Correcting for Endogeneity in
Strategic Management Research

Barton H. Hamilton*
John M. Olin School of Business
Washington University in the St. Louis
hamiltonb@olin.wustl.edu

Jack A. Nickerson
John M. Olin School of Business
Washington University in the St. Louis
nickerson@olin.wustl.edu

*An outline of this paper was presented at the BPS Doctoral Consortium at the 2001 Academy of Management meetings in Washington D.C. We acknowledge and thank Chih-Mao Hsieh for research assistance. We also thank Joel Baum, Janet Bercovitz, Kurt Dirks, Hideo Owan, Will Mitchell, Patrick Moreton, Ed Zajack, and two anonymous referees for their comments.
Correcting for Endogeneity in Strategic Management Research

The field of strategic management is predicated fundamentally on the idea that managements’ decisions are endogenous to their expected performance implications. Yet, based on a review of more than a decade of empirical research in the SMJ, we find that few papers econometrically correct for such endogeneity. In response, we now describe the endogeneity problem for cross-sectional and panel data, referring specifically to management’s choice among discrete strategies with continuous performance outcomes. We then present readily implementable econometric methods to correct for endogeneity and, when feasible, provide STATA code to ease implementation. We also discuss extensions and nuances of these models that are sometimes difficult to decipher in more standard treatments. These extensions are not typically discussed in the strategy literature, but they are, in fact, highly pertinent to empirical strategic management research.
Introduction

The underlying presumption of the field of strategic management is that managers can make choices to generate sustainable competitive advantage, thereby achieving superior performance outcomes for their organizations. Thus, strategic management researchers are frequently interested in understanding those decisions that influence performance. For instance, we generally think that managers’ desire to achieve high levels of performance influences their decisions about whether to make or buy, to acquire or invest, to join a network or not, to choose an alliance or a joint venture, to centralize or decentralize, etc. If this presumption is correct, then managers make strategic organizational decisions not randomly, but based on expectations of how their choices affect future performance. Put more precisely, the field of strategic management is fundamentally predicated on the idea that management’s decisions are endogenous to their expected performance outcomes—if not, managerial decision-making is not strategic; it is superfluous.

Endogeneity has important implications for the statistical analysis of such decisions. As we more fully illuminate below, statistical analysis that does not take into account management’s expectation of performance outcomes with respect to the strategy chosen can suffer from biased coefficient estimates. These biases result from omitted variables that affect both strategy choice and performance. Thus, estimating unbiased coefficients for these problems requires econometric methods that account for omitted variables. Such methods statistically correct for management’s self-selection of a particular strategy. Failure to account for endogeneity can have important consequences. For instance, Masten (1996), who works out of the logic of transaction
cost economics, describes the endogeneity problem as a choice between estimating the cost of making a component in ship construction as opposed to buying it. He shows that for a typical component, the estimated costs of internal organization using a standard OLS estimator are approximately 30 percent lower for the typical make component and almost 50 percent lower for the typical buy component compared to estimates for which endogeneity has been corrected for econometrically. Shaver (1998) undertakes a similar exercise by empirically examining how mode of entry—foreign direct investment or greenfield—influences survival. In econometric specifications that do not account for self-selection, he finds that greenfield entries have survival advantages over acquisitions, which confirms previous findings. However, the significance of the effect disappears when the estimate is corrected for endogeneity. In general, failure to statistically correct for endogeneity can lead not only to biased coefficient estimates but, more importantly, to faulty conclusions about theoretical propositions.\footnote{1} Endogeneity problems are particularly vexing to researchers because both the direction and the size of bias are difficult to predict ex ante.

Econometric techniques to correct for endogeneity when both strategy choice and performance are continuous long have been available; instrumental variable and two and three stage methods are both well known and readily implemented. This is not the case, however, for strategy choices that are discrete yet yield performance outcomes that are continuous. Since 1974,\footnote{1 Such erroneous results can greatly contaminate the empirical progress in a field. Consider Masten’s discussion (1996, 52) of Capon et al’s (1990) review of 320 financial performance studies. Capon et al. reported that “vertical integration was found to have positive influence on performance in 69 studies and a negative influence in 35; horizontal integration or diversification a positive effect in 107 studies and a negative effect in 174; and owner (as opposed to manager) control a positive effect in 65 and negative impact in 56. Viewed collectively, these studies cannot sustain generalization about the direction, much less the magnitude, of the effects of organizational form.” Masten concludes that the “the sorry state of this research is at least partly the result of serious specification problems” in which endogeneity is not considered.}
econometric techniques to correct for endogeneity arising from discrete strategy choices have been available (Heckman 1974, Lee 1978) and growing in number as new advances are made. Many of these econometric estimators were developed in the context of labor economics. Nonetheless, the econometric problems in that field are structurally similar to problems of strategic management. For instance, the classic illustration in labor economics (Roy 1951) concerns the problem of individuals selecting between two professions—hunting and fishing. Heckman and Lee’s technique for econometrically analyzing this choice is based on the assumption that individuals will self-select into the profession that provides a better match with their abilities and hence a greater return. But without modeling this self-selection, a regression of income on profession choice may lead to erroneous estimates for the returns to each profession. For instance, a regression analysis that does not correct for self-selection might imply that income is independent of profession choice, whether hunting or fishing. Yet a more appropriate econometric analysis, one that incorporates the possibility of self-selection, might instead find that those individuals who chose the hunting profession earned a substantially higher income than if they had instead chosen to fish and vice-versa.

An individual choosing between these two professions is the structural equivalent of a manager choosing between two alternative strategies. For instance, an analysis that regresses profitability on *make* versus *buy* will likely lead to biased coefficient estimates of the impact of this strategic choice on performance unless we control for self-selection. The fundamental question for assessing the impact of choosing to buy (or to fish, in Roy’s context) is this: What profit would the manager’s organization earn if he had chosen to make (or to hunt) instead? We are not likely to provide an accurate answer this question by comparing the profits of firms choosing to make...
with the profits of those choosing to buy, since the observed outcomes may not correspond to the
counterfactual performance levels of interest. For example, firms choosing to make may have
particular production capabilities that make this a highly profitable choice. On the other hand,
firms choosing to buy may not have these production capabilities. Consequently, had the “buy”
firms instead chosen to make, they would have been much less profitable than those firms who
actually chose to make. As a result, a regression of performance on the make versus buy choice
that does not allow for endogeneity of the choice may not answer the strategy effect question of
interest.

Although the presumption that managers make decisions with respect to expected performance
benefits is a foundation of strategic management, it is surprising how few empirical papers
consider and econometrically correct for such endogeneity. For example, consider empirical
papers published in the *Strategic Management Journal* (SMJ). Whether or not SMJ represents
strategy research in general, SMJ is nonetheless the core journal and a key source of knowledge
for the strategy field and thus is an appropriate journal to scrutinize. Of the 426 empirical papers
published in the SMJ (out of 601) between January, 1990, and December, 2001, we identify only
27 papers that explicitly econometrically correct for potential endogeneity concerns. Of course,
ot all research involves such endogeneity concerns—an econometric model in which potential
omitted variables are uncorrelated with right hand side covariates may not suffer from
endogeneity bias. However, at a minimum, empirical strategy research that investigates some
type of performance outcome should carefully consider correcting for endogeneity.²

² A conservative estimate of the number of papers that should have considered correcting for endogeneity might be
all those empirical studies that directly study performance (e.g., profits, mortality, satisfaction, etc.). A total of 169
of the 196 performance-related papers (86%) do not control for endogeneity. Thus, while a variety of econometric
We believe that the low number of papers in SMJ that account for endogeneity may indicate a failure of empirical research in strategic management. An empirical analysis that models performance as a function of right-hand-side decision variables without correcting for the presumption that managers make decisions to achieve some level of expected performance is implicitly assuming that these decision variables are exogenous to performance and thus ignores the endogeneity of these decisions. Yet, ignoring endogeneity is perilous; as the Masten (1996) and Shaver (1998) papers attest, the resulting parameter estimates are likely to be biased and may therefore yield erroneous results and incorrect conclusions about the veracity of theory.

Our paper provides value to strategic management researchers in four ways. First, we assess the diffusion of econometric methods used in empirical research published in the SMJ over the past decade. In doing so, we find a sea change over the past decade in the type of econometric techniques used to test hypotheses in the field of strategic management. Second, we identify the methodological issues associated with endogeneity specifically for strategic management phenomena for both cross-sectional and panel data. Third, we review econometrics methods for dealing with these issues and explain when different types of models are appropriately used. Unlike standard econometric treatments, our presentation and discussions are developed specifically for application to strategic management phenomena. We also discuss extensions and nuances of these models that are sometimes difficult to decipher or not readily accessible in more

methods to correct for endogeneity have been introduced since the 1970s, it was not until this past decade that the early methods began to diffuse into strategic management research. This lag suggests that while strategic management research is beginning to more directly focus empirical work on correcting for endogeneity, research may not be benefiting from more recent econometric advances.
standard treatments and describe additional information provided by theses models about relative and absolute comparative advantages that, ironically, are typically ignored in strategic management applications. Fourth, we focus on methods that are readily implementable using standard software packages that require little in the way of programming. To highlight this, we provide relevant STATA code, when feasible, in an Appendix to make it easier for researchers to implement these techniques not only in STATA but also other statistical software packages. We believe that the information provided herein goes far in bridging the gap between the state of the art in econometric theory (which is sometimes difficult to access) and empirical strategic management research practice (which presents challenges when coding econometric software packages to estimate models).

Background

Trends in the use of econometric methods in strategic management

We believe that strategic management research is in the midst of a sea change toward a greater and richer use of econometric methods. Consider empirical research published in SMJ. Table 1 reports a summary of the empirical methods used to test hypotheses in SMJ papers published between 1990 and 2001. The unit of analysis in this summary is the method-paper; in other words, we identify and summarize by year the methods used to test hypotheses in each paper, which means that each paper may be using more than one method. To classify methods and ease interpretation of results, we used 26 categories of methods and grouped these into five broad

3 In particular, we focus on “two-step” approaches rather than full information maximum likelihood methods. Maximum likelihood routines for the more complex models described in this paper, such models for polychotomous strategy choice, are not available in standard software packages and must be programmed by the researcher. Surveys such as Maddala (1983) and Vella (1998) describe the full range of two-step and maximum likelihood approaches to many self-selection problems.

4 Research notes and editors’ notes are excluded from our analysis.
classes. (See Table 1 for a listing of categories.) The class named *Simple Statistical Descriptors* includes differences in means, correlation analysis, MANOVA, ANOVA, variance components, and cross tabulations. The class named *Multivariate Methods* encompasses clustering analysis, multidimensional scaling, multi-discriminant analysis, factor analysis, principal component analysis, structural equation modeling and path analysis, meta analysis, and other methods not falling into any other category, but it excludes multivariate regression. The next three classes are what we term econometric methods. *Classical Regression*, which principally involves continuous dependent variables, includes ordinary least squares (OLS), maximum likelihood estimation (ML), weighted least squares (WLS), hierarchical regression, moderated regression, seemingly unrelated regress (SUR), and generalized least squares (GLS). The class of *Limited Dependent Variables* includes Poisson regression, Tobit regression, negative binomial, binomial Poisson, logit and Probit, and event history analysis. Our final class, which *Accounts for Omitted Variables*, includes instrumental variable techniques (IV), fixed-effects methods (FE), and maximum likelihood and two-stage (or more) endogenous self-selection models. The summary of these SMJ research methods allows for several interesting observations.

A decade ago, almost three-quarters of the empirical methods could be classified as largely non-econometric (either simple statistical descriptors or multivariate analysis). In contrast, by 2001 the scales nearly reversed: almost two thirds of the empirical methods utilized are based on econometric techniques (classical regression, limited dependent variables, and methods that

\[5\]

The use of the term *non-econometric* is not meant to be pejorative. Rather, Frish (1933) (in Greene 1997, 1) asserts that econometrics is the unification of statistics, economic theory, and mathematics. We use the term *non-econometric* to indicate methods for which at least one of these three constitutive elements is not present. For instance, exploratory data analysis such as principal component analysis or clustering analysis is not based on economic theory and thus represents non-econometric methods.
account for omitted variables). Thus, econometric methods appear to be displacing other approaches, notably simple statistical descriptors, which have declined over the past decade from 55% to below 20% of the approaches used each year to examine hypotheses. Figure 1 graphically displays the changing composition the methods used in SMJ.

Of course, this change in percentage need not indicate a sea change if the number of empirical papers or the number of methods per paper were increasing. If so, econometric analysis likely would be complementing and adding to simple statistical descriptors, not displacing it. However, data indicate this is not the case. As Table 1 shows, the number of methods per paper has been in flux (around 1.9 methods per paper) but with no clear trend. Moreover, the absolute number of simple statistical descriptors has declined from 27 in 1990 to 14 in 2001, even though the number of empirical papers has increased in both percentage terms and absolute numbers. For instance, only 26 (or 59%) of the 44 papers published in 1990 are empirical, whereas 41 (or 85%) of the 48 papers published in 2001 are empirical. Another related indicator is the diversity of methods used each year. Diversity generally has increased with, for example, 10 methods used in 1990 growing to 17 methods in 2001, with most of the growth in diversity of methods coming from the increasing variety and use of econometric methods.

Trends in accounting for endogeneity

Much of the growth in econometric methods has been in Classical Regression methods, which grew from about 18% of the methods used in 1990 to around 35% in 2001. The use of Limited Dependent Variables also doubled from nearly 8% to 17% over the same time frame. With this sea change toward the use of econometric techniques, we think that the limited use of methods to
account for omitted variable bias and endogeneity is surprising. Of course, the percentage increase in the use of methods to account for endogeneity is infinite because no papers early in the decade account for endogeneity. Nonetheless, the number of applications is relatively small and recent.

What accounts for these trends?

Several factors may explain these trends. The change may be due to advancements in econometric techniques; however, the most advanced techniques used in strategy research are typically more than a decade old. Or, it may be due to an increase in the number of economists doing research and strategic management, which also may have affected the standards for using econometric methods. Economists, however, always have been active in strategic management and have been involved in (although not the only source for) establishing research standards, especially for empirical work, in the field. Alternatively, recent entrants to the field may be receiving better empirical training as econometric methods diffuse, although some might argue that the econometric methods used in strategy still lag behind other fields, like labor economics. Yet another explanation could be that the questions being asked have changed or the type of papers that are accepted may have changed. Strategic management questions being researched may have changed over the decade (e.g., fewer studies on strategic groups and more studies on alliances), which may have led to a corresponding shift in methods. Relatedly, the strategic management field may have shifted during the past decade toward consideration of discrete instead of continuous strategic choices. Econometric modeling of discrete choices and their corresponding performance outcome requires a different method than the two-stage instrumental variable techniques for classical regression. Even if these shifts occurred, we note that the
percentage of empirical papers that employ performance as a dependent variable each year—approximately 32%—has remained relatively unchanged over the decade, which is one indication that strategic management’s focus on performance has been consistent even though the specific questions or appropriate empirical methodologies have changed. This consistency also suggests that econometric techniques accounting for omitted variable bias should have been in widespread use over the entire decade, whether continuous or discrete strategic choices were involved.

These rationales notwithstanding, perhaps the most important reason for the increase in econometric sophistication may be the availability of easy-to-use econometric software packages. Packages such as e-Views, Gauss, SPSS, STATA, and TSP (to name a few) provide not only ease-of-use but also a wealth of statistical methods. These methods represent a multigenerational advance over packages like SAS, which were the standard bearers in the 1980s. Of course, advances in computing power also lowered the time and cost of econometric analysis, but this is true for non-econometric methods as well. Along with the increased ease of use and the variety of econometric techniques in these software packages has come an increased concern about the underlying assumptions of various econometric models—lower cost implementation of econometric models makes it easier to try out different models and specifications without fully appreciating their underlying assumptions. This concern causes us, in the following sections, to pay particular attention to the underlying (and sometimes hidden) assumptions of the models we discuss.
If this explanation of the sea change has currency, it also may explain why accounting for endogeneity is limited and recent: most econometrics packages do not have preprogrammed functions to account for endogeneity, especially for cross-sectional models. Programming specific econometric packages to account for endogeneity can be difficult and may seem daunting since few technical expositions of such models use language that is tailored for strategic management research (most models come out of labor economics). This is why we focus our attention on those methods that are readily implementable using standard econometrics packages with relatively minimal programming.

Discrete strategies and continuous performance outcomes

For the sake of completeness and to tailor our discussion for research in strategic management, we introduce and discuss the basic endogeneity problem. However, we go beyond prior treatments in several respects. We provide a more general setup of the problem for strategy research and discuss in more depth estimation issues and interpretation of estimated parameters. For instance, few SMJ papers published between 1990 and 2001 evaluate the information provided by estimated covariance terms even though these terms provide important and useful information about comparative advantage. Moreover, we go beyond the basic binary strategy choice model and extant empirical work in strategic management research by discussing generalizations for both ordered and unordered strategies when the number of strategies is greater than two. We also discuss endogeneity problems in the context of panel data. While our

6 Because of our desire to present readily implementable methods using standard econometrics software packages, we do not discuss full information maximum likelihood approaches that generally require more extensive computer programming.
discussion of econometric models ultimately assumes managers are making decisions, we
develop these models without reference to a specific unit of analysis.

The Basic Treatment (Endogeneity) Problem

Consider the case where a manager has a choice between only two strategies. For instance, a
manager may choose between organizational alternatives such as between make and buy,
acquisition and greenfield foreign direct investment, joining a network and not, an alliance and
joint venture, centralization and decentralization, etc. We represent a binary strategy set (i.e., the
alternative organizational forms from which an actor can choose) as \{S_0, S_1\} and the
performance outcome as \(\pi\). By convention, we define those actors who chose \(S_1\) as the “treated,”
that is, the actor took the course of action defined by \(S_1\). The performance outcome need not be
defined strictly in terms of profits. For instance, \(\pi\) could represent costs, revenues, growth,
satisfaction, etc., depending on the empirical context. The strategy set leads to two potential
performance outcomes: \(\pi_0\) if \(S_0\) is chosen and \(\pi_1\) if \(S_1\) is chosen. From a strategic management
perspective, we are interested in the performance of the chosen strategy versus the counterfactual
(i.e., \(\pi_1-\pi_0\))—what would performance have been had the alternative strategy been chosen. This
difference is called the treatment effect (Rubin 1974, 1978), or, in our case, the strategy or
organizational effect. (From this point onward we will refer to this effect as a strategy effect.)

Of course, for any particular actor we observe only one of these two performance outcomes,
raising the question of how to estimate the treatment effect when only one performance outcome
is observed. Suppose that a group of firms are observed to follow strategy \(S_1\), implying that their
performance outcomes \(\pi_1\) also are observed. For these firms, we must then find an estimate of
what their performance might have been had they chosen strategy S_0 instead. We denote this expected counterfactual outcome as $E(\pi_0 \mid S_1)$. Similarly, for the subgroup of firms that chose S_0 (meaning that π_0 is observed for these observations), the unobserved counterfactual expected outcome necessary to construct the treatment effect is $E(\pi_1 \mid S_0)$. The estimation approach depends on whether or not unobservable variables that affect performance outcomes are also correlated with the choice of strategy.

The simplest estimation approach compares the mean outcomes of firms choosing strategy S_1 with those choosing S_0, implying that the strategy effect is given by $E(\pi_1 \mid S_1) - E(\pi_0 \mid S_0)$. This estimation approach makes the strong assumption that the expected value of the performance outcome for S_0 for firms that actually chose S_1 is given by the observed outcomes of firms that chose S_0, meaning that $E(\pi_0 \mid S_1) = E(\pi_0 \mid S_0)$. Similarly, for firms choosing S_0, $E(\pi_1 \mid S_0) = E(\pi_1 \mid S_1)$. In other words, this empirical approach assumes that strategy choice is exogenous, and that the average effect of strategy choice can be estimated by a simple univariate regression using the model $\pi_i = \alpha S_i + \epsilon_i$. This empirical approach is common in experiments when strategy can be exogenously chosen and assigned randomly to participants, but otherwise is not generally an appropriate model for strategic management research, since managers rarely make decisions randomly. In such a regression, the impact of strategy choice on performance is given by α and observed counterparts give estimates of the expected counterfactual outcomes. Note also that the strategy effect is assumed to be homogeneous across firms and equal to α.

The researcher usually has access to control variables X, such as firm age and size, industry, etc. If these variables affect both performance and strategy choice, then the simple approach outlined
above may not generate an unbiased estimate of the treatment effect, since the presence of these
X variables often implies $E(\pi_1 \mid S_1) \neq E(\pi_1 \mid S_0)$. For example, suppose S_i indicates the choice of
make vs. buy, and large firms are more likely to make than small firms. If large firms are also
better performers, then the α estimated from the univariate regression above will reflect both the
direct effect of make on performance, as well as the fact that large firms tend to be better
performers. However, suppose we assume that X includes all variables that jointly influence
performance and strategy choice (such as firm size in our example), and that no relevant
variables are omitted. In this case, $E(\pi_1 \mid S_1, X) = E(\pi_1 \mid S_0, X)$ (similarly, $E(\pi_0 \mid S_0) \neq E(\pi_0 \mid S_1)$
but $E(\pi_0 \mid S_0, X) = E(\pi_0 \mid S_1, X)$, which is sometimes called “(strategy) selection on observables.”
In other words, including the control variables X in the regression of performance on strategy
choice yields:

$$\pi_i = \alpha S_i + X_i \beta + \epsilon_i.$$

(1)

The coefficient α provides an unbiased estimate of the average strategy effect. If, in the example
above, firm size is the only omitted factor influencing both the make vs. buy choice and
performance, then by including firm size as a covariate in X_i, equation (1) yields an unbiased
estimate of the strategy effect.

The specification in equation (1) assumes that the effect of the strategy is homogeneous across
firms. However, the effect of the strategy may vary across firms with different values of the
observed characteristics X_i. For example, the impact of make on performance may be larger for
large firms. To allow for a heterogeneous treatment effect of this type, let performance for each
alternative strategy be given by:

$$\pi_{1i} = X_i \beta_1 + \epsilon_{1i}.$$

(2)
\[\pi_{0i} = X_i \beta_0 + \epsilon_{0i}. \]

(3)

Equations (2) and (3) can be estimated separately by OLS using the subsamples of firms choosing strategies \(S_1 \) and \(S_0 \), respectively. However, the average strategy effect for firms with characteristics \(X_i \) would then be given by \(X_i(\beta_1 - \beta_0) \). In this case, it is clear that the strategy effect may vary for different values of the observed characteristics, \(X_i \).

Unfortunately, estimating equations (2) and (3) by OLS to recover the heterogeneous strategy effect is generally appropriate only when all factors that affect both performance and strategy choice are observable and included in the regressions. This is rarely the case in strategy research. It is likely that some of these factors are not observed by the researcher, which leads to a potential endogeneity problem when estimating equations (2) and (3). Consider the expected value of equation (2) for firms choosing strategy \(S_1 \), given by:

\[
E(\pi_1 \mid S_1, X) = E(X_i \beta_1 + \epsilon_{1i} \mid S_1) = X_i \beta_1 + E(\epsilon_{1i} \mid S_1). \tag{4}
\]

If \(\text{cov}(S_i, \epsilon_{1i}) \neq 0 \), as would be the case if there are unobserved factors that affect both the choice of strategy and performance, then \(E(\epsilon_{1i} \mid S_1) \neq 0 \) and OLS estimation of equation (2) yields a biased estimate of \(\beta_1 \). Similarly, \(\text{cov}(S_i, \epsilon_{0i}) \neq 0 \) implies \(E(\epsilon_{0i} \mid S_0) \neq 0 \) and OLS estimation of equation (3) will yield a biased estimate of \(\beta_0 \).\(^7\) Returning to the make (\(S_1 \)) vs. buy (\(S_0 \)) example, it may be that firms choosing to make tend to have superior production capabilities that are not observed by the researcher. If these unobserved production capabilities also enhance performance, then it might be the case that \(E(\epsilon_{1i} \mid S_1) > 0 \) and \(E(\epsilon_{0i} \mid S_0) < 0 \). Consequently, when strategy choice and performance outcomes jointly depend on factors that are unobserved by the researcher.

\(^7\) In equation (1), if \(\text{cov}(S_i, \epsilon_i) \neq 0 \) then the OLS estimate of the average treatment effect \(\alpha \) in equation (1) will suffer from omitted variable bias.
researcher, \(E(\pi_1 | S_1, X) \neq E(\pi_1 | S_0, X) \) and \(E(\pi_0 | S_0, X) \neq E(\pi_0 | S_1, X) \), and approaches that do not account for this relationship are likely to yield biased estimates of strategy on performance.

Heckman (1974, 1979) and Lee (1978) introduced a method to account for this bias that relies on two key assumptions. First, the strategy choice is modeled as a continuous latent variable, \(S_i^* \), implying that \(S_1 \) is chosen if \(S_i^* \) passes a threshold, while \(S_0 \) is chosen if it does not. Suppose that strategy choice is a function of three factors: (1) the expected net benefit of \(S_1 \) versus \(S_0 \); (2) covariates \(Z_i \) representing factors that affect strategy choice but that do not affect outcome performance (more on this later); (3) \(\upsilon_i \), which represents unobserved (to the researcher) factors influencing the choice. Therefore,

\[
S_i^* = \gamma(\pi_{1i} - \pi_{0i}) + Z_i\delta + \upsilon_i, \text{ where } S_i = 1 \text{ if } S_i^* > 0; S_i = 0 \text{ if } S_i^* \leq 0. \tag{5}
\]

The parameter \(\gamma \) measures the extent to which the effect of strategy on profit directly influences strategy choice. Of course, the problem in estimating equation (5) is that \(\pi_{1i} \) and \(\pi_{0i} \) are not both observed for each firm. Consequently, we must substitute (2) and (3) into (5) to arrive at a reduced form model of strategy choice, which leads to \(S_i^* = \gamma(X_i\beta_1 - X_i\beta_0) + Z_i\delta + \gamma(\epsilon_{1i} - \epsilon_{0i}) + \upsilon_i \) or

\[
S_i^* = X_i\beta + Z_i\delta + u_i, \tag{6}
\]

where \(u_i = \gamma(\epsilon_{1i} - \epsilon_{0i}) + \upsilon_i \) and \(\beta = \gamma(\beta_1 - \beta_0) \).

Second, Heckman and Lee assumed that \(\epsilon_{1i}, \epsilon_{0i}, \) and \(u_i \) are jointly normally distributed so that expressions for \(E(\epsilon_{1i} | S_1) \) and \(E(\epsilon_{0i} | S_0) \) are tractable. Examining the covariance among error terms (see equation (7)) in this structure (equations (2), (3), and (5)) makes the source of endogeneity and assumptions about the errors clear. Endogeneity arises if \(\sigma_{u1} \neq 0 \) or \(\sigma_{u0} \neq 0 \).
\[
\text{Cov}(u_i, \varepsilon_{i1}, \varepsilon_{i0}) = \begin{bmatrix}
1 & \sigma_{u1} & \sigma_{u0} \\
\sigma_{u1} & \sigma_{u0} & \\
\sigma_{u0} & \\
\end{bmatrix}
\]

(7)

Also, the model assumes that \(\sigma_{10} = 0 \), which implies that unobservables for \(\pi_{1i} \) are uncorrelated with unobservables for \(\pi_{0i} \), because \(\pi_{1i} \) and \(\pi_{0i} \) cannot be simultaneously observed for firm \(i \) in cross-sectional data. Exogenous treatment arises if \(\sigma_{u1} = \sigma_{u0} = 0 \).

Under these assumptions, Heckman and Lee showed that the expected value of the error term in (2), conditional on choosing strategy \(S_1 \), may be written as:

\[
E(\varepsilon_{i1} | S_1) = E(\varepsilon_{i1} | S^* > 0) = -\sigma_{u1} \phi[X_i \hat{\beta} + Z_i \hat{\delta}] / \Phi[X_i \hat{\beta} + Z_i \hat{\delta}] = -\sigma_{u1} \lambda_{1i},
\]

(8)

where \(\phi[.] \) is the normal density and \(\Phi[.] \) is the cumulative normal distribution. The term \(\lambda = \phi[.] / \Phi[.] \) is referred to in the literature as the inverse Mills ratio. Similarly, the expected value of the error term in (3), conditional on choosing strategy \(S_0 \), is:

\[
E(\varepsilon_{i0} | S_0) = E(\varepsilon_{i0} | S^* \leq 0) = \sigma_{u0} \phi[X_i \hat{\beta} + Z_i \hat{\delta}] / (1 - \Phi[X_i \hat{\beta} + Z_i \hat{\delta}]) = \sigma_{u0} \lambda_{0i}.
\]

(9)

Clearly, if strategy choice is exogenous, so that \(\sigma_{u1} = \sigma_{u0} = 0 \), then the expected values of the error terms shown in equations (8) and (9) are zero, and bias is not an issue in estimating the treatment effect. If strategy choice is endogenous, we must construct the inverse Mills ratios in (8) and (9), which is problematic because \(\beta \) and \(\delta \) are unknown. Fortunately, we can recover estimates of \(\beta \) and \(\delta \) by estimating the reduced-form strategy choice equation (6) via a probit regression. Estimates of these values then can be substituted into equations (8) and (9) to construct an unbiased estimate of the inverse Mills ratio. With these estimates in hand, sample selection-corrected performance equations can be estimated using OLS:

\[
\pi_{1i} = X_i \hat{\beta}_1 - \sigma_{u1} \phi[X_i \hat{\beta} + Z_i \hat{\delta}] / \Phi[X_i \hat{\beta} + Z_i \hat{\delta}] + e_{1i}
\]

(10)
\[\pi_{0i} = X_i\beta_0 + \sigma_{u0} \Phi[X_i\hat{\beta} + Z_i\hat{\delta}]/(1-\Phi[X_i\hat{\beta} + Z_i\hat{\delta}]) + e_{0i} \]

(11)

Equations (6), (10) and (11) are called a “switching regression model” in labor econometrics.\(^8\) By construction, the expected values of the error terms \(e_{1i}\) and \(e_{0i}\) are both zero due to the inclusion of the inverse Mills ratio terms in equations (10) and (11), so that OLS estimation of these equations yields unbiased estimates of \(\beta_0, \beta_1, \sigma_{u0},\) and \(\sigma_{u1}.\) Our estimation approach thus proceeds in two steps: First, we estimate the reduced form strategy choice equation (6) via probit and construct the inverse Mills ratio terms given in (8) and (9). Second, we estimate the strategy-specific performance equations (10) and (11) via OLS, including the inverse Mills ratio terms as regressors along with \(X_i\) in order to obtain unbiased estimates of \(\beta_0\) and \(\beta_1.\)\(^9\)

We provide source code for a popular software package to estimate \(\beta, \delta, \beta_0,\) and \(\beta_1\) in Appendix 1 because many standard statistical software packages do not provide a preprogrammed switching regression model. We offer the code for STATA because it is relatively popular and we think that the code can be translated readily into other statistical software packages.

\(^8\) The term “switching” refers to individuals switching between sectors, such as union vs. non-union jobs. The switching regression model described by equations (6), (10), and (11) assumes that the strategy chosen is observed by the researcher. Models in which the strategy choice \(S_i\) is not observed by the researcher are sometimes termed “mixture models.” We do not consider this class of models in the paper.

\(^9\) While it is not necessary for the construction of the treatment effects, Willis and Rosen (1979) show that the unbiased estimates of \(\beta_0\) and \(\beta_1\) obtained from OLS regressions of equations (10) and (11) may be used to estimate the structural model of strategy choice given in (5). While \(\pi_{0i}\) and \(\pi_{1i}\) are not simultaneously observed, unbiased estimates of these quantities are given by \(X_i\hat{\beta}_1\) and \(X_i\hat{\beta}_0,\) respectively. Substituting into equation (5), we get

\[S_i^* = \gamma(X_i\hat{\beta}_1 - X_i\hat{\beta}_0) + Z_i\delta + u_i. \]

(5')

Equation (5’) may then be estimated via Probit in order to recover the structural choice parameters \(\gamma\) and \(\delta.\) A positive estimate of \(\gamma\) implies that firms are more likely to choose strategy \(S_1\) the greater is the performance benefit relative to strategy \(S_0.\)
The implications of the estimated covariance terms σ_{u1} and σ_{u0} are often ignored in strategy research, yet they can provide important insights into the types of firms that choose strategy S_1 or strategy S_0. Consider, for example, the case when $\sigma_{u1} < 0$. Recall that the expected performance for those firms observed to choose strategy S_1 is $E(\pi_{1i} | S_1) = X_i \beta_1 - \sigma_{u1} \phi[X_i \hat{\beta} + Z_i \hat{\delta}] / \Phi[X_i \hat{\beta} + Z_i \hat{\delta}]$. Because the inverse Mills ratio is always positive in the binary strategy choice case (it is a density function divided by a distribution function), $\sigma_{u1} < 0$ means that $E(\pi_{1i} | S_1) > X_i \beta_1$. This inequality implies *positive selection into strategy S_1*. If all firms in the sample were forced to adopt S_1, the average performance (for firms with characteristics X_i) would be given by $X_i \beta_1$.

However, when $\sigma_{u1} < 0$, firms actually choosing S_1 have above average performance using this strategy. If firms that chose S_0 had in fact chosen S_1, their performance would have been worse than that of firms actually choosing S_1, i.e., $E(\pi_{1i} | S_1, X_i) > E(\pi_{1i} | S_0, X_i)$. Conversely, when $\sigma_{u1} > 0$, there is *negative selection into strategy S_1*. In this case, firms actually choosing S_1 have below average performance. If the firms choosing S_0 had chosen S_1 instead, their performance would have exceeded that of the observed S_1 firms.

In the case where $\sigma_{u0} > 0$, note that $E(\pi_{0i} | S_0) = X_i \beta_0 + \sigma_{u0} \phi[X_i \hat{\beta} + Z_i \hat{\delta}] / (1 - \Phi[X_i \hat{\beta} + Z_i \hat{\delta}])$, so that $E(\pi_{0i} | S_0) > X_i \beta_0$ and we have *positive selection into strategy S_0*. In this case, if S_1 firms had instead chosen S_0, their performance would have been worse than that of firms actually choosing S_0. In other words, $E(\pi_{0i} | S_0, X_i) > E(\pi_{0i} | S_1, X_i)$. If $\sigma_{u0} < 0$, there is negative selection into strategy S_0 and $E(\pi_{0i} | S_0, X_i) < E(\pi_{0i} | S_1, X_i)$.

19
Considering the two covariance terms together, we can construct a taxonomy of strategy choice and performance. If $\sigma_{u1} < 0$ and $\sigma_{u0} > 0$, we have what may be termed a situation of *comparative advantage* (Maddala 1983): firms that choose strategy S_1 have above average performance using this strategy, and firms choosing strategy S_0 also have above average performance using their chosen strategy. Firms therefore choose the strategy that provides them with a relative advantage. For example, firms choosing to make (S_1) may have production capabilities that increase their performance only if they choose to make, while the unobserved production capabilities of firms choosing to buy (S_0) may be valuable only if they buy.

If $\sigma_{u1} > 0$ and $\sigma_{u0} < 0$, firms that actually choose S_1 would have above average performance regardless of whether they adopt strategy S_1 or S_0, since there is positive selection into strategy S_1 and negative selection into strategy S_0. The S_1 firms thus possess an *absolute advantage*: firms choosing S_0 have below average performance regardless of the strategy chosen.

Continuing our example, suppose unobserved production capabilities enhance performance regardless of whether the firm makes or buys, and firms choosing to make have higher levels of this capability. These firms would have absolute advantage, since they would be higher performers regardless of whether they choose to make or buy. If $\sigma_{u1} > 0$ and $\sigma_{u0} > 0$, the S_0 firms possess the absolute advantage so that $E(\pi_{0i} | S_0, X_i) > E(\pi_{0i} | S_1, X_i)$ and $E(\pi_{1i} | S_0, X_i) > E(\pi_{1i} | S_1, X_i)$. Finally, the situation in which $\sigma_{u1} > 0$ and $\sigma_{u0} < 0$ suggests that firms choose the strategy in which they have a comparative disadvantage. This situation should rarely occur in practice, since all firms would be choosing a strategy that yields poorer performance than the alternative. Such results may indicate model mis-specification, or perhaps regulatory or other factors that force firms to choose a less profitable strategy. When $\sigma_{u1} = \sigma_{u0} = 0$, firms have no unobservable
advantage or disadvantage and thus endogeneity bias is not a concern. Put differently, endogeneity bias is a concern only when firms have some unobservable (to the researcher) advantage or disadvantage that influences the strategy they choose.

Treatment effects with endogenous treatment (Strategy effects with endogenous choice of strategy). The estimated parameters from equations (10) and (11) may be used to construct a variety of treatment effects. The average treatment effect (Rubin 1974, 1978; Heckman and Robb 1985) for a firm with characteristics X_i is given by

$$E(\pi_1 - \pi_0 | X_i) = X_i(\beta_1 - \beta_0)$$

(12)

This treatment effect answers the question: What is the effect on performance of strategy S_1 vs. S_0 for a randomly selected firm from the population of firms with characteristics X_i? This is the treatment effect typically estimated in the strategy literature.

While informative, there may be other questions of interest regarding strategy and performance that cannot be answered by the average treatment effect. For example, one might ask the question: What gain in performance did S_1 firms achieve by following this strategy rather than S_0? This question may be answered by constructing what the literature calls the treatment effect for the treated (Rubin 1974, 1978; Heckman and Robb 1985), which is the performance benefit realized for those firms that chose S_1 and is constructed conditional upon the choice of strategy:

$$E(\pi_1 - \pi_0 | S_1, X_i) = X_i(\beta_1 - \beta_0) + (\sigma_{u1} + \sigma_{u0})\phi[X_i\hat{\beta} + Z_i\hat{\delta}] / \Phi[X_i\hat{\beta} + Z_i\hat{\delta}]$$

(13)

The first term on the right-hand side of (13) is the average treatment effect. The second term on the right-hand side accounts for the fact that we are conditioning on strategy choice, in this case S_1. The second term thus incorporates the information that firms self-select into strategy S_1, and
so may differ from a randomly selected firm in the population. Note that if there is a situation of comparative advantage, the second term is positive, implying that the treatment effect for the treated for firms choosing S_1 is greater than the average treatment effect. Consequently, the average treatment effect will understate the performance gain from strategy S_1 among firms adopting S_1. Conversely, if the environment is characterized by absolute advantage, the average treatment effect may be greater or less than the treatment effect for the treated, depending on the relative magnitudes of σ_{u1} and σ_{u0}. If there is no selection bias, so that $\sigma_{u1} = \sigma_{u0} = 0$, then equations (12) and (13) show that the average treatment effect and the treatment effect for the treated coincide.

An expression similar to (13) can be constructed to estimate the treatment effect for the treated for firms choosing strategy S_0 (that is, the performance benefit realized for those firms that chose S_0):

$$E(\pi_1 - \pi_0 | S_0, X_i) = X_i(\beta_1 - \beta_0) + (\sigma_{u1} - \sigma_{u0})\phi[X_i\hat{\beta} + Z_i\hat{\delta}]/(1 - \Phi[X_i\hat{\beta} + Z_i\hat{\delta}])$$

(14)

Again, the second term on the right hand side of (14) accounts for the possibility that the subset of firms choosing strategy S_0 may differ in some unobserved (by the researcher) way from other firms in the market. Equation (14) may be used to answer the question: Could firms that chose strategy S_0 have improved their performance by choosing strategy S_1?

Estimation Issues. Two major issues arise when estimating the endogenous switching regression model defined by equations (6), (10), and (11). The first concerns the assumption that the error terms in these equations are jointly normally distributed, while the second concerns the identification of the model parameters. The model may be sensitive to departures from
normality so that the estimates are fragile and potentially biased (Little 1985). Evaluating normality requires appealing to a number of alternative approaches that have been suggested to deal with this problem. The researcher may transform the dependent variable (e.g., use the natural logarithm) in order to make the performance variables look more “normal”. The research may also adopt an alternative distributional assumption, such as the multivariate-t, for the error terms. Heckman and MaCurdy (1986) provide formulae for the inverse Mills ratio functions for many alternative distributions. Chib and Hamilton (2000) show that in many cases, multivariate-t or a mixture of normal distributions provide a robust specification. Finally, there are non-parametric alternatives, such as including squares and higher order powers of the inverse Mills ratios in equations (10) and (11) to account for potential non-normality (see Lee 1982; Newey 1988). Unfortunately, these more robust specifications often come at the cost of a more difficult interpretation of the parameters.

Perhaps the more important issue in the estimation of the endogenous switching regression model concerns identification. Our specification of the reduced form strategy choice in equation (6) suggests that the researcher has one or more instrumental variables \(Z_i \) that affect strategy choice but do not directly impact performance (i.e., they do not directly enter the performance equations (10) and (11)). In the absence of such instrumental variables, the inverse Mills ratio terms in (10) and (11) are simply non-linear functions of \(X_i \), so that the parameters \(\sigma_{u1} \) and \(\sigma_{u0} \) are only identified by the normality functional form assumption. It is well known that identification by functional form alone in this model often leads to very unstable and unreliable estimates of the parameters (Little 1985). Note also that if strategy choice is a function of
expected performance (as it is likely to be), all the variables that affect performance should be included in the strategy choice probit model.

Unfortunately, it is difficult in many strategy data sets to find instrumental variables that affect strategy choice but not performance. In some cases, one might look for variables associated with government policies that change over time or differ across localities that impact the cost of adopting particular strategies. For instance, deregulation of the airline and trucking industries or state level regulations that vary by state offer potential instruments if they affect strategic choices of interest but are unlikely to directly affect performance. Alternatively, but less satisfactorily, are firm-specific covariates that have high adjustments costs (i.e., are more inert and slow changing) compared to the focal management decisions and that affect strategy choice but not performance. In the absence of these instruments, it is difficult to account for endogenous strategy choice. The best the researcher may be able to do is to account for as much of the observable differences between firms adopting strategies S_1 and S_0 as possible by estimating the exogenous treatment model given by equations (2) and (3) with a sufficiently rich specification of the observable characteristics vector X_i (e.g., include polynomial transformations and interactions between variables). Of course, the researcher should acknowledge the potential for bias induced by unobserved factors.

A similar approach is to match the S_1 and S_0 by the firms’ predicted probability of adopting strategy S_1, generated from the probit model in (6). For matched S_1 and S_0 observations (i.e., those observations with the same or similar predicted probabilities of adopting S_1), one can then calculate the difference in performance outcomes $\pi_1 - \pi_0$ to construct a measure of the treatment
effect. This “propensity score matching” approach has been used in biostatistics and more recently in economics to account for as much of the observable (by the researcher) differences across firms that adopt different strategy choices as possible (see Rosenbaum and Rubin (1983) for more details). It should be emphasized that these approaches do not account for unobserved factors that affect both strategy choice and performance, and so they are still subject to selection bias. However, they may provide a second-best estimation approach when appropriate instruments are not available.

Multiple strategies and continuous performance

The estimation approach outlined in the endogenous switching regression model above can be extended to situations in which more than two strategies or organizational choices are available. We consider first the situation in which strategies may be ordered. For example, firms may have the choice to produce internally (“make”), procure through an alliance (“ally”), and outsource by using the market (“buy”). The firm’s strategy choice consists of buy, ally, and make defined as strategies S_0, S_1, and S_2, with associated performance levels π_0, π_1, and π_2, respectively. Using our example, the treatment effects of interest consist of various binary comparisons, such as the performance implications of make vs. buy ($\pi_2 - \pi_0$), ally vs. make ($\pi_1 - \pi_0$), and buy vs. ally ($\pi_2 - \pi_1$). The estimation approach is very similar to that described above: we first estimate the reduced form strategy choice equation, which is now an ordered probit rather than a simple probit model. In this case, firms adopt strategy S_0 if $S_i^* < c_0$, adopt S_1 if $c_0 < S_i^* < c_1$, and adopt S_2 if $S_i^* > c_1$. Estimates for the first-stage ordered Probit are used to construct

10 Idson and Feaster (1990) apply this type of model to analyze selection-corrected wage differentials between small, medium, and large firms.
the inverse Mills ratio terms. The second stage consists of OLS regressions of the performance equations associated with each strategy, including the appropriate inverse Mills ratios:

$$\pi_{0i} = X_i\beta_0 - \sigma_{u0} \phi[c_0 - X_i\hat{\beta} - Z_i\hat{\delta}] / \Phi[c_0 - X_i\hat{\beta} - Z_i\hat{\delta}] + e_{0i}$$ \hspace{1cm} (15)$$

$$\pi_{1i} = X_i\beta_1 + \sigma_{u1} \left(\phi[c_0 - X_i\hat{\beta} - Z_i\hat{\delta}] - \phi[c_1 - X_i\hat{\beta} - Z_i\hat{\delta}] \right) / (\Phi[c_1 - X_i\hat{\beta} - Z_i\hat{\delta}] - \Phi[c_0 - X_i\hat{\beta} - Z_i\hat{\delta}]) + e_{1i}$$ \hspace{1cm} (16)$$

$$\pi_{2i} = X_i\beta_2 + \sigma_{u2} \phi[c_1 - X_i\hat{\beta} - Z_i\hat{\delta}] / (1 - \Phi[c_1 - X_i\hat{\beta} - Z_i\hat{\delta}]) + e_{2i}$$ \hspace{1cm} (17)$$

As before, the parameter estimates from equations (15) – (17) may then be used to construct the average treatment effects and treatment effects for the treated as described above. STATA code for this model is provided in Appendix 1. This analysis is readily extended to strategy sets including four or more ordered strategies.

In many situations, the strategy choices available to the firm cannot be ordered. For instance, assume that airline entrants must choose one of three strategies—join one of two airline networks or join none—and that there is no dimension of these choices that can be rank ordered. Many econometric approaches that incorporate multinomial strategy choice require computationally intensive procedures involving the use of simulation methods to evaluate the data likelihood function. However, Lee (1982) provides a two-step approach similar to that discussed above that is computationally straightforward to implement with standard statistical software packages. This approach proceeds by first estimating a reduced form multinomial logit model for the choice of strategy. Consider a situation in which firm i has three unordered strategy choices, S_{ik}, $k = 0, 1, 2$. The multinomial logit has a closed form solution:

$$\Pr(S_{ik} = k) = \exp(X_i\beta_k + Z_i\delta_k) / \sum \exp(X_i\beta_j + Z_i\delta_k) = P_{ik}.$$ \hspace{1cm} (18)$$
The parameters β_0 and δ_0 are normalized to zero.

Lee shows how the non-normal unobservables implied by the multinomial logit may be transformed into normal random variables so that the inverse Mills ratio terms may be easily constructed. Define $J_{ik} = \Phi^{-1}(P_{ik})$, where $\Phi^{-1}(.)$ is the inverse normal distribution function. Because P_{ik} lies between zero and 1, the $\Phi^{-1}(.)$ function transforms this quantity into a standard normal random variable J_{ik} that ranges from minus to plus infinity. Given this transformation, Lee shows that the inverse Mills ratio terms are easily constructed so that the second stage selection-corrected performance equations are:

$$\pi_{ki} = X_i\beta_k - \sigma_{uk} \phi[J_{ik}]/P_{ik} + e_{ki}, \ k = 0, 1, 2. \quad (19)$$

Equation (19) is then separately estimated via OLS using the subset of observations for each strategy choice, and the parameters may be used to construct the treatment effect of interest. The STATA code for this model is provided in Appendix 1. As usual, evidence of self-selection of strategy choice is given by the sign and significance of the σ_{uk} parameters. Lee’s approach thus provides a computationally straightforward method of accounting for multinomial strategic choice. This model can be easily extended to strategy sets including more than three strategies.

The primary limitation of this approach is the well-known independence of irrelevant alternatives (IIA) property of the multinomial logit model estimated in the first stage. The IIA property implies that the relative odds of a particular strategy choice are unaffected by the presence of other alternative strategies, which may be unappealing in many situations. If the context cannot
support the IIA property then one must implement more complicated simulation methods.11 For instance, Geweke, Keane, and Runkle (1994) describe simulation approaches for estimating the multinomial probit model, which does not impose the IIA property. Unfortunately, these methods are not readily implemented in standard econometric software packages and thus are beyond the scope of our presentation.

As a final comment to this section we note that all of the models developed so far account for endogeneity in the context of a set of discrete strategy or organizational choices. In some instances, the strategy set may be continuous, which calls for instrumental variable techniques like two- and three-stage least squares. Since these methods are now standard they are not reviewed here.

Panel data

The availability of longitudinal data on strategy choices and performance may allow the researcher to recover treatment effects of interest under less stringent assumptions than those described above. For instance, panel data may omit the need for an instrumental variable or may give better information about how a firm performs under different strategy regimes. Nonetheless, as we discuss below, simple panel data models of the type generally found in the literature have implicit assumptions of their own that may not hold for many questions of interest

11 Another complication also is possible. The researcher could be interested in analyzing different sets of strategic choices. For instance the firm may be choosing whether to make or buy, and whether to join a network. In this case, the firm has two separate strategic decisions to make. If choices are uncorrelated, then one can estimate two separate probit regressions for the two decisions and then construct the inverse Mills ratio terms in the usual way. Because there are four possible combinations of strategies, the second step consists of estimating the four performance regressions corresponding to each strategy combination (e.g., make and join a network) including the appropriate inverse Mills ratios. If the strategic decisions are correlated, however, more complicated models are necessary since the first step requires the estimation of a multivariate probit model, and the inverse Mills ratios for the second stage are much more complicated functions (see Maddala (1983) for further details).
to strategy scholars. We review these assumptions and provide some preliminary suggestions on how to proceed with the analysis of panel data when endogeneity is of concern.

Considering the binary strategy case, let the indicator variable \(S_{it} = 1 \) if the firm chooses strategy \(S_1 \) in time period \(t \), and \(S_{it} = 0 \) if the firm chooses \(S_0 \). Introducing time subscripts for the performance outcomes, equations (2) and (3) may be written as one equation:

\[
\pi_{it} = S_{it}X_{it}\beta_1 + (1 - S_{it})X_{it}\beta_0 + S_{it}\varepsilon_{1it} + (1 - S_{it})\varepsilon_{0it}. \tag{20}
\]

In the typical panel data model, a number of assumptions are made about the elements of (20). First, the unobservables that affect performance under strategy \(S_1 \) are assumed to be the same as those influencing performance under \(S_0 \). Thus, these models assume that any capability we do not observe would have the same effect under both strategies, which is unlikely in many strategic management contexts. For instance, this assumption would be violated if a corporate culture that is difficult for the econometrician to measure yields high levels of trust within the corporation for a vertically integrated strategy but yields low levels of trust for outsourced exchanges. Second, the error term is often assumed to consist of a time-invariant, firm-specific component, \(\theta_i \), and a time varying component, \(\zeta_{it} \), that is uncorrelated across periods, so that \(\varepsilon_{1it} = \varepsilon_{0it} = \theta_i + \zeta_{it} \). This assumption rules out adjustments in the sense of partial adjustment models by assuming that the only omitted variables that affect strategy choice and performance do not change over time. Finally, the coefficients \(\beta_1 \) and \(\beta_0 \), which relate the \(X \) covariates to performance for each strategy, are usually restricted to be equal, with the exception that the intercepts are allowed to differ by strategy. This assumption implies that the treatment effect is homogenous across firms and that the \(X \) covariates have the same effect on performance regardless of strategy. Under these assumptions, equation (20) becomes:
In practice, the time-invariant error term \(\theta_i \) is generally treated as a firm-specific random effect or fixed effect. One difficulty with the random effect specification is the assumption that the firm-specific effect \(\theta_i \) is uncorrelated with the observed covariates, \(S_{it} \) and \(X_{it} \). This specification rules out the existence of time-invariant unobserved factors that effect both strategy choice and performance, which is precisely the endogeneity of strategy choice for which we are trying to account. Conversely, the fixed effect specification allows \(\theta_i \) to be correlated with \(S_{it} \) and \(X_{it} \). Firm fixed effects are incorporated into the model by either including a set of firm indicator variables into the regression, or differencing (21) in order to eliminate the time-invariant components. For instance, the first difference of equation (21) is given by:

\[
\pi_{it} - \pi_{it-1} = \gamma(S_{it} - S_{it-1}) + (X_{it} - X_{it-1})\beta + (\zeta_{it} - \zeta_{it-1})
\]

(22)

Under the assumptions outlined below, estimating (22) via OLS yields a consistent estimate of the treatment effect \(\gamma \), since \(\theta_i \) is eliminated from the regression.

Specification (22) provides a convenient method of estimating the impact of strategy on performance, accounting for unobserved firm characteristics that may be correlated with strategy choice. However, this specification also involves a number of implicit assumptions that may not be appropriate for some strategic management research. First, equation (22) assumes that the effect of strategy on performance is homogeneous across firms, so that \(\gamma \) measures the average treatment effect, which is assumed to be equal to the treatment effect for the treated. Second, equation (22) assumes that the unobservables have the same impact on performance under both \(S_1 \) and \(S_0 \), which would not be the case in our prior illustration of the effect of corporate culture.
on performance for two different organizational strategies. Third, \(\gamma \) is identified by within-firm changes in strategy over time. If each firm’s strategy choice does not vary over the course of the panel, \(\gamma \) cannot be estimated from (22) (in fact, only the impact of the time-varying components of \(X_{it} \) can be estimated). More importantly, (22) implies that changes in strategy choice are exogenous (Jakubson 1991). However, this raises the question of why the firm changed its strategy choice during the panel data period. It seems reasonable to expect in many cases that changes in unobserved (by the researcher) factors lead the firm to change its strategy and also directly affect performance. The estimated value of \(\gamma \) may be biased if this is true.

When unobservables affecting strategy choice and performance change over time, or have different impacts on performance depending on the strategy adopted, the researcher may consider longitudinal versions of the switching regression model described by equations (6), (10) and (11). Suppose that the error terms in equation (20) consist of a time-invariant, sector specific random component and an independent period-specific disturbance, so that they may be written as \(\varepsilon_{0it} = \theta_{0i} + \zeta_{0it} \) and \(\varepsilon_{1it} = \theta_{1i} + \zeta_{1it} \). If one assumes that there are no time-invariant effects in either sector, so that \(\theta_{0i} = \theta_{1i} = 0 \), then one can treat the longitudinal data on the same firm as independent observations, and simply estimate a pooled version of the model given by equations (6), (10), and (11). However, such an independence assumption seems extremely restrictive, since unobserved firm-level factors are likely to evolve slowly over time. To account for such time-invariant, unobserved firm-level factors using the two-step approach, one must develop expressions for the \(\mathbb{E}(\theta_{0i} + \zeta_{0it} | S_{it} = 0) \) and \(\mathbb{E}(\theta_{1i} + \zeta_{1it} | S_{it} = 1) \) selection correction terms. Unfortunately, without strong assumptions, these expectation terms cannot be written as simple closed form expressions similar to the inverse Mills ratio terms in (8) and (9), and thus cannot
easily be implemented using standard software packages. Studies such as Wooldridge (1995, 2002), Vella and Verbeek (1998), and Dustmann and Rochina-Barrachina (2000) describe how to construct selection-correction terms for the panel data selection model, while studies such as Chib and Hamilton (2000, 2001) describe simulation-based econometric approaches. We refer the reader to these papers for further discussion of how alternative panel data models may be estimated for this problem.

Conclusion

Endogeneity should be a central concern to empirical researchers in the field of strategic management. Indeed, it can be argued that endogenous self-selection, which equates to the view that managers choose strategies and organizational forms with the expectation that they will yield high performance, is the underpinning of our field. All strategic management studies investigating the performance implications of choosing alternative strategies, whether these strategies are discrete and finite in number or continuous and infinite in number, need to be concerned with potential biases in coefficient estimates due to endogeneity. However, despite the fact that basic empirical techniques accounting for omitted variables and endogenous self-selection have been available for almost two decades, and even though the past decade has seen a sea change in empirical methods toward the use of econometric techniques, only recently have some of these empirical techniques begun to make their way into papers published SMJ. This paper attempted to overcome two factors that may contribute to delays in applying these techniques for discrete strategy choices more widely in strategic management research: opaqueness in prior technical presentations and the lack of pre-programmed methods in econometrics packages. The techniques described in this paper are no longer difficult to
implement in standard econometric packages, yet the payoff from using them is likely to be
great. More widespread use of corrections for endogeneity may yield both more accurate
estimates of the costs and benefits of alternative strategic choices (e.g., Masten 1996) as well as
reconcile mixed empirical findings in the literature (e.g., Capon et al. 1990, Shaver 1998)
concerning the performance outcomes of strategic decision-making. We hope that our
presentation helps to hasten the application of these techniques to strategic management
research, which we believe, may fundamentally advance and possibly redirect the field.
Bibliography

APPENDIX 1: STATA CODE FOR EMPIRICAL MODELS DESCRIBED IN TEXT

In this appendix we provide source code for a popular software package to estimate the empirical models described in the text because many standard statistical software packages do not provide a preprogrammed selection-correction models, particularly in non-standard cases. We offer the code for STATA because it is relatively popular and we think that the code can be readily translated into other statistical software packages. Please note that the line numbers listed below are for reference only and are not used in STATA.

The Basic Switching Regression Model:

1: probit Strategy X Z, robust
2: predict lp, xb
3: generate mills_ratio_S1 = -normd(lp)/(normprob(lp))
4: generate mills_ratio_S0 = normd(lp)/(1-normprob(lp))
5: regress performance X mills_ratio_S1 if Strategy == 1, robust
6: regress performance X mills_ratio_S0 if Strategy == 0, robust

Line 1 implements a probit analysis with Strategy (either 1 if S_1 or 0 if S_0) as the dependent variable and X and Z as right-hand-side covariates. (If X or Z is a vector then list all covariates of each vector.) In STATA the term “robust” specifies that a Huber-White sandwich estimator be used, which corrects for heteroscedasticity. Lines 2 through 4 generate the linear predictions (which is specific by xb) from the estimated coefficients, the inverse Mills ratio for the treated (S_1), and the Mills ratio for the untreated (S_0). The functions “normd(.)” and

\[\text{normd}(lp) = \frac{\text{normal density at } lp}{\text{normal cumulative density at } lp} \]
\[\text{normprob}(lp) = \text{normal cumulative density at } lp \]

\[\text{normd}(lp)/(normprob(lp)) \]
\[\text{normd}(lp)/(1-normprob(lp)) \]

\[\text{regress performance } X \text{ mills_ratio}_S1 \text{ if Strategy == 1, robust} \]
\[\text{regress performance } X \text{ mills_ratio}_S0 \text{ if Strategy == 0, robust} \]

12 STATA has a preprogrammed function (TREATREG) to estimate this model. Nonetheless, we provide the primitive code because it provides the basis for several of the other corrections discussed below that are not preprogrammed into STATA.

13 In some empirical contexts, the option “cluster” may be more appropriate than “robust”. The cluster option incorporates the robust estimator and also allows for intra-sample correlation. For example, consider the empirical context where data on the make or buy decision—a binary strategy set—was collected from two different firms. Although the addition of a firm dummy variable will capture firm-specific affects on strategy choice and performance, such variables will not capture correlation among the decisions with a single firm and can lead to overstating statistical significance. Specifying the cluster option with an identifier indicating from which firm the data comes controls for such correlation.
“normprob(.)” specify the normal density and normal cumulative probability functions. Lines 5 and 6 regress performance on X and the (estimated) inverse Mills ratio. Notice that the first of these two estimations uses only observations of the treated (if Strategy = 1) and the second estimation uses only the observations of the untreated (if Strategy = 0).

It should be noted that the standard errors generated by the `regress` command in lines 5 and 6 do not account for the fact that the inverse Mills ratio term included in the regressions is an estimated quantity and so may understate the correct standard errors. Thus, statistical significance for estimated coefficients may be inflated. Even though standard errors may be understated, in most of the empirical literature, whether economics or strategic management, the standard practice has been to simply report coefficient estimates and “robust” standard errors that account for heteroscedasticity but not pre-estimation error. Several corrections have been developed to compensate for this problem. For instance, Heckman (1979) and Greene (1981) provide the proper asymptotic covariance matrix for the simple two-step sample selection estimator, while Murphy and Topel (1985) construct the appropriate standard errors for regressions with pre-estimated quantities in a general setting. These two methods are useful for the binary strategy choice model but may be difficult to implement for the polychotomous methods described below. Alternatively, bootstrapping may be considered to construct standard errors for each of the methods described in this appendix. An example of a STATA program that generates bootstrapped standard errors is available from the authors upon request.

The Ordered Strategies Model:

STATA code to implement this estimation procedure is:
1: oprobit strategy X Z, robust

2: predict lp, xb
3: generate mills_buy = -normd(_b[_cut1]-lp)/normprob(_b[_cut1]-lp)
4: generate mills_ally= [normd(_b[_cut2]-lp)-normd(_b[_cut1]-lp)]/
 [normprob(_b[_cut2]-lp)-normprob(_b[_cut1]-lp)]
5: generate mills_make= normd(_b[_cut2]-lp)/(1-normprob(_b[_cut2]-lp))
6: regress performance X mills_buy if strategy == 0, robust
7: regress performance X mills_ally if strategy == 1, robust
8: regress performance X mills_make if strategy == 2, robust

Line 1 implements an ordered Probit analysis with strategy (either 0 if S₀, 1 if S₁, or 2 if S₂) as
the dependent variable and X and Z as right-hand-side covariates. Lines 2 through 5 generate the
linear predictions (which is specified by xb) from the estimated coefficients, the inverse Mills
ratio for buy (S₀), the inverse Mills ratio for ally (S₁), and the inverse Mills ratio for make (S₂).
The terms _b[_cut1] and _b[_cut2] are STATA specific syntax and represent coefficients for the
two cut points estimated in a standard ordered Probit procedure. STATA does not include these
cut points in generating linear predictions. Lines 6, 7, and 8 regress X and the corresponding
inverse Mills ratio on to performance for each subset of strategies. For instance, line 6 estimates
coefficients using mills_buy for only those observations where firms chose buy (strategy = 0).
Again, the researcher should account for the fact that the inverse Mills ratios are estimated
quantities when constructing the standard errors of the estimates.

The Multinomial (Unordered) Strategies Model:

Relevant STATA code for estimating this model is given by:

1: mlogit strategy X Z, robust

2: predict p0 p1 p2, p
3: generate mills_strategy0 = normd(invnorm(p0))/p0
4: generate mills_strategy1 = normd(invnorm(p1))/p1
5: generate mills_strategy2 = normd(invnorm(p2))/p2
As with the prior listing, line 1 implements the choice model of strategy (either 0 if S_0, 1 if S_1, or 2 if S_2), in this case a multinomial logit, and X and Z as right-hand-side covariates. Line 2 generates the linear predictions; however, in this case the probability of each choice is assigned to different variables (i.e., p_0, p_1, and p_2). Lines 3, 4, and 5 implement Lee’s transformation to generate the Mills ratio for each strategy. Lines 6, 7, and 8 regress X and the corresponding inverse Mills ratio on to performance for each subset of strategies.
Table 1: Summary of empirical methods found in the SMJ: 1990 – 2001

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>count</td>
<td>%</td>
<td>count</td>
<td>%</td>
<td>count</td>
<td>%</td>
<td>count</td>
<td>%</td>
<td>count</td>
<td>%</td>
<td>count</td>
<td>%</td>
</tr>
<tr>
<td>Simple Statistical Descriptors</td>
<td></td>
</tr>
<tr>
<td>Difference in means</td>
<td>9</td>
<td>18</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>12</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Correlation analysis</td>
<td>6</td>
<td>12</td>
<td>9</td>
<td>16</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>13</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>MANOVA</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ANOVA</td>
<td>6</td>
<td>12</td>
<td>10</td>
<td>17</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>17</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Variance components</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Crosstab</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Multivariate Analysis</td>
<td></td>
</tr>
<tr>
<td>Clustering</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>MDS/MDA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Factor/PCA</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>SEM</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meta analysis/Other</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>11</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Classical Regression</td>
<td></td>
</tr>
<tr>
<td>OLS/ML</td>
<td>7</td>
<td>14</td>
<td>10</td>
<td>17</td>
<td>11</td>
<td>19</td>
<td>14</td>
<td>20</td>
<td>12</td>
<td>22</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>WLS</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hier. Regress</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Moderated regression</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>SUR</td>
<td>0</td>
</tr>
<tr>
<td>GLS</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Limited Dep. Vars.</td>
<td></td>
</tr>
<tr>
<td>Poisson</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Tobit</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Negative binomial</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Logistic Binomial/ Poisson</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Logit/Probit</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Event history</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Accounts for Omitted Variables</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Endogeneity Models</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>100</td>
<td>58</td>
<td>100</td>
<td>59</td>
<td>100</td>
<td>71</td>
<td>100</td>
<td>55</td>
<td>100</td>
<td>56</td>
<td>100</td>
</tr>
<tr>
<td>Number of papers</td>
<td>44</td>
<td></td>
<td>50</td>
<td></td>
<td>51</td>
<td></td>
<td>51</td>
<td></td>
<td>49</td>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Number of empirical papers</td>
<td>26</td>
<td></td>
<td>59%</td>
<td></td>
<td>30</td>
<td></td>
<td>59%</td>
<td></td>
<td>32</td>
<td></td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>Methods per paper</td>
<td>1.9</td>
<td></td>
<td>2.0</td>
<td></td>
<td>2.0</td>
<td></td>
<td>2.2</td>
<td></td>
<td>1.8</td>
<td></td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Diversity of Methods</td>
<td>10</td>
<td></td>
<td>11</td>
<td></td>
<td>15</td>
<td></td>
<td>16</td>
<td></td>
<td>11</td>
<td></td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Use of Methods in the SMJ (1990-2001)