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 Two-Sex Demographic Models

 Robert A. Pollak
 University of Pennsylvania and University of Washington

 Classical stable population theory, the standard model of population
 age structure and growth, is ill suited to addressing many issues that
 concern economists and demographers because it is a "one-sex" the-
 ory. This paper investigates the existence, uniqueness, and dynamic
 stability of equilibrium in the birth matrix-mating rule (BMMR)
 model, a new model of age structure and growth for two-sex, mo-
 nogamously mating, populations. The paper shows, by means of
 examples, that the BMMR model can have multiple nontrivial
 equilibria and establishes sufficient conditions for uniqueness. It
 generalizes a theorem of W. Brian Arthur to nonlinear systems and
 uses it to establish sufficient conditions for local dynamic stability.

 The relevance of the economics of the family to mainstream economic

 concerns is now well established. Examples are numerous. In addition

 to old favorites such as labor force participation, investment in human
 capital, and the intergenerational transmission of wealth, they include
 discussions of saving behavior (see Kotlikoff 1988; Modigliani 1988)
 and the burgeoning literature on "Ricardian equivalence" (Barro
 1974; Bernheim 1987; Feldstein 1988). Gary Becker (1988), in his
 1987 presidential address to the American Economic Association,
 argues the importance of family economics for understanding such

 This paper is a revised and retitled version of Pollak (1987a). The research was
 supported in part by the National Institutes of Health, the National Science Founda-
 tion, and the Population Council's Research Awards Program on Fertility Determinants
 funded by the U.S. Agency for International Development. I am grateful to Beth
 Allen, W. Brian Arthur, Jere R. Behrman, Joel Cohen, George Farnbach, Griffith
 Feeney, Joseph Felsenstein, Robert Fogel, Marc Nerlove, Samuel Preston, Peter
 Smouse, Susan Watkins, Joel Yellin, and anonymous referees for helpful conversations
 or comments and to Judith Farnbach for editorial assistance.
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 macro issues as cyclical fluctuations, economic development, and eco-
 nomic growth.

 As the family moves toward the center of the economic stage, de-

 mography cannot be far behind. Yet "classical stable population the-

 ory," the standard demographic model of population age structure

 and growth, is ill suited to addressing these and many other issues
 that concern demographers and economists.

 The fundamental problem is that classical stable population theory

 is a "one-sex" theory: only females matter. Its two building blocks are

 an age-specific fertility schedule and an age-specific mortality sched-
 ule for the female population. Calculating these schedules requires

 very little data: it suffices to observe for a single period the ages at
 which females give birth and the ages at which females die. Classical
 stable population theory imbues these observed, age-specific vital
 rates with significance by assuming that they remain constant over
 time. This assumption allows classical stable population theorists to
 calculate a population's equilibrium age structure and growth rate
 and to predict its evolution over time. Demography's two-sex problem
 is to generalize classical stable population theory to monogamously

 mating, age-structured populations.'
 In the terminology of Thomas Kuhn (1970), demographers have

 generally regarded the two-sex problem as a puzzle rather than as a
 fundamental anomaly whose resolution might require recasting the

 paradigm. Even viewed as a puzzle, demography's two-sex problem
 cannot be solved by introducing constant, age-specific fertility and
 mortality schedules for males as well as for females. The male fertility
 and mortality schedules play no role in classical stable population
 theory, and introducing them in this way yields two incompatible one-
 sex models: the "female dominance" model based on the female mor-
 tality and maternity schedules and the "male dominance" model
 based on the male mortality and paternity schedules. The incompati-

 1 The two-sex problem has a long history in demography. Alfred Lotka, the founder
 of classical stable population theory, discussed it in 1922. Keyfitz (1968), Coale (1972),
 Pollard (1973), and Charlesworth (1980) provide surveys of the classical theory. Good-
 man (1953), Fredrickson (1971), Keyfitz (1971), Yellin and Samuelson (1977), Das
 Gupta (1978), Schoen (1981), Caswell and Weeks (1986), and Pollak (1986, 1987b,
 1990) discuss the two-sex problem; Das Gupta, Schoen, and Caswell and Weeks provide
 further reference to the literature. In an unpublished doctoral dissertation, Feeney
 (1972) presents a two-sex model with the same basic structure as mine, but without a
 satisfactory proof of the existence of equilibrium. Biologists recognize two other two-
 sex problems. The most fundamental one is why some species, including our own,
 reproduce sexually (see Maynard Smith 1978; Bernstein et al. 1985). The second takes
 sexual reproduction as given and seeks to explain why the sex ratio for a species or a
 population assumes a particular value; R. A. Fisher developed the classical theory of
 sex ratio determination; for modern views see Maynard Smith (1980), Charnov (1982),
 and Samuelson (1985). Demographers take both sexual reproduction and the sex ratio
 of newborns as given.
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 bility of the two mirror-image models becomes evident when the in-
 trinsic or equilibrium growth rates implied by the female dominance
 and the male dominance models differ. Unless these two implied
 growth rates happen to coincide, the implied sex ratio of the popula-

 tion approaches zero or infinity.
 According to Coale (1972, p. 56), "The greatest imbalance of the

 sexes found in a search of recent Demographic Year Books of the
 U.N. was in West Berlin in 1950, where rm = -0.0001, and rf =
 - .0115." Pollard (1973) begins his chapter on the two-sex problem by
 citing Kuczynski's calculation of male and female net reproduction
 rates for France in the years immediately following World War I.
 Using the female model, Kuczynski found that the average number of
 daughters that would be born to a female then aged 0 was 0.977;
 using the male model, he found that the average number of sons that
 would be born to a male then aged 0 was 1.194. Thus the "use of a
 one-sex model with the female component of the population would
 predict a continually decreasing population for France whilst the
 same model applied to the male component would predict a continu-
 ally increasing population" (Pollard 1973, p. 82).

 Demography's two-sex problem is a fundamental anomaly that can
 be resolved only by replacing classical stable population theory with a
 model that recognizes that the observed rates for both females and
 males are in disequilibrium. In Pollak (1986) I propose a model of
 monogamously mating, age-structured population, the birth matrix-
 mating rule (BMMR) model. In the BMMR model the fertility of a
 representative female of a particular age is not a constant but a func-
 tion whose value depends on the population's age-sex composition.
 There are two reasons for this dependence. First, the probability that
 a female of age i will find a mate depends on the number of females in
 each age category and the number of males in each age category.
 Second, the number of offspring produced by a mated female may
 depend not only on her age but also on the age of her mate (see
 Goldman and Montgomery, in press). Thus the BMMR model avoids
 the contradictions of classical stable population theory by allowing
 fertility rates to adjust to the population's age-sex structure. The
 BMMR model, unlike classical stable population theory, provides a
 theoretical framework capable of analyzing the effects on marriage
 patterns of a "marriage squeeze."2 A marriage squeeze can arise when
 a population initially in equilibrium-that is, a population maintain-
 ing an unchanging age structure and growing at a constant rate-is
 disturbed by a sudden change in the birth rate. For example, suppose

 2 Schoen (1983) and Goldman, Westoff, and Hammerslough (1984) provide discus-
 sions of the marriage squeeze and references to the literature.

This content downloaded from 128.252.111.81 on Fri, 04 Oct 2019 16:34:31 UTC
All use subject to https://about.jstor.org/terms



 402 JOURNAL OF POLITICAL ECONOMY

 that females generally marry older males and that an equilibrium is
 disturbed by a baby boom. Consider what happens when young fe-
 males from the leading edge of the baby boom cohort enter the mar-
 riage market. These females find that, compared with the situation
 faced by their older sisters when they entered the marriage market,
 there is a surplus of young females relative to appropriately older
 males. A mating rule or marriage function-a function mapping the
 female and male populations by age into unions identified by the ages
 of both partners-is the appropriate construct for analyzing the ad-
 justments in marriage patterns induced by a marriage squeeze.

 This paper begins by briefly describing classical stable population
 theory. Section II describes the BMMR model and sketches a proof of
 the existence of a nontrivial equilibrium. Section III establishes a
 sufficient condition for local dynamic stability and shows that this
 condition is satisfied in four demographically interesting cases. It then
 establishes a sufficient condition for uniqueness of equilibrium, shows
 that it is satisfied in demographically interesting cases, and demon-
 strates by example that the BMMR model can have multiple nontriv-
 ial equilibria. Section IV is a brief conclusion.

 I. Classical Stable Population Theory

 The mathematics of classical stable population theory is straight-
 forward. Let F denote the female population vector by age, F =
 (F1, ... , Fn), where n is the greatest age that any individual can attain.
 Let d denote the female mortality schedule, d = (d1, ... , dn), where
 dn = 1, and b the female fertility (maternity) schedule, b = (b ... ..
 bn), where bi is the number of female offspring born to a female of
 age i.

 These two schedules define a mapping or projection of the female
 population in period t into the female population in period t + 1: the
 age-specific fertility rates determine the number of newborns in pe-
 riod t + 1, and the mortality schedule determines the number in each
 of the other age categories. Applying the age-specific fertility sched-
 ule to the number of females of each age in period t determines the
 number of newborns in period t + 1:

 n

 Ft+= 3 b (1)
 i= 1

 Applying the age-specific mortality schedule to the number of fe-
 males of each age in period t determines the number in the successor
 category in period t + 1:

 P+1 = (1 - di-)FP-1. (2)
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 TWO-SEX DEMOGRAPHIC MODELS 403

 Matrix notation allows us to express this compactly as

 Ft+ 1= LFt, (3)

 where the n X n projection matrix L,

 - bi b2 ... bn-1 bn

 (1- d) 0 ... 0 0

 L= . . . . , (4)

 0 0 ... (1 -dn-1) 0_

 is called the "Leslie" matrix.

 Linear algebra provides powerful tools for investigating the exis-
 tence of equilibrium and dynamic stability in the classical model. An
 equilibrium is defined as an age distribution, F', and an equilibrium or
 intrinsic growth rate, r, which satisfy the matrix equation

 (1 + r)F = LF. (5)

 Thus the equilibrium age distribution is an eigenvector of the Leslie
 matrix and 1 + r is the corresponding eigenvalue. Standard demo-
 graphic terminology calls an age structure that reproduces itself up to
 a scale factor a "stable age distribution" rather than an "equilibrium
 age distribution." I have departed from the standard terminology
 because it blurs the distinction between the existence problem and the
 dynamic stability problem.3

 A mathematical problem that arises in the one-sex model when the
 vector F = 0 requires special attention because it foreshadows more
 serious problems in the two-sex model. In mathematical usage, it is
 conventional to say that an equilibrium is a nonzero vector F' that
 satisfies (5). From a demographic standpoint it is preferable to call
 F = 0, as well as any other vector F that maps into zero, a "trivial"
 equilibrium. In the one-sex model, trivial equilibria are uninteresting
 both demographically and mathematically. In the two-sex model, triv-
 ial equilibria are the major obstacles blocking the "natural" fixed-
 point proof of the existence of a nontrivial equilibrium. In the one-
 sex model, if females beyond a certain age do not reproduce, then
 population vectors consisting entirely of such females will, after a
 finite number of periods, map into the zero vector. In the one-sex
 model, it is often convenient to drop such nonreproductive females

 3Ecologists may find my terminology misleading because the model contains no
 concept of an equilibrium population size.
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 from the model, analyze the reduced model, and reinterpret the re-

 sults in terms of the original model. In the two-sex model we cannot
 drop nonreproductive individuals because they may mate with poten-

 tially reproductive individuals.

 II. The Birth Matrix-Mating Rule (BMMR)

 Model

 The BMMR model has three essential building blocks: a birth matrix,

 a mating rule, and the female and male mortality schedules. Thus the
 fertility of a female of age i is not specified directly but is derived from
 the underlying birth matrix and the mating rule and depends on the
 population's age-sex composition. An element of the birth matrix

 such as bij represents the expected number of female offspring born
 in a period to an "(i, j) union," that is, the union of a female of age i

 with a male of agej. More precisely, each (i,j) union formed in period

 t produces bij female offspring and ubij male offspring who appear as
 newborns in period t + 1. The parameter a denotes the secondary

 sex ratio-the ratio of male to female newborns-and I assume that it
 is a constant, independent of the population's age-sex structure and
 independent of the ages of the parents. I denote the birth matrix by

 B = {bij}, the number of (i, j) unions by uij, and the corresponding
 unions matrix by U.

 The mating rule shows the number of unions of each type-that is,
 identified by age of female and age of male-as a function of the
 number of individuals in each age-sex category. A mating rule is thus

 a mapping, Wu(F, M), of the population vector (F, M) into the matrix of
 unions: U = ,u(F, M); it is often convenient to write uij = -O(F, M),
 where 1uY(F, M) denotes the function mapping (F, M) into the variable

 uij. Any model of a monogamously mating, age-structured population
 requires an assumption about the durability of unions. In the BMMR
 model I assume that unions last for a single period. The advantage of
 this "southern California" assumption of serial monogamy is that it
 exposes the model's logical structure, simplifying substantially both
 the notation and the analysis. The assumption that matings persist for

 one period means that the length of the time period plays a double
 role in the model, as Parlett (1972) points out. Pollak (1987b) analyzes
 the BMMR model with "persistent unions."

 The dynamics of the BMMR model are straightforward to describe.

 a) The initial population vector, together with the mating rule,
 determines the number of unions of each type; the number of unions

 of each type, together with the birth matrix, determines the number
 of newborns in the next period. The number of newborn females is
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 given by the "newborns" function, 4l(Ft, Mt), and newborn males by
 or) l(Ft, Mt):

 += '(Ft, Mt) = E E bpiY(Ft, Mt),
 ij

 (6a)

 Mt+ 1 = '1 (Ft, Mt).

 Thus the number of female offspring born to an average female of
 age i, B'(F, M)-the analogue of the parameter bi of classical stable
 population theory-is a function of the population vector (F, M) and
 is equal to a weighted sum (across male age classes) of the birth matrix

 parameters {bI1 . . bn

 = bijVyY(F, M)
 B'(F, M) = . (7)

 b) The initial population vector, together with the mortality sched-
 ules, determines the number of individuals in each of the other age-
 sex categories, just as in classical stable population theory:

 Pt+l = 1 iF(Ft Mt) = (1 -dF I)Fi 1,
 (6b)

 Mt+l = VM(Ft Mt) = (1 -dN I)M t

 Thus the BMMR model defines a transformation that maps the
 population in period t into the population in period t + 1:

 (Ft+ 1, Mt+') = 4,(Ft, Mt). (8)

 Formally, an equilibrium is defined as an age distribution and a
 growth rate, (F. M, r), that satisfy the equation

 [(1 + r)F, (1 + r)M] = 4(F, M). (9)

 When the equilibrium female and male fertility rates of the BMMR
 model are used to construct the female dominance model and the

 mirror-image male dominance model, the two one-sex models are
 consistent with each other in the sense that they imply identical
 growth rates for the female and male populations. Furthermore, the
 equilibrium age structure and growth rates corresponding to these
 two one-sex models are identical to the equilibrium age structure and
 growth rates of the BMMR model. Away from equilibrium, however,
 these two one-sex models and the BMMR model generate different
 predictions.
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 Establishing the existence of equilibrium and analyzing dynamic
 behavior in the BMMR model is more complex than in classical stable
 population theory because the properties of the mating rule make the
 BMMR model inherently nonlinear. Any mating rule for monoga-
 mous unions must satisfy two accounting requirements: a nonnegativ-
 ity condition ensuring that the number of unions of each type is posi-
 tive or zero and an adding-up condition ensuring that the number of
 mated females of each age does not exceed the total number of fe-
 males of that age, with a similar requirement holding for males. This
 adding-up requirement is the fundamental source of nonlinearity in
 the BMMR model.

 Despite its nonlinearity, we can establish the existence of equilib-
 rium in the BMMR model under suitable assumptions. In addition to
 the two accounting axioms, I impose three substantive axioms on the
 mating rule. (a) Universal scope: The mating rule must be defined for

 all nonnegative population vectors. (b) Continuity: The function Vu
 must be continuous in (F, M). (c) Homogeneity: The function Vu must
 be homogeneous of degree one in (F, M): that is, >L(XF, XM) = AV(F,
 M) for all X > 0. The homogeneity axiom implies that a 1 percent
 increase in the number of individuals in every age-sex category results
 in a 1 percent increase in the number of unions of every type. Individ-
 uals' searching for mates in a restricted and increasingly crowded
 region suggests a "density dependent" mating rule, but the
 homogeneity axiom precludes dependence of mating on population
 density. Because the elements of the birth matrix and the mortality
 schedules are constants, homogeneity of the mating rule guarantees

 the homogeneity of the mapping 4(F, M). In classical stable popula-
 tion theory, the corresponding mapping is linear as well as homoge-
 neous. Because we are trying to construct a two-sex model capable of

 maintaining an unchanging age structure while growing at a constant
 rate, homogeneity is an attractive assumption. These five axioms on

 the mating rule, together with a condition that I call "r-productivity,"
 are sufficient to ensure the existence of equilibrium in the BMMR
 model.

 An equilibrium of the BMMR model is a fixed point of the map-

 ping 4(F, M) or, more precisely, a fixed point of a related mapping in
 which the population vector is suitably normalized. A "natural" proof
 strategy would attempt to apply a fixed-point theorem to this map-
 ping. The difficulty with this strategy is that the mapping carries some
 points in the domain into (0, 0). Although (0, 0) and any initial popu-
 lation vectors (F0, MO) that map into (0, 0) satisfy equation (9) and thus
 are equilibria, this strategy fails to establish the existence of a nontriv-
 ial equilibrium. An alternative proof strategy avoids this difficulty by
 drastically limiting the domain of the mapping, reducing the problem
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 to one dimension. A threshold observation is that the only nonlinear
 component of the BMMR model is the mating rule. Hence, the only

 nonlinear component of the mapping 4(F, M) is the newborns func-
 tion 4'(F, M). To exploit this fact the existence proof decomposes the
 argument into two parts: the determination of an equilibrium age
 structure and the determination of an equilibrium growth rate. We
 begin by disconnecting the birth matrix and the mating rule from the
 mortality schedules and imagining that the number of newborns
 grows at a constant rate r. (For definiteness, suppose that in each
 period storks take away all newborns and bring replacements: in the
 first period they bring N newborn females and uN males; in the
 second, [1 + r]N females and [ 1 + r]uN males; in the third, [ 1 + r]2N
 females and [1 + r]2uN males, and so on.) After n periods the age
 structure of the population is uniquely determined by the mortality
 schedules, the secondary sex ratio (a), the growth rate of newborns
 (r), and the initial number of newborn females (N). For example, the
 age structure of the female population at time t is given by

 T-

 F= FI(1 + r)tT fl (1 -di) (10)
 k=1

 where T < n and Fl = N. For n = 3 and no early mortality, this
 implies (F1, F2, F3) = [(1 + r)2N, (1 + r)N, N]. In Pollak (1986) 1 call a
 population with this structure an r-equilibrium. If the model has a
 nontrivial equilibrium (F', M, r), then F and M are r-equilibrium popu-
 lations corresponding to r. A normalized r-equilibrium female popula-
 tion, F(r), is an r-equilibrium population in which the number of
 newborn females is one; the normalized r-equilibrium male popula-
 tion, M(r), is one in which the number of newborn males is a. Since
 the newborn females are a cohort of size one, the 1-year-olds are the
 survivors of a cohort of 1/(1 + r), the 2-year-olds the survivors of a
 cohort of 1/(1 + r)2, and so on:

 T-i

 J (1 - dk)

 -* k=(11 * = k(1 + r)T-

 For n = 3 and no early mortality, this implies F(r) = [1, 1/(1 + r),
 1/(1 + r)2].

 If the BMMR model has a nontrivial equilibrium (F, M, r'), then the
 equilibrium age structure (F', M) is an r-equilibrium population for
 r = r. Hence, when we search for a nontrivial equilibrium, it suffices
 to restrict our attention to r-equilibrium populations, thus reducing
 the problem to a single dimension: an equilibrium of the BMMR
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 model corresponds to a value of r for which the r-equilibrium popula-

 tion satisfies equation (9):

 [(1 + r)F(r), (1 + r)M(r)] = 4[F(r), M(r)]. (12)

 By the definition of an r-equilibrium population, the number of indi-

 viduals in every age-sex category except newborns grows at the rate r.
 Hence, we need only find a value of r for which the birth matrix and

 the mating rule imply that the number of newborn females corre-
 sponding to a normalized r-equilibrium population is 1 + r. In the

 example with no early mortality, this implies that the new female
 population vector is given by [(1 + r), 1, 1/(1 + r)]. Defining the
 function +(r) by

 +(r) = 4.'[F(r), M(r)] - 1, (13)

 we can express this equilibrium condition as

 (r) = r. (14)

 In terms of figure 1, establishing the existence of a nontrivial equi-
 librium requires showing that the function +f(r) crosses the 450 line.
 Pollak (1986) proves that the BMMR model has a nontrivial equilib-
 rium provided that the model is r-productive. The r-productivity con-
 dition requires that there exist a value of r for which a normalized
 r-equilibrium population produces at least 1 + r newborn females.
 The purpose of the r-productivity condition is to ensure that there is
 some value of r for which the function t(r) lies above the 450 line. The
 fixed birth matrix implies that there is some value of r for which the
 function 4 lies below the 450 line. For any normalized r-equilibrium
 population, a larger value of r implies a smaller number of individuals
 in each age group except newborns; furthermore, as r approaches
 infinity, the normalized r-equilibrium female population vector

 approaches (1, 0, 0, . .. , 0) and the corresponding male vector (a, 0, 0,
 0). For sufficiently large r, only (1, 1) unions can form, and

 the adding-up condition implies that the number of such unions can-
 not exceed min{l, a}. Thus for sufficiently large r, the number of

 newborn females must approach or be less than bl, min{1, a}. For
 sufficiently large r, this upper bound on the number of newborn
 females must be less than 1 + r. Hence, for sufficiently large r, the
 function +(r) lies below the 450 line. (In Pollak [1986] I assume that
 newborns do not enter unions, so that in the next period the number

 of newborns approaches zero and +(r) approaches negative one as r
 approaches infinity.)

 Since the function +j(r) lies above the 450 line for some values of r
 and below it for others, continuity implies that it crosses the 450 line at
 least once. Hence, the BMMR model has a nontrivial equilibrium.
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 -1 - _~~-

 r / 0r \ r

 FIG. 1.-Existence of equilibrium in the BMMR model

 III. Dynamic Stability and Uniqueness

 Dynamic stability, unlike existence, cannot be reduced to one dimen-
 sion. In the Appendix I extend the elegant argument of Arthur
 (1981, 1982) to show that an equilibrium of the BMMR model is
 locally stable if, in a neighborhood of that equilibrium, the number of
 newborns is a nondecreasing function of the number of individuals in
 every age category and a strictly increasing function of the number of
 individuals in at least two adjacent categories.4 I show by example

 that, unless additional axioms are imposed, the BMMR model need
 not satisfy this condition. Four sets of demographically meaningful
 conditions imply local stability.

 a) Collective maximizing mating: Suppose that the mating rule is
 such that the configuration of unions formed are those that maximize
 the total number of newborns. With collective maximizing mating, an
 increase in the number of individuals in any age-sex category cannot
 decrease the number of newborns. Thus maximizing mating implies

 4 Caswell and Weeks (1986) use both analytic and simulation techniques to investigate
 dynamic stability in a related two-sex model.

This content downloaded from 128.252.111.81 on Fri, 04 Oct 2019 16:34:31 UTC
All use subject to https://about.jstor.org/terms



 410 JOURNAL OF POLITICAL ECONOMY

 that the newborns function is nondecreasing in all its arguments and

 strictly increasing in some. To ensure stability in this case (and in the

 three remaining cases), we must also assume that the newborns func-

 tion is strictly increasing for individuals of two adjacent ages. It might

 be thought that evolution would favor collective maximizing mating,

 but this is incorrect. Although collective maximizing mating favors

 the interest of the group, evolutionary arguments run not in terms of

 groups but in terms of individuals or genes (see Dawkins 1976). In the
 vocabulary of economics, natural selection provides no mechanism

 for internalizing externalities.
 b) Individual maximizing mating: Suppose that each individual

 seeks to maximize the number of his or her offspring subject to the

 constraint that all matings must be voluntary and monogamous. Sup-

 pose that the birth matrix contains no "ties," except perhaps for

 unions that produce zero offspring. Then the equilibrium mating

 pattern can be found using a straightforward algorithm. First select
 the largest element in the birth matrix and form the maximal number

 of unions of that type (the maximal number of (i, j) unions is the
 minimum of the number of females of age i and the number of males

 of age j in the population). Now select the largest remaining element
 in the birth matrix and form the maximal number of unions of that

 type from the unmated population (i.e., the population remaining

 after eliminating those individuals mated at previous stages). Proceed
 in this way through the birth matrix or until the only remaining

 elements are zero. Individual maximizing mating need not corre-
 spond to collective maximizing mating, but local dynamic stability is
 ensured because an increase in the number of individuals in any age
 category cannot decrease the number of newborns.

 Proof. Suppose, for definiteness, that a female of age i0 is added to
 the population. In the algorithm for individual maximizing mating,
 suppose, without loss of generality, that the new female is the last
 female of age io to be mated. Adding a female of age io to the popula-
 tion has no effect on unions with higher fertility than the one at which
 such females become the binding constraint in the algorithm. If the
 new female mates with a previously unmated male, then the number

 of newborns increases at this stage and no lower-order union is dis-
 placed. If she mates with a previously mated male, then (1) the num-

 ber of offspring increases at this stage of the algorithm because the
 new union produces more offspring than the union it displaces and

 (2) a female of age i1 is displaced. Thus if we introduce a female of age
 io and withdraw a female of age i1, the net effect is an increase in the
 number of newborns. But now we can proceed sequentially, rein-
 troducing the female of age i1 and withdrawing a female of age i2, and
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 so on, at each step increasing (or not decreasing) the number of
 newborns.

 The following example illustrates the difference between collective
 and individual maximizing mating. Suppose that there are two age

 groups and b22 = 4, b12 = b2I = 3, and bII = 0. With equal numbers
 in all age-sex categories, collective maximizing mating calls for mixed
 unions, while with individual maximizing mating those in the older
 age category would mate with each other.

 If there are ties between nonzero elements in the birth matrix,
 individual maximizing mating may fail to yield a unique set of equilib-

 rium mating patterns or a unique number of newborns. For example,

 suppose that there are two age groups and b22 = b2I = 4, bI2 = 3, and
 bil = 0. Suppose that F2 < MI + M2. To determine uniquely the
 number of newborns (a prerequisite to investigating whether new-
 borns are a nondecreasing function of the number of individuals in
 every age category), we need a tie-breaking rule to determine which
 males mate with females of age 2 and which are left. Among the tie-
 breaking rules guaranteeing that the newborns function is nonde-

 creasing are random selection and priority by age (e.g., oldest first,
 youngest first).

 c) Zero spillover mating: Suppose that the mating rule is such that
 the number of unions involving females of age i and males of age j

 depends only on Fj and Mj and is independent of the number of
 individuals in the other age-sex categories:

 uij = pY(F, M) = pi'u(Fl, My), for all ij. (15)

 Provided that these functions are nondecreasing in Fj and Mj, an
 increase in the number of individuals in any age-sex category cannot
 decrease the number of newborns.

 Schoen's "harmonic mean" mating rule (Schoen 1981),

 1L(F, M) - OLYFiMj dtij > Ok A ?ij < 1I Vi and EO1ij c I V j,
 Fj j M

 (16)

 is an example of a zero spillover mating rule involving only a single
 parameter for each type of union.

 The constant elasticity of substitution (CES) mating rule,

 puY(F, M) = [(otyjf)-P<JFj-p + (0tij-) (17)

 where otijf > ? m tijm > 0 and pij > 0 for all i >0, tijf- I for all i, and 1,
 Otijm C 1 for all J, is a more general zero spillover rule. The summation
 conditions and the requirement that pg, > 0 for all ij ensure that the
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 adding-up axiom is satisfied. When pij = 1 and tijf = tijm = otj, for all
 i, j, the CES mating rule reduces to

 pY(F, M) - + oc7'M7 ')', (18)

 which, after some manipulation, reduces to Schoen's harmonic mean
 mating rule.5

 d) The IMEX model with males in surplus: Pollak (1986) defines
 the "identical males-exhaustive mating" (IMEX) model as a special
 case of the BMMR model. We begin by distinguishing between eligible
 and ineligible individuals and defining an exhaustive mating rule. Eligi-
 ble individuals are eligible to mate; ineligible individuals are noncan-
 didates. Those in the ineligible population are not paired with mates
 even when there are surplus members of the opposite sex and all
 eligible members of their own sex have mates. Thus the eligible popu-
 lation may exclude the sick, the very young, and the very old. It may

 also, however, exclude various fractions of the individuals in each
 age-sex category. A mating rule is said to be exhaustive if it never
 leaves both unmated females and unmated males in the eligible popu-
 lation. Unless the number of eligible females happens to equal the
 number of eligible males, an exhaustive mating rule does leave un-

 mated either some eligible females or some eligible males. An exhaus-
 tive mating rule, however, guarantees the formation of the maximum
 number of unions involving members of the eligible population.

 In the IMEX model all males in the eligible population are identical

 in the sense that the fertility of an (i, j) union is independent of the
 age of the male. Provided that males are in surplus in equilibrium, the
 IMEX model is essentially equivalent to the classical model, and in

 the neighborhood of such an equilibrium, an increase in the number
 of individuals in any age-sex category cannot decrease the number of
 newborns. The IMEX model with females in surplus, on the other
 hand, provides an example of a specification in which additional indi-
 viduals in some age-sex categories can reduce the number of new-
 borns. More specifically, additional low-fertility females can reduce

 average fertility per union without increasing the number of unions,
 thus reducing the number of newborns.

 My discussion of dynamics has focused on local rather than global
 stability for three reasons. First, some initial population vectors must
 converge to the trivial equilibrium: consider, for example, an initial
 population vector with no females. Second, an example due to Brian

 5 Caswell and Weeks (1986) use the CES mating rule; Jere Behrman, Samuel Preston,
 and I are now estimating the CES and other "marriage functions" using U.S. and
 Japanese data.
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 Arthur cited in Pollak (1986) shows that, instead of converging to an

 equilibrium, the BMMR model can oscillate; the example violates the
 condition that the number of newborns be strictly increasing for indi-

 viduals of at least two adjacent ages. Third, a model with multiple

 equilibria cannot be globally stable, and as the following example
 shows, the BMMR model can have multiple nontrivial equilibria.

 Specifying the example requires mortality schedules, a birth ma-

 trix, and a mating rule. (a) Mortality schedules: All individuals live
 two periods. (b) Birth matrix: Only unions in which both the female

 and the male are newborns are fertile, so bl, is the only nonzero
 element of the birth matrix; let bl, = b. (c) Mating rule: All individ-
 uals are in the eligible population. Females of age 2 have first priority
 in mating and prefer males of age 1. Females of age 1 have second
 priority in mating and also prefer males of age 1.

 Applying the mating rule to r-equilibrium populations, { 1,

 1/(1 + r)}, we find that for r ? 0, F2 ' MI; hence, for r ? 0, all
 potentially reproductive males are mated with females of age 2 and

 no newborns are produced; for r ? 0, +(r) = - 1. For r > 0 we have

 I = 1 - [1/(1 + r)], and hence 4(r) = b - 1 - [b/(I + r)]. It is easily
 verified that this function increases monotonically and is asymptotic

 to b - 1. For b < 4, the function i(r) does not cross the 450 line (see
 fig. 2), and the model has no nontrivial equilibrium. For b = 4, the
 function +(r) is tangent to the 450 line at r = 1 and the model has a
 single nontrivial equilibrium. For b > 4 the function +(r) intersects the
 450 line twice and the model has two nontrivial equilibria. For ex-
 ample, for b = 9/2 the equilibria are r = 1/2 and r = 2. This example
 not only shows that multiple equilibria are possible in the BMMR

 model but also illustrates the crucial role of the r-productivity condi-
 tion in ensuring the existence of a nontrivial equilibrium.

 A sufficient condition for the BMMR model to have a unique non-

 trivial equilibrium is easy to obtain: it is clear from the geometry of
 figure 1 that if the function 4(r) decreases monotonically, then it can
 cross the 450 line only once, and hence the BMMR model can have
 only one nontrivial equilibrium. It is plausible that the function 4(r)
 could be downward sloping: the larger the value of r used to calculate
 the r-equilibrium, the smaller the number of individuals in each age-
 sex category except newborns; with fewer individuals in each age-sex
 category, one might expect fewer newborns in the next period.
 Nevertheless, the five axioms imposed on the mating rule and the r-
 productivity condition do not imply that the function 4(r) is down-
 ward sloping, and the example just presented shows that the nontriv-

 ial equilibrium need not be unique. An overly strong sufficient

 condition for uniqueness is that at every population vector an increase
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 FIG. 2.-Cases of no equilibrium and multiple equilibria

 in the number of individuals in each age-sex category not decrease
 the number of newborns in the next period.6 Thus the first three of
 the four demographically meaningful conditions for local dynamic
 stability-the two types of maximizing mating and zero spillover mat-
 ing-provide conditions for uniqueness; if any one of these local

 stability conditions holds globally, then the nontrivial equilibrium is
 unique.7

 IV. Conclusion

 This paper has described the BMMR model, sketched a proof of
 the existence of equilibrium, established sufficient conditions for
 uniqueness and local dynamic stability, and shown by example that
 the model can have multiple nontrivial equilibria. In a model with
 multiple equilibria, initial conditions determine which, if any, of sev-
 eral equilibria will be realized, and small differences in initial condi-
 tions can cause large differences in long-run behavior. Thus
 uniqueness and dynamic stability are intimately related. Further
 work-both theoretical and empirical-is required to determine
 whether any of the sufficient conditions for uniqueness and dynamic

 6 A weaker but still overly strong sufficient condition is that at every r-equilibrium
 population vector, an increase in the number of individuals in each age-sex category
 not decrease the number of newborns in the next period.

 7 The IMEX model with males in surplus cannot hold globally.
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 stability is satisfied and whether multiple equilibria or dynamic insta-
 bility is a realistic possibility in the BMMR model.

 Simulation is a possible approach to investigating these issues, but
 the BMMR model illustrates the difficulty of using simulation tech-
 niques when a model lacks a parametric specification. Simulating the
 BMMR model requires us first to specify a functional form for the
 mating rule and then to specify the appropriate parameter values. An
 analogy with economics is useful. Classical stable population theory is
 like the input-output production model: both are so highly parame-

 terized that data from a single period are enough to identify all the
 model's structural parameters and to allow us to predict its evolution.
 The BMMR model is like the neoclassical production model: both
 involve functions that are not specified parametrically, and the issue
 of specifying "plausible" or "realistic" parameter values for the model
 does not arise until functional forms are specified. The power of the
 BMMR model, like that of the neoclassical production model, arises
 from its generality: in both cases, the model's failure to specify a
 parametric functional form is not a weakness but a strength.8

 Further work is required to transform the BMMR model from a

 merely formal into a substantive model of population age structure
 and growth. The transformation requires importing behavioral theo-
 ries from social science into the BMMR model to explain its three
 primitives: the birth matrix, the mating rule, and the mortality sched-

 ules.9 From the standpoint of social science, however, these three
 primitives are different kinds of analytical constructs. The mortality

 schedule is often regarded as a biological datum, although there is
 ample precedent (from Malthus to recent concern about excess fe-
 male infant mortality rates in India) for regarding mortality as endog-
 enous. The elements of the birth matrix reflect the decisions of indi-

 8 Both classical stable population theory and the input-output production model are
 linear, but the more significant similarity is that both have simple parametric
 specifications. Classical stable population theory is not the only demographic model
 that allows us to calculate structural parameters and predict the evolution of a popula-
 tion from a single period's data, just as the input-output model is not the only produc-
 tion model whose entire structure is revealed by a snapshot. If the good fairy who helps
 demographers revealed that each mating rule belonged to a particular one-parameter
 family (e.g., the harmonic mean or some other suitably restricted subset of the CES
 class), that revelation would enable us to calculate the parameters from one period's
 data. Similarly, if the good fairy who helps econometricians revealed that the underly-
 ing technology belonged to a particular one-parameter family (e.g., Cobb-Douglas or
 some other CES with a known elasticity of substitution), we could calculate the parame-
 ters from a snapshot. In each case, however, different revelations used to analyze the
 same data yield different predictions.

 9 In the generalized version of the model in which unions can persist for more than
 one period (Pollak 1987b), there is a fourth primitive requiring a behavioral explana-
 tion: the schedule specifying the probabilities that unions of each type will end in
 desertion or divorce.
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 viduals or families facing economic and biological constraints; the

 analysis of these decisions is the subject matter of the economic theory
 of fertility. The mating rule is more complex analytically than the

 mortality schedules or the birth matrix because it reflects not only
 individual behavior but also the interactions of individuals in the mar-

 riage market. Because the mating rule is a "reduced form" repre-

 senting the equilibrium that corresponds to some unspecified set of
 "structural" equations, treating it as a primitive in the BMMR model is
 especially problematic.

 One might think that treating the mating rule as a primitive in the
 BMMR model is like treating aggregate excess demand functions as

 primitives in general equilibrium analysis, but the analogy is mislead-

 ing. Economics possesses a highly developed theory relating reduced-

 form excess demand functions to a structural model in which max-

 imizing economic agents make choices subject to appropriate

 constraints. Demography, on the other hand, lacks highly developed
 behavioral theories relating reduced-form mating rules to a structural
 model of marriage market equilibrium.'0

 To summarize: Classical stable population theory is parsimonious
 both because it allows us to use well-known, powerful mathematical

 techniques to investigate existence and dynamic stability and because
 it allows us to infer a population's equilibrium age structure and its

 dynamic behavior from very little data. The BMMR model, which
 allows fertility rates to depend on the population's age-sex structure,
 is more complex analytically and more demanding in its data require-
 ments. In return for these extravagances, the BMMR model solves

 demography's two-sex problem and provides a framework for ad-
 dressing the marriage squeeze and other important issues in demog-
 raphy and economics that require a two-sex model.

 Appendix

 Local Stability

 An equilibrium of the BMMR model is locally stable if, in a neighborhood of
 that equilibrium, the mapping 4(F, M) is nondecreasing in all its arguments

 10 The foundation for a structural theory of the marriage market has only recently
 been laid. A substantial literature now exists on matching models, following the line of
 analysis begun by Gale and Shapley (1962) in their celebrated paper and Becker (1973,
 1981). Mortensen (1988) provides an accessible recent survey and references to the
 matching literature. Lam (1988) and Stapleton (1988) analyze marriage in models with
 household public goods. Assuming "transferable utility," Lam examines the differing
 effects of gains from marriage attributable to specialization (in household production
 or the market) and to joint consumption (of household public goods). Using a "hedonic
 price" approach, Stapleton analyzes marriage market equilibrium under the assump-
 tion that individual characteristics vary continuously, in contrast to matching models,
 which assume a discrete distribution of individual characteristics.
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 and strictly increasing for individuals of at least two adjacent ages. This prop-
 osition is a corollary to a global stability theorem that Arthur (1981) estab-
 lishes for a one-sex, linear demographic model. The stability argument
 sketched here is not self-contained, but only indicates the necessary connec-
 tions with Arthur's. I focus on newborn females; a parallel argument holds
 for males.

 Continuity implies that, if the initial population vector is sufficiently close to
 an equilibrium, then the population vector n periods later will also be close to
 that equilibrium. Thus it suffices to make the stability argument in terms of
 the population vector (F , M') instead of (Fl, Ml). This is advantageous be-
 cause, regardless of how unbalanced the sexes were in the initial population
 vector, after n periods the sex ratio within each cohort must be "balanced,"
 that is, consistent with the mortality schedules and the secondary sex ratio.
 Hence, the female population vector is a sufficient statistic for the entire
 population vector, and we can reduce the domain of the newborns function
 from 2n to n dimensions:

 Ft = A[Fj1', F-'. Ft '].
 Using the mortality schedules, we can express female births as a function not
 of the current female population vector but of newborn females in the previ-
 ous n periods:

 Ft = A*[Ft- 1, Ft-2 Ft-n].

 The function A* is homogeneous of degree one in its arguments. Hence, we

 may adopt Arthur's device of dividing both sides of the function by (1 + r)t:

 (1 + r)t

 * Ft' l 1 + r Ft'2 (1 + r)2 F(-n (1 + r)n1
 L(1 + r)t 1 + r' (1 + r)t (1 + r)2 (1 + r)t (1 + r)nJ

 Replacing Ft /(1 + r)t by the new variables Ft, we can write

 Ft - A**[Ft 1, . Ft n r].

 Arthur calls {Ft, Ft- 1, . . .} a "growth-corrected" birth sequence. The func-
 tion A* and, hence, the function A** are homogeneous of degree one in
 (Ft- 1. Ft-n), so Euler's theorem implies

 n

 Ft = A* E t - k = Z t h pt
 k=1 aFt-k

 Treating the coefficients in the Euler's theorem expression as constants, we
 have an expression analogous to Arthur's linear expression (8), which we can
 use to investigate local stability.

 To establish stability, it suffices to show that, for some value of r, the
 growth-corrected birth sequence becomes constant over time. The essence of
 Arthur's proof is a demonstration that the dynamic process can be viewed as
 one of averaging growth-corrected birth sequences and that averaging causes
 a contraction of the extreme values in past cohorts. Following Arthur, we pick
 r to be a nontrivial equilibrium, r, which, in the BMMR model, need not be
 unique. For an equilibrium r, a constant growth-corrected birth sequence will
 reproduce itself; letting Ft-i = Ft-2 -= Ft-n = z, we have
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 n

 = apt-k z

 so the coefficients in the Euler's theorem expression sum to one. Applied to
 this averaging process, Arthur's argument implies that an equilibrium of the
 BMMR model is locally stable provided that, in a neighborhood of the equilib-
 rium, these coefficients are all nonnegative and that they are strictly positive
 for females of at least two adjacent ages." This will be the case if, in
 a neighborhood of equilibrium, the function 4'(Fl, M') is nondecreasing in
 all its arguments and strictly increasing for individuals of at least two adja-
 cent ages.'2
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