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3D printing, as a production technology, differs from conventional technologies in three characteristics:

design freedom, i.e., it can handle certain product designs that conventional technologies cannot; quality

distinction, i.e., depending on the focal quality dimension, it can lead to a quality level superior or inferior to

that of conventional technologies; and natural flexibility, i.e., it is endowed with capacity flexibility without

sacrificing operational efficiency. This paper investigates the joint impact of these characteristics when a firm

selects conceptual designs to form its product assortment, taking into account the production technology

choices available for each design: 3D printing and two conventional technologies (dedicated and traditional

flexible). Some designs can be processed using any technology (generic), whereas others are specific to 3D

printing (3D-specific). The firm selects designs to be handled by each technology and then invests accordingly

in technology adoption, product development, capacity, and production. We characterize the structure of

the optimal assortment based on the popularity of each design. Within the sets of generic designs and 3D-

specific designs, respectively, the most popular designs should be included in the assortment; under a mild

condition, the optimal assortment comprises the most popular ones among all the designs. Within the optimal

assortment, 3D printing should handle the less popular generic designs than conventional technologies. We

further demonstrate that the design freedom or improved quality associated with 3D printing may reduce the

firm’s optimal product variety. In the absence of design freedom and quality distinction, natural flexibility

by itself always enhances product variety; by contrast, traditional flexible technology may reduce product

variety. Numerical study shows that 3D printing tends to be more valuable when popularities of the generic

designs are distributed more evenly and when popularities of the 3D-specific designs are distributed less

evenly.
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1. Introduction

Firms are rapidly embracing 3D printing for the mass production of their new product assortments,

especially in design-intensive industries. For instance, Nike recently announced its Flyprint series

of 3D-printed shoe uppers used in performance footwear (Nike News, 2018). In IKEA’s Omedelbar
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furnishing collection, several 3D-printed objects stand together with traditionally manufactured

products (Alexandrea, 2017). IKEA is also developing its ThisAbles line, which includes 13 different

3D-printed add-ons that can help people with disabilities (Fingas, 2019). An Indian jewelry firm,

Titan Company Ltd., now uses 3D printing to create new jewelry to satisfy its consumers’ constantly

shifting tastes (Materialise, retrieved 2019). Another jewelry firm, Nervous System, employs a

variety of manufacturing technologies including 3D printing to fabricate its product lines (n-e-r-v-

o-u-s.com, retrieved 2020). 3D printing is also prospering in many other industries, such as toys,

clothes, medical devices, and aerospace.

When used for mass production, 3D printing features several key characteristics that distinguish

it from conventional production technologies:

First, design freedom: 3D printing can handle certain designs that conventional technologies can-

not. Conventional technologies construct geometric configurations using methods such as injection

molding, machining, and casting. These methods use the “subtractive” approach, which has limita-

tions in the geometric shapes it can handle. By contrast, 3D printing constructs items through an

“additive” approach: printing an item layer by layer allows almost any geometric shape to be built

(Stackpole, 2016); this opens the technology to more designs. Moreover, the additive approach of

3D printing incurs lower product development costs than conventional technologies. Unlike con-

ventional technologies that require a laborious process to transfer a design to a physical prototype,

3D printing requires only a digital file. The aforementioned Titan Company Ltd. and Nervous Sys-

tem benefit substantially from 3D printing’s design freedom, which enables them to deliver to the

market more versatile and detailed jewelry designs that have proven popular among consumers.

Second, quality distinction: Depending on the focal quality dimension, 3D printing can lead to a

quality level superior or inferior to that of conventional technologies. On the one hand, the special

manufacturing process of 3D printing results in more sophisticated inner microstructures of certain

items, leading to a desirable reduction in weight. For example, the special 3D-printed textiles

of Nike’s Flyprint shoe uppers make the footwear lighter than conventionally made ones, which

enhances athletic performance. On the other hand, as a technology in development, 3D printing

has yet to overcome the problems of porosity, uneven surfaces, and the limitation of materials

(Molitch-Hou, 2017), which have been maturely addressed by conventional technologies. Broadly

speaking, if delivery speed is perceived as part of product quality, then the long processing time

of 3D printing may negatively affect consumer satisfaction when purchasing 3D-printed products.

The good news is that recent technology advancements in high-speed sintering have significantly

increased the speed of 3D printing (Jackson 2017) and considerable progress has been made to

address the aforementioned quality issues (D’Aveni 2018b).
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Last but not least, natural flexibility : 3D printing enjoys capacity flexibility without sacrificing

operational efficiency. Capacity flexibility refers to the capability of handling different products

within one production system. The classic flexible manufacturing system is based largely on soft

automation: Production lines are equipped with changeable operations that can be configured to

meet the needs of different products. In such systems, a higher variety of products unavoidably

requires more complicated tooling and machinery, more frequent changeovers, and higher energy

consumption, which decreases operational efficiency. By contrast, 3D printing is not “designed”

to be flexible; it is flexible by nature—its production efficiency is not influenced by how many

different products are handled, as long as the products meet the 3D printer’s material and size

standards (Ben-Ner and Siemsen, 2017). Admittedly, 3D printing is not as efficient as conventional

technologies in many cases, but its constant efficiency does serve as an appealing advantage over

the traditional flexible manufacturing systems, especially in high product variety environments.

Given these distinct characteristics, it is not surprising that design-intensive industries such as

apparel, home-furnishings, and jewelry were among the pioneers in adopting 3D printing in large-

scale manufacturing. A strategic question accompanies this technology adoption: How and to what

extent will the technology adoption affect a firm’s product offering strategy? Motivated by the 3D

printing adoption in design-intensive industries, we study how the key characteristics of 3D printing

would affect a firm’s decision when it develops conceptual designs into a product assortment for

the market. Since 3D printing is often considered along with conventional technologies as possible

technology choices, we also include in our study two representative conventional technologies: ded-

icated technology and traditional flexible technology. We ask the following questions to understand

the role of production technologies, especially 3D printing, in a firm’s product assortment strategy:

1) What is the structure of the firm’s optimal product assortment? 2) How would the introduction

of 3D printing affect product variety offered by the firm? 3) When is 3D printing most valuable

for the firm?

We model a firm with two sets of product designs: a generic set, in which the designs can be

handled by any technology, and a 3D-specific set, in which the designs can only be handled by

3D printing. The firm selects its product assortment from the two sets of designs, determines the

corresponding production technologies, and invests in the required technology adoption, prototyp-

ing, capacity, and production. Dedicated technology has no capacity flexibility; traditional flexible

technology has capacity flexibility, but handling more designs decreases efficiency; and 3D print-

ing, by its natural flexibility, has capacity flexibility with constant efficiency. Market demand for a

product is determined by two factors: First, the product design’s intrinsic popularity as perceived

by the consumer population, regardless of the production technology, and second, product quality,
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which depends on the production technology, as 3D printing and conventional technologies can

result in varying quality levels.

We start by characterizing the properties of the optimal assortment structure. We find that, for

both the generic set and the 3D-specific set, the selected subset must comprise the most popular

designs from the corresponding parent set. Although the overall assortment does not necessarily

comprise the most popular designs from the union of the two sets, it does if 3D printing is used

for handling at least one generic design. Within the assortment, 3D printing should always handle

the less popular designs than the two conventional technologies. Between the two conventional

technologies, traditional flexible technology can handle the more or the less popular designs than

those handled by dedicated technology, as long as designs handled by this technology are in con-

secutive popularity rankings. Those structural properties are driven jointly by 3D printing’s three

characteristics, and hold regardless of whether the quality of 3D-printed products is superior or

inferior to that of conventional technologies.

We further shed light on how product variety, i.e., the firm’s optimal assortment size, is affected

by the introduction of 3D printing, especially regarding the three characteristics of this technol-

ogy. We find that design freedom and quality distinction have the most non-intuitive impact on

product variety. Specifically, product variety may decrease despite the design freedom brought by

3D printing. As the quality of 3D printing continues to improve, product variety may increase

and then decrease multiple times. We observe these results because, when the firm determines

its product variety, it optimizes the overall market share of the assortment; 3D printing’s design

freedom and quality distinction will introduce market share cannibalization in various ways such

that product variety does not necessarily increase. We also find that, in the absence of design

freedom and quality distinction, the natural flexibility characteristic by itself always leads to an

increased product variety. This is because it allows the firm to use the demand-pooling effect

to mitigate the supply-demand mismatch problem for a larger assortment without undermining

capacity/production efficiency. By contrast, traditional flexibility, whose greater degree of flexi-

bility compromises capacity/production efficiency, may decrease product variety because the firm

may focus on pooling demand for only a few products to simultaneously maintain efficiency and

reduce supply-demand mismatch.

Finally, we investigate how the value of 3D printing depends on the characteristics of the product

design set. To do so, we simulate design popularities that exhibit a “long tail” pattern by drawing

random values from exponential distributions. We use the Gini index, an index that is commonly

used for measuring income inequality, to measure the degree of unevenness of design popularities

for the generic set and for the 3D-specific set, respectively. We find that 3D printing tends to
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be more valuable when popularities of generic designs have a lower Gini index (i.e., are more

evenly distributed), and when popularities of 3D-specific designs have a higher Gini index (i.e.,

are less evenly distributed). We also find that 3D printing is more valuable when the generic

set is smaller, the 3D-specific set is larger, or designs have lower popularities on average. As

an interesting contrast, we observe that dedicated technology is more valuable when the generic

designs have a higher popularity Gini index and the 3D-specific designs have a lower popularity

Gini index. Traditional flexible technology generally has little value in the presence of the other

two technologies.

2. Related Literature

This paper contributes to the growing literature on the operational implications of 3D printing.

D’Aveni (2018a) provides a comprehensive summary of the business contexts of 3D printing. Aca-

demic research investigates this novel technology from several angles. On the manufacturing side,

Westerweel et al. (2018) compare the traditional method and 3D printing for component production

through a life cycle cost analysis. Hu and Sun (2021) focus on the self-replicating characteristic of

3D printers, i.e., 3D printers can be used to produce new 3D printers, and characterize the optimal

make-or-sell policy in this setting. On the logistics side, Song and Zhang (2020) study the choice

between make-to-stock with traditional methods and print-on-demand with 3D printing in spare

parts production. Westerweel et al. (2020) study the implementation of 3D printing in the Royal

Netherlands Army’s logistic system, with a focus on dual sourcing. Zhang et al. (2020) consider a

new logistic business model where OEMs can sell intellectual property licenses for 3D-printed spare

parts. On the retailing side, Sethuraman et al. (2018) consider the phenomenon that 3D print-

ing digital files may be fabricated by consumers and study whether it should be used as a firm’s

operational strategy. Arbabian and Wagner (2020) compare manufacturer adoption and retailer

adoption of 3D printing in a supply chain. Chen et al. (2021) focus on 3D printing’s mass cus-

tomization capability and examine its impact on dual-channel retailing. Different from the above

papers, our paper considers the interaction of technology choices and product assortment decisions

with a consideration of several key characteristics of 3D printing. The design freedom characteristic

is not considered in the above papers. Although quality distinction and natural flexibility are also

considered in some of the above papers, we study these characteristics in a completely different

setting that leads to insights specific to assortment decisions and product variety.

This paper also lies within the vast literature on assortment planning. Many papers in this

literature seek to understand how to select product assortment based on the order of a certain

product feature. The order of revenue markup is considered in Talluri and van Ryzin (2004),
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Hopp and Xu (2005), Alptekinoğlu and Semple (2016), Wang and Wang (2017), and Wang (2018).

The order of product popularity among the consumer population is considered in van Ryzin and

Mahajan (1999), Cachon et al. (2005), Gaur and Honhon (2006), Cachon and Kök (2007), and Kök

and Xu (2011). The order of product quality is considered in Pan and Honhon (2012) and Wang

et al. (2021). Our model is built upon the seminal framework of van Ryzin and Mahajan (1999)

with a focus on product popularities, but we also consider different product revenue markups and

qualities implied by the different production technologies. The 3D-printing context also triggers

factors that are not yet considered in the assortment planning literature, such as flexible capacity

and multiple sets of potential designs to be selected by multiple technologies.

Finally, this paper is related to the literatures on product quality design and on flexible capacity.

Under the topic of designing differentiated product quality, Netessine and Taylor (2007) study

the impact of general technological costs, whereas Chen et al. (2013, 2017) specifically study the

impact of the coproduct technology. We consider different product quality delivered by conventional

technologies and 3D printing. Within the extensive literature on flexible capacity, Van Mieghem

(1998), Van Mieghem and Rudi (2003), Chod and Rudi (2005), Chod et al. (2010), Boyabatlı and

Toktay (2011), Chod and Zhou (2013), and Boyabatlı et al. (2015) focus on the investment strategy

of dedicated and flexible capacities. We adopt the modeling assumptions of this literature to capture

capacity and production decisions. Jordan and Graves (1995), Chou et al. (2010, 2011), Simchi-Levi

and Wei (2015), and Wang and Zhang (2015) focus on how to design the flexibility network. The

assortment portfolio decision in our paper is also relevant to designing the network that connects

products and dedicated/flexible resources. Bassamboo et al. (2010) combine these two streams of

research by assuming an increasing unit capacity cost in the degree of flexibility, which inspires

us to make a similar assumption for traditional flexible technology. In sum, 3D printing’s distinct

characteristics indicate that adopting the technology will have multifaceted implications, and thus

entail issues (such as assortment and flexibility) that were usually studied in different streams of

literature, while introducing new research questions such as the impact of design freedom and the

comparison of natural flexibility and traditional flexibility.

3. Model

We consider a monopoly firm planning to launch a new set of product offerings for a specific

selling season (e.g., one product life cycle). Product development and capacity building are time-

consuming activities and need to be completed before the selling season starts. Hence, before the

selling season, the firm selects from a variety of product designs and determines the correspond-

ing production technology from three choices: 3D printing, dedicated technology, and traditional
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Table 1 Notations

G Generic Set Yi Demand

S 3D-Specific Set xDi, xT , xP Capacity

D Dedicated Technology Set pD, pT , pP Price

T Traditional Flexible Technology Set qD, qT , qP Quality

P 3D Printing Set aD, aT , aP Technology Adoption Cost

vi Popularity dD, dT , dP Product Development Cost

si Market Share cD, cT (·), cP Unit Capacity Cost

λ Market Size rD, rT (·), rP Unit Production Cost

σ Market Uncertainty

Note: i is the subscript for a product design, and D, T , and P are subscripts for technologies.

flexible technology. During the selling season, the firm fulfills market demand with its production

activity.

The firm’s product assortment decision and technology selection decision will shape market

demand for its products, while investments in the corresponding technology adoption, product

development, capacity, and production will determine its supply capability. In the following, we

describe the demand side and the supply side in turn. Table 1 summarizes the notations used in

the model.

3.1. Assortment Selection and Demand Shaping

The firm is endowed with two sets of potential designs that can be converted into physical products:

G is the generic set, which contains designs that could be produced by both conventional technolo-

gies and 3D printing; S is the 3D-specific set, which contains designs that could be produced only

by 3D printing.1 The existence of S manifests 3D printing’s design freedom. For example, for a

jewelry producer such as Nervous Systems, G includes conventional designs while S includes novel,

eccentric designs that can only be 3D printed. The firm’s assortment decision involves selecting

designs from the two sets and assigning them to appropriate technologies. Let D denote all the

designs selected for dedicated technology, T denote all the designs selected for traditional flexible

technology, and P denote all the designs selected for 3D printing (e.g., the 3D-printed designs in

IKEA’s Omedelbar collection or Nike’s designs in the Flyprint collection). By definition, we have

D⊆G, T⊆G, and P⊆G∪S. Define (D,T,P) as the firm’s assortment portfolio and A≡D∪T∪P

1 In Section 8.3, we additionally consider a set in which designs can be produced only by conventional technologies.
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as the firm’s overall assortment. We assume that D, T, and P are pairwise disjoint; that is, different

technologies handle different designs.2

A selected design will be turned into a product manufactured by the assigned technology. For

expositional convenience, we do not differentiate between the index of a design and the index of its

corresponding product, i.e., product i means a product originated from design i. We now describe

how the assortment portfolio (D,T,P) shapes the firm’s demand. We assume that any consumer

t’s utility of purchasing product i is determined by

uit(D,T,P) = vi+ εit+qD ·1{i∈D}+qT ·1{i∈T}+qP ·1{i∈P}−pD ·1{i∈D}−pT ·1{i∈T}−pP ·1{i∈P}. (1)

In addition, there is an outside choice that gives the consumer zero utility.

In this formulation, vi+εit represents the extent to which design i is liked by consumer t. It is the

value delivered by design i itself and independent of the production technology. vi captures design

i’s average valuation by the consumer population, whereas εit captures consumer t’s special taste

for design i. εit follows a Gumbel distribution with mean 0 and variance π2/6 across the consumer

population. qΩ (Ω∈ {D,T,P}) represents the quality level, which depends on the technology Ω used

to produce product i. In practice, dedicated technology and traditional flexible technology typically

share similar manufacturing mechanisms (e.g., the subtractive approach); therefore, consumers

cannot distinguish between products produced by the two conventional technologies. Thus, qD = qT

usually holds. Nevertheless, our model allows qD and qT to differ for generality. Consumers are

indeed informed if a product is 3D printed (e.g., IKEA, Nike, and Nervous System explicitly do

so) and aware of the quality distinction between 3D printing and conventional technologies, so qP

usually differs from qD and qT . Depending on the scenario, qP can be higher (e.g., more sophisticated

inner microstructure) or lower (e.g., material issue and porosity) than qD and qT . Besides physical

product quality, qΩ can also include the service quality delivered by technology Ω; for example,

in the case that 3D printing has a long production lead time, qP can account for the consumer

disutility from waiting (a similar assumption is made in Chen et al., 2021). We also allow products

handled by different technologies to charge different prices, which are pD, pT , and pP . The prices are

exogenously determined by the firm’s market environment, which is a widely-adopted assumption

in the assortment planning (e.g., van Ryzin and Mahajan, 1999; Cachon et al., 2005; Gaur and

2 A 3D-printed product and a conventionally produced product can have different qualities. For quality consistency
across units, firms often do not produce the same design using two different technologies. Moreover, allowing one
design to be handled by multiple technologies significantly complicates product-technology management and the
assortment portfolio decision. The analysis of the case with overlapping D, T, and P is outside the scope of the current
paper.
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Honhon, 2006) and capacity flexibility (e.g., Van Mieghem, 1998; Van Mieghem and Rudi, 2003)

literatures. Section 8.1 extends our model to the endogenous pricing setting.

Following the above consumer utility formulation, the market share of product i, si can be

formulated as a multinomial-logit model:

si(D,T,P) =

(
eqD−pD ·1{i∈D}+ eqT−pT ·1{i∈T}+ eqP−pP ·1{i∈P}

)
· vi

1 + eqD−pD ·
∑
j∈D

vj + eqT−pT ·
∑
j∈T

vj + eqP−pP ·
∑
j∈P

vj
, (2)

where e is Euler’s number and vi = evi . The multinomial-logit model has been commonly used in

the literature to formulate consumer choices; see, e.g., Hopp and Xu (2005) and Wang (2018). We

define vi as the popularity of design i—everything else being equal, a higher vi means that the

product is more popular among consumers.

Let λ represent market size and σ represent market uncertainty. The aggregate demand for

product i, Yi, follows a normal distribution with mean λsi and standard deviation σ
√
si. The

demands for different products are independent. Note that a product with a higher market share

si enjoys lower demand variability, which is measured by the coefficient of variation σ
λ
√
si

. This is

a classic demand model in the assortment planning literature (see, e.g., van Ryzin and Mahajan,

1999; Cachon et al., 2005; Gaur and Honhon, 2006) that can be shown to be an outcome of

aggregating demand from random consumer arrivals. For example, when consumer arrivals follow

a Poisson process, the aggregate demands approximately exhibit this distribution.

3.2. Technology Investment

To produce a product with a given technology, the firm needs to incur fixed costs for technol-

ogy adoption and product development, and variable costs for capacity and production. We now

describe the cost components for each of the three technologies.

An adoption cost is incurred when the firm decides to use a technology to handle some designs,

i.e., the corresponding set is non-empty. The adoption costs of dedicated technology, traditional

flexible technology, and 3D printing are, respectively, aD, aT , and aP . Thus, the total adoption

cost for the firm is aD ·1{D 6=∅}+aT ·1{T6=∅}+aP ·1{P 6=∅}. Setting adoption cost aΩ =∞ means that

technology Ω is prohibitively expensive, i.e., unavailable to the firm, whereas setting aΩ = 0 means

that the technology can be freely adopted or is already available to the firm. These two special

cases of adoption cost will be used later for comparative studies.

The development cost is dD for each product in D, dT for each product in T, and dP for each

prodcut in P. Product development includes all the effort involved in converting the conceptual

design into a real prototype; e.g., the process of converting jewelery paints to a piece of physi-

cal jewelery. This process is laborious with conventional technologies because it usually requires
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frequent interactions between intellectual resources (e.g., designers) and physical resources (e.g.,

prototyping equipment). Product development would be simpler for 3D printing because it requires

mainly working with the digital files. Thus, we assume dP ≤min{dD, dT}. The total development

cost for the firm is dD · |D|+ dT · |T|+ dP · |P|.3

The firm needs to build capacity (machinery, tooling, workforce) for each technology to prepare

for production. For dedicated technology, the firm decides a capacity xDi for each product i ∈ D,

with a unit capacity cost of cD. We assume a homogeneous cost structure for products produced

using the same technology because these products are horizontally differentiated and require similar

resource inputs.

For traditional flexible technology, the firm decides a capacity xT that is shared among all

the products in T. We refer to a capacity capable of handling n products as n-flexible, which is

consistent with the “mixed flexibility” defined in Suarez et al. (1995). Traditional flexible technol-

ogy’s capacity is thus |T|-flexible. The unit capacity cost cT (|T|) weakly increases in |T| due to

more complicated tooling and more frequent changeovers (see Bassamboo et al., 2010 for a similar

assumption).

For 3D printing, the firm decides a capacity of xP that is shared among all the products in

P. Different from traditional flexible technology, 3D printing possesses natural flexibility, which

means that the unit capacity cost is independent of the variety of products the technology handles.4

Capacity cost can be used to account for slow speed of 3D printing (if that is the case): A longer

processing time calls for a larger number of machines/3D printers to meet the production target

on time, which increases the equipment cost for each unit of product. In sum, the unit capacity

cost is a constant cP .

Technology adoption, product development, and capacity investment are strategic decisions with

long-term impacts over the entire selling season. Hence, those decisions are made and executed

before the selling season. We assume that the firm carries out production activities throughout

the selling season to meet consumer demand. We focus on the key interdependence between the

firm’s ability to meet the season’s demand and its capacity level: the season’s total sales are∑
i∈D min{xDi,Yi}, min{xT ,

∑
i∈TYi}, and min{xP ,

∑
i∈PYi} for dedicated technology, traditional

flexible technology, and 3D printing, respectively. To deliver clean insights, we abstract away from

modeling the firm’s in-season inventory replenishment and assume the firm’s demand-fulfillment

3 We use a linear function to model the total development cost for expositional convenience. The main results may
still hold under the assumption of a general increasing function.

4 Capacity cost may depend on the variety of materials it can handle; e.g., handling both plastic and metal will be
more expensive than handling just plastic. In this paper, we consider products in the same category and they have
the same material requirements under the same technology. Hence, 3D printing has a constant unit capacity cost.
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cost has a linear structure with unit costs rD, rT , and rP for the three technologies. The linear

demand-fulfillment cost is a common assumption in the operations flexibility literature where the

focal decision is capacity investment (e.g., Van Mieghem, 1998 and Bassamboo et al., 2010).5 For

the sake of brevity, we refer to rD, rT , and rP as the unit production costs. Following a similar

rationale for the unit capacity costs, dedicated technology and 3D printing have constant unit

production costs, whereas traditional flexible technology’s unit production cost rT (|T|) weakly

increases in |T|.

4. Initial Analysis

Given assortment portfolio (D,T,P), the firm’s capacity decision {xDi}i∈D, xT , and xP is akin to a

newsvendor problem. Under the normal distribution, solving the optimal capacities gives rise to a

closed-form expression of the firm’s profit that depends on (D,T,P), as follows:

Π(D,T,P) = G(D,T,P)−M(D,T,P)−F(D,T,P), (3)

where

G(D,T,P) =λ

[
(pD− cD− rD)

∑
i∈D

si(D,T,P)

+ (pT − cT (|T|)− rT (|T|))
∑
i∈T

si(D,T,P) + (pP − cP − rP )
∑
i∈P

si(D,T,P)

]
,

(4)

M(D,T,P) =σ

[
(pD− rD)φ(zD)

∑
i∈D

√
si(D,T,P)

+ (pT − rT (|T|))φ(zT (|T|))
√∑

i∈T

si(D,T,P) + (pP − rP )φ(zP )

√∑
i∈P

si(D,T,P)

]
,

(5)

and

F(D,T,P) =

[
aD ·1{D 6=∅}+ dD · |D|

]
+

[
aT ·1{T6=∅}+ dT · |T|

]
+

[
aP ·1{P 6=∅}+ dP · |P|

]
. (6)

In this formulation, product i’s market share si(D,T,P) follows Equation (2); Φ(·) and φ(·)

denote the c.d.f. and the p.d.f. of a standard normal distribution; zD = Φ−1(1− cD
pD−rD

), zT (|T|) =

Φ−1(1− cT (|T|)
pT−rT (|T|)), and zP = Φ−1(1− cP

pP−rP
) are the newsvendor safety factors. That is, the optimal

capacities are x∗Di = λsi + σzD
√
si, x∗T = λ

∑
i∈T

si + σzT
√∑

i∈T
si, and x∗P = λ

∑
i∈P

si + σzP
√∑

i∈P
si. The

total profit Π(D,T,P) equals the gross profit G(D,T,P) minus the supply-demand mismatch cost

5 The linear demand-fulfillment cost structure also lends itself to formulating make-to-order production and make-to-
stock production in a short selling season. We provide a detailed discussion in Section 8.2.
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M(D,T,P) and minus the fixed cost F(D,T,P). The firm’s assortment selection problem is thus

formulated as:

max
D,T,P

Π(D,T,P),

s.t. D⊆G, T⊆G, P⊆G∪S;

D∩T=T∩P= P∩D=∅.

(7)

The first constraint in Formulation (7) states that dedicated and traditional flexible technologies

handle generic designs only, whereas 3D printing can handle both generic and 3D-specific designs.

The second constraint enforces that each design is assigned to one production technology only.

Next, we make four observations about the trade-offs that are in play for the firm’s assortment

decision.

First, G(D,T,P) in Equation (4) shows that the gross profit opportunity associated with each

technology, which is determined by the corresponding unit gross margin and the market share of

each product handled by the technology, should motivate the firm to assign designs to technologies

with high gross margins. It is not uncommon in today’s manufacturing practice that dedicated

technology yields a higher gross margin than flexible technologies, while traditional flexible tech-

nology, if not handling too many products, should have a higher margin than 3D printing. However,

when a technology offers superior product quality, and thus affects the market shares of products

assigned to it, the firm may favor the technology even when the unit gross margin is not high.

Second,M(D,T,P) in Equation (5) shows that the mismatch cost of each technology increases in

the market share covered by the technology; traditional flexible technology and 3D printing enjoy

the demand-pooling benefit enabled by their capacity flexibility, which means that, as the market

share coverage increases, their mismatch costs increase at a slower speed than that of dedicated

technology. However, the unit capacity/production cost of traditional flexible technology weakly

increases in the number of products it handles, whereas the unit capacity/production of 3D printing

is constant based on its natural flexibility. Thus, as far as the mismatch cost is concerned, the firm

should prefer to assign products to traditional flexible technology or 3D printing; 3D printing is

especially useful for a large number of products.

Third, F(D,T,P) in Equation (6) shows that, different from gross profit and mismatch cost, the

fixed adoption cost and product development cost are not affected by the market share of each

design in the assortment. The fixed cost is affected only by the size of each technology set in the

assortment portfolio, and lower product development costs make the firm more inclined to choose

a larger assortment.
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Finally, the constraints in Formulation (7) suggest that the design freedom of 3D printing,

represented by set S, can be an important reason for the firm to adopt 3D printing because it offers

more design options to choose from.

5. Assortment Structure

In this section, we characterize the structural properties of the firm’s optimal assortment portfolio

by solving the problem formulated in (7). The structural properties presented in this section and

results in the ensuing sections hold when there exist multiple optimal solutions. Since the problem

requires the determination of multiple sets, we compare designs selected for different technologies:

first, between 3D printing and the two conventional technologies; then, between dedicated technol-

ogy and traditional flexible technology; and finally, between the overall assortment and the designs

not included in the assortment.

5.1. 3D Printing versus Conventional Technologies

We first compare designs selected for 3D printing and for conventional technologies.

Proposition 1 Let (D∗,T∗,P∗) be the optimal assortment portfolio. Then:

(i) For any i∈D∗ and any j ∈G∩P∗, vi ≥ vj;

(ii) For any i∈T∗ and any j ∈G∩P∗, vi ≥ vj.

Recall that vi and vj represent the popularities of design i and design j, respectively. Proposition

1(i) implies that, within the generic set G, the designs handled by dedicated technology should

be more popular than the designs handled by 3D printing. This represents an ordered structure

between the two technologies. To see the rationale behind this property, let us consider a given

assortment portfolio and focus on two designs in the generic set, i, j ∈ G, with vi > vj. Consider

three possible cases of assigning i and j between dedicated technology and 3D printing: (1) i ∈D

and j ∈ P; (2) i∈ P and j ∈D; and (3) i, j ∈ P. Case (1) and Case (3) satisfy the ordered structure

but Case (2) does not. Everything else being fixed, among the three cases, Case (1) and Case (3)

respectively result in the lowest and highest aggregate popularity handled by 3D printing, with

Case (2) falling in between. Note that, from Equation (5), the square root form of mismatch costs

indicates that there are economies of scale in the aggregate market share handled by a capacity

of any technology. Due to economies of scale and the pooling effect brought by 3D printing’s

natural flexibility, G −M is quasi-convex in the aggregate popularity handled by 3D printing

among the three cases. Adding the fixed cost F , we can conclude that Case (2), which violates

the ordered structure, can be “improved” by Case (1) or Case (3). Following a similar deduction,
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if an assortment portfolio violates the ordered structure between D and P, we can apply the

aforementioned approach to product pairs violating the ordered structure in an iterative fashion

and improve the firm’s profit.

Proposition 1(ii) confirms that, the ordered structure within the generic set G also holds between

traditional flexible technology and 3D printing. To see the rationale, let us consider an assortment

portfolio with design j ∈T, design i∈ P, and vi > vj, which violates the ordered structure. We will

show that we can construct ordered structure assortment portfolios for the same overall assortment

that dominates this portfolio. Consider two possible scenarios of set T size: (1) set T is relatively

small and the corresponding unit capacity/production cost of handling T is low, and (2) set T is

relatively large and the corresponding unit capacity/production cost is high. Under Scenario (1),

the firm can improve its profit by exchanging the assignment of design i and design j, i.e., letting

the more cost-efficient traditional flexible technology handle the more popular design i and 3D

printing handle the less popular design j. Doing so will not affect the unit capacity/production

cost of traditional flexible technology because there is no change in |T|. Under Scenario (2), the

firm’s profit can be improved by moving all the designs in set T to set P. Doing so creates a

greater demand-pooling effect without affecting 3D printing’s unit capacity/production cost, and

significantly reduces the supply-demand mismatch cost. Hence, under either scenario, an assortment

portfolio that violates the ordered structure between T and P can be further improved, and cannot

be optimal.

A noteworthy message from Proposition 1 is that the ordered structure holds regardless of the

quality level of 3D printing. That is, 3D printing should be used to handle the less popular designs

even if it delivers higher quality than conventional technologies. The quality of 3D printing indeed

affects the cut-off point between the “more popular” designs and the “less popular” designs, but

the ordered structure will always hold.

Note that the ordered structure between conventional technologies and 3D printing applies only

to designs in the generic set. If 3D-specific designs are selected into the optimal assortment, they can

be more popular than designs handled by conventional technologies. The ordered structure property

and the design freedom of 3D printing corroborate various industry observations. For example,

experts claim that 3D printing should be used to produce low-volume and long-tail products (Smith,

2015; Pooler, 2017). The ordered structure property supports this recommendation if the low-

volume products (i.e., less popular products) are generic designs. In other examples, 3D printing

can be used to produce highly popular products (i.e., high-volume products) if they are 3D-specific

designs, e.g., the jewelry firm Titan benefits from 3D printing’s design freedom.
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5.2. Dedicated Technology versus Traditional Flexible Technology

We now compare designs selected for dedicated technology and for traditional flexible technology.

Proposition 2 Let (D∗,T∗,P∗) be the optimal assortment portfolio. If T∗ 6=∅, then for any i∈D∗,

either vi ≥max{vj : j ∈T∗}, or vi ≤min{vj : j ∈T∗}.

Proposition 2 implies that any design handled by dedicated technology should be either more

popular or less popular than all the designs handled by traditional flexible technology. In other

words, if two designs are assigned to traditional flexible technology, then designs with popularity

falling in between those of the two designs should also be handled by traditional flexible technology.

This pattern represents a clustered structure of traditional flexible technology. To see the rationale,

consider three designs i, j, k ∈G with vi > vj > vk, and three possible cases of assigning those designs

between dedicated technology and traditional flexible technology: (1) i ∈D and j, k ∈ T; (2) j ∈D

and i, k ∈ T; and (3) k ∈D and i, j ∈ T. Case (1) and Case (3) satisfy the clustered structure but

Case (2) does not. Everything else being fixed, the three cases have the same size of T and thus

the same unit capacity/production cost for traditional flexible technology. Among the three cases,

Case (1) and Case (3), respectively, lead to the lowest and highest aggregate popularity pooled

within the traditional flexible capacity, whereas Case (2) falls in between. Similar to what has been

shown for Proposition 1(i), the convexity of G −M makes Case (2) dominated by either Case (1)

or Case (3). The rationale for the local clustered structure among three designs can be applied

repeatedly to explain the global clustered structure.

The clustered structure implies three possible popularity rankings between designs in D∗ and

designs in T∗: (a) dedicated technology produces the most popular designs and traditional flexible

technology produces the least popular designs; (b) dedicated technology produces the least pop-

ular designs and traditional flexible technology produces the most popular designs; (c) dedicated

technology produces the most and the least popular designs and traditional flexible technology

produces moderately popular designs. Ranking (a) is, perhaps, the most intuitive one and has been

recognized in practitioners’ discussions regarding how flexible technology should be used (Bowman

and Kogut, 1995). We show in the following numerical example that ranking (b) and ranking (c)

can also emerge in the optimal assortment portfolio.

Example 1 Set aD = aT = 0 and aP =∞. Let G = {1,2,3,4,5,6,7,8} with vi = 0.055− 0.005 · i,

λ= 1, pD = pT = qD = qT = 10, cD = rD = 2, cT (n) = rT (n) = 2.3 for n≤ 4 and 3 for n > 4, dD =

dT = 0.01. Figure 1 depicts how the optimal portfolio changes as market uncertainty σ increases.
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Figure 1 Example 1 Illustration

In Example 1, we focus on the two conventional technologies by assuming an infinite adoption

cost for 3D printing. In Figure 1, the horizontal axis represents market uncertainty σ and the

vertical axis indicates designs 1–8 with design 1 being the most popular and design 8 being the least

popular. The dark/grey color indicates that the design is selected for dedicated/traditional flexible

technology. When σ ∈ [0,0.068), all the designs are produced by dedicated technology, which is a

special case of ranking (a). When σ ∈ [0.068,0.134), ranking (a) holds. When σ ∈ [0.134,0.182),

ranking (c) holds; when σ ∈ [0.182,0.3], ranking (b) holds. The overall observation is that, under a

higher market uncertainty, the firm tends to assign designs with higher popularities to traditional

flexible technology to focus on reducing the mismatch cost for the more popular designs, while

excluding the less popular designs from the flexible capacity to maintain capacity/production

efficiency.

5.3. Overall Assortment

In the assortment planning literature, it has been shown in many settings that the optimal assort-

ment should comprise the most popular product variants (e.g., van Ryzin and Mahajan, 1999;

Cachon et al., 2005; Cachon and Kök, 2007; Kök and Xu, 2011). In this subsection, we show that

when technology choice is considered jointly, some nuance is introduced to the “most popular”

structure. The next proposition compares designs included and designs not included in the optimal

overall assortment.

Proposition 3 Let (D∗,T∗,P∗) be the optimal assortment portfolio and A∗ ≡ D∗ ∪T∗ ∪ P∗ be the

corresponding overall assortment. Then the following hold:
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(i) For any i∈G∩A∗ and any j ∈G/A∗, vi ≥ vj;

(ii) For any i∈ S∩A∗ and any j ∈G∪S/A∗, vi ≥ vj;

(iii) If G∩P∗ 6=∅, then for any i∈A∗ and any j ∈G∪S/A∗, vi ≥ vj.

Proposition 3(i) states that, within the generic set G, any design included in the assortment

should be more popular than any design not selected. This is because, if a less popular design

instead of a more popular design is selected, we can always improve the firm’s profit by either

replacing the less popular design with the more popular one or removing the less popular one from

the assortment. However, it is possible that a design selected from the generic set is less popular

than a more popular 3D-specific design not included in the assortment because the former, when

handled by a conventional technology, is not replaceable by the latter. Proposition 3 (ii) states that

any 3D-specific design selected should be more popular than any designs (generic or 3D-specific)

not selected. This is because a less popular 3D-specific design selected for 3D printing is replaceable

by a more popular generic design, and thus the firm’s profit can be improved by such a replacement

or by removing the less popular 3D-specific design.

Proposition 3(i)–(ii) imply that the “most popular” structure holds within each individual design

set, G and S, to which we refer as the enclosed most popular structure. However, the “most popular”

structure does not necessarily hold for the overall set of designs, G∪S, because, as mentioned above,

a generic design inside the assortment may be less popular than a 3D-specific design outside the

assortment. Proposition 3 (iii) states that the overall most popular structure holds if 3D printing is

utilized to handle at least one generic design. This result is due to the ordered structure established

in Proposition 1 and the natural flexibility of 3D printing. Specifically, under the stated condition,

3D printing must be handling the least popular generic design within the assortment. If any design,

generic or 3D-specific, outside the assortment is more popular than the least popular generic design

handled by 3D printing, then the firm’s profit can be improved by letting 3D printing handle the

more popular design instead or removing the least popular generic design from the assortment,

which follows the same logic of the above discussion for Proposition 3(i).

Propositions 1–3 jointly describe the structural properties that must be satisfied by the opti-

mal assortment portfolio. Figure 2 provides an illustration of what a general optimal assortment

portfolio should look like. Interestingly, the structure means that the problem formulated in (7),

which is originally combinatorial, now collapses into an algebraic one where only several integers

are the decision variables. Namely, the firm only needs to decide |D|, |T|, |P∩G|, |P∩ S|, and the

number of designs in D that are more popular than designs in T; then the assortment portfolio can

be fully characterized by applying the above structural properties. This simplification facilitates

the analytical and numerical studies presented in the following sections.
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Figure 2 The General Structure of Optimal Assortment Portfolio
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6. Product Variety

A frequently discussed issue regarding 3D printing is its impact on product variety, i.e., the number

of products offered. Although it is widely believed that 3D printing will significantly increase a

firm’s product variety, this is not always the case in practice. For instance, a very limited number

of 3D-printed products can be found from Nike and IKEA (only around ten different products

observed in the Omedelbar collection with fewer than five 3D-printed ones).6 Admittedly, this can

be attributed to the fact that 3D printing is still under development. We nevertheless seek to

understand how the underlying characteristics of 3D printing may influence product variety.

We define product variety as the size of the optimal overall assortment, |A∗|. In case there are

multiple optimal overall assortments, product variety is defined as the size of the largest optimal

overall assortment.

6.1. The Impact of Design Freedom

In our model, 3D printing’s design freedom is embodied by the existence of S, which, in addition

to G, offers the firm more potential designs that can be provided to the market. However, the

following proposition shows that a larger number of potential designs does not necessarily result

in the firm’s offering a larger assortment.

Proposition 4 Consider non-empty design sets G and S. Let h be the most popular design in S.

Suppose A∗ is the (largest) optimal overall assortment given (G,∅), i.e., S is unavailable, and A∗ is

6 Nike’s offering of the 3D-printed footware product line is limited, although it offers a full spectrum of sizes within a
product line. In our model, shoes of various sizes but sharing a common design would be considered as one product,
because consumer size data can be meshed with the master prototype data during the production stage.
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the (largest) optimal overall assortment given (G,S), i.e., S is available. Consider nontrivial cases

with A∗ 6=∅. There exists a threshold v̂ such that, if vh > v̂, then |A∗| ≥ |A∗|.

Proposition 4 implies that the introduction of a 3D-specific set with highly popular designs may

reduce the firm’s product variety. This outcome can be explained by the cannibalization of market

share introduced by 3D-specific designs. If the 3D-specific set consists of highly popular designs,

then including some of those designs in the assortment will significantly cannibalize the market

shares of generic designs. Based on the enclosed most popular structure in Proposition 3 (i)–(ii),

the firm will adjust its assortment by keeping the most popular designs from the 3D-specific set

and the generic set and abandoning some less popular generic designs to alleviate the intensified

cannibalization caused by the introduction of 3D-specific designs. When the existence of a 3D-

specific set, i.e., the design freedom advantage, is the only reason that the firm adopts 3D printing,

then such a technology adoption may reduce product variety offered by the firm. This may explain

why firms like Nike and IKEA offer only a small assortment size even with 3D printing.

Note that, theoretically speaking, if the firm is able to add a very popular design to G, product

variety may also decrease. However, in many industries, introducing a new, significantly popular

design is increasingly difficult for conventional technologies that have been around for a long time.

For example, the jewelry industry has been sticking to basic designs for years (Hill, 2018). By

contrast, 3D printing, a new technology with design freedom, has the potential to invigorate design

creativity in many industries and give rise to novel and exciting designs and products.

6.2. The Impact of Quality Distinction

Recent research has been striving to improve the quality of 3D printing outputs to match or exceed

that of conventional technologies. For instance, breakthrough progress has been made in solving

porosity problems and expanding the types of materials that 3D printing can handle (Hojjatzadeh

et al., 2019; Pham et al., 2019). We next discuss the impact of improving 3D printing quality on

product variety.

Proposition 5 With G, S, and all the other parameters fixed, as qP increases:

(i) A threshold q̂ exists such that 3D printing should be adopted if and only if qP ≥ q̂;

(ii) The firm’s profit under optimal assortment portfolio increases;

(iii) A threshold q̃ exists such that product variety decreases for q > q̃.

Proposition 5(i)–(ii) confirm that improving 3D printing’s quality promotes the adoption of

this technology and improves the firm’s profit. Proposition 5(iii) shows that product variety can

decrease if 3D printing’s quality improvement passes a threshold. When the quality of 3D printing
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Figure 3 Example 2 Illustration

is low, improving the quality of 3D printing would make 3D-printed products more attractive to

consumers. The firm can improve profit by including more 3D-printed products to increase market

coverage. However, when the quality of 3D printing is very high, the firm can keep increasing

its profit by using fewer 3D-printed products (high-quality, high-popularity) to serve a significant

portion of its market share while saving on the product development cost.

We can observe how increasing 3D printing’s quality influences product variety from the following

numerical example:

Example 2 Let G = {1,3,5, · · · ,39} and S = {2,4,6, · · · ,40} with vi = 0.5 for i ≤ 4 and vi = 0.2

for i≥ 5. In addition, λ= 1, σ = 0.1, qD = qT = 10, aD = aT = aP = 0, dD = dT = 0.1, dP = 0.03,

pD = pT = pP = 10, cD = rD = 2, cT (n) = rT (n) = 2 + 0.05 · (n− 1), cP = rP = 2.5. Figure 3 depicts

how product variety changes as qP increases.

Interestingly, in Example 2, the curve of product variety is non-monotonic in the quality of 3D

printing and may increase and then decrease multiple times (see Figure 3). Thresholds q̂ and q̃

in Proposition 5 and another threshold q́ are presented in the figure. As qP increases to pass q̂,

3D printing is adopted, which triggers an increase in product variety. As qP increases to pass q́,

product variety decreases to save product development cost. As qP increases to pass q̃, the quality

improvement of 3D printing triggers a major design-to-technology reassignment: from using 3D

printing and conventional technologies jointly to using 3D printing only. This reassignment leads
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to another increase of product variety. Going beyond q̃, product variety decreases in qP , and can

even fall below the level when 3D printing is not adopted.

6.3. The Impact of Natural Flexibility

Although design freedom and quality improvement may lead to lower product variety, the natural

flexibility characteristic of 3D printing always increases product variety. The next proposition, by

muting the design freedom and quality distinction characteristics of 3D printing, focuses on the

impact of natural flexibility on product variety.

Proposition 6 Set aD = 0 and aT =∞. Let S = ∅, qD = qP , pD = pP , and dD = dP . There exists

a threshold â such that:

(i) 3D printing is adopted if and only if aP ≤ â;

(ii) The (largest) optimal overall assortment A∗(a) is piecewise constant over [0, â]∪ (â,∞);

(iii) |A∗(a1)| ≤ |A∗(a2)| for a1 > â and a2 ≤ â.

Proposition 6 considers a scenario in which 3D printing does not offer design freedom (i.e., S=∅)

and entails the same quality, price, and product development cost as conventional technologies.

Under this scenario, the only characteristic that distinguishes 3D printing is its natural flexibility,

i.e., capacity flexibility with constant unit capacity/production cost. Proposition 6 shows that

product variety will increase when 3D printing becomes profitable for adoption. In the absence

of design freedom and quality distinction, the reason that the firm adopts 3D printing is the

demand-pooling benefit enabled by its natural flexibility. That is, by assigning more designs to 3D

printing, the firm can reduce the mismatch cost without increasing the unit capacity cost. This

benefit enables the firm to further increase the profit by including more designs in the assortment.

Naturally, the optimal assortment as a function of 3D-printing adoption cost remains constant and

changes only when the firm adjusts its technology adoption decision. Although Proposition 6 is

shown under the assumption that dedicated technology is readily available (aD = 0) and traditional

flexible technology is unavailable (aT =∞), we can numerically verify that the results hold when

traditional flexible technology is available (aT <∞).

We highlight that, although natural flexibility always increases product variety, traditional flex-

ibility, contrary to common belief (e.g., Bownman and Kogut, 1995), does not necessarily lead to

increased product variety. The next example shows that, when dedicated technology is already

available and 3D printing is unavailable, the adoption of traditional flexible technology can reduce

product variety.
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Example 3 Set aD = 0 and aP =∞. Let G= {1,2,3}. Fix v1 = v2 > v3, dD = dT , qD = qT , pD = pT ,

rD, and cD. There exist thresholds â, σ, σ, d and increasing functions c(·), c(·), r(·), r(·) such that,

if (i) c(·)< cT (·)< c(·), r(·)< rT (·)< r(·), (ii) σ < σ < σ, and (iii) dD, dT < d, then (D∗,T∗,P∗) =

({1,2,3},∅,∅) when aT ≥ â and (D∗,T∗,P∗) = (∅,{1,2},∅) when aT < â.

In Example 3, when traditional flexible technology is too costly for adoption (aT ≥ â), the

firm will use dedicated technology to handle all three designs; when traditional flexible tech-

nology can be adopted inexpensively (aT < â), the firm will use traditional flexible technology

to handle the two most popular designs and exclude the least popular design from the assort-

ment. To understand the rationale, we compare all four assortment portfolios under aT < â that

require the use of traditional flexible technology and satisfy the clustered structure (Proposition

2): (∅,{1,2,3},∅), ({1},{2,3},∅), ({3},{1,2},∅), (∅,{1,2},∅), and provide reasons to conclude

that the first three assortment portfolios cannot be optimal under the given set of conditions. First,

(∅,{1,2,3},∅) is out of consideration because a 3-flexible capacity is too expensive (cT (3)> c(3)).

Second, ({1},{2,3},∅) is not considered because design 1 already faces a considerably variable

demand, given the market uncertainty (σ > σ), and is better handled by the flexible capacity.

Next, ({3},{1,2},∅), which lets dedicated technology handle the least popular design, leads to

a significant increase in the mismatch cost that outweighs the gross profit of the least popular

design. Therefore, with traditional flexible technology, the firm is better off focusing on serving

pooled demand from the two most popular designs and offering lower product variety than without

traditional flexible technology.

7. The Value of 3D Printing

In this section, we investigate the value of 3D printing. It is straightforward that 3D printing adds

more value to the firm when it has lower costs or higher quality, and when the market becomes

more uncertain. Hence, in this section, we focus on the less obvious question: How does the value

of 3D printing depend on the firm’s endowed potential designs?

7.1. Numerical Study Setup

In practice, the popularities of product designs often follow a “long tail” pattern (Elberse, 2008): A

few very popular designs coexist with a large number of niche designs, and the latter can accumulate

to a considerable total market share. We simulate this pattern by drawing the popularities of

different designs from an exponential distribution. To be specific, we generate samples of G and S

according to the following steps:

Step 1. Let |G|= nG, |S|= nS. (nG, nS) take three pairs of values, {(5,15), (10,10), (15,5)};
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Figure 4 An Instance of Generated G and S

Note. nG = nS = 10, µ= 0.1.

Step 2. Let number µ take a value from {0.02,0.1,0.5};

Step 3. Draw nG values and nS values independently from the exponential distribution with rate

1
µ
, and treat them as the design popularities in G and S, respectively. Thus, µ is the expectation

of popularities.

Figure 4 illustrates an instance of generated popularities for G and S. We follow this process to

generate 100,000 samples of G and S for each of the nine combinations of (nG, nS) and µ, and thus

a total of 900,000 samples are generated. For each sample, we calculate the Gini indices of design

popularities in G and in S. The Gini index has been broadly adopted in the economics literature

(e.g., Yitzhaki, 1979 and Kopczuk, 2010) to measure income inequality. We borrow it to measure

how unevenly the popularities are distributed in each of the two sets, which will be the focus of

our study. A higher Gini index means that the popularities are less evenly distributed. Specifically,

the Gini indices we use are defined as:

Generic Set Gini Index =

∑
i∈G

∑
j∈G
|vi− vj|

2
∑
i∈G

∑
j∈G

vj
, (8)

3D-Specific Set Gini Index =

∑
i∈S

∑
j∈S
|vi− vj|

2
∑
i∈S

∑
j∈S

vj
. (9)

Table 2 summarizes the parameters used in this numerical study. Given that the total number

of parameters is great in our model, we vary the parameters related to 3D printing while fixing

the others. For each sample of G and S, we examine the firm’s profit under all combinations of the

parameters.
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Table 2 Parameters Used in the Numerical Study

Fixed Parameters

λ pD, pT , & pP cD & rD cT (n) & rT (n) aD aT dD dT qD qT

1 10 2 2 + 0.1 · (n− 1) 0 0 0.1 0.1 10 10

Varied Parameters

σ cP & rP aP dP qP

0.1, 0.3 2.5, 3 0, ∞ 0.05, 0.1 9, 10, 11

Note that the adoption cost of 3D printing, aP , can be either 0 or ∞, which respectively cor-

respond to the two cases that 3D printing can be adopted or never adopted. Given G, S, and

a combination of other parameters, we let π0 be the optimal profit when aP = 0 and π∞ be the

optimal profit when aP =∞, and define

Improvement Index =

{
π0−π∞
π0+π∞

if π0 > 0

0 if π0 = 0
(10)

to measure the value of 3D printing to the firm.7 The improvement index is a number between 0

and 1. It equals 0 when 3D printing does not bring any additional profit to the firm and equals 1

when 3D printing can turn a nonviable business (zero profit) into a profitable one (the firm always

obtains a non-negative profit because it can opt to choose an empty assortment).

7.2. Numerical Results

We focus on investigating the impacts of three sets of parameters representing the potential designs’

characteristics: the Gini indices of generic and 3D-specific sets, which measure the popularity

distribution unevenness; (nG, nS), which measure the availability of potential designs; and µ, which

measures the mean popularity of potential designs.

First, for each of the nine combinations of (nG, nS) and µ, we compute the improvement index for

all 100,000 samples and for all parameters listed in Table 2, and average the improvement indices

over sample combinations with similar Gini indices. Table 3 presents the average improvement

index for any given ranges of the generic set Gini index and the 3D-specific set Gini index when

(nG, nS) = (10,10) and µ= 0.1. Results for all the other combinations of (nG, nS) and µ are similar

and relegated to Online Supplement B.

7 An intuitive measurement of improvement is percentage increase, π0−π∞
π∞

× 100%. We do not use it because it may
happen that π0 > 0 and π∞ = 0, leading to an infinite value. The measurement we use is well defined for any π0 and
π∞ and is consistent with percentage increase (i.e., a larger improvement index means a larger percentage increase)
when percentage increase is also well defined.
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Table 3 Average Improvement Index under Given Ranges of Gini Indices

Generic Set Gini Index

0–0.35 0.35–0.4 0.4–0.45 0.45–0.5 0.5–0.55 0.55–0.6 0.6–0.65 0.65–1 Overall

3D
-S

p
ec

ifi
c

S
et

G
in

i
In

d
ex

0–0.35 0.1408 0.1289 0.1178 0.1080 0.0980 0.0906 0.0807 0.0718 0.1136

0.35–0.4 0.1452 0.1321 0.1191 0.1129 0.1037 0.0963 0.0885 0.0772 0.1173

0.4–0.45 0.1490 0.1354 0.1253 0.1179 0.1078 0.1000 0.0905 0.0858 0.1219

0.45–0.5 0.1545 0.1409 0.1299 0.1205 0.1119 0.1045 0.0940 0.0854 0.1260

0.5–0.55 0.1614 0.1431 0.1357 0.1248 0.1154 0.1046 0.1020 0.0845 0.1304

0.55–0.6 0.1649 0.1484 0.1384 0.1274 0.1219 0.1084 0.0961 0.0957 0.1338

0.6–0.65 0.1809 0.1599 0.1426 0.1338 0.1230 0.1097 0.1046 0.1225 0.1411

0.65–1 0.1766 0.1639 0.1507 0.1351 0.1255 0.1227 0.1053 0.0771 0.1431

Overall 0.1531 0.1386 0.1278 0.119 0.1098 0.1013 0.0926 0.0845 0.1242

Note. nG = nS = 10, µ= 0.1.

We may examine each row in Table 3. As the generic set Gini index increases, 3D printing tends

to be less valuable. Recall that designs in the generic set can be produced by both conventional

technologies and 3D printing. When the generic designs have more evenly distributed popularities

(i.e., low Gini index), the firm can achieve a reasonable market coverage by using 3D printing to

produce some designs in the assortment so as to control the mismatch cost without increasing unit

capacity/production cost. When the generic designs have more unevenly distributed popularities

(i.e., high Gini index), the firm can achieve a reasonable market coverage by focusing on a small

subset of designs. Conventional technologies can serve as the workhorse handling the relatively

small assortment as the mismatch cost and development cost are low. Hence, the value of 3D

printing decreases as the generic set Gini index increases.

We next examine each column in Table 3. By contrast, 3D printing becomes more valuable as the

3D-specific set Gini index increases. This is because designs in the 3D-specific set can be handled

only by 3D printing. When the 3D-specific designs have more evenly distributed popularities (i.e.,

low Gini index), 3D printing has to handle a large number of designs to obtain sufficient market
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Table 4 Average Improvement Index under Given Potential-Design Sizes and Expectations

Generic Set Gini Index

0.4–0.45 0.55–0.6

3D
-S

p
ec

ifi
c

S
et

G
in

i
In

d
ex

0.4–0.45

nG, nS nG, nS

5,15 10,10 15,5 5,15 10,10 15,5

µ

0.02 0.4640 0.3789 0.3158

µ

0.02 0.3962 0.2839 0.2247

0.1 0.2536 0.1253 0.0824 0.1 0.2189 0.1000 0.0577

0.5 0.0482 0.0141 0.0076 0.5 0.0383 0.0077 0.0029

0.55–0.6

nG, nS nG, nS

5.15 10.10 15.5 5.15 10.10 15.5

µ

0.02 0.5480 0.4198 0.3449

µ

0.02 0.4511 0.3201 0.2367

0.1 0.2809 0.1384 0.0880 0.1 0.2546 0.1084 0.0650

0.5 0.0558 0.0158 0.0082 0.5 0.0457 0.0082 0.0034

coverage. When the 3D-specific designs have less evenly distributed popularities (i.e., high Gini

index), 3D printing can achieve approximately the same amount of market coverage and revenue

with fewer highly popular designs and save on the product development cost. However, the effect

of product development cost is small for 3D printing, which explains why the average improvement

index is less sensitive to the 3D-specific set Gini index than to the generic set Gini index. It also

explains some local decreasing patterns in the simulation (e.g., when the generic set Gini index is

0.65–1 and the 3D specific set Gini index increases from 0.4–0.45 to 0.45–0.5).

We further study the impacts of (nG, nS) and µ. Table 4 presents the average improvement

indices for all nine combinations of (nG, nS) and µ, under four representative combinations of Gini

indices. For each combination of Gini indicies (each of the four small tables), 3D printing is more

valuable when the number of generic designs is smaller and the number of 3D-specific designs is

larger (the first columns in the small tables), or the designs’ mean popularity is low (the first rows

in the small tables). The former is due to more potential design availability introduced by 3D

printing in comparison with the existing, generic designs; the latter is due to the need for using

3D printing to deliver a larger assortment of low-popularity designs.

We also look into the values of the other two technologies using the same approach. The Gini

index has an opposite impact on the value of dedicated technology. That is, dedicated technology is
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more valuable as the generic set Gini index increases and the 3D-specific set Gini index decreases.

We also observe that the value of traditional flexible technology is the lowest among the three

technologies. Its improvement index is over 0.01 for only 10.03% of the samples (compared with

31.99% for dedicated technology and 49.66% for 3D printing). Note that our selection of parameters

deliberately make traditional flexible technology more cost-attractive than 3D printing: Its capacity

and production costs increase to the same level as those of 3D printing when handling five (for low

3D printing cost) or ten (for high 3D printing cost) designs, which are sufficiently large compared

with the overall sizes of the design sets. The intuition behind this observation can be explained as

follows. Traditional flexible technology can be treated as a moderate technology positioned between

dedicated technology and 3D printing, with more expensive total capacity/production/mismatch

cost than dedicated technology (3D printing) when handling a small (large) number of designs.

Adopting dedicated technology and 3D printing is thus almost sufficient and the adoption of an

additional in-between technology does not bring much incremental value.

8. Extensions

In this section, we check the robustness of results using several extensions.

8.1. Endogenous Pricing

In the base model, the prices pD, pT , and pP are exogenously given. One may wonder whether the

insights on product assortment strategy with 3D printing apply to scenarios where the firm can

adjust its prices for products made by different technologies. We extend the study to an endoge-

nous pricing setting in which the firm determines pD, pT , and pP together with the assortment

portfolio decision (D,T,P). The technical details of the endogenous pricing problem are presented

in Appendix A.

We can prove that, under endogenous pricing, Propositions 1–3 in the base model continue to

hold. It implies that the optimal assortment structure in the base model remains valid even under

endogenous pricing. The reason behind the structure’s robustness is that, although endogenous

pricing can improve the performance of any given assortment, such an improvement would only

strengthen the structural dominance that holds under exogenous pricing.

We also conduct numerical experiments to check the other results in the base model. We highlight

that the impacts of 3D printing on product variety remain valid. In the base model, design freedom

or improved quality of 3D printing may reduce product variety to weaken market cannibalization

between products. Although smart pricing can help reduce market cannibalization, it is not strong

enough to enable 3D printing’s design freedom or improved quality to always increase product
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variety. Natural flexibility alone still enhances product variety. As to the value of 3D printing, we

also observe similar implications for the popularity Gini indices as in the base model. The details

of these findings can be found in Appendix A.

8.2. Make-to-Stock versus Make-to-Order

In practice, when facing a short selling season, the firm may use dedicated technology in a make-to-

stock fashion and flexible technologies in a make-to-order fashion. This situation can be captured

by the base model with slight modifications: (a) in Equation (5), we change the newsvendor safety

factor zD’s expression from Φ−1(1− cD
pD−rD

) to Φ−1(1− cD+rD
pD

) and change the term (pD−rD)φ(zD)

to pDφ(zD) to reflect that, in a make-to-stock setting, the unit production cost of dedicated tech-

nology, rD, is an ex ante cost instead of an ex post cost; (b) we adjust the quality levels of the

two flexible technologies, qT and qP , to reflect the potential consumer disutility for having to wait

longer for product delivery. The rest of the formulations remain unchanged. These minor changes

do not affect the proofs of Propositions 1–6 or the qualitative implications of the numerical study.

8.3. Conventional-Specific Designs

Although 3D printing has been advocated as being able to handle almost any geometric shape

(Stackpole, 2016), it is possible that 3D printing, still a technology in development, cannot handle

some designs that conventional technologies can. For example, 3D printing cannot yet meet the

high-precision requirements for certain products with very small parts (3D Supermarket, 2017).

Such a situation can be captured by introducing a conventional-specific set C consisting of designs

that could be produced only by conventional technologies. The introduction of this new design set

does not affect the basic dynamics of the model, and thus all the propositions remain valid with

minor adjustments. For concision, we present the details of this extension in Appendix B.

9. Concluding Remarks

Views of 3D printing that accompanied the development of the technology have ranged from

the belief that the technology would revolutionize the manufacturing sector to recognition of its

limitations and areas for improvement. Nevertheless, the industrial utilization and scientific break-

throughs of 3D printing are growing rapidly and steadily because its novelty offers opportunities

that are impossible with conventional technologies. Motivated by the rise of industry practices

that use 3D printing to produce products with novel designs, this paper studies how a firm should

manage its product assortment under 3D printing and conventional production technologies. We

focus on three key characteristics of 3D printing: design freedom, quality distinction, and natural

flexibility, and investigate how they jointly affect a firm’s product assortment strategy.
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We have identified several structural properties for the optimal assortment: Between 3D printing

and conventional technologies, the “ordered” structure must be satisfied; between dedicated tech-

nology and traditional flexible technology, the “clustered” structure must be satisfied; between the

overall assortment and the designs that are not selected, the “enclosed most popular” structure

must be satisfied and, under a mild condition, the “overall most popular” structure should also be

satisfied. These structural properties that impose certain popularity ordering across designs han-

dled by different technologies reflect the joint consideration of market coverage and supply-demand

mismatch cost, both of which are influenced by the three key characteristics of 3D printing. We

also show that the three characteristics of 3D printing have varying impacts on a firm’s product

variety decision. Design freedom or improved quality of 3D printing may reduce product variety,

but natural flexibility by itself always increases product variety. Natural flexibility is further con-

trasted with traditional flexibility: The former always increases but the latter may reduce product

variety. Finally, we demonstrate through numerical analysis that the Gini index, which is usually

used to evaluate wealth inequality, can serve as a useful indicator for the value of 3D printing. The

messages are useful for firms that contemplate the adoption of 3D printing and joint utilization of

3D printing and conventional technologies for developing new product assortments.

This paper focuses on the aforementioned three characteristics of 3D printing while making

simplified assumptions regarding other characteristics. For example, we treat 3D printing’s speed

issue as a quality factor affecting consumer valuation as well as a cost factor affecting the unit

capacity cost. This is a reasonable simplification for assortment decisions. The speed issue would

require more detailed modeling in an inventory management system where production lead time

is a crucial parameter (see, e.g, Song and Zhang, 2020). Another appealing characteristic of 3D

printing this paper does not capture is that it generates less material waste in manufacturing

and thus benefits the environment. In addition, 3D printing has inspired novel business models,

e.g., consumers are offered opportunities to provide their own product designs (a form of crowd

sourcing). As 3D printing technology evolves and becomes a viable manufacturing technology

for more and more industries, it can introduce interesting technological ramifications into many

operations and supply chain problems.
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Appendix: Technical Details of Extensions

In this appendix, we present the technical details of two extensions: the firm has the pricing power

(Appendix A) and some designs can be handled only by conventional technologies (Appendix B).

A. Endogenous Pricing

This section presents the technical details of Section 8.1, which discusses the case of endogenous pricing. Let

~p= (pD, pT , pP ). We formulate the firm’s problem as a two-stage optimization. In the first stage,

max
D,T,P

Π(D,T,P),

s.t. D⊆G, T⊆G, P⊆G∪ S;

D∩T=T∩P= P∩D=∅.

(A.1)

In the second stage,

Π(D,T,P) := max
~p

Ω(~p,D,T,P),

s.t. ~p≥~0.
(A.2)

Following backward induction, we first optimize the firm’s profit with respect to ~p for a given (D,T,P) and

then find the optimal (D,T,P). This approach is equivalent to optimizing ~p and (D,T,P) simultaneously, but

has more expositional clarity. The formulation of Ω(~p,D,T,P) is as follows:

Ω(~p,D,T,P) = G(~p,D,T,P)−M(~p,D,T,P)−F(~p,D,T,P), (A.3)

where

G(~p,D,T,P) =λ

[
(pD − cD − rD)

∑
i∈D

si(~p,D,T,P)

+ (pT − cT (|T|)− rT (|T|))
∑
i∈T

si(~p,D,T,P) + (pP − cP − rP )
∑
i∈P

si(~p,D,T,P)

]
,

(A.4)

M(~p,D,T,P) =σ

[
(pD − rD)φ(zD)

∑
i∈D

√
si(~p,D,T,P)

+ (pT − rT (|T|))φ(zT (|T|))
√∑

i∈T

si(~p,D,T,P) + (pP − rP )φ(zP )

√∑
i∈P

si(~p,D,T,P)

]
,

(A.5)

and

F(~p,D,T,P) =

[
aD ·1{D 6=∅}+ dD · |D|

]
+

[
aT ·1{T 6=∅}+ dT · |T|

]
+

[
aP ·1{P6=∅}+ dP · |P|

]
. (A.6)

Here si(~p,D,T,P) is the market share of product i and zD, zT (|T|), and zP are the newsvendor safety factors,

all of which depend on ~p. In this extension, we allow consumer utility to have a general functional form with

respect to prices:

uit(~p,D,T,P) = vi + εit + qD ·1{i∈D}+ qT ·1{i∈T}+ qP ·1{i∈P}− f(pD) ·1{i∈D}− f(pT ) ·1{i∈T}− f(pP ) ·1{i∈P},

(A.7)
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where f(·) can be any (weakly) increasing function. Thus, si(~p,D,T,P) is given by:

si(~p,D,T,P) =

(
eqD−f(pD) ·1{i∈D}+ eqT−f(pT ) ·1{i∈T}+ eqP−f(pP ) ·1{i∈P}

)
· vi

1 + eqD−f(pD) ·
∑
j∈D

vj + eqT−f(pT ) ·
∑
j∈T

vj + eqP−f(pP ) ·
∑
j∈P

vj
. (A.8)

The second-stage pricing problem is non-concave and does not have a closed-form solution. However,

without characterizing the optimal prices (they do not have to be unique), we can prove:

Proposition A. 1 Propositions 1–3 still hold under endogenous pricing.

Thus, the optimal assortment structure in the base model holds under endogenous pricing. Recall the

approach to prove Propositions 1–3: Any assortment portfolio violating the stated structure can always be

improved by constructing another assortment portfolio; the process iterates until an assortment portfolio

satisfying the stated structure is obtained. This approach applies to the endogenous pricing setting with minor

twists. That is, first, we maintain a portfolio’s optimal prices when constructing the dominating assortment

portfolio; second, we optimize prices for the new portfolio; the process iterates until an assortment portfolio

is found with the stated structure and optimal pricing.

For example, in Proposition 1(i), we have characterized the ordered structure between dedicated technology

and 3D printing. Now, under endogenous pricing, we again consider a given assortment portfolio and focus

on two designs i, j ∈G with vi > vj . With all the other designs fixed, we consider three assortment portfolios

which differ in the assignment of design i and design j: In (D1,T1,P1), i ∈ D1 and j ∈ P1; in (D2,T2,P2),

i∈ P2 and j ∈D2; in (D3,T3,P3), i, j ∈ P3. With respect to design i and design j, (D1,T1,P1) and (D3,T3,P3)

satisfy the ordered structure but (D2,T2,P2) does not. Following the same rationale with Proposition 1(i),

for any given ~p, we have either Ω(~p,D1,T1,P1)>Ω(~p,D2,T2,P2) or Ω(~p,D3,T3,P3)>Ω(~p,D2,T2,P2). Now,

let ~p∗i be the optimal price vector under assortment portfolio (Di,Ti,Pi). The following hold: 1) Either

Ω(~p∗2,D1,T1,P1)>Ω(~p∗2,D2,T2,P2) = Π(D2,T2,P2) or Ω(~p∗2,D3,T3,P3)>Ω(~p∗2,D2,T2,P2) = Π(D2,T2,P2); 2)

Π(D1,T1,P1) = Ω(~p∗1,D1,T1,P1) ≥ Ω(~p∗2,D1,T1,P1); 3) Π(D3,T3,P3) = Ω(~p∗3,D3,T3,P3) ≥ Ω(~p∗2,D3,T3,P3).

As a result, either Π(D1,T1,P1)>Π(D2,T2,P2) or Π(D3,T3,P3)>Π(D2,T2,P2), and thus (D2,T2,P2), which

violates the ordered structure, must be suboptimal. By applying this approach to product pairs which violate

the ordered structure, we can keep improving the firm’s profit until all the designs are ordered.

The above deduction preserves the structural result from exogenous pricing to endogenous pricing, and

can be applied analogously to Propositions 1(ii), 2, and 3. Since we do not have closed-form solutions for the

optimal prices, we numerically examine the implications of endogenous pricing for Propositions 4–6 using

the following three examples:

Example A.1 Set aD = aT = aP = 0. Let G= {1, · · · ,10} with vi = 0.1 for i∈G and S= {11} with v11 = 0.5,

λ= 1, σ= 0.1, qD = qT = qP = 10, cD = rD = 2, cT (n) = rT (n) = 2+0.2 ·n, cP = rP = 2.5, dD = dT = dP = 0.1,

and f(p) = p. Then:

(i) Given potential designs {G,∅}, (D∗,T∗,P∗) = ({1,2,3,4,5},∅,∅) and ~p∗
.
= (7.51,N/A,N/A).

(ii) Given potential designs {G,S}, (D∗,T∗,P∗) = ({1,2,3},∅,{11}) and ~p∗
.
= (8.16,N/A,9.12).
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Example A.1 shows that, under endogenous pricing, design freedom may still reduce product variety. In

the first numerical instance, the 3D-specific set is unavailable and product variety is 5 whereas, in the second

numerical instance, the 3D-specific set containing a highly popular design is available and product variety is

4. After the highly popular 3D-specific design is added, the firm increases the price of products handled by

dedicated technology. This is because the 3D-specific design helps maintain sufficient market coverage, and

thus the firm can offer fewer generic designs at higher prices to save product development cost and enjoy

higher margins.

Example A.2 Let G = {1,3, · · · ,9} and S = {2,4, · · · ,10} with vi = 0.5 for i≤ 4 and vi = 0.2 for i≥ 5. In

addition, λ = 1, σ = 0.1, qD = qT = 10, aD = aT = aP = 0, dD = dT = 0.1, dP = 0.03, cD = rD = 2, cT (n) =

rT (n) = 2 + 0.05 · (n− 1), cP = rP = 2.5. Then:

(i) If f(p) = p, as qP increases, the change in product variety is depicted in Figure A.1(i).

(ii) If f(p) = p2

10
, as qP increases, the change in product variety is depicted in Figure A.1(ii).

In Example A.2 (i), we assume f(p) = p as in the base model and observe that product variety increases

as the quality of 3D printing improves. We have tested many other examples and obtained the same result.

This is because, for any amount of increase in qP , the firm can always adjust pP up by the same amount

to keep the market shares of 3D-printed products unchanged and obtain higher margins. The firm can be

even more aggressive to include more 3D-printed products in the assortment. The negative effect on product

development cost is dominated in this process because the pricing power endows the firm with a larger space

to exploit quality improvement.

However, in practice, the disutility caused by price may not be linear. Consumers may have reference

prices or mental budgets for certain categories of products and are reluctant to accept very high prices even

though the quality is high. In Example A.2 (ii), we reflect this situation by assuming a convex disutility of

price, f(p) = p2

10
, and observe that product variety decreases as qP increases to pass a threshold. In this case,

the firm’s pricing power is restricted by the increasing price sensitivity and it cannot freely exploit quality

improvement. When the quality of 3D printing is high, the firm may consider reducing its product offering

to save product development cost.

Example A.3 Consider the same numerical setup as in Section 7.1, except that nS is fixed at 0, qP is fixed

at 10, the sample size is 1000, and the prices are not given but endogenous. We observe that product variety

is always (weakly) higher with 3D printing than without 3D printing.

Examples A.3 confirms that, under endogenous pricing, natural flexibility by itself always enhances product

variety in the absence of design freedom and quality distinction. Note that the sample size has to be small

because it requires significant computational time to solve for each sample under endogenous pricing.

Example A.4 Consider the same numerical setup as in Section 7.1, except that the sample size is 1000

and the prices are not given but endogenous. As shown in Table A.1, the value of 3D printing decreases in

the generic set Gini index and increases in the 3D-specific set Gini index.
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Figure A.1 Example A.2 Illustration

Table A.1 Average
Improvement Index under Given

Ranges of Gini Indices with
Endogenous Pricing

Generic Set Gini Index

0–0.4 0.4–0.5 0.5–0.6 0.6-1

0.0683 0.0649 0.0644 0.0610

3D-Specific Set Gini Index

0–0.4 0.4–0.5 0.5–0.6 0.6-1

0.0790 0.0821 0.0858 0.0895
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Example A.4 confirms our result about the value of 3D printing. Again, the sample size has to be small

in light of the significant computational time. Nevertheless, the qualitative results are consistent with those

derived from the base model.

B. Conventional-Specific Set

As discussed in Section 8.3, in certain situations, there may be designs that can be processed by conventional

technologies but not 3D printing. In this section, we extend our base model by adding a set C, which includes

potential designs that can only be handled by conventional technologies. All the formulations in Section 4

remain unchanged, except that Formulation (7) is replaced by:

max
D,T,P

Π(D,T,P),

s.t. D⊆G∪C, T⊆G∪C, P⊆G∪S;

D∩T=T∩P= P∩D=∅.

(B.1)

With C added, all the propositions in the base model remain valid with minor changes:

Proposition B.1 Let (D∗,T∗,P∗) be the optimal assortment portfolio. Then:

(i) For any i∈G∩D∗ and any j ∈G∩P∗, vi ≥ vj;

(ii) For any i∈G∩T∗ and any j ∈G∩P∗, vi ≥ vj.

Proposition B.2 The statement is the same with Proposition 2.

Proposition B.3 Let (D∗,T∗,P∗) be the optimal assortment portfolio and A∗ ≡ D∗ ∪T∗ ∪ P∗ be the corre-

sponding overall assortment. Then the following hold:

(i) For any i∈G∩A∗ and any j ∈G/A∗, vi ≥ vj;

(ii) For any i∈C∩A∗ and any j ∈G∪C/A∗, vi ≥ vj;

(iii) For any i∈ S∩A∗ and any j ∈G∪S/A∗, vi ≥ vj.

Note that, although the “enclosed most popular” property still holds, the overall most popular property

does not necessarily hold because there may be i∈ S∩A∗ and j ∈C/A∗ such that vi < vj .

Proposition B.4 Consider non-empty design sets G, C, and S. Let h be the most popular design in S.

Suppose A∗ is the (largest) optimal overall assortment given (G,C,∅), i.e., S is unavailable, and A∗ is

the (largest) optimal overall assortment given (G,C,S), i.e., S is available. Consider nontrivial cases with

A∗ 6=∅. There exists a threshold v̂ such that, if vh > v̂, then |A∗| ≥ |A∗|.

Proposition B.5 With G, C, S, and all the other parameters fixed, as qP increases:

(i) A threshold q̂ exists such that 3D printing should be adopted if and only if qP ≥ q̂;

(ii) The firm’s profit under optimal assortment portfolio increases;

(iii) A threshold q̃ exists such that product variety decreases for q > q̃.
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Table B.1 Average Improvement Index under Gini Indices of Different
Sets

Conventional-Specific Set Gini Index

0–0.35 0.35–0.4 0.4–0.45 0.45–0.5 0.5–0.55 0.55–0.6 0.6–0.65 0.65–1

0.0803 0.0755 0.0736 0.0710 0.0689 0.0676 0.0663 0.0612

Generic Set Gini Index

0–0.35 0.35–0.4 0.4–0.45 0.45–0.5 0.5–0.55 0.55–0.6 0.6–0.65 0.65–1

0.0815 0.0762 0.0728 0.0701 0.0683 0.0649 0.0644 0.0610

3D-Specific Set Gini Index

0–0.35 0.35–0.4 0.4–0.45 0.45–0.5 0.5–0.55 0.55–0.6 0.6–0.65 0.65–1

0.0696 0.0731 0.0751 0.0781 0.0790 0.0821 0.0858 0.0895

Proposition B.6 Set aD = 0 and aT =∞. Let C = S = ∅, qD = qP , pD = pP , and dD = dP . There exists a

threshold â such that:

(i) 3D printing is adopted if and only if aP ≤ â;

(ii) The (largest) optimal overall assortment A∗(a) is piecewise constant over [0, â]∪ (â,∞);

(iii) |A∗(a1)| ≤ |A∗(a2)| for a1 > â and a2 ≤ â.

Proposition B.7 Propositions B.1–B.3 still hold under endogenous pricing.

We also conduct a numerical study in the presence of a conventional-specific set. We let |C|= |G|= |S|= 5,

and draw design popularities from the exponential distribution with rate 10 (and thus the expectation is

0.1). We generate 10,000 samples and combine them with the parameters displayed in Table 2. In Table

B.1, we report the average improvement index in each range of the conventional-specific set Gini index, the

generic set Gini index, and the 3D-specific set Gini index. We can observe that 3D printing is more valuable

when the conventional-specific set Gini index decreases, when the generic set Gini index increases, and when

the 3D-specific set Gini index increases.
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