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Unspanned Stochastic Volatility, Is It There After All? Evidence from Hedging

Interest Rate Caps

ABSTRACT

There are conflicting views in the literature on whether bonds span interest rate derivatives. While

Heidari and Wu (2003) and Collin-Dufresne and Goldstein (2002a) argue that there are unspanned

stochastic volatility factors in caps and swaptions markets, Fan, Gupta, and Ritchken (2003) show

that the benefit of including unspanned stochastic volatility for hedging swaptions is minor. We study

the ability of multifactor quadratic term structure models estimated using bond data in hedging

interest rate caps. We find that although these models capture bond yields well, they have serious

difficulties in hedging caps, especially cap straddles. Furthermore, straddle hedging errors are highly

correlated with at-the-money cap implied volatilities and can explain a large fraction of hedging

errors of all caps across moneyness and maturity. Our results suggest that there are indeed systematic

unspanned factors related to stochastic volatility in caps market. The different conclusions for caps

and swaptions are consistent with the fact that cap implied volatilities are much more volatile than

swaption implied volatilities, and caps are much more sensitive to changes in correlations of bond

yields than swaptions. Term structure models that explicitly incorporate stochastic volatility and

correlation will be important for pricing and hedging caps and in resolving the relative mispricing

between caps and swaptions.



Interest rate caps and swaptions are the most widely traded interest rate derivatives in the world.

According to the Bank of International Settlement, their combined notional values are more than 10

trillion dollars in recent years. Because of the size of these markets, accurate and efficient pricing and

hedging of caps and swaptions have enormous practical importance. Prices of interest rate derivatives

also contain information that may not be available in Libor and swap rates for testing existing term

structure models. As pointed out by Dai and Singleton (2003) “With the growing availability of time

series data on the implied volatilities of fixed-income derivatives, comparisons of DTSM (dynamic

term structure model)-implied to market prices of derivatives is increasingly being used in assessing

goodness-of-fit.”

One key question of the fast growing literature on interest rate derivatives is the so-called un-

spanned stochastic volatility puzzle.1 Interest rate caps and swaptions are derivatives written on

Libor and swap rates, and their prices should be determined by the same set of factors that deter-

mine Libor and swap rates. However, several recent studies have shown that there seem to be risk

factors that affect the prices of caps and swaptions but not the underlying Libor and swap rates.

In other words, bonds do not seem to span interest rate derivatives. For example, Heidari and Wu

(2003) show that while the three common term structure factors (i.e., the level, slope and curvature

of the yield curve) can explain 99.5% of the variations of bond yields, they explain less than 60% of

swaption implied volatilities. By including three additional volatility factors, the explanatory power

is increased to over 97%. Similarly, Collin-Dufresne and Goldstein (2002a) show that there is a very

weak correlation between changes in swap rates and returns on at-the-money (ATM) cap straddles:

the R2s of regressions of straddle returns on changes of swap rates are typically less than 20%. They

find that one principal component explains 80% of regression residuals of straddles with different

maturities. As straddles are approximately delta neutral and mainly exposed to volatility risk, they

refer to the factor that drives straddle returns but is not affected by the term structure factors as

“unspanned stochastic volatility” (hereafter USV).

The presence of USV has important implications for term structure modeling. It shows that to

price and hedge caps and swaptions, models that explicitly incorporate USV are needed. In contrast,

some popular term structure models, although have been reasonably successful in fitting yield data,

may not be very useful for pricing interest rate derivatives. Subsequent to Heidari and Wu (2003)

1Another question is the relative pricing between caps and swaptions. Although both caps and swaptions are

derivatives on Libor rates, exsiting models calibrated to one set of prices tend to significantly misprice the other set of

prices.
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and Collin-Dufresne and Goldstein (2002a), several term structure models that explicitly capture

stochastic volatility and correlation have been developed (see e.g., Collin-Dufresne and Goldstein

2002b, and Han 2002). These new term structure models resemble the stochastic volatility models

for equity option pricing (see, e.g., Heston 1993, and Hull and White 1987). While pricing and

hedging interest rate derivatives become more complicated in these new models, the additional cost

is justified if USV is economically significant.

However, the relevance of USV has been challenged in the recent literature by Fan, Gupta and

Ritchken (2003) (hereafter FGR). These authors argue that “if USV is important, then it should

not be possible to hedge swaptions efficiently using a model based on state variables limited to the

set of swap rates. More importantly, such models should certainly not be able to hedge contracts

which have extreme sensitivity to volatilities, such as straddles.” They show that contrary to this

prediction, multifactor models with state variables linked solely to underlying Libor and swap rates,

can hedge swaptions and even swaption straddles very well. Therefore, they conclude that “the

potential benefits of looking outside the Libor market for factors that might impact swaptions prices

without impacting swap rates” are minor. According to FGR (2003), one important reason for their

different conclusions is that linear regression used in Heidari and Wu (2003) and Collin-Dufresne and

Goldstein (2002a) could give misleading results due to the highly nonlinear dependence of straddle

returns on the underlying interest rates.

While FGR (2003) show that the benefit of USV for hedging swaptions is not significant, they

acknowledge that “it may be the case that unspanned stochastic volatility is more important in the

cap market.” Such a result would be consistent with the findings of Collin-Dufresne and Goldstein

(2002b) that cap implied volatilities are much more volatile than swaption implied volatilities and

caps are much more sensitive to changes in correlations of bond yields than swaptions. Indeed models

calibrated to swaption prices but ignore time varying correlations, such as Longstaff, Schwartz, and

Santa-Clara (2001) have relatively large pricing errors for caps. Therefore, USV might be more

relevant for pricing and hedging caps.

Our paper contributes to the literature by re-examining the issue of USV in interest rate caps

market. We adopt the approach of FGR (2003) to study whether multifactor term structure models

estimated using bond data alone can successfully hedge caps and cap straddles. There are several

innovations that distinguish our paper from FGR (2003).

First, we use an unique dataset from SwapPX on interest rate caps with different strikes and

maturities in our analysis. As shown in Jarrow, Li and Zhao (2003), there is a pronounced volatility
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skew in cap implied volatilities. Therefore our data make it possible to study the cross-sectional

performance of different term structure models in hedging caps. Second, the term structure models

considered in our analysis are quite different from that of FGR (2003). In the past decade, a huge

literature has emerged in finance that studies the performance of various term structure models in

explaining both the time-series and cross-sectional properties of bond yields (see Dai and Singleton

2003 for an excellent review of the huge literature). The most well-known models, such as the affine

term structure models (ATSMs) of Duffie and Kan (1996) and the quadratic term structure models

(QTSMs) of Ahn, Dittmar and Gallant (2002) (hereafter ADG), have been reasonably successful in

fitting term structure data. By studying whether these models can successfully price and hedge caps,

we relate our analysis of USV more closely to the existing term structure literature. Third, the models

considered in our paper are estimated using bond data alone. In contrast, some parameters of FGR’s

model need to be recalibrated constantly using swaption prices to improve model fit. This practice,

however, may implicitly use information from swaption prices in designing hedging strategies.

We choose the QTSMs in our analysis for two reasons. First, as demonstrated by ADG (2002), the

QTSMs have obvious advantages over the ATSMs in fitting both the conditional mean and volatility

of bond yields, which are important for pricing and hedging interest rate derivatives. Second, there

is also some preliminary evidence that the ATSMs may not be able to price interest rate derivatives

well (see e.g., Jagannathan, Kaplin and Sun 2001, and Collin-Dufresne and Goldstein 2002b).

We estimate the canonical forms of the three-factor QTSMs using Libor bond yields via extended

Kalman filter. We find that consistent with the existing literature, the QTSMs can capture term

structure dynamics very well. The maximal flexible model has a great fit of different aspects of bond

yields, and model-based hedging in all the QTSMs can reduce more than 95% of the variations of

bond yields. On the other hand, the QTSMs have serious difficulties in hedging long-term and out-

of-the-money (OTM) caps. Principle component analysis of hedging errors of caps across moneyness

and maturity shows that there are additional factors affecting cap prices that are not spanned by the

yield factors. To focus on the issue of USV, we find that the QTSMs can explain little variations of

at-the-money (ATM) cap straddle returns. The strong correlation between straddle hedging errors

and changes in ATM cap implied volatilities indicates that the unspanned factors are mainly related

to stochastic volatility. The first few principle components of straddle hedging errors can explain a

large percentage of hedging errors of all caps across moneyness and maturity. To the extent that

USV can be proxied by straddle hedging errors, our results show that the impacts of USV on cap

prices are systematic.
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Therefore both linear regression and model-based hedging show that USV plays a much more

important role for pricing and hedging caps than swaptions. This is consistent with existing findings

that models that do not include USV tend to have much larger pricing errors for caps than swaptions.

Term structure models that explicitly incorporate stochastic volatility and correlation, such as Collin-

Dufresne and Goldstein (2002b) and Han (2002), will be important for pricing and hedging caps and

in resolving the relative mispricing between caps and swaptions.

The rest of this paper is organized as follows. In Section I, we introduce the data and provide

some preliminary analysis of USV in interest rate caps using linear regression. Section II introduces

the QTSMs and their empirical performance for capturing term structure dynamics. In Section

III, we study the pricing and hedging of caps in the QTSMs. Section IV concludes the paper and

discusses directions of future research.

I. Unspanned Stochastic Volatility: Some Preliminary Analysis

In this section, we provide some preliminary analysis of USV in caps market using the linear

regression approach of Collin-Dufresne and Goldstein (2002a). The data used in our analysis are

obtained from SwapPX and contain Libor and swap rates, and prices of interest rate caps with

different strikes and maturities.2 The data cover the period from August 1, 2000 to November 7,

2002. After excluding weekends, holidays and missing data, in total we have 557 trading days in our

sample. The data are collected everyday when the market is open between 3:30 and 4:00 pm.

Using daily three-month Libor spot and forward rates at 9 maturities (3 and 6 month, 1, 2, 3, 4,

5, 7, and 10 year), we construct the yield curve of Libor zero-coupon bonds. As shown in Figure 1,

the yield curve is relatively flat at the beginning of the sample and declines over time, with the short

end declining more than the long end. As a result, the yield curve becomes upward sloping in later

part of the sample. Table I reports the summary statistics of the levels and changes of 6 month,

1, 2, 5, 7, and 10 year yields. Consistent with the upward sloping yield curve, long-term bonds

tend to have higher yields than short-term bonds. On average, all yields exhibit negative changes,

consistent with the declining interest rates during our sample period. Changes of short-term yields

2Jointly developed by GovPX and Garban-ICAP, SwapPX is the first widely distributed service delivering 24 hour

real-time rates, data and analytics for the world-wide interest rate swaps market. GovPX was established in early

1990s by the major U.S. fixed-income dealers as a response to regulators’ demands to increase the transparency of the

fixed-income markets. It aggregates quotes from most of the largest fixed-income dealers in the world. Garban-ICAP

is the world’s leading swap broker specializing in trades between dealers and between dealers and large customers.

According to Harris (2003), “Its securities, derivatives, and money brokerage businesses have daily transaction volumes

in excess of 200 billion dollars”.
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have higher standard deviation and kurtosis and are more negatively skewed than changes of long-

term yields. Yield levels are highly persistent with first-order autoregressive coefficients being close

to one. In contrast, yield changes are much less persistent and the autoregressive coefficients decline

with maturity. Principle component analysis shows that consistent with the existing literature, the

first three principle components can explain more than 99% of the variations in both the levels and

changes of bond yields.

Interest rate caps are portfolios of call options on Libor rates. Specifically a cap gives its holder

a series of European call options, called caplets, on Libor forward rates. Each caplet has the same

strike price as the others, but with different expiration dates. The caps in our data are written on

three-month Libor. Suppose L (t, T ) is the 3-month Libor forward rate at t ≤ T, for the interval

from T to T + 1
4 . A caplet for the period

£
T, T + 1

4

¤
struck at K pays 14 (L (T, T )−K)+ at T + 1

4 .

Note that while the cash flow on this caplet is received at time T + 1
4 , the Libor rate is determined

at time T . This means that there is no uncertainty about the caplet’s cash flow after the Libor rate

is set at time T .3 A cap is just a portfolio of these caplets whose maturities are three months apart.

For example, a five-year cap on three-month Libor struck at six percent represents a portfolio of 19

separately exercisable caplets with quarterly maturities ranging from 6 month to 5 years, where each

caplet has a strike price of 6%.

Existing literature on interest rate derivatives has mainly focused on ATM contracts. One ad-

vantage of our data is that we observe prices of caps over a wide range of strikes and maturities.4

For example, every day for each maturity, there are ten different strike prices, which are 4.0, 4.5,

5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, and 10.0 percent between August 1, 2000 and October 17, 2001, and

2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, and 7.0 percent between November 2, 2001 and November 1,

2002.5 Throughout the whole sample, caps have fifteen different maturities, which are 0.5, 1.0, 1.5,

2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0 years.

3Standard industry practice is to use Black’s (1976) formula to price the caplet. Brace, Gatarek, and Musiela (1997)

and Miltersen, Sandmann, and Sondermann (1997) show that market practice is consistent with arbitrage-free pricing

if the LIBOR rates follow a log-normal distribution under the appropriate forward measure.
4To our knowledge, the only existing study that considers caps with different strikes is Gupta and Subrahmanyam

(2001). Their data, obtained from Tullett and Tokoyo Liberty, covers a shorter time period (March 1 to December 31,

1998), has a narrower spectrum of strikes and maturities (four choices for each), and the maximum maturity is only

five years. Their sample also covers the turbulent periods of the Russian financial crisis and the collapse of LTCM in

the summer and fall of 1998, which might make their data less reliable.
5The strike prices are lowered to 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 and 5.5 percent between October 18 and

November 1, 2001.
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As shown in Jarrow, Li, and Zhao (2003), there is a pronounced volatility skew in cap implied

volatilities during our sample period. Ideally we would like to use caplet prices to back out the implied

volatilities. Unfortunately, we only observe cap prices. To simplify computation, we consider the

difference between prices of caps with adjacent maturities. Thus, our analysis deals with only the

sum of the few caplets between two neighboring maturities. For example, for the rest of the paper, 1.5

year caps represent the sum of the 1.25 and 1.5 year caplets. Because of changing market conditions,

throughout our analysis, we focus on caps with fixed moneyness. Therefore each day, we interpolate

cap prices with respect to strike price to obtain prices at fixed moneyness. After eliminating all

observations that violate various arbitrage restrictions, we plot the average implied volatilities of

caps across moneyness and maturity over the whole sample period in Figure 2. Consistent with the

existing literature, the implied volatilities of close-to-the-money caps have a humped shape. However,

the implied volatilities of all other caps decline with maturity. There is also a pronounced volatility

skew for caps with all maturities, with the skew being stronger for short-term caps. The pattern

is similar to that of equity options, i.e., ITM caps have higher implied volatilities than OTM caps.

The implied volatilities of the very short-term caps are more like a symmetric smile than a skew.

Figure 3 plots the time series of Black implied volatilities for 2 and 8 year caps across moneyness.

It is clear that the implied volatilities are much higher in the second half of our sample due to the

more uncertain economic environment. As a result of changing interest rates and strike prices, there

are more ITM caps in the second half of our sample.

If the caps market is well integrated with the Libor and swap market, then the three common

term structure factors that explain more than 99% of bond yields should also explain cap prices well.

Low explanatory power would suggest that there could be factors affecting cap prices that are not

spanned by bonds. To test this hypothesis, we regress weekly returns of caps with fixed moneyness

and maturity on weekly changes of the three yield factors.

As caps are traded over the counter, we only observe their prices with fixed time to maturity,

but not fixed maturity dates. To calculate weekly returns at a fixed moneyness, we need the price

of a cap one week later that has the same strike price and a maturity that is two years minus one

week. Following previous studies, such as FGR (2003) and Collin-Dufresne and Goldstein (2002a),

we interpolate with respect to maturity the prices of caps with the same strike price a week later.

Through the above interpolation, we obtain a series of weekly cap returns for each moneyness

and maturity. Table II reports the R2s of regressions of weekly returns of caps on weekly changes of

the three yield factors for each moneyness/maturity group. Because of changing interest rates and
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strike prices, we do not have the same number of observations throughout the whole sample for all

moneyness/maturity groups. The bold entries represent observations with less than 10% of missing

values and the rest with 10-50% of missing values. In total we have 111 weeks of nonoverlapping

observations if there are no missing data.

The R2s in Table II show that the three yield factors can explain a large percentage of returns

of ITM and short-term caps. But the explanatory power is significantly worsened for OTM and

long-term caps, suggesting that bonds may not be able to span caps. Collin-Dufresne and Goldstein

(2002a) argue that the unspanned factor is mainly related to stochastic volatility, because changes

of swap rates can explain little variations of ATM straddle returns which are mostly sensitive to

volatility risk. We also regress ATM straddle returns on changes in the three yield factors and

obtain very similar results. With a few exceptions, the R2s of our straddle regressions are typically

in single digit. Therefore the results from our linear regression analysis are consistent with that of

Collin-Dufresne and Goldstein (2002a). As pointed out by FGR (2003), however, linear regression

could be misleading due to the nonlinear dependence of straddle returns on underlying yield factors.

To rigorously address this issue, we examine the performance of multifactor term structure models

in hedging caps.

II. Quadratic Term Structure Models

A. Quadratic Term Structure Models

FGR (2003) show that linear regression and model-based hedging provide very different answers

on USV in swaptions market. To understand the importance of USV for caps, we adopt the approach

of FGR (2003) by testing whether multifactor term structure models estimated using bond data can

hedge caps well. To relate more closely to the existing literature, in our analysis we consider term

structure models that have been widely studied recently for fitting both the time-series and cross-

sectional behavior of bond yields. These models have the advantages that most fixed-income securities

can be priced in (essentially) closed-form and model parameters can be estimated using bond data

alone. On the other hand, in FGR’s model, pricing relies on simulation and some parameters need

to be re-calibrated constantly using swaption prices to improve model performance.

The ATSMs of Duffie and Kan (1996) and the QTSMs of ADG (2002) are probably the most

widely studied models in the existing literature. In our empirical analysis, we choose the QTSMs

of ADG (2002), because they have several advantages over the ATSMs. First, since interest rate is

a quadratic function of the state variables, it is guaranteed to be positive in the QTSMs. On the

other hand, in the ATSMs, the spot rate, an affine function of the state variables, is guaranteed to be
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positive only when all state variables follow square-root processes. Second, the QTSMs do not have

the limitations facing the ATSMs in simultaneously fitting interest rate volatility and correlations

among the state variables. That is in the ATSMs, increasing the number of factors that follow

square-root processes improves the modeling of volatility clustering in bond yields, but reduces the

flexibility in modeling correlations among state variables. Third, the QTSMs have the potential to

capture observed nonlinearity in term structure data (see e.g., Ahn and Gao 1999). Indeed, ADG

show that the QTSMs have better empirical performance than the ATSMs in capturing both the

conditional mean and volatility of bond yields.

For the rest of this section, we briefly introduce the QTSMs, the estimation method, and their

performance in capturing term structure dynamics. The economy is represented by the filtered

probability space
³
Ω,F , {Ft}0≤t≤T , P

´
, where {Ft}0≤t≤T is the augmented filtration generated by

an N-dimensional standard Brownian motion, W, on this probability space. We assume {Ft}0≤t≤T
satisfies the usual hypothesis (see Protter 1990). The QTSMs rely on the following assumptions:

• The instantaneous interest rate rt is a quadratic function of the N-dimensional state variables
Xt,

r (Xt) = X 0
tΨXt + β0Xt + α. (1)

• The state variables follow a multivariate Gaussian process,

dXt = [µ+ ξXt] dt+ΣdWt. (2)

• The market price of risk is an affine function of the state variables,

ζ(Xt) = η0 + η1Xt. (3)

Note that in the above equations Ψ, ξ,Σ, and η1 are N-by-N matrices, β, µ and η0 are vectors

of length N and α is a scalar. The quadratic relation between rt and Xt has the desired property

that rt is guaranteed to be positive if Ψ is positive semidefinite and α − 1
4β

0Ψβ ≥ 0. Although Xt

follows a Gaussian process in (2), interest rate rt exhibits conditional heteroskedasticity because of

the quadratic relationship between rt and Xt. As a result, the QTSMs are more flexible in modeling

volatility clustering in bond yields and correlations among the state variables than the ATSMs.

We assume that ξ permits the following eigenvalue decomposition,

ξ = UΛU−1
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where Λ is the diagonal matrix of the eigenvalues, Λ ≡ diag [λi]N , and U is the matrix of the eigen-

vectors of ξ, U ≡ [u1 u2 ... uN ] . The eigenvalues are assumed to be negative to ensure the stationarity
of the state variables. The conditional distribution of the state variables Xt is multivariate Gaussian

with conditional mean

E [Xt+∆t|Xt] = UΛ−1 [Φ− IN ]U
−1µ+ UΛ−1 [Φ− IN ]U

−1Xt (4)

and conditional variance

var [Xt+∆t|Xt] = UΘU 0 (5)

where Φ is a diagonal matrix with elements exp(λi∆t) for i = 1, ..., N, Θ is a N-by-N matrix with

elements

vij

µ
e
∆t(λi+λj)−1

¶
λi+λj

, where [vij ]N×N = U−1ΣΣ0U 0−1.

With the specification of market price of risk, we can relate the risk-neutral measure Q to the

physical one P as follows,

E

·
dQ

dP
|Ft

¸
= exp

·
−
Z t

0
ζ(Xs)

0dWs +
1

2

Z t

0
ζ(Xs)

0ζ(Xs)ds

¸
, for t ≤ T.

Applying Girsanov’s theorem, we obtain the risk-neutral dynamics of the state variables

dXt = [δ + γXt] dt+ΣdW
Q
t

where δ = µ − Ση0, γ = ξ − Ση1, and WQ
t is an N-dimensional standard Brownian motion under

measure Q.

Under the above assumptions, a large class of fixed-income securities can be priced in (essentially)

closed-form (see Leippold and Wu 2002). We discuss the pricing of zero-coupon bonds below and

the pricing of caps in Appendix A. Let V (t, τ) be the time-t value of a zero-coupon bond that pays

1 dollar at time t+ τ . In the absence of arbitrage, the discounted value process e(−
R t
0 r(Xs)ds)V (t, τ)

is a Q−martingale. Thus the value function must satisfy the fundamental PDE, which requires the
bond’s instantaneous return equals the risk-free rate,

1

2
tr

µ
ΣΣ0

∂2V (t, τ)

∂Xt∂X 0
t

¶
+

∂V (t, τ)

∂X 0
t

(δ + γXt) +
∂V (t, τ)

∂t
= rtV (t, τ)

with the terminal condition V (t, 0) = 1. The solution takes the form

V (t, τ) = exp
£−X 0

tA(τ)Xt − b(τ)0Xt − c(τ)
¤
,

9



where A(τ), b(τ) and c(τ) satisfy the following system of ordinary differential equations (ODEs),

∂A (τ)

∂τ
= Ψ+A(τ)γ + γ0A(τ)− 2A(τ)ΣΣ0A(τ); (6)

∂b (τ)

∂τ
= β + 2A(τ)δ + γ0b(τ)− 2A(τ)ΣΣ0b (τ) ; (7)

∂c (τ)

∂τ
= α+ b(τ)0δ − 1

2
b(τ)0ΣΣ0b (τ) + tr

£
ΣΣ0A(τ)

¤
; (8)

with A(0) = 0N×N ; b(0) = 0N ; c(0) = 0.

Consequently, the yield-to-maturity, y(t, τ), is a quadratic function of the state variables

y(t, τ) =
1

τ

£
X 0
tA(τ)Xt + b(τ)0Xt + c(τ)

¤
. (9)

In contrast, in the ATSMs the yields are linear in the state variables and therefore the correlations

among the yields are solely determined by the correlations of the state variables. Although the state

variables in the QTSMs follow multivariate Gaussian process, the quadratic form of the yields helps

to model the complicated volatility and correlation structure of bond yields.

B. Estimation Method

To price and hedge caps in the QTSMs, we need to estimate both model parameters and latent

state variables. Due to the quadratic relationship between bond yields and the state variables, the

state variables are not identified by the observed yields even in the univariate case in the QTSMs.

Previous studies, such as ADG (2002) have used the efficient method of moments (EMM) of Gallant

and Tauchen (1996) to estimate the QTSMs. However, some recent studies, such as Duffee and

Stanton (2001), suggest that EMM may not perform very well in small samples for estimating term

structure models. Hence, following Duffee and Stanton’s (2001) suggestions, we choose the extended

Kalman filter to estimate model parameters and extract latent state variables. Previous studies that

have used the extended Kalman filter in estimating the ATSMs include Duan and Simonato (1995),

De Jong and Santa-Clara (1999), and Lund (1997), among others.

To implement the extended Kalman filter, we first recast the QTSMs into a state-space rep-

resentation. Suppose we have a time series of observations of yields of L zero-coupon bonds with

maturities Γ = (τ1, τ2, ..., τL). Let Yk = f(Xk,Γ) be the vector of the L observed yields at the discrete

time points k∆t, for k = 1, 2, ...,K, where ∆t is the sample interval (one day in our case). After the

following change of variable,

Zk = U−1(ξ−1µ+Xk),

we have the state equation:

Zk = ΦZk−1 + wk, wk ∼ N(0,Θ) (10)
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where Φ and Θ are first introduced in (4) and (5), and measurement equation:

Yk = dk +HkZk + vk, vk ∼ N(0, Rv) (11)

where the innovations in the state and measurement equation wk and vk follow serially indepen-

dent Gaussian processes and are independent from each other. The time-varying coefficients of the

measurement equation dk and Hk are determined at the ex ante forecast of the state variables,

Hk =
∂f(Uz − ξ−1µ,Γ)

∂z
|z=Zk|k−1

dk = f(UZk|k−1 − ξ−1µ,Γ)−HkZk|k−1 +Bk,

where Zk|k−1 = ΦZk−1.

In the QTSMs, the transition density of the state variables is multivariate Gaussian under both

the physical and risk-neutral measure. Thus the transition equation in the Kalman filter is exact.

The only source of approximation error is due to the linearization of the quadratic measurement

equation. As our estimation uses daily data, the approximation error, which is proportional to one-

day ahead forecast error, is likely to be minor. In Appendix B, we further discuss how to minimize

the approximation error by introducing the correction term Bk.
6 The Kalman filter starts with the

initial state variable Z0 = E(Z0) and variance-covariance matrix P
Z
0 ,

PZ
0 = E

£
(Z0 −E(Z0)) (Z0 −E(Z0))

0¤ .
Given the set of filtering parameters, Ξ, we can write down the log-likelihood of observations based

on the Kalman filter

logL (Y ;Ξ) =
KX
k=1

log f(Yk;Yk−1,Ξ)

= −LK
2
log (2π)− 1

2

KX
k=1

log
¯̄̄
PY
k|k−1

¯̄̄
− 1
2

KX
k=1

·³
Yk − Ŷk|k−1

´0 ³
PY
k|k−1

´−1 ³
Yk − Ŷk|k−1

´¸
with Yk−1 is the information set at time (k − 1)∆t, and PY

k|k−1 is the time (k − 1)∆t conditional
variance of Yk,

PY
k|k−1 = H 0

kP
Z
k|k−1Hk +Rv.

Parameters are obtained by maximizing the above likelihood function. To avoid local minimum, in

our estimation procedure, we use many different starting values and search for the optimal point

6The differences between parameter estimates with and without the correction term are very small and we report

those estimates with the correction term Bk.
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using Simplex method. Then we use gradient-based method to refine those estimates, until they

cannot be further improved. This is the standard technique in the literature (see e.g., Duffee 2002).

C. Parameter Estimates and Model Performance

Following ADG (2002), we consider the canonical forms of the three-factor QTSMs given that

they are quite successful in explaining term structure data. In all models, the following restrictions

are imposed for identification purpose. We assume that Ψ is a symmetric semi-positive definite

matrix with diagonal elements of 1:

Ψ =


1 Ψ12 Ψ13

Ψ12 1 Ψ23

Ψ13 Ψ23 1

 .
We also assume that µ ≥ 0, α > 0, β = 0N , ξ and δ1 are lower triangular matrices, and Σ is a

diagonal matrix. We consider the following three models with a decreasing order of complexity:

• QTSM1. This is the maximal flexible model that has a fully specified covariance matrix of
the state variables and allow interactions among the state variables in the determination of rt.

For this model, we need to estimate α, three off-diagonal elements of Ψ, three elements of µ,

six elements of ξ, three elements of Σ, three elements of δ0, and six elements of δ1. The total

number of parameters is 25.

• QTSM2. This model has orthogonal state variables, but allow interactions among the state
variables in determining rt. That is in QTSM2, ξ and δ1 are diagonal, so the state variables are

orthogonal under both P and Q measure. However, Ψ is non-diagonal, allowing interactions in

the determination of rt. The total number of parameters of this model is 19.

• QTSM3. It has orthogonal state variables and no interactions in the determination of rt. Thus
the additional restriction in this model relative to QTSM2 is that Ψ is diagonal. In total we

have 16 parameters for QTSM3.

We estimate the above three-factor models using 6 month, 1, 2, 5, 7 and 10 year yields. Over

the sample period, we have 557 observations and we drop likelihood of the first one for initializing

the Kalman filter and the one after September 11, 2001 as an extreme outlier. In implementing

the extended Kalman filter, we assume that all yields are observed with independent measurement

errors, which follow normal distribution of zero mean and standard deviation of σ1/2, σ1, σ2, σ5, σ7,

and σ10 for each maturity respectively. We thus have 6 additional parameters for each of the three

models.
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Parameter estimates and log-likelihood values for each model are reported in Table III. The

likelihood ratios between different models indicate that correlations among the state variables and

their interactions in determining rt are important for better model performance. We examine the

performance of the QTSMs in capturing yield curve dynamics from several different perspectives.

Figure 4 plots the time series observations of QTSM1 model-implied state variables and the three

yield factors obtained from principle component analysis. There are clear differences between the

two sets of variables due to the nonlinear relationship between bond yields and the state variables

in the QTSMs. Figure 5 shows that QTSM1 model-implied yields are almost indistinguishable from

the corresponding observed yields. Table IV reports the summary statistics of the levels and changes

of QTSM1 model-implied yields. A comparison with the summary statistics of the actual yields in

Table I shows that QTSM1 can capture the mean, standard deviation, skewness, kurtosis and first

order autocorrelations of bond yields very well.

In later sections, we will study whether bonds can span caps by testing whether the QTSMs esti-

mated using bond data alone can hedge caps well. For comparison, we first look at the performance

of the QTSMs in hedging zero-coupon bonds. We assume that the filtered state variables are traded

and use them as hedging instruments. We conduct delta-neutral hedge for the six zero-coupon bonds

on a daily basis. Hedging performance is measured by variance ratio, which is the percentage of

the variations of an unhedged position that can be reduced by hedging. The results on the hedging

performance in Panel C of Table IV show that in most cases the variance ratios are higher than 95%.

This should not be surprising given the good performance of the QTSMs in capturing term structure

data.

III. Pricing and Hedging Interest Rate Caps in QTSMs

If the Libor and swap market and the caps market are well integrated, then the estimated three-

factor QTSMs should be able to price and hedge caps well. Otherwise, it would be a strong indication

that there are risk factors affecting cap prices that are not spanned by bonds. With the estimated

parameters and the state variables of the three QTSMs, we re-examine the issue of USV in caps

market.

A. Pricing Interest Rate Caps

We first study the performance of the QTSMs in pricing caps. In contrast to the numerous studies

that fit the ATSMs and QTSMs to bond yields, there is little work testing their performance for

pricing interest rate derivatives. In a recent paper, Jagannathan, Kaplin and Sun (2001) show that a

three-factor Cox, Ingersoll and Ross (1985) model has large pricing errors for caps and swaptions. To
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the best of our knowledge, our paper is probably the first one that empirically studies the performance

of the QTSMs in pricing and hedging caps.

Panel A, B, and C of Table V report the RMSE of percentage pricing errors of caps with dif-

ferent moneyness and maturity for QTSM3, QTSM2, and QTSM1 respectively. Percentage pricing

error, defined as the difference between market and model price divided by market price, is a bet-

ter measure of model performance, because caps with different moneyness and maturity can have

dramatically different prices. This measure has been used in previous studies, such as Longstaff,

Santa-Clara and Schwartz (2001) and FGR (2003). As pointed out before, we interpolate cap prices

with respect to strike price to obtain prices at fixed moneyness. Similar to Table II, the bold entries

are moneyness/maturity groups that have less than 10% of missing values and the rest have between

10 to 50% of missing values.

All three QTSMs have smaller percentage pricing errors for ITM and long-term caps than OTM

and short-term caps. For example, in QTSM1, while the percentage pricing errors for ITM caps

are less than 10%, they can be over 40% for short-term OTM caps. QTSM2 and QTSM3 have

especially high percentage pricing errors for short-term and OTM caps. In general, QTSM1 has

smaller percentage pricing errors across moneyness and maturity than the other two models, except

that QTSM2 has slightly lower percentage pricing errors for deep ITM caps. This indicates that the

additional flexibility provided by the correlations among the state variables improves the model’s

pricing performance. QTSM2 has lower pricing errors than QTSM3 for short-term caps, but higher

pricing errors for long-term caps.

While the QTSMs have significant pricing errors, the RMSE of percentage pricing error does not

tell the direction of mispricing. Panel D of Table V reports the average percentage pricing errors

of the best model, QTSM1. It is clear that QTSM1 underprices ITM caps and overprices OTM

caps. This is consistent with Jarrow, Li and Zhao (2002) who show that it is difficult to capture the

pronounced volatility skew in caps data.

The pricing analysis shows that although the QTSMs can capture the level of bond yields pretty

well, they still have systematic biases for pricing caps, especially OTM caps. A deep ITM option

behaves almost like the underlying asset, because the probability that the option will be eventually

in the money is high. Thus it is not surprising that the QTSMs have relatively better performance

in pricing ITM caps. However, OTM caps are much more sensitive to the tail behavior of the

distribution of the underlying interest rates. Therefore, to accurately price OTM caps, the QTSMs

need to capture not only the level but also the whole distribution, especially the tail distribution, of
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the bond yields.

B. Hedging Interest Rate Caps

Pricing analysis mainly focuses on whether a model can capture the distribution of underlying

asset price on the maturity date of an option. On the other hand, hedging analysis also reveals

whether a model can capture the dynamics of the evolution of the underlying price process. In this

section, we study the performance of the three-factor QTSMs in hedging caps.

Based on the estimated model parameters, we conduct delta-neutral hedge of weekly changes

of cap prices using filtered state variables as hedging instruments. We could also use Libor zero-

coupon bonds as hedging instruments by matching the hedge ratios of a cap with that of zero-coupon

bonds. However, using deltas of zero-coupon bonds introduces one additional layer of potential model

misspecification. To improve hedging performance, we allow daily rebalance, i.e., we adjust the hedge

ratios everyday given changes in market conditions. Therefore daily changes of a hedged position is

the difference between daily changes of the unhedged position and the hedging portfolio. The latter

equals to the sum of the products of a cap’s hedge ratios with respect to the state variables and

changes in the corresponding state variables. Weekly changes are just the accumulation over daily

positions. Over the sample period, there are 111 nonoverlapping hedged and unhedged changes for

each moneyness/maturity group if there are no missing data.

Again, we measure hedging effectiveness by variance ratio, the percentage of the variations of an

unhedged position that can be reduced by hedging. This measure is similar in spirit to R2 in linear

regression.7 The variance ratios of the three QTSMs in Table VI show that all models have better

hedging performance for ITM, short-term (maturities from 1.5 to 4 years) caps than OTM, medium

and long-term caps (maturities longer than 4 years) caps. There is a high percentage of variations in

long-term and OTM cap prices that cannot be hedged. The maximal flexible model QTSM1 again

has better hedging performance than the other two models.

Interestingly, the variance ratios of model-based hedging in Table VI are very similar to the

R2s of linear regressions in Table II. In fact, linear regression has higher explanatory power than

model-based hedging. This is mainly because we run separate regression with different parameters

for caps within each moneyness/maturity group. On the other hand, the hedge ratios of all caps in

model-based hedging are determined by the same set of parameters estimated using bond data. Thus

the number of parameters and degrees of freedom are much larger in regression analysis in Table

7FGR (2002) also consider RMSE of hedging errors because their hedging errors have significant biases. Since the

hedging bias in our case is very small, we only report the variance ratios.
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II. Therefore both regression and model-based hedging suggest that bond market factors cannot

satisfactorily hedge interest rate caps, especially OTM and long-term caps.

To control for the fact that the QTSMs maybe misspecified, in Panel D of Table VI, we further

regress hedging errors of each moneyness/maturity group on changes of the three yield factors. While

the three yield factors can explain some additional hedging errors, their incremental explanatory

power is not very significant. Thus even combined with the three yield factors, there is still a large

fraction of cap prices that cannot be explained by the QTSMs. We conduct principle component

analysis of hedging errors of caps with different moneyness in Table VII, focusing on those moneyness

groups for which we have enough observations throughout the whole sample period. We also repeat

the analysis by combining these caps together. It is clear that the first principle component explains

about 50-60% of the hedging errors of all caps and caps within each moneyness group. Each of

the next two components explains about additional 10% of hedging errors. Our analysis of hedging

errors suggests that there could be multiple unspanned factors in caps data.

C. Hedging Cap Straddles: Evidence of Unspanned Stochastic Volatility

Hedging analysis based on the QTSMs confirms the findings of Collin-Dufresne and Goldstein

(2002a) that there are unspanned factors in caps market. Collin-Dufresne and Goldstein (2002a) show

that changes in swap rates in general can explain less than 20% of ATM cap straddle returns which

are most sensitive to volatility risk. Therefore, they argue that the unspanned factor is a stochastic

volatility factor that significantly affects cap prices but not bond yields. However, as pointed out

by FGR (2003), linear regression results could be misleading because straddle returns are highly

nonlinear in underlying yield factors. They show that although linear regression can explain little

variations in swaption straddle returns, a three-factor Heath, Jarrow and Morton (1992) model can

hedge swaption straddles pretty well.

In Table VIII, we re-examine the issue of USV in caps market by testing the performance of the

QTSMs in hedging ATM cap straddles. We obtain ATM floor prices from cap prices using the put-call

parity and construct weekly straddle returns. As straddles are highly sensitive to volatility risk, we

conduct both delta and gamma neutral hedge. The variance ratios of QTSM1 are as low as the R2s of

linear regressions of straddle returns on the yield factors in Table II, suggesting that neither approach

can explain much variations of straddle returns. While FGR (2003) show that linear regression and

model-based hedging have dramatically different performance for swaption straddles, we find that the

difference between the two approaches for cap straddles is very small. Collin-Dufresne and Goldstein

(2002a) show that 80% of straddle regression residuals can be explained by one additional factor.
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Principle component analysis of straddle hedging errors in Panel B of Table VIII shows that the

first factor can explain about 60% of the total variations of hedging errors. The second and third

factor each explains about 10% of hedging errors and two additional factors combined can explain

about another 10% of hedging errors. The correlation matrix of the hedging errors across maturities

in Panel C shows that the hedging errors of short-term (2, 2.5, 3, 3.5, and 4 year), medium-term

(4.5 and 5 year) and long-term (8, 9, and 10 year) straddles are highly correlated within each group,

again suggesting that there could be multiple unspanned factors.

To further understand whether the unspanned factors are related to stochastic volatility, we

study the relationship between ATM cap implied volatilities and straddle hedging errors. Principle

component analysis in Panel A of Table IX shows that the first component explains 85% of the

variations of cap implied volatilities. In Panel B, we regress straddle hedging errors on changes of

the three yield factors and obtain R2s that are close to zero. However, if we include the first few

principle components of cap implied volatilities, the R2s increase significantly: for some maturities,

the R2s are above 90%. In the extreme case in which we regress straddle hedging errors of each

maturity on changes of the yield factors and cap implied volatilities with the same maturity, the

R2s in most cases are above 90%. These results show that straddle returns are mainly affected by

volatility risk but not term structure factors.

Thus the poor hedging performance of the QTSMs is mainly due to the USV in caps data. If the

USV is indeed systematic, including this factor should significantly improve the hedging performance

of all caps. As ATM straddles are mainly exposed to volatility risk, their hedging errors can serve as a

proxy of the USV. Table IX reports the R2s of regressions of hedging errors of caps across moneyness

and maturity on changes of the three yield factors and the first five principle components of straddle

hedging errors. In contrast to the regressions in Panel D of Table VI, which only include the three

yield factors, the additional factors from straddle hedging errors significantly improve the R2s of the

regressions: for most moneyness/maturity groups, the R2s are above 90%. Interestingly for long-

term caps, the R2s of ATM and OTM caps are actually higher than that of ITM caps. Therefore a

combination of the yield factors and the USV factors can explain cap prices across moneyness and

maturity very well.

Our analysis reaches quite different conclusions from that of FGR (2003). FGR (2003) show

that allowing time varying volatility (i.e., allowing volatility parameters to be recalibrated from

swaption prices) increase the variance ratio of swaption straddles by about 10%, which they argue

is not significant enough. In contrast the first few principle components of straddle hedging errors
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can explain a large percentage of hedging errors of all caps. Therefore incorporating USV is much

more important for hedging caps than swaptions. This result is consistent with the findings of Collin-

Dufresne and Goldstein (2002b) that the implied volatilities of caps are much more volatile than that

of swaptions: the variance of cap implied volatilities is about two times as that of swaption implied

volatilities. The main reason for such a big difference is that while caps and swaptions are equally

sensitive to changes in volatilities, caps are much more sensitive to changes in correlations than

swaptions, even though swaptions are options on portfolios of bonds. Collin-Dufresne and Goldstein

(2002b) show that the big difference between the implied volatilities of caps and swaptions simply

can not be reconciled within term structure models with constant volatility and correlation, instead

they develop random field models (see, e.g., Goldstein 2000, Santan-Clara and Sornette 2001) that

explicitly consider stochastic and correlation to address this issue. Therefore, it is clear that the USV

we document in caps market is due to the combined effects of stochastic volatility and correlation

of bond yields. These two factors are important not only for pricing and hedging caps but also for

resolving the relative mispricing between caps and swaptions.

IV. Conclusion

In this paper, we re-examine the issue of USV in caps market. While FGR (2003) show that

the benefit of including USV for hedging swaptions is minor, we find that USV plays much more

important roles for pricing and hedging caps. Our results reconfirm the findings of Collin-Dufresne

and Goldstein (2002a) that there are unspanned stochastic volatility factors affecting caps but not

Libor and swap rates. The different conclusions for caps and swaptions are consistent with the fact

that cap implied volatilities are much more volatile that swaption implied volatilities, and caps are

much more sensitive to changes in correlations than swaptions. Therefore, term structure models

that explicitly incorporate stochastic volatility and correlation would be important for pricing and

hedging caps and have the potential to resolve the relative mispricing between caps and swaptions.

The empirical literature on Libor-based interest rate derivatives is far from being fully developed

and there are many interesting open questions. One obvious one is to test whether existing models

with stochastic volatility and correlation can price caps, especially the pronounced volatility skew

in caps data well. Another important issue is to understand the economic foundations of the USV.

In this regard, Back’s (1993) work on stochastic volatility in equity options market may prove to be

useful.
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Appendix A. Closed-form Pricing Formula for Interest Rate Caps

Leippold and Wu (2002) show that a large class of fixed-income securities can be priced in closed-

form in the QTSMs using the transform analysis of Duffie, Pan, and Singleton (2001). They show

that the time-t value of a contract that has an exponential quadratic payoff structure at terminal

time T, i.e.

exp (−q(XT )) = exp
³
−X 0

TAXT − b
0
XT − c

´
has the following form

ψ (q,Xt, t, T ) = EQ

³
e−

R T
t r(Xs)dse−q(XT )|Ft

´
= exp

£−XtA(T − t)Xt − b(T − t)0Xt − c(T − t)
¤
.

where A(.), b(.) and c(.) satisfy the ODEs (4)-(6) with the initial conditions A(0) = A, b(0) = b

and c(0) = c.

The time-t price a call option with payoff
¡
e−q(XT ) − y

¢+
at T = t+ τ equals

C (q, y,Xt, τ) = EQ

µ
e−

R T
t r(Xs)ds
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where Gq1,q2 (y,Xt, τ) = EQ

h
e−
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i
and can be computed by the in-

version formula,

Gq1,q2 (y,Xt, τ) =
ψ (q1,Xt, t, T )

2
− 1

π

Z ∞

0

eivyψ (q1 + ivq2)− e−ivyψ (q1 − ivq2)
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dv.

Similarly, the price of a put option is

P (q, y, τ,Xt) = yG0,−q (ln (y) ,Xt, τ)−Gq,−q (ln (y) ,Xt, τ) .

We are interested in pricing a cap which is portfolio of European call options on future interest rates

with a fixed strike price. For simplicity, we assume the face value is 1 and the strike price is r. At

time 0, let τ, 2τ, ..., nτ be the fixed dates for future interest payments. At each fixed date kτ, the

r-capped interest payment is given by τ (R ((k − 1) τ, kτ)− r)+ , where R ((k − 1) τ, kτ) is the τ -year
floating interest rate at time (k − 1) τ, defined by

1

1 + τR ((k − 1) τ, kτ) = ( ((k − 1) τ, kτ)

= EQ

Ã
exp

Ã
−
Z kτ

(k−1)τ
r (Xs) ds

!
|F(k−1)τ

!
.
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The market value at time 0 of the caplet paying at date kτ can be expressed as

Caplet (k) = EQ

·
exp

µ
−
Z kτ

0
r (Xs) ds

¶
τ (R ((k − 1) τ, kτ)− r)+

¸
= (1 + τr)EQ

"
exp

Ã
−
Z (k−1)τ

0
r (Xs) ds

!µ
1

(1 + τr)
− ( ((k − 1) τ, kτ)

¶+#
.

Hence, the pricing of the k− th caplet is equivalent to the pricing of an (k − 1) τ -for-τ put struck at
K = 1

(1+τr) . Therefore,

Caplet(k) = G0,−qτ
¡
lnK,X(k−1)τ , (k − 1) τ

¢− 1

K
Gqτ ,−qτ

¡
lnK,X(k−1)τ , (k − 1) τ

¢
.

Similarly for the k − th floorlet

Floorlet(k) = −G0,qτ
¡− lnK,X(k−1)τ , (k − 1) τ

¢
+
1

K
Gqτ ,qτ

¡− lnK,X(k−1)τ , (k − 1) τ
¢
.

Appendix B. Quadratic Measurement Bias Correction

The linearized measurement equation generally introduces a bias term. For quadratic measure-

ment equation, the bias term could be corrected (see Grewal and Andrews 2001). Specifically, the

yield with maturity τj , Yjk is a quadratic function of the state variables Zk in the form

Yjk = Z 0kAZk + b0Zk + c ≡ q(Zk)

for some parameters A, b, and c.Using Taylor series expansion at the ex ante forecast of the state

variables Zk|k−1,

Yjk = q(Zk|k−1) +
h
b0 + Z 0k|k−1

¡
A+A0

¢i ¡
Zk − Zk|k−1

¢
+
¡
Zk − Zk|k−1

¢0
A
¡
Zk − Zk|k−1

¢
.

The extended Kalman filter omits the quadratic term in the above expression and thus introduces

the bias term Bk to the measurement equation, i.e.,

Bk = Ek−1
h¡
Zk − Zk|k−1

¢0
A
¡
Zk − Zk|k−1

¢i
= Ek−1

h
trace

³¡
Zk − Zk|k−1

¢0
A
¡
Zk − Zk|k−1

¢´i
=

h
trace

³
A
¡
Zk − Zk|k−1

¢0 ¡
Zk − Zk|k−1

¢´i
= trace

n
AEk−1

h¡
Zk − Zk|k−1

¢0 ¡
Zk − Zk|k−1

¢io
= trace

n
APZ

k|k−1
o
.

However, we should note that this does not eliminate the linearization approximation error of the

measurement equation since the Kalman gain is still computed with first derivatives of the measure-

ment function.
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Table I. Summary Statistics of Libor Zero-Coupon Bond Yields 

 
This table reports the summary statistics and principle component analysis of the levels and 
changes of yields on Libor zero-coupon bonds, which are constructed using three-month Libor 
forward rates provided by SwapPX. The sample is from August 1, 2000 to November 7, 2002. 
Excluding holidays, weekends, and missing data, we have 557 trading days in total. 

 
Panel A: Yield Levels. 

 Maturity (yr) 

 0.5 1 2 5 7 10 

Mean (%) 3.536 3.691 4.159 5.049 5.361 5.666 

Std. Dev. (%) 1.791 1.631 1.359 0.924 0.777 0.638 

Skewness 0.613 0.601 0.461 0.082 -0.011 -0.055 

Kurtosis 1.876 2.003 2.155 2.518 2.672 2.799 
First-order Partial 
Autocorrelation 0.998 0.998 0.997 0.997 0.996 0.994 

 
Panel B: Yield Changes. 

 Maturity (yr) 

 0.5 1 2 5 7 10 

Mean (%) -0.010 -0.010 -0.009 -0.007 -0.006 -0.005 

Std. Dev. (%) 0.048 0.061 0.070 0.072 0.069 0.068 

Skewness -8.388 -3.320 -0.981 -0.101 0.184 0.371 

Kurtosis 130.51 44.748 14.980 6.491 4.839 3.921 
First-order Partial 
Autocorrelation 0.240 0.141 0.116 0.066 0.085 0.082 

 
Panel C: Percentage of Variance Explained by the Principle Components. 

 Principle Component 

 1 2 3 4 5 6 

Level 96.83% 3.10% 0.045% 0.019% 0.002% 0.000% 

Change 87.72% 9.84% 1.51% 0.74% 0.13% 0.07% 
 



 
Table II. Regression Analysis of USV in Caps Market 

 
This table reports the R2s of regressions of weekly returns of caps across moneyness and maturity and at-
the-money cap straddles on weekly changes of the three yield factors. Due to changes in interest rates and 
strike prices, we do not have the same number of observations for each moneyness/maturity group. The 
bold entries represent moneyness/maturity groups that have less than 10% of missing values and the rest 
are the ones with 10-50% of missing values.    
  

Maturity Moneyness 
(K/F) 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

0.60 - - - - 0.918 0.896 0.683 - 0.904 0.789 0.784 0.594 0.566 

0.65 - - 0.930 0.926 0.919 0.902 0.686 0.589 0.895 0.742 0.678 0.528 0.452 

0.70 - - 0.926 0.914 0.902 0.860 0.673 0.497 0.829 0.661 0.681 0.491 0.380 

0.75 - 0.926 0.916 0.914 0.904 0.856 0.691 0.431 0.809 0.681 0.658 0.466 0.343 

0.80 - 0.902 0.920 0.904 0.875 0.869 0.667 0.493 0.780 0.647 0.642 0.441 0.339 

0.85 0.964 0.881 0.907 0.894 0.861 0.825 0.644 0.529 0.756 0.632 0.601 0.422 0.295 

0.90 0.954 0.860 0.875 0.874 0.834 0.813 0.628 0.517 0.699 0.611 0.539 0.425 0.318 

0.95 0.919 0.801 0.851 0.841 0.811 0.793 0.592 0.481 0.623 0.602 0.504 0.403 0.314 

1.00 0.871 0.663 0.807 0.786 0.785 0.766 0.570 0.453 0.570 0.545 0.494 0.369 0.300 

1.05 0.824 0.584 0.757 0.745 0.751 0.763 0.527 0.416 0.512 0.506 0.491 0.359 0.261 

1.10 0.761 0.542 0.714 0.729 0.714 0.723 0.507 0.406 0.446 0.487 0.461 0.309 0.240 

1.15 0.666 0.490 0.664 0.707 0.673 0.632 0.483 0.376 0.388 0.420 0.431 - - 

1.20 0.642 0.430 0.599 0.624 0.592 0.603 0.457 0.424 0.298 0.367 0.421 - - 

1.25 0.413 0.356 0.512 0.540 0.532 0.551 0.598 0.555 0.213 0.340 - - - 

1.30 0.802 0.279 0.428 0.453 0.427 0.487 0.504 0.504 0.126 - - - - 

1.35 0.759 0.149 0.344 0.372 0.367 0.416 0.438 - - - - - - 

1.40 0.726 0.086 0.265 0.284 0.298 0.274 - - - - - - - 

Straddle 0.300 0.061 0.209 0.160 0.083 0.031 0.044 0.021 0.025 0.014 0.046 0.024 0.035 
 



 
Table III. Parameter Estimates of Three-Factor QTSMs 

 
This table reports parameter estimates and standard errors (in parentheses) of the three canonical 
three-factor QTSMs using Kalman Filter.  

 
Parameter QTSM3  QTSM2  QTSM1 

α  0.0001* (0.0051)  0.2584* (4.0608)  0.0034* (0.0563) 

12Ψ     -0.9033 (0.0066)  0.8373 (0.0078) 

13Ψ     -0.2723 (0.0287)  -0.5525 (0.0024) 

23Ψ     0.0745 (0.0177)  -0.7585 (0.0073) 

1µ  0.1120 (0.0184)  0.7359 (0.0822)  0.3566 (0.0017) 

2µ  0.0059 (0.0419)  0.1153 (0.0167)  0.2265 (0.0071) 

3µ  0.1565 (0.0382)  1.5268 (0.0150)  0.6136 (0.0088) 

11ξ  -1.2234 (0.0428)  -0.0468 (0.0049)  -0.0144 (0.0004) 

21ξ        4.5979 (0.1614) 

31ξ        1.0728 (0.1238) 

22ξ  -0.6142 (0.1631)  -0.7578 (0.0789)  -3.4952 (0.0978) 

32ξ        3.2078 (0.3519) 

33ξ  -0.0083 (0.0020)  -0.0002 (0.0000)  -2.2678 (0.1608) 

11Σ  0.0479 (0.0008)  0.0519 (0.0025)  0.0222 (0.0003) 

22Σ  0.0725 (0.0042)  0.0801 (0.0016)  0.0728 (0.0003) 

33Σ  0.0468 (0.0019)  0.0235 (0.0024)  0.0220 (0.0004) 

1δ  0.0094 (0.0007)  0.0359 (0.0002)  0.0104 (0.0001) 

2δ  -0.1903 (0.0019)  0.0190 (0.0041)  -0.0021 (0.0005) 

3δ  -0.0438 (0.0034)  -0.0108 (0.0009)  -0.0378 (0.0003) 

11γ  -0.0530 (0.0039)  -0.1295 (0.0003)  -0.0518 (0.0004) 

21γ        1.0130 (0.0073) 

31γ        0.0276 (0.0012) 

22γ  -1.1378 (0.0200)  -1.1219 (0.0068)  -1.1698 (0.0001) 

32γ        0.3018 (0.0013) 

33γ  -0.5544 (0.0155)  0.0133 (0.0044)  -0.0558 (0.0023) 

2/1σ  4.2749* (0.2026)  0.0128* (0.6710)  0.0002* (0.1130) 

1σ  2.8876* (0.1358)  2.2165* (0.1003)  2.0417* (0.1043) 

2σ  1.5794* (0.1481)  1.8485* (0.3384)  1.9916* (0.0660) 

5σ  1.7779* (0.0677)  2.1867* (0.0496)  1.9257* (0.0744) 

7σ  0.8568* (0.0861)  0.0049* (0.2917)  0.0005* (0.0958) 

10σ  2.9730* (0.1153)  2.7741* (0.2328)  2.7830* (0.0998) 

Log-Likelihood 21243  22043  22300 
          * 1e-4. 
 



 
Table IV. The Performance of QTSMs in Modeling Bond Yields 

 
This table reports the performance of the three-factor QTSMs in capturing bond yields.  
 
Panel A. Summary statistics of QTSM1 model-predicted levels of bond yields. 
 

 Maturity (yr) 

 0.5 1 2 5 7 10 

Mean (%) 3.529 3.683 4.154 5.049 5.358 5.666 

Std. Dev. (%) 1.787 1.632 1.350 0.918 0.774 0.622 

Skewness 0.616 0.598 0.468 0.093 -0.017 -0.059 

Kurtosis 1.882 1.997 2.163 2.534 2.676 2.783 
First-order Partial 
Autocorrelation 0.998 0.998 0.998 0.997 0.996 0.995 

 
Panel B. Summary statistics of QTSM1 model-predicted changes of bond yields. 
 

 Maturity (yr) 

 0.5 1 2 5 7 10 

Mean (%) -0.010 -0.009 -0.009 -0.007 -0.006 -0.005 

Std. Dev. (%) 0.047 0.055 0.065 0.072 0.069 0.062 

Skewness -7.463 -3.222 -0.653 0.280 0.343 0.366 

Kurtosis 111.082 42.979 12.058 4.714 4.279 4.132 
First-order Partial 
Autocorrelation 0.286 0.262 0.186 0.109 0.094 0.080 

 
 
Panel C. Variance ratios of model-based hedging of zero-coupon bonds in QTSMs using filtered state 
variables as hedging instruments. Variance ratio measures the percentage of the variations of an unhedged 
position that can be reduced through hedging. 
 

 Maturity (yr) 
 0.5 1 2 5 7 10 

QTSM3 0.717 0.948 0.982 0.98 0.993 0.93 

QTSM2 0.99 0.956 0.963 0.975 0.997 0.934 
QTSM1 0.994 0.962 0.969 0.976 0.997 0.932 

 
 



Table V. The Performance of QTSMs in Pricing Interest Rate Caps 
This table reports the performance of the three QTSMs in pricing interest rate caps. Percentage pricing error is measured as the 
difference between market and model-impled price divided by market price. The bold entries represent moneyness/maturity 
groups that have less than 10% of missing values and the rest are the ones with 10-50% of missing values.     
 
Panel A. RMSE of percentage pricing errors of QTSM3. 

Maturity Money- 
ness 
K/F 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

0.60 - - - 11.3 10.5 9.7 9.2 11.0 10.9 10.3 9.4 8.8 9.4 

0.65 - - 13.4 11.8 10.9 10.1 9.6 11.2 10.8 10.5 9.5 9.2 10.2 

0.70 - 15.6 13.8 11.4 10.3 9.5 9.5 11.3 11.1 11.3 10.1 9.9 10.9 

0.75 - 15.9 13.9 11.8 11.2 10.2 10.7 12.4 12.2 12.0 11.0 10.8 11.2 

0.80 - 16.7 15.5 13.2 12.7 11.5 11.3 12.6 12.6 12.1 11.2 10.6 11.3 

0.85 16.4 20.0 18.5 15.4 15.0 13.2 12.1 13.0 13.6 12.4 12.2 11.0 11.4 

0.90 25.3 27.2 22.4 17.9 17.3 15.1 13.7 13.9 14.9 12.9 13.6 11.8 12.0 

0.95 42.6 37.7 27.7 21.6 20.0 17.3 16.0 15.5 16.4 13.7 14.8 12.9 12.7 

1.00 69.0 50.9 35.0 26.1 23.6 19.1 18.9 17.5 18.3 15.2 15.7 13.1 13.6 

1.05 105.9 66.1 43.9 31.4 28.1 21.6 21.9 19.6 20.7 17.5 16.7 16.1 14.8 

1.10 174.0 84.6 54.6 38.0 33.5 26.8 25.1 22.2 24.5 19.8 20.3 20.4 17.5 

1.15 291.5 107.5 67.1 46.3 40.1 33.4 29.4 25.8 30.2 22.9 22.9 23.6 - 

1.20 411.1 135.5 81.7 55.7 48.9 40.2 34.8 30.7 36.2 25.7 24.6 25.1 19.4 

1.25 253.1 194.2 97.3 67.2 59.2 48.6 38.5 32.5 44.0 29.1 25.2 27.8 21.6 

1.30 207.6 364.1 116.7 80.9 70.5 57.2 42.9 34.5 53.5 32.6 27.3 - - 

1.35 193.2 587.8 138.3 98.0 81.7 66.1 45.5 36.2 - - 30.5 - - 

1.40 200.0 344.5 167.2 116.9 94.5 76.3 50.6 - - - - - - 

Panel B. RMSE of percentage pricing errors of QTSM2. 

Maturity Money-
ness 
K/F 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

0.60 - - - 5.0 4.0 3.8 4.5 4.9 4.3 4.2 4.4 6.0 7.2 

0.65 - - 6.3 4.7 4.1 4.1 4.9 5.0 4.2 4.6 5.7 6.9 8.1 

0.70 - 9.0 6.0 5.0 4.5 5.0 5.8 5.6 5.1 5.4 7.4 8.7 10.1 

0.75 - 8.9 6.1 5.8 5.7 6.5 7.2 6.7 6.7 6.9 9.5 11.6 13.9 

0.80 - 9.1 6.8 7.5 8.0 9.5 9.9 8.9 9.5 9.8 12.6 14.6 16.5 

0.85 8.4 10.2 8.4 10.3 11.3 13.2 13.1 12.0 12.7 13.2 16.1 17.8 19.7 

0.90 11.5 13.7 11.1 13.5 14.6 16.6 16.9 15.7 16.4 16.7 20.0 21.3 23.0 

0.95 18.6 18.7 14.7 17.3 18.2 20.5 21.5 19.9 20.5 20.6 23.9 25.1 26.5 

1.00 30.9 25.4 19.5 21.6 22.5 25.0 26.1 24.3 24.6 24.6 27.3 28.6 30.2 

1.05 46.6 32.0 24.9 26.5 27.6 30.2 30.8 28.6 29.0 28.1 30.5 32.4 32.8 

1.10 75.8 39.7 31.2 32.5 33.6 36.3 35.5 32.0 32.8 30.8 33.0 34.8 33.3 

1.15 123.6 49.0 38.4 39.7 40.3 41.5 37.8 33.6 36.6 33.8 36.8 39.0 - 

1.20 169.2 59.5 46.8 47.5 45.5 44.7 37.8 32.5 42.0 38.8 40.6 43.6 40.1 

1.25 102.1 79.0 56.2 53.2 50.9 48.4 39.4 34.0 50.1 44.2 44.6 46.9 43.4 

1.30 86.9 134.6 65.5 59.6 56.8 53.7 43.0 37.1 59.3 51.3 48.0 - - 

1.35 87.2 210.2 76.4 67.3 64.8 61.0 47.8 41.2 - - 52.0 - - 

1.40 91.2 130.6 91.6 77.6 75.5 70.8 53.3 - - - - - - 



Panel C. RMSE of percentage pricing errors of QTSM1. 

Maturity Money-
ness 
K/F 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

0.60 - - - 8.1 6.9 6.1 5.6 7.1 6.5 5.5 4.2 4.0 4.7 

0.65 - - 9.9 7.7 6.6 6.0 5.7 7.1 6.1 5.6 4.5 4.5 5.6 

0.70 - 13.0 9.6 7.1 6.2 5.5 5.6 7.0 5.9 5.9 4.6 4.9 6.0 

0.75 - 13.1 9.3 7.1 6.2 5.4 6.0 7.3 5.9 5.5 4.8 5.4 6.6 

0.80 - 12.7 9.4 6.9 6.1 5.6 6.1 7.0 5.3 5.1 4.9 5.8 7.2 

0.85 10.2 13.0 9.3 6.7 6.4 6.2 6.6 7.2 5.5 5.4 5.9 6.7 8.1 

0.90 10.7 14.2 9.4 7.1 7.0 7.2 7.7 7.9 6.2 6.1 7.5 7.9 9.2 

0.95 12.1 15.2 9.7 7.9 7.9 8.3 9.3 9.0 7.4 7.3 8.8 9.3 10.2 

1.00 16.2 17.3 10.7 9.1 9.2 10.0 11.0 10.4 8.7 8.6 9.6 10.2 11.5 

1.05 21.7 18.8 12.0 10.7 11.1 12.3 12.8 12.0 10.2 10.1 10.3 12.2 13.1 

1.10 34.3 20.9 13.8 12.8 13.5 14.8 14.5 13.2 11.7 11.0 11.4 13.9 14.8 

1.15 55.4 23.6 16.2 15.6 16.3 16.9 15.3 13.7 13.5 12.2 13.0 16.2 - 

1.20 77.1 27.4 19.7 19.0 18.6 17.9 14.4 11.7 15.7 14.1 13.8 - 17.8 

1.25 53.8 33.9 24.3 21.6 21.3 19.1 14.5 13.2 19.5 16.1 14.3 18.7 18.9 

1.30 45.2 55.2 29.1 24.7 24.2 21.4 16.2 15.5 24.5 19.1 14.9 - - 

1.35 46.0 86.5 35.1 28.7 28.2 24.6 18.5 17.8 - - - - - 

1.40 47.2 57.4 43.2 34.0 33.4 28.8 20.9 - - - - - - 

 
Panel D. Average percentage pricing errors of QTSM1. 

Maturity Money-
ness 
K/F 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

0.60 - - - 6.6 5.5 4.4 3.4 5.1 4.7 4.0 2.6 1.5 1.4 

0.65 - - 7.9 5.7 4.8 4.1 3.5 5.2 4.3 4.1 2.1 1.2 1.3 

0.70 - 11.2 7.4 5.1 4.5 3.7 3.1 4.9 3.8 4.0 1.3 0.4 0.1 

0.75 - 11.0 7.2 5.1 4.2 3.1 2.9 4.6 3.1 3.1 0.5 -0.6 -1.5 

0.80 - 10.1 7.1 4.2 3.3 1.7 1.7 3.5 1.8 1.8 -0.9 -1.9 -2.5 

0.85 7.5 9.5 6.4 2.9 1.9 0.1 0.3 2.1 0.4 0.4 -2.4 -3.4 -3.9 

0.90 6.3 8.3 5.3 1.8 0.6 -1.2 -1.3 0.6 -1.1 -1.0 -4.0 -4.6 -4.6 

0.95 3.3 6.4 4.3 0.7 -0.4 -2.4 -3.1 -1.1 -2.7 -2.5 -5.3 -5.8 -5.5 

1.00 -0.7 4.6 3.0 -0.4 -1.6 -3.7 -4.6 -2.6 -4.0 -3.8 -6.3 -6.6 -6.4 

1.05 -4.7 3.2 1.7 -1.7 -3.0 -5.3 -6.0 -3.7 -5.2 -4.6 -6.9 -8.0 -7.3 

1.10 -10.9 1.4 0.3 -3.4 -4.6 -7.1 -6.9 -3.8 -6.0 -4.9 -7.5 -8.6 -6.5 

1.15 -18.8 -0.8 -1.1 -5.5 -6.3 -8.1 -6.0 -2.6 -6.5 -5.0 -8.6 -9.6 - 

1.20 -23.0 -3.1 -3.1 -7.7 -7.1 -7.9 -3.8 -0.5 -7.5 -5.9 -8.9 - -6.2 

1.25 -14.9 -7.5 -5.1 -8.3 -7.3 -7.3 -2.5 1.6 -9.4 -6.4 -9.1 -9.8 -5.7 

1.30 -11.6 -14.8 -6.4 -8.6 -7.0 -7.0 -1.7 3.0 -10.6 -7.7 -8.6 - - 

1.35 -7.1 -22.3 -7.5 -8.8 -7.3 -7.4 -1.4 3.8 - - - - - 

1.40 -2.6 -13.7 -9.6 -9.3 -8.5 -8.9 -0.9 - - - - - - 

  



Table VI: The Performance of QTSMs in Hedging Interest Rate Caps 
This table reports the performance of the three QTSMs in hedging interest rate caps. Hedging effectiveness is measured by variance ratio, the 
percentage of the variations of an unhedged position that can be reduced through hedging. The bold entries represent moneyness/maturity groups 
that have less than 10% of missing values and the rest are the ones with 10-50% of missing values.     
 
Panel A. Variance ratios of  QTSM3.  

Maturity Money-
ness 

(K/F) 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

0.60 - - - - 0.909 - - - 0.857 0.574 0.688 0.485 0.290 

0.65 - - 0.885 0.909 0.912 - 0.650 0.530 0.859 0.650 0.645 0.423 0.292 

0.70 - - 0.884 0.906 0.916 0.866 0.647 0.455 0.811 0.547 0.592 0.347 0.250 

0.75 - 0.849 0.872 0.906 0.899 0.858 0.663 0.390 0.805 0.623 0.577 0.344 0.230 

0.80 - 0.821 0.880 0.897 0.871 0.868 0.649 0.474 0.781 0.597 0.581 0.331 0.216 

0.85 0.872 0.812 0.870 0.889 0.859 0.835 0.625 0.513 0.768 0.586 0.544 0.315 0.182 

0.90 0.878 0.810 0.838 0.870 0.836 0.832 0.598 0.488 0.732 0.565 0.504 0.323 0.187 

0.95 0.874 0.779 0.810 0.847 0.830 0.830 0.548 0.446 0.685 0.558 0.476 0.293 0.181 

1.00 0.855 0.662 0.781 0.809 0.801 0.802 0.521 0.416 0.649 0.502 0.447 0.250 0.162 

1.05 0.828 0.592 0.735 0.775 0.758 0.778 0.469 0.377 0.604 0.470 0.437 0.210 0.131 

1.10 0.805 0.538 0.694 0.741 0.713 0.733 0.440 0.353 0.539 0.451 0.315 0.189 - 

1.15 0.675 0.480 0.631 0.704 0.661 0.675 0.392 0.368 0.500 0.357 - - - 

1.20 0.630 0.440 0.566 0.628 0.566 0.602 0.436 0.412 0.359 0.372 - - - 

1.25 0.591 0.377 0.508 0.557 0.458 0.532 0.470 0.493 0.387 - - - - 

1.30 0.597 0.328 0.424 0.488 0.277 0.446 0.421 - 0.170 - - - - 

1.35 0.555 0.249 0.320 0.415 0.185 0.305 0.298 - - - - - - 

1.40 - 0.180 0.220 0.277 0.049 - - - - - - - - 

Panel B. Variance ratios of QTSM2. 

Maturity Money-
ness 

(K/F) 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

0.60 - - - - 0.916 - - - 0.853 0.665 0.668 0.487 0.246 

0.65 - - 0.900 0.914 0.916 - 0.660 0.537 0.852 0.691 0.597 0.400 0.236 

0.70 - - 0.899 0.908 0.914 0.856 0.657 0.478 0.818 0.612 0.557 0.332 0.207 

0.75 - 0.866 0.883 0.907 0.901 0.843 0.680 0.437 0.802 0.617 0.541 0.311 0.204 

0.80 - 0.834 0.891 0.898 0.873 0.857 0.661 0.494 0.781 0.591 0.537 0.296 0.175 

0.85 0.895 0.823 0.881 0.885 0.866 0.827 0.641 0.521 0.770 0.586 0.514 0.287 0.153 

0.90 0.893 0.815 0.852 0.868 0.849 0.827 0.624 0.505 0.745 0.571 0.491 0.304 0.158 

0.95 0.888 0.782 0.831 0.852 0.844 0.828 0.587 0.472 0.714 0.576 0.480 0.291 0.169 

1.00 0.875 0.682 0.802 0.819 0.820 0.807 0.566 0.446 0.695 0.533 0.475 0.277 0.153 

1.05 0.855 0.621 0.761 0.791 0.784 0.793 0.523 0.413 0.672 0.514 0.492 0.239 0.125 

1.10 0.844 0.571 0.722 0.763 0.742 0.755 0.510 0.402 0.625 0.491 0.416 0.189 - 

1.15 0.784 0.512 0.662 0.726 0.687 0.698 0.471 0.424 0.610 0.426 - - - 

1.20 0.741 0.446 0.593 0.645 0.604 0.639 0.519 0.480 0.531 0.421 - - - 

1.25 0.700 0.361 0.524 0.585 0.512 0.590 0.594 0.571 0.516 - - - - 

1.30 0.681 0.274 0.410 0.516 0.343 0.539 0.548 - 0.338 - - - - 

1.35 0.628 0.160 0.288 0.426 0.295 0.426 0.441 - - - - - - 

1.40 - 0.063 0.189 0.330 0.178 - - - - - - - - 



Panel C. Variance ratio of QTSM1. 

Maturity Money-
ness 

(K/F) 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

0.60 - - - - 0.917 - - - 0.862 0.679 0.665 0.494 0.257 

0.65 - - 0.904 0.919 0.920 - 0.671 0.549 0.861 0.704 0.609 0.431 0.255 

0.70 - - 0.903 0.913 0.916 0.862 0.666 0.487 0.822 0.619 0.565 0.355 0.218 

0.75 - 0.865 0.884 0.911 0.902 0.852 0.689 0.447 0.807 0.620 0.544 0.326 0.198 

0.80 - 0.831 0.890 0.900 0.876 0.864 0.670 0.504 0.785 0.594 0.537 0.305 0.185 

0.85 0.894 0.818 0.880 0.893 0.869 0.833 0.649 0.531 0.773 0.590 0.516 0.296 0.159 

0.90 0.890 0.810 0.853 0.872 0.851 0.832 0.631 0.514 0.748 0.577 0.491 0.314 0.171 

0.95 0.888 0.779 0.832 0.855 0.847 0.833 0.596 0.481 0.716 0.578 0.481 0.303 0.182 

1.00 0.875 0.677 0.803 0.824 0.826 0.815 0.575 0.456 0.695 0.533 0.476 0.287 0.164 

1.05 0.856 0.619 0.767 0.799 0.797 0.805 0.536 0.424 0.671 0.512 0.492 0.245 0.138 

1.10 0.851 0.575 0.737 0.779 0.763 0.773 0.523 0.411 0.623 0.490 0.415 0.204 - 

1.15 0.789 0.529 0.692 0.755 0.724 0.722 0.483 0.422 0.611 0.426 - - - 

1.20 0.756 0.489 0.645 0.692 0.654 0.673 0.521 0.470 0.533 0.415 - - - 

1.25 0.733 0.438 0.603 0.645 0.575 0.634 0.587 0.551 0.514 - - - - 

1.30 0.724 0.393 0.534 0.591 0.444 0.602 0.540 - 0.334 - - - - 

1.35 0.691 0.324 0.449 0.539 0.408 0.515 0.436 - - - - - - 

1.40 - 0.260 0.373 0.464 0.319 - - - - - - - - 

Panel D. R2s of regressions of QTSM1 hedging errors on changes of the three yield factors.  

Maturity Money-
ness 

(K/F) 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

0.60 - - - - 0.921 - - - 0.912 0.788 0.815 0.658 0.579 

0.65 - - 0.929 0.928 0.921 - 0.676 0.573 0.904 0.804 0.765 0.611 0.471 

0.70 - - 0.927 0.922 0.919 0.872 0.675 0.507 0.847 0.679 0.666 0.462 0.353 

0.75 - 0.914 0.908 0.922 0.903 0.861 0.697 0.450 0.835 0.687 0.646 0.429 0.312 

0.80 - 0.886 0.915 0.912 0.882 0.873 0.675 0.510 0.811 0.653 0.639 0.417 0.324 

0.85 0.951 0.870 0.905 0.899 0.872 0.839 0.654 0.543 0.802 0.647 0.610 0.397 0.286 

0.90 0.942 0.853 0.876 0.882 0.855 0.837 0.633 0.524 0.776 0.632 0.573 0.412 0.310 

0.95 0.935 0.825 0.860 0.864 0.853 0.837 0.597 0.488 0.738 0.623 0.554 0.395 0.306 

1.00 0.923 0.746 0.841 0.836 0.839 0.820 0.578 0.462 0.709 0.566 0.541 0.361 0.269 

1.05 0.906 0.694 0.816 0.816 0.819 0.814 0.539 0.428 0.679 0.537 0.545 0.338 0.210 

1.10 0.895 0.659 0.799 0.804 0.794 0.786 0.530 0.421 0.630 0.508 0.480 0.278 - 

1.15 0.857 0.624 0.770 0.789 0.773 0.742 0.491 0.439 0.623 0.434 - - - 

1.20 0.848 0.611 0.741 0.746 0.729 0.701 0.530 0.486 0.572 0.427 - - - 

1.25 0.824 0.577 0.712 0.716 0.673 0.668 0.612 0.598 0.541 - - - - 

1.30 0.796 0.560 0.680 0.687 0.626 0.679 0.559 - 0.378 - - - - 

1.35 0.777 0.511 0.634 0.662 0.603 0.636 0.464 - - - - - - 

1.40 - 0.455 0.582 0.638 0.573 - - - - - - - - 

 



Table VII. Principle Component Analysis of Cap Hedging Errors 
 

This table reports the percentage of variance of cap hedging errors with different moneyness that can be explained 
by the principle components.  

Principle Component Moneyness 
(K/F) 1 2 3 4 5 

0.80 60.6% 11.9% 9.4% 4.6% 4.5% 

0.85 58.3% 11.8% 9.6% 6.2% 4.4% 

0.90 57.6% 11.9% 10.0% 5.5% 5.2% 

0.95 57.5% 10.7% 9.8% 6.4% 4.7% 

1.00 56.0% 12.1% 9.8% 7.0% 5.3% 

1.05 40.0% 25.0% 21.1% 5.9% 3.8% 

1.10 49.0% 31.7% 8.6% 5.2% 3.3% 

1.15 67.1% 14.9% 8.5% 6.5% 1.8% 

Overall 51.5% 12.1% 9.7% 6.6% 5.6% 

 
Table VIII. Hedging Interest Rate Cap Straddles 

 
Panel A. The performance of QTSM1 in hedging ATM cap straddles measured by variance ratio.  

Maturity 
 

1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

QTSM1 0.29 0.03 0.19 0.13 0.14 0.11 0.04 0.02 0.06 0.02 0.04 0.01 0.00 

 
Panel B. Percentage of variance of ATM straddles hedging errors explained by the principle components. 

Principle Component 

1 2 3 4 5 6 

59.3% 12.4% 9.4% 6.7% 4.0% 2.8% 

 
Panel C. Correlation matrix of straddles hedging errors across maturity. 

Maturity 
Maturity 

1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

1.5 1.00 - - - - - - - - - - - - 

2 0.38 1.00 - - - - - - - - - - - 

2.5 0.28 0.66 1.00 - - - - - - - - - - 

3 0.03 0.33 0.73 1.00 - - - - - - - - - 

3.5 0.27 0.52 0.63 0.59 1.00 - - - - - - - - 

4 0.13 0.44 0.37 0.37 0.77 1.00 - - - - - - - 

4.5 0.20 0.21 -0.04 -0.08 -0.05 -0.06 1.00 - - - - - - 

5 0.10 0.11 -0.12 -0.13 -0.16 -0.15 0.96 1.00 - - - - - 

6 0.21 0.16 0.19 0.13 0.25 0.05 0.27 0.23 1.00 - - - - 

7 0.30 0.34 0.33 0.35 0.46 0.38 0.28 0.22 0.08 1.00 - - - 

8 0.10 0.12 0.30 0.30 0.25 0.11 0.36 0.34 0.29 0.29 1.00 - - 

9 0.14 0.11 0.25 0.29 0.26 0.12 0.39 0.37 0.32 0.38 0.83 1.00 - 

10 0.08 -0.01 0.17 0.14 0.12 0.01 0.32 0.35 0.26 0.28 0.77 0.86 1.00 



Table IX. Straddle Hedging Errors and Cap Implied Volatilities 
 
This table reports the relation between straddle hedging errors and ATM Cap implied volatilities.  
Panel A. Percentage of variance of ATM Cap implied volatilities explained by the principle components. 
 

Principle Component 

1 2 3 4 5 6 

85.73% 7.91% 1.85% 1.54% 0.72% 0.67% 

 
Panel B. R2s of the regressions of ATM straddles hedging errors on changes of the three yield factors (row one); 
changes of the three yield factors and the first four principle components of the ATM Cap implied volatilities (row 
two); and changes of the three yield factors and maturity-wise ATM Cap implied volatility (row three).  
 

Maturity 

1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

0.10 0.06 0.02 0.01 0.01 0.04 0.00 0.00 0.01 0.01 0.00 0.01 0.04 

0.29 0.49 0.54 0.43 0.63 0.47 0.95 0.96 0.21 0.70 0.68 0.89 0.96 

0.68 0.70 0.81 0.87 0.85 0.90 0.95 0.98 0.95 0.98 0.97 0.98 0.99 
 

Table X. Straddle Hedging Error As a Proxy of Systematic USV 
 

This table reports the contribution of USV proxied by the first few principle components of straddle hedging errors in explaining 
the hedging errors of caps across moneyness and maturity. It reports the R2s of regressions of hedging errors of caps across 
moneyness and maturity on changes of the three yield factors and the first five principle components of straddle hedging 
errors. .The bold entries represent moneyness/maturity groups that have less than 10% of missing values and the rest are the ones 
with 10-50% of missing values.     
 

Maturity Money-
ness 

(K/F) 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 

0.60 - - - - 0.945 - - - 0.948 0.880 0.884 0.786 0.880 

0.65 - - 0.938 0.949 0.954 - 0.947 0.952 0.960 0.928 0.871 0.807 0.838 

0.70 - - 0.934 0.944 0.943 0.911 0.934 0.936 0.940 0.885 0.839 0.791 0.776 

0.75 - 0.934 0.926 0.945 0.943 0.910 0.936 0.919 0.950 0.899 0.862 0.814 0.791 

0.80 - 0.917 0.934 0.938 0.935 0.909 0.950 0.946 0.951 0.898 0.862 0.821 0.840 

0.85 0.958 0.909 0.927 0.928 0.928 0.889 0.956 0.959 0.959 0.906 0.861 0.818 0.843 

0.90 0.949 0.900 0.908 0.922 0.924 0.896 0.961 0.969 0.969 0.920 0.871 0.856 0.871 

0.95 0.943 0.886 0.905 0.918 0.936 0.906 0.966 0.976 0.980 0.967 0.889 0.882 0.893 

1.00 0.932 0.859 0.905 0.909 0.939 0.902 0.988 0.989 0.984 0.973 0.910 0.894 0.907 

1.05 0.919 0.821 0.897 0.902 0.937 0.897 0.986 0.985 0.980 0.969 0.908 0.917 0.885 

1.10 0.913 0.793 0.890 0.894 0.928 0.880 0.979 0.976 0.974 0.967 0.913 0.921 - 

1.15 0.879 0.763 0.871 0.880 0.915 0.860 0.970 0.968 0.966 0.963 - - - 

1.20 0.881 0.749 0.844 0.848 0.894 0.846 0.966 0.963 0.954 0.957 - - - 

1.25 0.870 0.742 0.818 0.817 0.870 0.819 0.945 0.943 0.941 - - - - 

1.30 0.861 0.702 0.802 0.808 0.836 0.802 0.920 - 0.908 - - - - 

1.35 0.855 0.661 0.764 0.774 0.801 0.758 0.884 - - - - - - 

1.40 - 0.640 0.725 0.743 0.761 0.536 - - - - - - - 

 



Figure 1: The yield-to-maturity of the LIBOR bonds



Figure 2: The average Black’s implied volatility of the interest caps.



Figure 3: The implied volatility of the interest caps across the sample period.



Figure 4: The QTSM1 implied factors and the three yield level factors 



Figure 5: The observed yields (dot) and the QTSM1 projected yields (solid).




