covariance matrix of the
asset returns are estimated based on the observed data. Second, these sample esti-
mates are then treated as if they were the true parameters, and are simply plugged
into (2) to compute the optimal portfolio weights. We call such a portfolio rule
the plug-in rule. More generally, a portfolio rule is defined as a function of the
historical returns data &7,

4) W = f(Ri.Ra,...,Ry).

For an investor who uses a portfolio rule w, the out-of-sample mean and variance
of his portfolio are given by

%) Ay = W,
(6) 2 = WVw.
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Note that as w is random rather than fixed. /i, and (i; are random variables as
functions of the historical returns data.

To establish a comparison of different portfolio rules. one needs to establish
an objective function. It is natural to choose an objective function that is based on
the average out-of-sample performance of a portfolio rule. The important ques-
tion is how do we measure the out-of-sample performance of a portfolio rule. A
measure that is consistent with the primary objective function is

% ow) = ﬂ,,—%&g - w’,h%w’xw,

which is the expected utility conditional on the weights being chosen as w. There
can be other ways of measuring out-of-sample performance, such as, for example,
the out-of-sample Sharpe ratio defined as /i, /7,. However, the Sharpe ratio may
not be entirely appropriate as a performance measure because it is independent
of the leverage of the portfolio, so having a suboptimal weight in the risk-free
asset does not affect the Sharpe ratio of a portfolio. Our performance measure
U(w) has an attractive feature because it is a measure of the certainty equivalent
of portfolio w. However, it is important to realize that U is not the expected utility
in the usual sense because p and X are unknown to the investor, so I should be
interpreted as an out-of-sample performance measure of using portfolio w.

Note that since W is a random variable, the out-of-sample performance /()
is also a random variable. It is natural then to evaluate a portfolio rule based on
its expected out-of-sample performance E[U(w)]. To justify this measure, we use
standard statistical decision theory to define the loss function of using w as

8) Lw",w) = UWw")—TWw).

As w is not equal to w* in general, the loss is strictly positive. However, w is
a function of @7, so the loss depends on the realizations of the historical returns
data. It is important for decision purposes to consider the average losses involving
actions taken under the various outcomes of ®r. The expected loss function is
called the risk function and it is defined as

) p(w'.w) = E[L(w",Ww)] = Uw")—E[0W)),

where the expectation is taken with respect to the true distribution of &7. Thus,
for a given y and X' (or a given w*), p(w", W) represents the expected loss over
all possible realizations of $7 that are incurred in using the portfolio rule #.
This risk function provides a criterion for ranking various portfolio rules
and the rule that has the lowest risk is the most preferred. Brown (1976), Jorion
(1986), Frost and Savarino (1986), Stambaugh (1997), and ter Horst, de Roon,
and Werkerzx (2002) are examples of using p(w*, W) to evaluate portfolio rules.
Instead of ranking portfolio rules using the risk function p(w*, W), we can equiv-
alently rank them by their expected out-of-sample performance E[J/()]. Note
that E[U(w)] is the expected out-of-sample performance under the true distribu-
tion of returns across repeated random samples of ¢r. So, E[U(W)] is the out-
of-sample performance an investor can achieve on average under parameter un-
certainty when he follows the portfolio rule w. This is an objective criterion for
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evaluating two competing portfolio choice rules. In general, one portfolio rule
will generate higher expected out-of-sample performance than another over cer-
tain parameter values of (u, X), but lower over some other values. In this case,
the two portfolio rules do not uniformly dominate each other, and which one is
preferable depends on the actual values of 1 and X'. However, some portfolio rules
are inadmissible in the sense that there exists another portfolio rule that generates
higher expected out-of-sample performance for every possible choice of (u, ).
Clearly, inadmissible portfolio rules should be eliminated from consideration.

B. Understanding Estimation Risk

Under the assumption that R, is i.i.d. normal, the sample mean and covari-
ance matrix [ and Y, defined as

1 T
(10) io= 7§R"
3 1 &
(11) o= 2 Re- R~ ),

t=1

are the sufficient statistics of the historical returns data ér. Therefore, we only
need to consider portfolio rules that are functions of /i and 2.

We assume T > N so that X is invertible. The standard plug-in portfolio rule
is to replace 1 and £ in (2) by /i and X. The estimated portfolio weights using
the plug-in rule are

(12) w o= X4

g

Statistically, /i and £ are the maximum likelihood estimators of x and X, s0 W is
also a maximum likelihood estimator of w* = 111 /~. Therefore, asymptotically,
W is the most efficient estimator of the unknown parameter vector w”. In statistics,
the maximum likelihood estimator is usually regarded as a very good estimator.
However, as will be shown below, this estimator of w* is not optimal in terms of
maximizing the expected out-of-sample performance.

It is interesting to compare the standard plug-in estimator W given by (12)
with the unknown but true optimal weights w*. Under the normality assumption,
it is well known that /i and X are independent of each other and they have the
following exact distributions,

(13) i~ N Z/T),
(14) 2 o~ Wy(T-1,5)T,

where Wy (T — 1, ) denotes a Wishart distribution with 7 — 1 degrees of freedom
and covariance matrix X. Since E[Y~'|=TX~!/(T—N-2) (see, e.g., Muirhead
(1982), p. 97), we have

(15) EW = ———W"
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when T > N + 2. This implies that |W;| > |w}|, so investors who do not know the
true parameters and estimate them by using (12) tend to take bigger positions in
the risky assets than those who know the true parameters.

To understand estimation risk from parameter uncertainties in y and X, we
analyze the use of W in three cases. The first case is a hypothetical one in which
2 1s known and 4 is estimated. Fixing the value of X allows us to understand
the cost from estimating y alone. The second case is also a hypothetical one in
which g is known but X is estimated, allowing us to understand the cost from
estimating X' alone. The third case is the more realistic one in which neither
nor 4 is known and both need to be estimated.

The first case is the easiest one to analyze among the three. When X is
known, the portfolio rule is w = X ~1/i/, so the estimation error in W is due only
to using /i instead of p. Since 4/~ fi ~ xZ(Tw' £~ 1) /T, we have

(16) E[0W)|Z] = E[w}'u—%E[w'Ew]

1 |
= ;,U,IE_I/I, — ZE[;I’E“Iﬂ]

1 1 'y
= —/LIZ'_I#__ M
¥ 2y T
_ H? N
2y 24T’

As a result, the risk function from using W rather than w* is

N

(17) pW WX) = UMW) -E[0W)Z] = T

which means that the investor expects to lose a certainty equivalent return of
N/(2~T) on average. Intuitively, as the sample size increases, /i becomes a more
accurate estimator of 1, so the loss decreases. In the extreme case where T — oo,
the true parameters are learned, so the loss is zero. On the other hand, the greater
the number of assets, the greater the number of elements of p that must be esti-
mated, the more the errors in estimating the tangency portfolio, so the greater the
loss. Finally, the more risk averse the investor (the higher «y), the less he invests
in the risky assets, so the smaller the impact of estimation risk. Note that the case
of known X' is similar to a continuous-time setup, such as Xia’s (2001), where
the variance is known because it can be learned without error from continuous
observations. However, the drift of a diffusion process depends only on the ini-
tial and ending observations and is estimated with error. Equation (17) highlights
analytically the impact of the number of assets relative to the length of estimation
period on the expected out-of-sample performance in discrete time.*

To see how uncertainty about 3 alone affects expected out-of-sample perfor-
mance, consider now the case where 1 is known while X has to be estimated. The

“When 6% < N/T, we have E[U(#)| ] < 0. Because non-participation in the risky assets yields
zero out-of-sample performance, the negative value of E[U(w)| X suggests that the investor is better
off not investing in the risky assets when ¢ < N/T. Intuitively, when 6? is small or N/T is large, the
risk in estimating the parameters outweighs the gain from investing in the risky assets.
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optimal weights are now w= X"/~ Let W= 5" 55~} ~ Wn(T—1,1y)/T.
The inverse moments of W are (see, e.g., Haff (1979))
T
- = — | Iy,
(18) EW™] (T—-N—Z) N:
T(T - 2)

(19) EW] = {(T~N~1)(T—N—2)(T‘N“4)J[N;

where T > N + 4. Using these results, we know the expected out-of-sample
performance is

(20)  E[U(W)|u]

1w 1 .
“EW ST - —E 2 1]
¥ 2y

— SB[ twoisy - B[ tws ]
Y 2y

where

1) k = (T—}Y\;—z) [2_(T—Ni(1T)(_T2—)N_4)J'

Note that 1 — k; is the percentage loss of the expected out-of-sample performance
due to the estimation error of 3. It is straightforward to verify that k; < 1 anditis
a decreasing function of N and an increasing function of T. Therefore, similar to
the earlier case where only i was unknown, the estimation error of 3 (and hence
the expected loss in out-of-sample performance) also increases with the number
of assets and decreases with the length of the time series.

Compared to the previous case, the investor will still sometimes avoid in-
vesting in the risky assets if he uses the portfolio rule w = 2"1/1./7 because k;
can be negative for N large relative to 7. However, the cost of not knowing p
(assuming X' is known) affects the expected out-of-sample performance only by
the fixed amount N/(2~T), irrespective of the magnitude of the true parameters.
In contrast, not knowing X (assuming p is known) reduces the expected out-
of-sample performance by a constant proportional amount that depends on the
squared Sharpe ratio of the tangency portfolio.

Finally, consider the case where both 4 and X are unknown and have to be
estimated from the data. Suppose the estimated optimal weights, W, are now given
by (12). Using the inverse moment properties of the Wishart distribution and the
fact that /i and 5 are independent, we have

(22)  EOW)] = E[ﬁ,’ﬁ“lu]—%E[/Z’Z‘“EZ“I;Q]

1
¢!
= lpps-twors-ty - LEs-twrs-t
v 2y
P NT(T - 2)
2y 2yT-N-D)(T-N-2)(T _N—-4)
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assuming 7' > N + 4. Hence, the expected loss in out-of-sample performance is

e 6* NT(T —2)
@) pbww) = k) T TN DT N )TN @)

This formula explicitly relates the expected loss of out-of-sample performance to
N, T, v, and #*. The qualitative properties are the same as before. As N or 62
increases, the loss increases, and as T or +y increases, the loss decreases. Note that
the second term of p(w”. ) is always greater than p(w*,w|X), so the effects of
estimation errors of /i and X on the out-of-sample performance are not additive
because w is a multiplicative function of £~! and . When X! is used instead
of X =1 in constructing w, the estimation error of i is further magnified, which
results in the investor taking larger positions in the risky assets.

Note that in past studies of portfolio rules under estimation risk, the expected
out-of-sample performance or the risk function of the plug-in portfolio rule is
obtained by simulation.’ In contrast, we provide here an analytical expression.
The advantage of the analytical solution is that it allows us not only to provide
insights about how to obtain better portfolio rules, but also to address a number
of important issues such as the impact of the error from estimating the covariance
matrix of the returns on the expected out-of-sample performance.

There is a general perception that estimation error in expected returns is far
more costly than estimation error in the covariance matrix. Indeed, many existing
studies of portfolio selection in the presence of estimation risk treat the estimation
error in the covariance matrix as a second-order effect and focus exclusively on
the impact of the estimation error in the expected returns by taking the covariance
matrix as known. Some simulation studies appear to provide evidence to justify
this perception. For example, Chopra and Ziemba (1993) estimate the loss of
expected out-of-sample performance from the estimation error of the means and
find that it is much higher than the loss that is due to estimation error of the
covariances. However, with the aid of our analytical formula for the expected
out-of-sample performance, we show that the general perception can be incorrect.

Table 1 reports the expected percentage loss of out-of-sample performance
due to estimation errors in /i, in X, and in both fi and X for various values of N
and T. Panel A presents the results for # = 0.2 and Panel B presents the results
for # = 0.4. The expected percentage loss is not a function of the risk aversion
coefficient, so the results in Table 1 are applicable for all values of +y. The first
column presents the percentage loss of expected out-of-sample performance due
to estimation error in /i alone, i.e., 100(1 — E[U(W)|£]/U(w")). The second col-
umn presents the percentage loss of expected out-of-sample performance due to
estimation error in £ alone, i.e., 100(1 — E[{/(w )]/ U(w*)). The fourth column
presents the percentage loss of expected out-of-sample performance due to esti-
mation errors in both /i and X, i.e., 100(1 — E[0/(w)]/U(w")). Since the effects
of estimation errors in /i and %' are not additive, the third column reports the in-

5One exception is Brown (1978) who provides an infinite series summation formula for the ex-
pected out-of-sample performance in the one risky asset case. Another exception is Mori (2004) who
provides analytical expression of the risk function for the plug-in rule under equality constraints on
portfolio weights.
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teractive effect of estimation errors in /i and £, whose summation with the first
two columns is equal to the fourth column.

Assuming ¢ = 0.2, Panel A of Table 1 shows that when N/T is small, the
estimation error in /i indeed accounts for most of the loss of out-of-sample per-
formance, often more than 10 times the loss out-of-sample performance from
the estimation error in %. However, when N /T is large, the reduction of out-
of-sample performance due to the estimation error in 3 is no longer negligible.
More importantly, there is a very significant interactive effect between the esti-
mation errors in /i and . For example, when N = 10 and T = 60, the interactive
effect is almost as large as that from estimating 4. Clearly, ignoring the estimation
error in X' will grossly underestimate the loss of out-of- sample performance due
to estimation error when N/T is large. Panel B presents the corresponding results
for # = 0.4. With the increase in 6, there are two main differences in the results.
First, the percentage loss of expected out-of-sample performance due to the es-
timation error in /i alone is smaller, while the percentage loss of out-of-sample
performance due to the estimation error in X' alone is independent of §. As a
result, the estimation error in X is relatively more important than before. Second,
the percentage loss in expected out-of-sample performance due to the interactive
effect also goes down with the increase in #, so as a whole the percentage loss in
expected out-of-sample performance due to both estimation errors in /i and X is
a decreasing function of #2. Other than these two differences, the general pattern
is the same: when N/T is small, the estimation error in /i is more costly than
the estimation error in X'; however, when N /T is large, the estimation error in X
becomes larger and sometimes can be more costly than the estimation error in A.
The results in Table 1 suggest that we should not ignore the estimation error in 5,
especially when the ratio N /T is large.

C. Three Classic Plug-In Rules

Besides the preceding standard plug-in estimate of the optimal portfolio
weights that plugs the maximum likelihood estimator of 1z and X into the optimal
portfolio formula (2) to get the estimated portfolio rule (12), alternative estimates
of X' can be used to obtain different plug-in rules. Two other common estima-
tors of X' are sometimes used. It is of interest that they in fact can yield higher
expected out-of-sample performance than using .

The second plug-in approach is to estimate £ by using an unbiased estimator,
(24) 5= ET:(R DR -p) = L%

14 ' '

Since X is slightly greater than X, the resulting optimal portfolio weights invest
less aggressively in the risky assets than does w:

- 1= 1 /T-1\ . T-1
25 = —ylp = Z(— )51 = — | W
( ) w p” M 7( T ) [ T w

However, because E[w] = ((T — 1)/(T — N — 2))w*, such a portfolio rule still
involves taking larger positions in the risky assets relatlve to the true optimal port-




Kan and Zhou

631

TABLE 1

Percentage Loss of Expected Out-of-Sample Performance Due to Estimation Errors in the

Means and Covariance Matrix of Returns

Table 1 presents the percentage loss of expected out-of-sample performance from holding a sample tangency portfolio
of N risky assets with the parameters estimated using T periods of historical returns instead of using the true parameters.
The first column reports the percentage loss duc to the use of the sample average returns £ instead of true expected
returns. The second column reports the percentage loss due to the use of the sample covariance matrix X instead of the
true covariance matrix. The third column reports the interactive effect from using ji and X The fourth column reports the
total percentage loss of expected out-of-sample performance from using 4 and X Panel A assumes the Sharpe ratio (0)
of the N risky assets is 0.2 and Panel B assumes ¢ = 0.4.

N T

PanelA. 6 =0.2

1 60
120
240
360
480

120
240
360
480

120
240
360
480

120
240
360
480

25 60
120
240
360
480

PanelB. 0 =0.4

1 60
120
240
360
480

120
240
360
480

120
240
360
480

120
240
360
480

25 60
120
240
360
480

Percentage Loss of
Expected Out-of-Sample

Performance

£ and

i z Interaction P}
41.67 4.31 6.18 5215
20.83 1.90 1.46 2419
10.42 0.89 0.36 11.66
6.94 0.58 0.16 7.68
521 0.43 0.09 5.73
83.33 6.85 17.61 107.80
41.67 293 4.09 48.69
20.83 1.35 0.99 23.17
13.89 0.88 0.43 15.20
10.42 0.65 0.24 11.31
208.33 16.64 89.69 314.66
104.17 6.44 19.62 130.23
52.08 2.84 461 59.53
3472 1.81 201 38.54
26.04 1.33 1.12 28.49
416.67 42.99 387.46 847.12
208.33 13.95 75.36 297.64
104.17 5.65 16.85 126.67
69.44 3.51 7.23 80.19
52.08 254 4.00 58.62
1041.67 336,67 521157 6589.91
520.83 55.53 591.64 1168.01
260.42 17.18 110.77 388.37
173.61 9.81 45.19 228.61
130.21 6.81 2439 161.42
10.42 4.31 1.55 16.27
5.21 1.90 0.37 7.47
2.60 0.89 0.09 3.58
1.74 0.58 0.04 2.36
1.30 0.43 0.02 1.75
20.83 6.85 4.40 32.09
10.42 293 1.02 1437
5.21 1.35 0.25 6.81
3.47 0.88 0.11 4.46
2.60 0.65 0.06 3.32
52.08 16.64 22.42 91.14
26.04 6.44 4.90 37.39
13.02 284 1.15 17.01
8.68 1.81 0.50 11.00
6.51 1.33 0.28 8.12
104.17 42.99 96.86 244.02
52.08 13.95 18.84 84.87
26.04 5.65 4.21 3591
17.36 3.51 1.81 22.68
13.02 254 1.00 16.56
260.42 336.67 1302.89 1899.98
130.21 55.58 147.91 333.65
65.10 17.18 27.69 109.98
43.40 9.81 11.30 64.51
32.55 6.81 6.10 45.47
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folio. Assuming T > N + 4, the expected out-of-sample performance associated
with portfolio rule w is

6? N(T - 1)X(T-2)

2y 29T(T-N—-1)(T-N-2)(T—-N —4)’

(260)  E[OW)] = ko

where

T-1 (T-1)(T-2)
(27) ky = (m) {2_(7‘_N—1)(T—N—4) '

Based on this expression, it can then be verified that E[{J(w)] is greater than
E[U(W)], so w is a better choice than .
The third plug-in approach is to estimate X with

T
~ 1 - -\
(28) o= TN 2 > (R~ )R —p) =

t=1

T-N-2
Then, the plug-in estimator for the optimal portfolio weights is

(29) W o= lj‘—lﬂ = i?:w
¥ T

Although X is not an unbiased estimator of ¥, £~! is an unbiased estimator
of X~!, so W is an unbiased estimator of w*, i.c., E[w] = w*. Hence, over re-
peated samples, the investor who uses W will on average invest the same amount
of money in the risky assets as he would invest in the true optimal portfolio. As-
suming T > N +4,

Ao P N(T —2)(T - N —2)
(30) EU)] = 29 2 T(T-N-1)(T-N—4)’
where
an o = 2. (T-D(T-N-2)

(T-N-1)(T-N—-4)

Itis straightforward to verify that E[U(#)) is greater than E[J/(w)], so the portfolio
rule w is better than w, and hence is also better than .

In summary, we have evaluated the expected out-of-sample performance of
three classic plug-in estimators, w. w, and W, of the optimal portfolio weights w*.
Interestingly, it is W, the unbiased estimator of the unknown optimal portfolio
weights, that achieves the highest expected out-of-sample performance, while the
maximum likelihood estimate yields the lowest.

D. Bayesian Solution

While the plug-in method ignores estimation risk, the Bayesian approach
based on the predictive distributions pioneered by Zellner and Chetty (1965)
provides a general framework that integrates estimation risk into the analysis.
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Under the classic framework, utility is defined with respect to the parameters
- and 2. The Bayesian approach deals with parameter uncertainty by assum-
ing the investor cares about the expected utility under the predictive distribution
p(Rr+1|®7). which is determined by both the historical data and the prior. With
a good choice of prior (say highly centered around the true values), there is no
doubt that a Bayesian portfolio rule can substantially outperform the classic plug-
in rules. However, it is not entirely clear how a good prior can be obtained. For
a fair comparison with the classic plug-in rules, we assume a diffuse prior here.
Brown (1976), Klein and Bawa (1976), and Stambaugh (1997) show under the
standard diffuse prior on p and X,

(32) po(n. 2) o |ZI7F,

the Bayesian optimal portfolio weights have the same formula as w* except for
the parameters being replaced by their predictive moments,

1 [T-N-2\ .
33 s~Bayes _ E_l i
(33) W ~ <—~—T+1 ) f

The Bayesian solution differs from the unbiased estimator # only by a factor of
T/(T + 1), and suggests also two-fund separation: investing only in the riskless
asset and the sample tangency portfolio. However, since

~Bayes _ T *
(34) B[] = (m)w,
the Bayesian solution is more conservative than the case where the true parameters
are known because it suggests taking smaller positions in the risky assets. Intu-
itively, the Bayesian approach recognizes estimation risk explicitly and, hence,
the risky assets become riskier, while the riskless rate is known for sure. So,
all else being equal, the riskless asset becomes more attractive and, hence, the
Bayesian investor invests more in it.

While the Bayesian portfolio rule is optimal by design in maximizing the
expected utility based on the predictive distribution of the returns, will it have
better out-of-sample performance than the classic plug-in methods? Simulations
by Brown (1976) and Stambaugh (1997) suggest that it does outperform the plug-
in methods. We provide here an analytical proof for this result.

Using the same technique for evaluating E[U(W)], we have

L NT(T —2)(T = N —2)
2y T T-N-1)(T-N—4)

(35)  E[O(wP»e)]

where T > N + 4 and

T T(T —2)(T — N -2)
(36) ke = (T+1>[2~(T+1)(T—N~l)(T—N—4) '
Therefore,
2
37) B ~ EO] = (ks — ko)

N(T —2)(T — N — 2)2T + 1)
TATT+ AT N DT -N—-4)
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It is easy to see that whenever T > N + 4,

_ (T2+6T — 4) + N2T(T — N) — 3T — 2(N + 4)]
G8) ki—ks = (T+1)XT-N—-1)(T—N —4) > 0

because 2T(T — N) > 8T > 3T + 2(N + 4). Hence, the explicit expressions
for E[0(wB®°)] and E[U(#)] show analytically that the Bayesian portfolio rule
always strictly outperforms the earlier classic plug-in methods by yielding higher
expected out-of-sample performance regardless of the values of the true parame-
ters. Therefore, the three classic plug-in portfolio rules are inadmissible and they
should be replaced by better portfolio rules.

An intuition for the better out-of-sample performance of the Bayesian port-
folio rule is as follows. In the portfolio problem (unlike standard problems where
risk functions are used to evaluate parameters), there is a built-in trade-off be-
tween mean and variance in the risk function. By not accounting for this trade-
off, the plug-in method must fail in a risk function comparison. To some extent,
the Bayesian approach exploits some of this trade-off and, hence, leads to a better
portfolio rule. Brown (1978) was the first to make such a point. Our procedures
in the next section are exact ways to exploit more fully the trade-offs between the
mean and variance in the risk function for the portfolio problem.

The uniform dominance result suggests that investors are better off using the
Bayesian portfolio rule than the classic plug-in rules. However, it turns out that
the Bayesian portfolio rule is still inadmissible because we show later that there
exists a portfolio rule that uniformly dominates the Bayesian portfolio rule under
the diffuse prior.

In a Bayesian framework, informative priors other than the diffuse one may
be used. Although there may be countless ways of doing so in principle, it is not
an easy matter to construct useful informative priors in practice. For example,
Pastor (2000) and Pdstor and Stambaugh (2000) provide interesting priors that
incorporate certain beliefs on the usefulness of the CAPM and study their impacts
on asset allocation decisions. While understanding how predictive moments are
impacted by informative priors is interesting, it is difficult to obtain an analytical
solution of the risk function for such portfolio rules. To limit the scope of this
paper, we will in what follows focus only on the diffuse prior, leaving the study
of informative Bayesian portfolio rules for future research.

E. Optimal Two-Fund Rule

Theoretically, the estimator of w* can be any function of the sufficient statis-
tics 1 and X, i.e.,

(39) W= f(i,2).

The economic question of interest to the investor is to find a function f (A, ZA‘)
so that the expected out-of-sample performance is maximized. This function can
potentially be a very complex nonlinear function of /i and X, and there can be
infinitely many ways to construct it. However, it is not an easy matter to determine
the optimal f(ji. 2 ). So, we first limit our attention to a class of portfolio rules
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that hold just the riskless asset and the sample tangency portfolio, and then turn
to a more general three-fund portfolio rule in the next section.

Although both the plug-in and the Bayesian rules suggest holding the riskless
asset and the sample tangency portfolio, their weights on the sample tangency
portfolio are not necessarily optimal in terms of maximizing the expected out-of-
sample performance. Indeed. consider the class of two-fund portfolio rules that
have weights

(40) wo= -7,

<20

where ¢ is a constant scalar. All of the previous rules are special cases of this
class. For example. the first plug-in and the Bayesian rules specify ¢; = 1 and
c2= (T — N —2)/(T + 1), respectively.

Using a similar derivation as before, we know that the expected out-of-
sample performance of this class of portfolio rules is

~ 2 92 T
@n  E0CE 'aly) = %(m)

5 () )

assuming T > N + 4. Differentiating with respect to c, the optimal c is

. (T-N—-1)(T-N—4) 62
“2) <= [ T(T - 2) } (92_,,%')’

which is a product of two terms. If X is known, then ¢* will consist only of the
second term, which thus accounts for the estimation error in fi. Similarly, the first
term of ¢* accounts for the estimation error in 5. Clearly, both terms are less than
one. The value of the second term depends on the relative magnitude of #2 and
N/T, while the value of the first term depends on the relative magnitude of N and
T, but not 62.

 Expected out-of-sample performance under the optimal choice of w* = ¢*
Y /vyis

43) E[O(w") = ﬁ[(T_N_l)(T*N_‘t)}( ~ )

2y (T-2)(T-N-2) g2+ 4
which is, of course, higher than the expected out-of-sample performance under

both the classic plug-in and Bayesian rules. Compared to the case of no uncer-
tainty,

(a4 %‘:V)] _ [(T~N—l)(T—N—4)J< 62 ) <

(T—-2)(T-N-2) g2+ 4

which is a decreasing function of N and an increasing function of 7 and 62. As a
result, the percentage loss of expected out-of-sample performance increases with
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the number of assets, but decreases with both the length of the time series and the
squared Sharpe ratio of the tangency portfolio.

Although ¢ is optimal, a feasible portfolio rule using c* does not exist since
¢ is unknown in practice. Nevertheless, ¢* provides important insights into the
optimal decision. In particular, ¢* can yield a simple decision rule that dominates
the Bayesian rule. Consider the following rule, which is optimal when 62 — oo

(T—N-1)(T-N—4)
T(T - 2)

(45) W, = %ﬁ“m” ¢ =

This rule suggests investing w. in the risky assets and 1 — 1,W. in the riskless
asset. Like the Bayesian rule, it is parameter independent (i.e., it only depends on
N and T but not on  and X). However, it dominates the Bayesian rule not only
when 6 approaches infinity, but also for all possible parameter values. The reason
is thatf(c) = E[U(cX~'i/7)] in (41) is a quadratic function of ¢, so the expected
out-of-sample performance is a decreasing function of ¢ for ¢ > ¢*. Therefore, to
show dominance, it suffices to show that ¢; > c3 > ¢*. Indeed, when T > N + 4,

T—-N-2 T-N-4
46 S — -
(46) @ T+1 > T

o (T-N-4\(T-N-1\ _
T T-2 - %

and obviously ¢3 > ¢*. Thus, regardless of the value of #2, the expected out-
of-sample performance is always greater for w. than that under the Bayesian
portfolio rule. The expected out-of-sample performance of w* can be computed
explicitly by (41) with ¢ = c3.

The portfolio rule w, can be viewed as a plug-in estimator that estimates 5
by using 2, = ﬁ/c;. Incidentally, Haff ((1979), Theorem 7) shows that when
estimating X', ! dominates all the estimators that are of the form ¢ 5~ ! when
the loss function is defined as tr(c£ ' — Iy)2. Although effectively the same
estimator of X ~! is obtained here, our motivation and the loss function are quite
different from Haff’s.

The optimal scalar ¢* provides an additional insight to improve upon using
c3. Without information about the value of 2, c3 represents the best choice of
c that maximizes the expected out-of-sample performance. However, if a priori
62 < 62, but the exact value of #2 is not known, then

_ 02
@ F = olp

is a better choice of ¢ because the expected out-of-sample performance f(c) is a
decreasing function of ¢ when ¢ > ¢*. Since ¢* < ¢ < c3, it follows that f(c*) >
f(c) > f(cs3). If at the monthly frequency it seems reasonable to believe that
6% < 1,then c=c3T/(T+N) gives a higher expected out-of-sample performance.
However, this choice requires bounding the Sharpe ratio so it is not parameter
independent, and its performance depends on how the true Sharpe ratio deviates
from 6. Hence, to avoid ambiguous choices of 6, this type of rule will not be
studied in the rest of the paper.




Kan and Zhou 637

To illustrate the magnitude of the expected loss of out-of-sample perfor-
mance due to estimation risk for various two-fund rules, we present two numerical
examples. In the first one, we assume an investor with a risk aversion coefficient
of =3 chooses a portfolio out of N = 10 risky assets and a riskless one. Assume
further that the Sharpe ratio of the ex ante tangency portfolio is § = 0.2. Figure 1
plots the expected out-of-sample performance (in percentage monthly return) of
the investor under various two-fund rules for different lengths of the estimation
window. If the investor knows u and X, he will hold w* for the risky assets to
achieve a certainty equivalent of 0.667%/month (dashed line). If the investor just
knows 6, then he will hold the ex post tangency portfolio using the optimal weight
Ww* =c* 511/ and his expected out-of-sample performance as indicated by the
solid line. In comparison with using w*, there is some expected loss of out-of-
sample performance from using Ww*. Nevertheless, the expected out-of-sample
performance is still positive, implying that it makes the investor better off than
holding the riskless asset alone. However, this is no longer the case if the investor
does not know #, and if the investor holds the portfolio #. that does not depend on
the value of #. Although this rule is better than the three classic plug-in rules and
the Bayesian rule, it results in significant losses in expected out-of-sample perfor-
mance as indicated by the dotted line in Figure 1, especially when T is small. In
fact, an estimation window of at least T = 250 months is needed before such a
portfolio rule dominates the riskless asset. Finally, the dashed-dotted line shows
the expected out-of-sample performance for the standard plug-in portfolio rule
W= ﬁ“'ﬁ/’y. In this case, an estimation window of at least T = 296 months is
needed before this rule outperforms the riskless asset.

In the second example, we make the same assumptions as in the first one
except that there are now N= 25 risky assets, and the Sharpe ratio is assumed to be
0.3 instead of 0.2 due to the increase in the number of risky assets. Figure 2 plots
the expected out-of-sample performance of the investor under the four two-fund
rules. For w* and w”, the increase in the Sharpe ratio results in higher expected
out-of-sample performance for the investor. However, this is not necessarily true
when there is parameter uncertainty and when #. and w are used as the estimated
portfolio weights. Indeed, by comparing the numbers in Figures 1 and 2, we
can see that increasing the number of assets can in fact lead to a decrease in the
expected out-of-sample performance, especially when T is small.

These two examples illustrate that while W, improves over w, it is still a
mediocre portfolio rule because it delivers negative expected out-of-sample per-
formance when the parameters are estimated with fewer than 20 years of monthly
data. While w* seems a much better rule, it is not feasible as it depends on the
unknown parameter #2. Therefore, it is important to find a good estimate of 62
that will allow the implementation of an approximate optimal two-fund rule. A
natural estimator of #? is its sample counterpart,

(48) P = g2 'a

However, 62 can be a heavily biased estimator of §*> when T is small. In the
Appendix, we show that §? has the following distribution,

~ N
(49) F ~ (m)FN.T_N(TfF),
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FIGURE 1
Expected Out-of-Sample Performance under Various Two-Fund Rules with 10 Risky Assets

Figure 1 plots the expected out-of-sample performance (in percentage monthly returns) of an investor using different two-
fund portfolio rules as a function of the length of the estimation period (T). The investor has a relative risk aversion of three
and chooses an optimal portfolio of 10 risky and one riskless asset. The dashed line shows the expected out-of-sample
performance of an investor who invests in the ex ante tangency portfolio, which has a Sharpe ratio (0) of 0.2. The solid
line shows the expected out-of-sample performance of an investor who knows ¢ and invests an optimal proportion in the
sample tangency portfolio. The dotted line shows the expected out-of-sample performance of an investor who invests an
optimal proportion in the sample tangency portfolio with the weight being only a function of N and T. The dashed-dotted
line shows the expected out-of-sample performance of an investor who holds the sample tangency portfolio with a weight
determined by plugging the sample means and covariance matrix of the returns into the optimal weight formula.
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FIGURE 2

Expected Out-of-Sample Performance under Various Two-Fund Rules with 25 Risky Assets

Figure 2 plots the expected out-of-sample performance (in percentage monthly returns) of an investor using different two-
fund portfolio rules as a function of the length of the estimation period (T). The investor has a relative risk aversion of three
and chooses an optimal portfolio of 25 risky and one riskless asset. The dashed line shows the expected out-of-sample
performance of an investor who invests in the ex ante tangency portfolio. which has a Sharpe ratio (9) of 0.3. The solid
line shows the expected out-of-sample performance of an investor who knows 0 and invests an optimal proportion in the
sample tangency portfolio. The dotted line shows the expected out-of-sample performance of an investor who invests an
optimal proportion in the sample tangency portfolio with the weight being only a function of N and T. The dashed-dotted
line shows the expected out-of-sample performance of an investor who holds the sample tangency portfolio with a weight
determined by plugging the sample means and covariance matrix of the returns into the optimal weight formula.
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where FN_T_N(THZ) is a noncentral F distribution with N and T — N degrees of
freedom, and a noncentrality parameter of 76>. Because of this, the unbiased
estimator of #? is

A2
(50) P (T-N-=-2)§ N‘
T

However, this estimator can take negative value so it is also an undesirable esti-
mator of 2.

Note that the problem of estimating 2 using 62 is equivalent to the problem
of estimating the noncentrality parameter of a noncentral F-distribution using a
single observation. This problem has been studied by a number of researchers in
statistics. For example, Rukhin (1993) and Kubokawa, Robert, and Saleh (1993)
both propose estimators that are superior to the unbiased estimator of # under
the quadratic loss function, whereas Fourdrinier, Philippe, and Robert (2000) and
Chen and Kan (2004) provide superior estimators under Stein’s type loss function.
For our application, we use an adjusted estimator of #? that is due to Kubokawa,
Robert, and Saleh (1993). After some simplification as given in the Appendix,
this estimator can be written as

_N_2)f - 2P (14 )
51) (;nz:(TNZ) N, (0°)>(1+6°) .
T TBg:/(146:(N/2.(T = N)/2)
where
X
(52) Bi(a,b) = /y“‘l(l—y)”"'dy
JO

is the incomplete beta function. The first part of this estimator is the unbiased
estimator of 62 and the second part of the estimator is the adjustment to improve
the unbiased estimator when the unbiased estimator is too small.

Figure 3 plots §2 and 62 as a function of 2 for N = 10 and T = 100. It can be
seen that 9:21 is an increasing and convex function of 2. When 62 is equal to zero,
9?, =0. As #2 gets larger, it becomes more like a linear function of #* and behaves
almost like the unbiased estimator #2. To understand the intuition why £2 is a
better estimator of 62, notice that (T — N — 2)#? behaves almost like a x% (T6?)
random variable, and it has an expected value of T6* + N. When (T — N — 2)#?
is large, it is more likely that part of its large value is due to the upward bias of N,
so we effectively use the unbiased estimator 675 However, when (T — N — 2)6? is
small, we should not subtract N from (T — N —2)#? because a small (T — N —2)§?
(say less than N) indicates that (T — N — 2)0A2 is less than its expected value of N.
Therefore, our estimator #2 should be higher than 62 when 62 is small or negative,
causing 9?, to be a nonlinear function of #2.

With the adjusted estimator of #2, the optimal ¢* can be estimated using

92
(53) ¢ = al=%]:
92 + T
and the associated feasible two-fund optimal portfolio weights are
(54) W = lé*f]“ﬁ,.
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FIGURE 3
Representation of Two Estimators of the Squared Population Sharpe Ratio for Different
Values of the Squared Sample Sharpe Ratio

Figure 3 plots two estimators of the squared population Sharpe ratio of the tangency portfolio (92) as a function of its
sample counterpart 02 when there are 10 assets and the sample size is 100. The dotted line is for the estimator 0'5. which

is an unbiased estimator of 62. The solid line is for the adjusted estimator 0'2 that is due to Kubokawa, Robert, and Saleh
(1993).
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In comparison with c3, é* is random and data-dependent, so the expected out-of-
sample performance of using w! is intractable analytically. Nevertheless, w! is
expected to outperform w. by design. This must be the case when the estimate of
67 is accurate enough. The simulation results reported in Section V confirm that
this is indeed the case.

Recently, Garlappi, Uppal, and Wang (2007), Proposition 3 propose an in-
teresting two-fund rule that is optimal for an investor who exhibits uncertainty
aversion. Their approach incorporates parameter uncertainty in the utility func-
tion that yields a two-fund portfolio rule.

(55) Ve = gl
¥
where

1—(g/6%): if B > e,

56 Cia = :
0 0 if 2 <e,

withe = NFy_y(p)/(T —N), and Fy 7_n(-) is the inverse cumulative distribu-
tion function of a central F-distribution with N and 7 — N degrees of freedom and
p is a probability. Under the null hypothesis that § = 0, % ~ NFEy7-n/(T —N),
so using the above portfolio rule, an investor will choose not to invest in the risky
assets with probability p if the Sharpe ratio is actually zero. Therefore, pisusedto

6 Although Garlappi, Uppal, and Wang (2007) do not explicitly state which estimator of 5 they
use, it is clear from their context that they use the unbiased estimator of Y. See also Lutgens (2004),
Theorem 1 for a similar portfolio rule.
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indicate the investor’s aversion to uncertainty and an investor with high aversion
to uncertainty will choose a higher p. In this paper, we use p = 0.99, which is a
value that provides good performance based on the empirical results in Garlappi,
Uppal, and Wang (2007).” This portfolio rule makes intuitive sense. It suggests
that when there is uncertainty about #, an investor needs to have enough con-
fidence that ¢ O (i.e., a large enough 6%) before he is willing to invest in the
sample tangency portfolio. Otherwise, he will choose to invest in just the riskless
asset.

In terms of maximizing the mean-variance expected out-of-sample perfor-
mance, the uncertainty aversion two-fund rule cannot outperform our theoretical
optimal two-fund rule by design. However, since our optimal two-fund rule has
to be estimated, it is not entirely clear whether the uncertainty aversion two-fund
rule is always outperformed by our estimated optimal two-fund rule. This issue
will be addressed by using simulations in Section V.

[ll.  Three-Fund Separation: Investing on the Ex Post
Frontier

Theoretically, if a mean-variance optimizing investor knows the true param-
eters, he should invest only in the riskless asset and the tangency portfolio, but the
parameters are unknown in practice. A natural approach guided by the standard
mean-variance theory is to invest in two funds: the riskless asset and the sample
tangency portfolio. This problem is analyzed in detail in the previous section.

However, investing in only the two funds generates a loss in expected out-
of-sample performance, as shown below. Intuitively, if there is parameter uncer-
tainty, use of another risky portfolio can help to diversify estimation risk of the
sample tangency portfolio. This is because, while both portfolios have estimation
errors, their estimation errors are not perfectly correlated. To the extent that the
risk-return trade-offs are not constant across the two portfolios, expected out-of-
sample performance is higher when the two portfolios are optimally combined.
The relative weights in the two portfolios depend on the estimation errors of the
two portfolios, their correlation, and their risk-return trade-offs. In addition to
the sample tangency portfolio, which risky portfolio should be used? We choose
to use the sample global minimum-variance portfolio for two reasons. First, the
weights of the global minimum-variance portfolio depend only on £ but not f,
so the weights can be estimated with higher accuracy. Second, if we limit our-
selves to consider just portfolios on the ex post minimum-variance frontier, then
the sample global minimum-variance portfolio is a natural candidate. Similar to
the ex ante frontier portfolios, every sample frontier portfolio is a linear combina-
tion of two distinct sample frontier portfolios. Hence, it suffices to consider only
the sample tangency and global minimum-variance portfolios.®

TWe also try p = 0.95 and the results are qualitatively the same.

81t should be emphasized that our method can also be used to analyze other combinations of risky
portfolios, and it is possible that other choices of risky portfolios can lead to even higher expected
out-of-sample performance than the one that we propose.
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Consider a portfolio rule of the form,
1, - o
(57) w o= wd = ;(cZ‘U)+d2 "In) .

where ¢ and d are constants to be chosen optimally. Since the weights of the sam-
ple tangency and global minimum-variance portfolios are proportional to £ ~' /i
and X ~'ly, respectively, the portfolio rule w(c, d) invests in these two sample
frontier portfolios and the riskless asset.

Under this class of portfolio rules, the expected out-of-sample performance
is

(58)  E[0(W(c.d))]
— Epic.d)]'p - %E[W(c,d)’va(c.d)]
T 1 b .
= (m)Z[Z(cuﬂ l+dy' £711y)
(T - 2)
(T-N-1D(T-N-4)

X ((;1,’2‘1/1,+ g) E+2W 7 y)ed + (ljvﬂ_llN)d2>] .

where T > N + 4. Differentiating with respect to ¢ and d, we obtain the ¢ and d
that maximize the expected out-of-sample performance as

59 * X — 1/)2
(59 ¢’ = e
N
(60) & = o <1/)2—T+_¥>“g‘
where
‘/2—11 2
6l ¥ = WElu-— W 1y (1 — pgIn)' 7 — pgly)

lj\,)j‘—'lN

is the squared slope of the asymptote to the ex ante minimum-variance frontier,
and pg = (132 ~1) /(12 '1y) is the expected excess return of the ex ante
global minimum-variance portfolio. Therefore, the optimal portfolio weights are

(62) o= 8 LZ S n+ ¥ eS|
v [\ 2+ % e f )

Since d** # 0 unless p, = 0, this portfolio rule suggests the use of the sample
global minimum-variance portfolio no matter what the true parameters y and X'
are (except when (i, = 0). The higher N/T, the greater the investment required
in the global minimum-variance portfolio. Intuitively, the greater the number of
assets, the greater the difficulty in estimating the weights of the tangency port-
folio and, hence, the greater the reliance on the optimal portfolio that assumes
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constant means across assets. This was first pointed out by Jobson, Korkie, and
Ratti (1979) who suggest investing in only the sample global minimum-variance
portfolio. Since ¢** > 0 whenever T > N + 4. investing in just the sample global
minimum-variance portfolio is clearly suboptimal. The optimal amount to invest
in the sample tangency portfolio depends on the relative magnitude of 1?2 and
N/T. The greater the slope of the asymptote to the minimum-variance frontier,
the more the investor invests in the sample tangency portfolio because it is po-
tentially more rewarding than investing in the sample global minimum-variance
portfolio.
Under the optimal weights "*, the expected out-of-sample performance is

7 (h 0> (T—N—1)(T - N —4) N
o Bl 2y (T-2)(T-N-2) _(12+(%’)(¥)

when T > N + 4. In the presence of parameter uncertainty in both w1 and X, this
is the highest expected out-of-sample performance obtained so far. However, this
level of expected out-of-sample performance is unattainable because ? and g
are not known and have to be estimated to implement the above strategy.

To estimate y, and ¥, we can use their sample counterparts,

15
(64) f = L= N
I;VZ*IIN
(65) P o= (A Aedn) TN - fiply).

In the Appendix, we show that

(T — N+ 1)y?
N -1

50 9% shares the same problem with #2 as being a heavily biased estimator when

T is small. Therefore, similarly to 62, we use

(T—N= 1@~ (v 1)
T
2°) T (1499~

to estimate 1)%. The associated three-fund optimal portfolio weights are then given
by

o 3 Ve A1, ¥ APl
(68) it = S Y Vg, (T ) sy
v [\g2+ ¥ Fr\ gz e

Like !, W' is random since the weights of the sample tangency and global
minimum-variance portfolios depend on the realization of fig and 1/32. However,
since w** dominates ", W'l is expected to dominate w"'. But analytical com-
parison is difficult because 1/33 and /i, are dependent on random data samples.
Section V provides simulations on E[U(w")], and the results indeed show that
the expected out-of-sample performance under this three-fund rule W tends to

be higher than those under the two-fund rule Ww!.

(66) ~  Fy_ir-na(TYP),

(67) )2
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IV. Shrinkage Estimators

Since Stein’s (1956) seminal work, it is known that when N > 2, the sam-
ple mean /i is not the best estimator of the population mean p in terms of the
quadratic loss function. This is because Stein’s estimator or a shrinkage estima-
tor that shrinks the sample mean appropriately to a constant can have a smaller
expected quadratic loss than the sample mean. As a result of Stein’s surprising
finding, there is a large literature on various shrinkage estimators and the related
Bayesian estimators (of which Berger (1985) provides an excellent survey from a
Bayesian perspective).

In the finance literature, Jorion (1986), (1991), motivated by both a shrinkage
consideration and a Bayesian analysis (under a suitable informed prior), develops
a Bayes-Stein estimator of y,

(69) A% = (1 —v)a+vigly,
where [i, is the shrinkage target,

1’ Z‘—l 7 1 Z'\—l i
(70) g, = 2 B vz B
1y 2y 1,21y

which is the average excess return on the sample global minimum-variance port-
folio, and v is the weight given to the target,

N+2

an y = N .
(N+2)+T(fi — figly) 21 — figln)

where X is defined as in (28). From a shrinkage point of view, combining /S
with & gives an estimator of the optimal portfolio weights.

Jorion’s method is also a Bayesian estimation of the optimal portfolio weights
because he replaces X' in the classic optimal weights formula (equation (2)) with
the predictive variance of the asset returns,

. A Inl},
T(T+1+X) 1,2y’

1
(72)  VarlRpa| S\ b7 — (1+T+/\>2

where ) is a precision parameter in the following informative prior,
1
0D polS ) exp =300 i 50~ L)

which leads to the shrinkage estimator /i®S. Theoretically, Var[Rz,|®7] should
be used after integrating out both X' and A from their posterior distributions, but
this integration is a formidable task, so the natural approach is to simply use
Var[Rr.1| X, A, 7] instead. Although X and X are unknown in Var[Rr.1| X, X, $7],
they can be replaced by their sample estimates. In this way, Jorion’s empirical
Bayes-Stein estimator of the optimal portfolio weights is

1, .
(74) WBS — ;(EBS)—lﬂBS7
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where

(75) £BS (1+ lA)Zw A Inly
T+A T(T+1+4X) 1321y

and X = (N +2)/[(ft = figIn)' £~ (2 — i 1))-

Jorion’s (1986) approach effectively provides a three-fund rule. Alterna-
tively, our estimated optimal three-fund rule can be thought of as a shrinkage rule
with a particular choice of shrinkage estimator of y and a particular choice of X.
To see why, rewrite (68) as

(76) pll — & A'/;‘Z' S i+ AI% .5y
v [\¥2+ Y P2+ )

1. T4)?
-371 ’/’"A n.+( N _ )ngl,v A
N + T2 N + T2

~
With this expression, we can see that the main difference between our estimated
optimal three-fund rule and Jorion’s shrinkage rule is that our estimated optimal
three-fund rule calls for the use of X, instead of £BS to estimate X and the use
of the Bayes-Stein shrinkage estimator /i®S with a value of v = N/(N + T4?) to
estimate 1.

Although Jorion’s shrinkage portfolio rule is a three-fund rule, it can be sub-
optimal because it is not constructed for holding optimal proportions in the three
funds. Rather, it is motivated by using the standard two-fund optimal portfolio for-
mula with a better estimator of the mean, and this better estimate has the average
excess return of the sample global minimum-variance portfolio as the shrinkage
target. Since the weights assigned to the sample global minimum-variance and
tangency portfolios by Jorion’s portfolio rule are not optimal, we expect our op-
timal three-fund rule to perform better. As the rules are complex functions of /i
and X, it is difficult to prove it analytically. However, the expected out-of-sample
performance of the two rules can be easily estimated using simulated data sets.
In our simulation experiments, the optimal three-fund rule indeed outperforms
Jorion’s rule.

V. Comparison of Alternative Portfolio Rules

In this section, we evaluate the expected out-of-sample performance of 13
portfolio rules for a mean-variance investor with parameters calibrated from real
data. While the rules are developed under the multivariate normality assump-
tion, we also examine their performance under a more plausible multivariate ¢-
distribution, and find the qualitative results are quite robust to the departure from
normality.

In what follows, we assume that the mean-variance investor has a relative
risk aversion of y = 3. The expected out-of-sample performance for other values
of 7y can be obtained by simply rescaling the expected out-of-sample performance
calculated for y =3, so the relative rankings of the portfolio rules are independent
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of the choice of . In evaluating these portfolio rules, we consider two scenar-
ios. In the first one, we assume there are N = 10 risky assets with their mean
and covariance matrix chosen based on the sample estimates from the monthly
excess returns on the 10 NYSE size-ranked portfolios from 1926/1-2003/12. For
this set of 10 risky assets, our choice of j and ¥ gives # = 0.159, v = 0.130.
and /1, = 0.00444.° In the second scenario, we assume there are N — 25 risky as-
sets. Because Fama and French'’s (1993) 25 portfolios, formed based on size- and
book-to-market ratio, are the standard test assets in recent empirical asset pricing
studies, we assume that the investor invests in these 25 portfolios. The mean and
covariance matrix of these 25 portfolios are chosen based on the sample estimates
from the monthly excess returns from 1932/1-2003/12.1° For this set of 25 risky
assets, our choice of 2 and X gives = 0.344, ¢y = 0.267, and g = 0.00889.

Out of the 13 portfolio rules that have been discussed in this paper, the ex-
pected out-of-sample performance can be derived analytically for nine, and for the
remaining four we rely on an efficient simulation method that proceeds as follows.
For different lengths of the estimation window T, generate a random sample of /i
and X from (13) and (14). Then, construct the optimal portfolio using the various
portfolio rules and compute each corresponding out-of-sample performance. The
average out-of-sample performances across 100,000 simulations are then used to
approximate the expected out-of-sample performances.

Table 2 reports the results for the 10 asset case. The first three portfolio
rules assume that the investor knows some of the parameters. If he knows 1 and
X, the expected utility of his optimal portfolio is given by equation (3), which is
0.419%/month as reported in the first row (parameter-certainty optimal). If the
investor only knows 6, he can invest an optimal amount in the sample tangency
portfolio, and the resulting expected out-of-sample performance is reported in the
second row (theoretical optimal two-fund). Investing in the ex post instead of the
ex ante tangency portfolio generates a substantial loss in expected out-of-sample
performance. The loss is a decreasing function of the length of the estimation
period, but even for T = 480 months, the expected out-of-sample performance
from the optimal two-fund rule is only 0.224%/month versus 0.419%/month from
holding the ex ante tangency portfolio. The third row reports the expected out-of-
sample performance of a portfolio that invests optimally in the sample tangency
and global minimum-variance portfolios (theoretical optimal three-fund). Imple-
menting this rule requires knowing 1) and p,. Compared to the optimal two-fund
rule, the gain in expected out-of-sample performance is significant when T is
small. Note that these three rules cannot be implemented in practice, so their
expected out-of-sample performances are provided only as reference points.

In the next eight rows of Table 2, we report the expected out-of-sample per-
formances of various two-fund rules. The first three rows are for the plug-in meth-
ods that estimate s by 4, Zby &, £=TX/(T~1),and £=T5/(T—N-2). The
next row is for the Bayesian rule under a diffuse prior that essentially estimates 5
by (T+1)2/(T — N — 2). The fifth row reports the expected out-of-sample per-

9The individual elements of j+ and X are not reported because it can be shown that the expected
out-of-sample performance of all our portfolio rules are a function of only 0, 9, and p,.

10We are grateful to Ken French for making this data available on his Web site at http://mba.tuck
.dartmouth.edu/pages/faculty/ken.french/.
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TABLE 2

Expected Out-of-Sample Performance of Various Portfolio Rules with 10 Risky Assets
When Returns Follow a Multivariate Normal Distribution

Table 2 reports the expected out-of-sample performance (in percentages per month) of 13 portfolio rules that choose
an optimal portfolio of 10 risky assets and a riskless asset for different lengths of the estimation period (T). The excess
returns of the 10 risky assets are assumed to be generated from a multivariate normal distribution with the mean and
covariance matrix chosen based on the sample estimates of 10 size-ranked NYSE portfolios. The investor is assumed to
have a risk aversion coefficient of three. The expected out-of-sample performance of the first eight rules and the global
minimum-variance rule are obtained analytically. For the other four rules, the expected out-of-sample performances are
approximated using 100,000 simulations.

Portfolio Rule T =60 T=120 T=180 T =240
Parameter certainty optimal 0.419 0.419 0.419 0.419
Theoretical optimal two-fund 0.044 0.088 0.122 0.150
Theoretical optimal three-fund 0.133 0.168 0.191 0.209
1st Plug-in, —-5122 —1.531 —0.748 —0.411
2nd Plug-in, X = TX /(T — 1) —4.936 —1.498 —0.735 —0.404
3rd Plug-in, £ = TE/(T = N - 2) —3.110 —1.156 —0.596 —-0.329
Bayesian (diffuse prior) —2.996 —1.130 —0.584 —-0.323
Parameter-free optimal two-fund -1.910 —0.879 —0.476 —-0.263
Estimated optimal two-fund —0.185 —0.007 0.060 0.102
Uncertainty aversion two-fund —0.001 0.004 0.007 0.012
Global minimum-variance —0.152 —0.010 0.040 0.064
Jorion's shrinkage —0.899 —0.220 —0.030 0.062
Estimated optimal three-fund —0.343 —0.053 0.051 0.107

Portfolio Rule T = 300 T =360 T =420 T = 480
Parameter certainty optimal 0.419 0.419 0.419 0.419
Theoretical optimal two-fund 0.173 0.193 0.210 0.224
Theoretical optimal three-fund 0.224 0.237 0.248 0.258
1st Plug-in, —0.225 —0.107 —0.025 0.034
2nd Plug-in, £ = TE/(T = 1) —0.221 —0.104 —0.023 0.036
3rd Plug-in, £ = T8 /(T - N — 2) —0.174 —-0.072 0.000 0.054
Bayesian (diffuse prior) —0.170 —0.069 0.002 0.055
Parameter-free optimal two-fund —-0.132 —0.043 0.022 0.070
Estimated optimal two-fund 0.133 0.157 0.177 0.194
Uncertainty aversion two-fund 0.017 0.024 0.032 0.040
Global minimum-variance 0.079 0.089 0.096 0.101
Jorion's shrinkage 0.117 0.155 0.182 0.203
Estimated optimal three-fund 0.143 0.169 0.189 0.206

formance of using the parameter-free optimal two-fund rule, which estimates %
using Haff’s estimator of the covariance matrix >, =5 /c3. All five rules are poor,
although the parameter-free optimal two-fund rule dominates all the others.!!

When the sample size is as large as T = 360 months, a history of 30-years
worth of data, one might think it can provide sufficiently accurate estimates of the
parameters such that the plug-in methods should work reasonably well. Quite the
contrary, due to the volatilities of the estimates, the expected out-of-sample per-
formance of using the plug-in methods is in fact negative! This also includes the
Bayesian portfolio rule. As the sample size decreases from 360 months, the prob-
lem is exacerbated. These results show clearly that blindly substituting sample
estimates for population parameters can cause a significant reduction in out-of-
sample performance.

0One may suspect that the poor performance of the plug-in rules is caused by the sample tangency
portfolio falling on the inefficient side of the sample frontier. Modifying them by investing in the
sample tangency portfolio only when it is on the efficient side, we find via simulations that the modi-
fied rules only provide marginal improvements when 7 is small, and the improvements are negligible
when T is large. More importantly, the modified rules do not outperform our optimal three-fund rule
even when T is small.
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The next two-fund rule is the estimated optimal two-fund rule. which is ob-
tained by replacing the true 6 in the optimal two-fund rule by the estimated 6.
Although the estimated optimal two-fund rule does not deliver the same level of
expected out-of-sample performance as the theoretical optimal two-fund rule, it is
implementable and performs substantially better than all the plug-inrules. It starts
to yield positive expected out-of-sample performance when 7 > 120 months,
whereas all the other plug-in rules need T > 360 months to yield positive ex-
pected out-of-sample performance. Nevertheless, when T is small, the estimate
of 62 is very volatile, so the estimated optimal two-fund rule still delivers negative
expected out-of-sample performance for T < 120 months.

The second to last two-fund rule is the uncertainty aversion two-fund rule of
Garlappi, Uppal, and Wang (2007). It is the best rule when 7 = 60 months, even
though the expected out-of-sample performance is still negative. However, it is
dominated by the estimated optimal two-fund rule when T > 120 months because
it invests too heavily in the riskless asset. Nevertheless, it should be pointed out
that the uncertainty aversion rule was not designed for maximizing the expected
out-of-sample performance of a mean-variance investor, so its underperformance
is expected, which does not contradict in any way that it is the best rule under
Garlappi, Uppal, and Wang’s (2007) uncertainty aversion utility function.

The last two-fund rule is the global minimum-variance portfolio rule, which
invests £ '1y/ig/ in the risky assets and the rest in the riskless asset.'> This
portfolio rule invests only in the sample global minimum-variance portfolio and
the riskless asset, so it is also a two-fund rule. In the Appendix, we show an-
alytically that the expected out-of-sample performance of this global minimum-
variance portfolio rule is given by

(T-N-5)y* T4

(T-N-D)T-N-41 [, , T2 I
" T 20T-N-2) 27\ V*~7T-~N_3

With the parameter specifications here, the simulation results show that this rule
is generally dominated by the estimated optimal two-fund rule.

The last two rows in Table 2 report the expected out-of-sample performance
of the two three-fund rules. The first rule is Jorion’s shrinkage estimator of
the optimal portfolio, which substantially outperforms the plug-in rules and the
Bayesian rule. However, it only starts to outperform the estimated optimal two-
fund rule when T > 360. Therefore, a better estimator of 4 alone is not sufficient
to beat the estimated optimal two-fund rule. The second three-fund rule is the
estimated optimal three-fund rule, which is obtained by replacing /* and ftg 1IN
the theoretical optimal three-fund rule with their estimates. When T is small,
the estimated optimal three-fund rule provides an often substantial improvement
over Jorion’s rule. When T is large, the shrinkage rule and the estimated optimal
three-fund rule generate virtually identical expected out-of-sample performance.

121t can be shown that within the class of portfolio rules d7—! 1n5/7, the d that maximizes expected
out-of-sample performance is d* = ¢34, which implies that the optimal weights are X, N Niig/v.
Our implementable version of the global minimum-variance portfolio rule is obtained by replacing p,
with flg.
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From Table 2, the theoretical optimal expected out-of-sample performance is
unattainable using existing rules. This is particularly apparent when T= 60, but as
the sample size increases, the problem diminishes. When 7 = 480, the expected
out-of-sample performance of the estimated and theoretical optimal three-fund
rules becomes very close, suggesting that using estimated ¥?* and fig s less of a
problem. Nevertheless, the expected out-of-sample performance of the estimated
optimal three-fund rule is 0.206%/month. still about 20% less than the expected
out-of-sample performance of 0.258%/month from the theoretical optimal three-
fund rule. So there is still room for improvement in our estimated optimal three-
fund rule, especially when T is small.

Table 3 presents the corresponding results for the 25 asset case. As the num-
ber of risky assets increases, two effects occur. The first effect is that there are
more parameters to estimate and, hence, there is more estimation risk, which in
turn leads to lower expected out-of-sample performance. The second effect is
that with more assets, the Sharpe ratio of the tangency portfolio increases, which
in turn leads to higher expected out-of-sample performance in the absence of es-
timation risk. In our example, the Sharpe ratio of the tangency portfolio in the
25 asset case is about twice as big as it is in the 10 asset case. As a result, the
expected out-of-sample performance for the first three portfolio rules in Table 3
are all higher than their counterparts in Table 2 because the first three portfolio
rules assume that some of the parameters are known, so there is little estimation
risk. This is not the case for the implementable portfolio rules. For example,
when T is small, the plug-in rules in the 25 asset case generate far lower expected
out-of-sample performance than in the 10 asset case. Although the numbers in
Tables 2 and 3 are different, the general picture is largely the same. Specifically,
the plug-in portfolio rules are all very poor, the estimated optimal two-fund and
three-fund rules perform far better than all the plug-in rules and the uncertainty
aversion two-fund rules across all T, with the estimated optimal three-fund rule
having an edge even over Jorion’s shrinkage portfolio rule. The estimated optimal
three-fund rule performs particularly well in the 25 asset case, losing out only to
the global minimum-variance portfolio rule when T = 60, and dominating all the
other implementable portfolio rules across 7. As a result, an investor facing such
a portfolio problem is better off using the estimated optimal three-fund rule for
T > 120.

In summary, the simulation results suggest that parameter estimates based
on statistical criteria alone, such as the maximum likelihood estimator, perform
poorly at an economically unacceptable level. Among the 10 implementable rules,
our newly developed estimated optimal three-fund rule performs remarkably well
(when T > 120) and offers 65% improvement in the expected out-of-sample
performance over the popular maximum likelihood estimator even when T is as
large as 480 (N = 25).13

13 As mentioned earlier, we also performed simulations by assuming the returns follow a multivari-
ate r-distribution (with five degrees of freedom and with the same mean and covariance matrix as in
the multivariate normality case). The rankings of the portfolio rules are largely unchanged, suggesting
our results are robust to departure from normality. Results are available from the authors.
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TABLE 3

Expected Out-of-Sample Performance of Various Portfolio Rules with 25 Risky Assets
When Returns Follow a Multivariate Normal Distribution

Table 3 reports the expected out-of-sample performance (in percentages per month) of 13 portfolio rules that choose an
optimal portfolio of 25 risky assets and a riskless asset for different lengths of the estimation period (T). The excess returns
of the 25 risky assets are assumed to be generated from a multivariate normal distribution with the mean and covariance
matrix chosen based on the sample estimates of Fama and French's 25 size- and book-to-market ranked portfolios. The
investor is assumed to have a risk aversion coefficient of three. The expected out-of-sample performance of the first eight
rules and the global minimum-variance rule are obtained analytically. For the other four rules, the expected out-of-sample
performances are approximated using 100,000 simulations.

Portfolio Rule T=60 T=120 T =180 T =240
Parameter certainty optimal 1.977 1977 1.977 1.977
Theoretical optimal two-fund 0.241 0.559 0.778 0.937
Theoretical optimal three-fund 0.531 0.852 1.019 1.133
Tst Plug-in, & —46.367 —6.537 —2.305 —0.837
2nd Plug-in, £ = T/(T - 1) —44.716 —6.387 —2.254 —0.812
3rdPlug-in, £ = TX /(T - N — 2) —12.247 —3.037 —1.072 —0.215
Bayesian (diffuse prior) —11.785 —-2.955 —1.039 -0.197
Parameter-free optimal two-fund —2.736 —1.166 —-0.289 0.214
Estimated optimal two-fund -0.047 0.415 0.668 0.851
Uncertainty aversion two-fund -0.038 0.071 0.181 0.320
Global minimum-variance 0.186 0.490 0.591 0.641
Jorion's shrinkage —-3.692 —0.201 0.509 0.829
Estimated optimal three-fund —0.022 0.600 0.849 1.002

Portfolio Rule T =300 T =360 T =420 T =480
Parameter certainty optimal 1.977 1.977 1.977 1.977
Theoretical optimal two-fund 1.060 1.156 1.234 1.299
Theoretical optimal three-fund 1.221 1.290 1.347 1.395
1st Plug-in, X —0.108 0.324 0.610 0.811
2nd Plug-in, £ = T2 /(T - 1) —0.093 0.334 0617 0.817
3rdPlug-in, £ =T /(T - N -2) 0.266 0574 0.788 0.945
Bayesian (diffuse prior) 0.277 0.582 0.793 0.949
Parameter-free optimal two-fund 0.537 0.760 0.924 1.048
Estimated optimal two-fund 0.991 1.101 1.190 1.262
Uncertainty aversion two-fund 0.466 0.599 0.716 0.816
Global minimum-variance 0.671 0.691 0.705 0.716
Jorion's shrinkage 1.018 1.145 1.238 1.309
Estimated optimal three-fund 1114 1.200 1.271 1.330

VI. Conclusion

Models for financial decision making often involve unknown parameters that
have to be estimated from the data. However, estimation is typically separated
from the decision making, and the goodness of the estimates is commonly judged
by using statistical criteria such as minimum variance and asymptotic efficiency.
We argue that it is important to estimate parameters by combining the estimation
with the economic objectives at hand. In particular, we show that in the standard
mean-variance framework the usual maximum likelihood estimate of the opti-
mal portfolio weights is outperformed by alternative sample estimates. These, in
turn, are uniformly dominated by the Bayesian approach under a diffuse prior,
which accounts for the parameter uncertainty by using predictive densities. The
Bayesian solution, however, is uniformly dominated by a new two-fund rule that
holds the riskless asset and the sample tangency portfolio optimally.

While mean-variance portfolio theory recommends a two-fund solution, which
is often implemented by holding the sample tangency portfolio and the riskless as-
set, we show that this is not optimal because a three-fund portfolio rule obtained
by combining the usual two funds and the sample global minimum-variance port-
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folio can improve expected out-of-sample performance substantially. In fact, the
three-fund rule dominates many of the existing two-fund portfolio rules. While
better rules might be discovered by future research, our finding that a three-fund
portfolio rule can dominate the standard sample two-fund portfolio rules has pow-
erful implications. It says that the recommendation of a theoretical result, like
holding a two-fund portfolio here, can be altered completely in the presence of
parameter uncertainty to holding a three-fund (or perhaps even more) portfolio.
Many potential extensions are possible. For example, it is of interest to ex-
tend our analysis to more complex dynamic portfolio choice problems, such as the
setups of Barberis (2000) and Ait-Sahalia and Brandt (2001). In fact, economi-
cally better estimates can potentially be sought in many financial decisions, either
in investments or in corporate finance, that involve estimation of unknown pa-
rameters with well-defined economic objectives. Hence, this paper seems to pose
many interesting questions for future research. For instance, our methodology
can be applied to determine the mean-variance optimal hedge ratio in hedging.
It can also be used to estimate the discount rate for maximizing the net present
value of an investment project. In the asset pricing literature, the market risk pre-
mium estimated from sample mean excess returns is generally considered to be
too high, but this is not necessarily the optimally estimated market risk premium
that maximizes investors’ economic objective function. Accounting for parameter
uncertainty (and perhaps model uncertainty too), what would be the risk premium
estimate? This appears to be another interesting topic for future research.

Appendix

Proof of (49). Using Theorem 3.2.13 of Muirhead (1982). we have
AX' 2

Al —_— ~ N

(A1) ATH -4 XT—N:

which is independent of i. Therefore, we can write

A T X 'h
(A2) P = JirJQ
XT-N

where the numerator and denominator are independent. Since TA' X g~ xﬁ,(Tu'Z -1 ),
(A3) P o= @57 ~ () Py
. H I T_N N,T— .

This completes the proof. O

Proof of (51). Theorem 3.1 of Kubokawa, Robert, and Saleh (1993) states that if w ~
X5(0)/x3, where the numerator and denominator are independent, then the unbiased esti-

mator of d is (n — 2)w — p, but under quadratic loss this unbiased estimator is dominated
by

(A4) b = (n—2)w— go(w).
where

L) a
e+ dr

(A.5) po(w) = (n-2)
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To simplify ¢o(w), write the integral in the numerator as

T -3
(A.6) /Ot»(]+t) Tdr = /0(1_”) (I+1)~2dr.

Using integration by parts on this integral gives

2wl22(1 +w)_w3;l

A7 — ——
(A7) do(w) fowtg_l(l-)-t)"—:zdt

For the integral in the denominator, we use a change of variables of y = /(1 +1) to obtain

w

w n Tow 0w
(A.8)/ ) e = / YTl —y)iley = Bu/(1ow) (p/2.1/2).
0 0

Therefore, the adjusted estimator of d is

2wg(1+w)_"_+’Ll
(A.9) be = (n—2w—p+TW)
( w—p By/(1ewy(p/2.n/2)

Our adjusted estimator 62 is then obtained by letting 6, = T02, 6 = T0?, w = (?, p=N.and
n =T — N in the equation above. The adjusted estimator P2 is similarly obtained. This
completes the proof. O

Proof of (66). Let

(A.10) A

Il
—_—
=

Pl a At ea -1
) PR -1 anx I/L AX My
s IN] X [p/ IN]) = [ 1;‘]2—1[2 l;vz—llN :

. et -1 V5
@i A = (jn wEp 1N]) -
From Theorem 3.2.11 of Muirhead ( 1982), conditional on /.

(A.12) A ~ Wy(T-N+1.A/T).

Let A; and A; be the (i, j)th element of A and A. respectively. It is straightforward to verify
that

- 1 o 1
(A.13) A]] = =, A = —-.
Y? Y2
where ¢? = 3/ 215 — (' Z71n)2/(IyZ~ " 1y). From (A.12),
Ay Ty’ 2
A.14 Au o _ v ~ AR
(A.19) An/T 7 w XT—N+1
and w is independent of 4. Since
_ hel Al =1 R . —147 =1 -1
Al15) v = TP = T4z z[IN—E (I ) s :]2 4
~ XIZV—I(TwZ)t
we have
. T1)? v N-1
A.16 P 2 X L (A 2
(A.16) P . " (T—N+ l) Fno1,r-na(TY0).
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This completes the proof. O

Proof of (77). The expected out-of-sample performance of the “global minimum-variance”
portfolio rule is given by

(A.17) E[U’(%)f"lmg)] = %E[ﬂgl;vﬁ“‘ﬂ]
- %E[ﬁg (1;2‘"22‘7—‘“)] .

Using the fact that /i and X are independent and E [24') = pu' + Z/T. we can write the
two terms in (A.17) as

A _ A/ZA‘_IIN 5 A—1 (lllvz‘—.:‘—lﬂ)z
(A18)  E[h 1y X ) = E[MA“IE L = E|-AX2 B/
(g Iv 2™ ] ]&Z_HN(N 1) L E Tl
and
22 (1 Al e _ (Il'lﬁ_llN)zf‘—l 1
(A.19) E[,u,g (1N2 >3 1,,,)] - E[ml,vz 51,

vE [\“'Nﬁ”?ﬁ“‘ﬂz] |
T(1, 2~ 1x)2

Lety =X~ Iv/(1y 2! IN)% andnp =52 (1 — pgln) /9. It is easy to verify that v and
n are orthonormal vectors. Denote Q to be an N x (N — 1) orthonormal matrix with its
columns orthogonal to v and its first column equal to 7. Then [v, Q] form an orthonormal
basis of RY. Let W= -2 553 ~ Wn(T — 1.In)/T. We now define an N x N matrix
A as

(A.20) A = ([u; AW . Q])

Using Theorem 3.2.11 of Muirhead (1982), we have A ~ Wn(T — 1.In)/T. Partition A
into two by two submatrices and denote its (i, J)thblock as A;; with the first element of A
denoted as Ay;. Using Theorem 3.2.10 of Muirhead (1982), we have

(A21) u = An—ApAy'An ~ xi_y/T.

1
(A22) 2 = -Ap'An ~ N(Oy_i.In_1/VT),
(A23) An  ~ Wy_((T = 1.Iy_,)/T.

and they are independent of each other. Let e; = (1. Oy_y) and ¢ = 1y £ ~"1y. Using the
partitioned matrix inverse formula, it can be verified that

(A.24) W'y = a/wly = &
u

1, =1

(A.25) WE'w = cug' Wl s ctynwly = w

u

a/'W i = /W' +00YW 'y
c(1+745'7)
u? '

Il

(A26) 1,57'x5 1,
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Using these expressions, we can state (A.18) as
1 s=1\?
€ g + welAzz”Z)

/=1
(A27) EV“Z ”T = E|l~ " ]
u

T 1 ;=1 :
= T—N—2E E (Clug+we|A22'z) An
T / -
N 2E[cu§+¢zel(TAzz) l61’1"122]
T 2 2 P’
0 _
N—2< A ey vy § B

The last equality follows from the fact that 92 — =cug and E[(TAy) ™| =Iv/(T-N-1).
Similarly, the first term in (A.19) can be expressed as

~

T —

/-1 2 1 a3 N2 741
(A28) E[QLE—ﬂQ4x2”2£*HN = |t veidy (1 + A5
(1,5 T1y ) 2

_1 _1
TZE[(c,uf + 21/)c%;1,ge;A2_2'z + wzz'Au: e1e1A,2) (1 + 7A5'7)]
(T-N-2)T-N—4)

_1 _1
TZE[(c,uﬁ + wzz'Azzzele}Azzlz)(l +7'A5'7)]
T-N-2)T-N-23) ‘

Using Theorem 3.2.12 of Muirhead (1982), we have z/Az_zlz =1y /up, where u; ~ x%,_,

and u, ~ x%_y,,, and they are independent of each other. Using this result, the first term
in the expectation is

2 ’a—1 _ 2 up _ 2 N -1
(A29) C/.LgE[l +ZA22 Z] = Cly <l +E [uZJ) - Clig (l + T—N— 1)

(T-2)(0* - y?)
T-N—-1

The second term in the expectation is
2.7 *% ’ —% 7 a—=1
(A30)  E[y’z ApereiAy’z(1+745'7))
-1 ’ “% / _'1‘ ’ —% loa—
= ¢ (E[Z/AzzzelelAzz'Z] +E[fAy e1e1Ay 2z Azle)J)

= uﬂ(Ekunhg—bq+Ekunhg*an«nhg4n+2Ekxzhg—%q)

_ wz[ 1 + _T=NN-1)-2(N-2)
T-N-1 T-MT-N-D)T-N=3)
2T - 2)
+U—MU>N—UU—N—$J
_ (T -2)y?

(T-N-D)(T-N-3)
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where the second to last equality follows the results in Theorem 3.2 of Haff (1979). There-
fore, we have

/y—1 2
(A31) p| W2 peip ey,
(12 11y)?

- (T - 2) ¢_<lj&ﬁ)¢]
- (T-N-1)(T-N-2)(T-N-49) T—-N-3 '
For the second term in (A.19), it can be expressed as

(A32) E[Ukﬁ“VEﬁ‘WNV] _ E[(1+5A£%Y]
' T(1,2-11y)? Tw?

TE [1+2(;;_;)+(;;_;)2}
(T—-N-2)(T-N-4)
T[1+ 2N=1) | (N=1)(N+1) }

_ T-N—1 " (T-N-1)(T-N=3)
N (T—N-2)(T—-N —4)
T(T - 2)(T — 4)

(T-N-1)(T-N-2)T-N-3)(T-N—4)

Combining all the above results, the expected out-of-sample performance is explicitly eval-
uated as

(A.33) EFT(%ﬁ”hmo]

aT ¢ P B AT (T -2)
Y\T-N-2 T-N-1) 29(T-N-1)(T-N-2)

T—;—4_T—;—3 +HT—N~5U—N—®
x[( 0 " ) T—-4 ]

After some simplification, we obtain (77). This completes the proof. O
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