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Abstract

We study the behavior of a financial institution subject to capital requirements based on self-
reported VaR measures, as in the Basel Committee’s Internal Models Approach. We view these
capital requirements and the associated backtesting procedure as a mechanism designed to induce
financial institutions to reveal the risk of their investments and to support this risk with adequate
levels of capital. Accordingly, we consider the simultaneous choice of an optimal dynamic reporting
and investment strategy. Overall, we find that VaR-based capital requirements can be very effective
not only in curbing portfolio risk but also in inducing revelation of this risk.
© 2005 Published by Elsevier Inc.
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1. Introduction

Financial institutions are required by regulators to maintain minimum levels of capital.
This regulation is normally justified as a response to the negative externalities arising from
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bank failures and to the risk-shifting incentives created by deposit insurance.1 The 1988
Basel Capital Accord imposed uniform capital requirements based on risk-adjusted assets,
defined as the sum of asset positions multiplied by asset-specific risk weights. These risk
weights were intended to reflect primarily the asset’s credit risk.2 In 1996 the Accord was
amended to include additional minimum capital reserves to cover market risk, defined as
the risk arising from movements in the market prices of trading positions (Basel Committee
on Banking Supervision, 1996a).

The 1996 Amendment’s Internal Models Approach (IMA) determines capital require-
ments on the basis of the output of the financial institutions’ internal risk measurement
systems. Financial institutions are required to report daily their Value-at-Risk (VaR) at the
99% confidence level over a one-day horizon and over a two-week horizon (ten trading
days).3 The minimum capital requirement on a given day is then equal to the sum of a
charge to cover “credit risk” (or idiosyncratic risk) and a charge to cover “general market
risk,” where the credit-risk charge is equal to 8% of risk-adjusted assets and the market-risk
charge is equal to a multiple of the average reported two-week VaRs in the last 60 trading
days.4 US-regulated banks and OTC derivatives dealers are subject to capital requirements
determined on the basis of the IMA.

The reliance on the financial institution’s self-reported VaRs to determine capital re-
quirements creates an adverse selection problem, since the institution has an incentive to
underreport its true VaR in order to reduce capital requirements. The procedure suggested
by the Basel Committee to address this problem relies on “backtesting” (Basel Committee
on Banking Supervision, 1996c): regulators should evaluate on a quarterly basis the fre-
quency of “exceptions” (that is, the frequency of daily losses exceeding the reported VaRs)
in the most recent twelve-month period and the multiplicative factor used to determine the
market risk charge should be increased (according to a given scale varying between 3 and 4)
if the frequency of exceptions is high.5 Additional corrective actions in response to a high

1 See Berger et al. (1995), Freixas and Santomero (2002) or Santos (2002) for a review of the theoretical
justifications for bank capital requirements.

2 Gordy (2003) shows how the credit risk weights might be determined in the context of a single-factor credit
risk model.

3 Simply stated, VaR is the maximum loss of a trading portfolio over a given horizon, at a given confidence
level (i.e., a quantile of the projected profit/loss distribution at the given horizon). To avoid a duplication of risk-
measurement systems, financial institutions are allowed to derive their two-week VaR measure by scaling up the
daily VaR by the square root of ten (see: Basel Committee on Banking Supervision, 1996b, p. 4).

4 More precisely, the market-risk charge is equal to the larger of: (i) the average reported two-week VaRs in
the last 60 trading days times a multiplicative factor and (ii) the last-reported two-week VaR. However, since the
multiplicative factor is not less than 3 (see below), the average of the reported VaRs in the last 60 trading days
times the factor typically exceeds the last-reported VaR.

5 The reason backtesting is based on a daily VaR measure in spite of the fact that the market risk charge is
based on a two-week VaR measure is that VaR measures are typically computed ignoring portfolio revisions
over the VaR horizon. According to the Basel Committee, “it is often argued that value-at-risk measures cannot
be compared against actual trading outcomes, since the actual outcomes will inevitably be ‘contaminated’ by
changes in portfolio composition during the holding period. [. . .] This argument is persuasive with regard to the
use of value-at-risk measures based on price shocks calibrated to longer holding periods. That is, comparing the
ten-day, 99th percentile risk measures from the internal models capital requirement with actual ten-day trading
outcomes would probably not be a meaningful exercise. In particular, in any given ten day period, significant
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number of exceptions are left to the discretion of regulators. This leaves open the question
of how financial institutions will behave under the new regime of capital requirements.

This paper studies the optimal behavior of a financial institution subject to capital re-
quirements determined according to the IMA. We view the system of capital requirements
put in place by the 1996 Amendment as a revelation mechanism designed to induce finan-
cial institutions to truthfully reveal the risk (VaR) of their trading portfolios and to support
this risk with adequate levels of capital, a view consistent with Rochet (1999) and Jorion
(2001, p. 65). Accordingly, we consider the simultaneous choice of an optimal report-
ing and investment strategy. Since the incentives to truthful revelation arise in part from
the threat of increased capital requirements in the future (through an increase in the multi-
plicative factor), we consider a fully dynamic model with discrete reporting and continuous
trading.

Specifically, we consider a financial institution with preferences represented by a risk-
averse utility function defined over the market value of its equity capital at the end of the
planning horizon.6 We assume that the institution has fully-insured deposits and limited
liability: thus, our model allows for the risk-shifting incentives created by these institu-
tional features. The institution is allowed to continuously rebalance its portfolio across a
number of risky investment opportunities and a riskless asset. In addition, the financial in-
stitution is exposed to background risk. This risk takes the form of unhedgeable random
capital shocks that reduce the market value of the institution’s capital and can result in the
institution’s default (if the value of the institution’s capital is below the realized shock at
the time such a shock occurs). The probability of default is thus endogenous in our model,
since it depends on the stochastic process followed by the institution’s capital, and hence
by the chosen investment strategy.

The institution is required by regulators to continuously maintain its capital above a
minimum level, which depends on the risk of the chosen investment strategy. Specifically,
regulatory minimum capital equals the sum of a charge to cover market risk and a charge
to cover credit risk.

For the purpose of determining capital requirements, the institution’s planning horizon
is divided into non-overlapping “backtesting periods,” each of which is in turn divided
into non-overlapping “reporting periods.” At the beginning of each reporting period, the
institution must report to regulators its claimed VaR as well as the actual loss over the
previous period. The market-risk charge for the current reporting period is then equal to a
multiple k of the reported VaR,7 while the credit-risk charge is equal to the sum of asset

changes in portfolio composition relative to the initial positions are common at major trading institutions. For
this reason, the backtesting framework described here involves the use of risk measures calibrated to a one-day
holding period” (Basel Committee on Banking Supervision, 1996c, p. 3).

6 The assumption that the preferences of a financial institution can be represented by a risk-averse utility func-
tion has been widely used in the existing literature on capital regulation and can be justified by, among other
things, managerial risk aversion and the value of the institution’s charter, whose loss represents a significant
default cost (see Keeley, 1990). Of course, when coupled with limited liability and deposit insurance, this as-
sumption does not imply a globally risk-averse behavior. This will become clear in the subsequent analysis.

7 Consistently with empirical evidence, we find that in our model reported VaRs display little variation from one
reporting period to the next. Thus, making capital requirements proportional to an average of recently-reported
VaRs (rather than proportional to the last-reported VaR) would make little difference in our results.
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positions multiplied by asset-specific credit-risk weights. At the end of each backtesting
period, the number of exceptions (i.e., the number of reporting periods in which the actual
loss exceeded the reported VaR) is computed and this determines the multiple k over the
next backtesting period, according to a given increasing scale.8 To capture the effect of any
additional regulatory actions or reputation losses that might be triggered by exceptions, we
also assume that non-financial costs are incurred at the end of any reporting period in which
a loss exceeding the reported VaR is observed. These non-financial costs are assumed to
be proportional to the amount by which the actual loss exceeds the reported VaR.9

Therefore, the financial institution chooses the level of VaR to report in each period by
trading off the cost of higher capital requirements in the current period resulting from a
higher reported VaR against the benefit of a lower probability of non-financial costs and a
lower probability of higher capital requirements in the future as a result of a loss exceed-
ing the reported VaR. In addition, the institution simultaneously chooses a continuously-
rebalanced trading strategy for its portfolio, subject to the applicable capital requirements.
We stress that the problem we consider differs from a standard investment problem with
portfolio constraints, since capital requirements are not exogenously fixed, but vary en-
dogenously as a result of the institution’s optimal reporting strategy.

We explicitly characterize the solution of the problem described above using martingale
duality (as in Cuoco, 1997) and parametric quadratic programming. Even with constant
price coefficients, optimal portfolios in the presence of capital requirements do not display
two-fund separation: as capital requirements become progressively more binding follow-
ing losses, financial institutions find it optimal to rebalance their portfolios in favor of
assets characterized by high risk-weight-adjusted expected returns (high systematic risks).
However, we show that optimal portfolios satisfy a local three-fund separation property,
with the three funds being the riskless asset, the mean-variance efficient portfolio of risky
assets and a risk-weight-constrained minimum-variance portfolio of risky assets. We find
that VaR-based capital requirements are effective in offsetting the risk-taking incentives
generated by deposit insurance and limited liability, with the risk-taking in the presence of
capital requirements always being lower than that of a similar unregulated institution.

In general, financial institutions may optimally underreport or overreport their true
VaRs, depending on their risk aversion, the current reserve multiple, the number of ex-
ceptions recorded in the current backtesting period, the time remaining to the end of the

8 Thus, we assume that the VaR measure used for backtesting coincides with that used to determine the capital
charge for market risk. This is without loss of generality, as any difference between the two VaR measures can be
captured by rescaling the multiple k. For example, in our numerical calibration we take the reporting period to be
one day, as suggested by the Basel Committee, and assume that the multiple is determined according to the scale
suggested by the Basel Committee times the square root of ten: this adjustment captures the fact that the multiple
should be applied to a two-week (rather than one-day) VaR (see footnote 3).

9 Because reporting a zero VaR always results in the smallest possible capital requirement no matter how
large the reserve multiple k is, the threat of higher reserve multiples in the future is by itself insufficient to
induce institutions to report strictly positive VaRs unless is supplemented by additional penalties. While the Basel
Capital Accord explicitly mentions the possibility of penalties in addition to the revision of the capital multiple,
these penalties are—as already noted—left to the discretion of regulators. This margin of discretion leaves some
ambiguity in the penalties associated with exceptions. We believe however that our assumption of proportionality
to the size of the exception is a natural one.
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current backtesting period and the level of the non-financial costs associated with an ex-
ception. Overall, capital requirements determined on the basis of the IMA appear to be
quite effective not only in curbing portfolio risks, but also in inducing revelation of these
risks, with reported VaRs being close to true VaRs.

To our knowledge, the optimal behavior of a financial institution subject to capital
requirements determined in accordance to the IMA is an issue so far unexplored in the
existing literature.

In a static mean-variance framework, Kahane (1977) and Kohen and Santomero (1980)
showed that a more stringent capital requirement (in the form of a lower upper bound on
feasible leverage ratios) may induce financial institutions to substitute riskier assets for
less risky ones and thus may increase the risk of trading portfolios and the probability
of default. Kim and Santomero (1988) established that the same result applies to capital
requirements determined on the basis of risk-weighted assets, unless the risk weights hap-
pen to be proportional to the assets’ betas. The conclusion that capital requirements could
lead to an increase in risk taking and hence in the likelihood of bank failures has been
the subject of extensive discussion in the subsequent theoretical literature.10 Furlong and
Keeley (1989) and Keeley and Furlong (1990) argued that the mean-variance framework
is inappropriate to analyze the effect of capital requirements in the presence of deposit
insurance and limited liability, because limited liability results in skewed portfolio return
distributions. In addition, Furlong and Keeley (1989) considered a value-maximizing fi-
nancial institution and showed that stricter leverage limits unambiguously reduce optimal
risk-taking. This result derives from the fact that in their model an institution would always
choose the portfolio having the maximum possible risk (i.e., a corner solution) in order to
maximize the value of the deposit insurance (a put option). Gennotte and Pyle (1991) ex-
tended the analysis of Furlong and Keeley to allow for investment opportunities having
non-zero net present value (NPV) and showed that in this setting tighter capital restrictions
can lead financial institutions to increase asset risk.

Blum (1999) used a two-period model to show that the incentives to increase the risk of
trading portfolios in response to tighter capital requirements are even higher in a dynamic
setting. This is because capital requirements increase the marginal utility of a unit of capi-
tal in the next period and thus can lead to an increase in risk-taking in the current period in
an effort to increase expected return. Calem and Rob (1999) considered an infinite-horizon
discrete-time model with a riskless and a risky asset and minimum capital requirements
given by a linear function of the allocation to the risky asset. Moreover, they assumed that
capital requirements could be violated, but that such violation would result in a pecuniary
penalty (e.g., in the form of a higher deposit insurance premium). They also concluded
that in their model tighter capital requirements could result in increased risk-taking. Dangl
and Lehar (2004) considered an infinite-horizon continuous-time model in which the fi-
nancial institution could choose between two assets, each of which was assumed to follow
a geometric Brownian motion with given drift and volatility. Switches were assumed to in-
volve a fixed cost and no diversification across the two risky assets (or a riskless asset) was
allowed. In addition, capital requirements were assumed to be monitored only at random

10 See Jackson (1999) for a review of the related empirical evidence.
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auditing times, at which times the financial institution would be liquidated if it were found
in violation of the capital requirement. No other corrective actions (aside for liquidation)
were assumed to be available to regulators and no incentives were assumed to be given to
financial institutions to disclose their risk between auditing times. Dangl and Lehar showed
that, in their model, capital requirements that depended on which of the two risky asset was
selected (and hence on portfolio risk) dominated capital requirements that were indepen-
dent of this choice, in the sense that, for a given monitoring frequency, financial institutions
would find it optimal to switch less often to the riskier asset.

Differently from the dynamic models mentioned above, we examine the impact of cap-
ital requirement on the risk-shifting incentives created by deposit insurance and limited
liability in a continuous-time trading model that allows for portfolio diversification and
hence for portfolio return distributions that are not restricted to a simple parametric family
(e.g., normal or lognormal). In addition, we allow for more general capital requirements
that include a charge for market risk based on a self-reported risk measure in addition to
that based on risk-weighted assets. To make our model tractable, we assume, differently
from Dangl and Lehar (2004), that capital requirements can be continuously monitored.
While asset substitution incentives are present in our model, we find that capital require-
ments never have perverse effects on risk-taking or on the probability of extreme losses
and default. Moreover, differently from Furlong and Keeley (1989), this lack of perverse
effects is not due to the fact that the financial institution acts globally as a risk-lover and
hence is always at a corner solution.

Sentana (2001), Emmer et al. (2001), Vorst (2001), Basak and Shapiro (2001) and
Cuoco et al. (2002) considered the investment problem of a trader subject to an exoge-
nous limit on the VaR of the trading portfolio. None of these papers incorporated limited
liability or a realistic model of capital requirements. The first four papers considered the
case of a fixed VaR limit, which does not capture the constraint imposed by capital re-
quirements on financial institutions. Cuoco et al. considered the case in which the limit
varies as a function of the value of the trading portfolio. Their results for the proportional
case imply that if the VaR of a financial institution’s trading portfolio were perfectly and
continuously observable by regulators and minimum capital requirements at any given
point in time were simply equal to a fixed multiple of the contemporaneous VaR (with
no penalties for observed exceptions), then, under the assumption of CRRA preferences
and unlimited liability, the optimal portfolio for a financial institution subject to capital re-
quirements would involve a constant proportional allocation to the mean-variance efficient
portfolio. Moreover, the capital requirement would either always bind or never bind. Nei-
ther of these conclusions holds for the more realistic model of capital regulation considered
in this paper.11

In a static setting, Chan et al. (1992) and Giammarino et al. (1993) studied the optimal
design of a mechanism to induce truthful risk revelation in a setting in which regulators
also provide deposit insurance. By contrast, our focus is not on mechanism design but on
the analysis of the specific mechanism implemented by the 1996 Amendment. Ju and Pear-

11 Leippold et al. (2003), using asymptotic approximation techniques, extended the analysis of an exogenous
proportional VaR constraint in Cuoco et al. to incorporate stochastically-varying price coefficients and also ex-
amined the equilibrium implications of such a constraint.
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son (1999) examined, also in a static setting, the bias that arises when the VaR of a portfolio
is determined on the basis of the delta-normal method with variances and covariances es-
timated using past data: in this case, an institution (or a trader) subject to a binding VaR
constraint and possessing private information about the relation between current variances
and covariances and historical ones, is able to select portfolios whose true VaR exceeds
the estimated VaR and hence to assume risks in excess of the stated limit. Ju and Pearson
quantified the extent of this bias assuming that the regulator monitoring this limit provides
no incentives for the institution to reveal its information and that the institution has one of
three objectives: maximizing the portfolio VaR, maximizing the portfolio expected return,
or minimizing the variance of the difference between the return of the chosen portfolio and
the return of an exogenously-given reference portfolio. By contrast, because of the penal-
ties associated with exceptions, the 1996 Amendment does provide incentives to financial
institutions to reveal private information about risk: these incentives (in addition to a more
realistic dynamic investment objective) are critical features of the model we consider.

The rest of the paper is organized as follows. Section 2 describes our model in detail.
Section 3 explains our solution approach to the joint reporting and investment problem in
the presence of capital requirements and provides some explicit characterization of opti-
mal trading strategies in this section. Section 4 provides a numerical analysis. Section 5
concludes. Appendix A contains all the proofs.

2. The model

We consider a financial institution with a planning horizon equal to T backtesting peri-
ods, where T is a positive integer. Without loss of generality, we normalize the length of
a backtesting period to 1. Each backtesting period comprises n non-overlapping reporting
periods of equal length τ = 1/n. At the beginning of each reporting period, the financial in-
stitution is required to report to a regulator its current VaR as well as the actual profit/loss
over the previous reporting period. As explained later, the reported VaR determines the
capital charge to cover market risk for the period.

The financial institution has liabilities represented by deposits and (equity) capital. For
simplicity, we assume that the face value of deposits D is fixed over the planning horizon
and that there are no equity issues or dividend payments over this period. Deposits are fully
insured and earn the risk-free interest rate, which is paid out continuously to depositors.
The market value of deposits is therefore constant and equal to D. The investment oppor-
tunities are represented by m + 1 long-lived assets. The first asset is riskless and earns a
constant continuously-compounded interest rate r � 0. The other m assets are risky and
their price process S (inclusive of reinvested dividends) follows a geometric Brownian
motion with drift vector r 1̄ + μ and diffusion matrix σ , i.e.,

S(t) = S(0) +
t∫

0

IS(s)
(
r 1̄ + μ

)
ds +

t∫
0

IS(s)σ dw(s),

where IS(t) denotes the m × m diagonal matrix with elements S(t), 1̄ = (1, . . . ,1)� and
w is an m-dimensional Brownian motion. We assume without loss of generality that σ
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has rank m.12 The financial institution can trade continuously and without frictions over
[0, T ].13,14

Letting θ be the m-dimensional stochastic process representing the (dollar) investment
in the risky assets, the evolution of the value A of the institution’s asset portfolio over any
reporting period is then given by

(1)dA(t) = (
A(t)r + θ(t)�μ

)
dt + θ(t)�σ dw(t) − rD dt,

where the last term reflects interest payments to depositors.
We define the institution’s regulatory capital K = A − D as the difference between the

value of the institution’s asset portfolio and the value of the institution’s deposits.15 The
financial institution is required to maintain this capital above a minimum level equal to the
sum of the charge to cover general market risk plus a charge to cover credit (or idiosyn-
cratic) risk. The charge to cover market risk equals the VaR reported at the beginning of
the current reporting period times a multiple k. The charge to cover credit risk equals the
sum of the institution’s trading positions (long and short) multiplied by asset-specific risk
weights. Thus, letting β ∈ [0,1]m denote the vector of asset risk weights, the capital charge
to cover credit risk at time t equals β�(θ(t)+ + θ(t)−), where for any vector x ∈ R

m we
denote by x+ the vector with components x+

i = max[0, xi] and by x− the vector with com-
ponents x−

i = max[0,−xi].16 Hence, if VaR � 0 denotes the VaR reported to regulators at
the beginning of the current reporting period and k is the currently-applicable multiple, the

12 If d = rank(σ ) < m, some stocks are redundant and can be omitted from the analysis. Moreover, w can be
redefined in this case to be a d-dimensional Brownian motion.
13 The assumption of continuous frictionless trading is of course a simplification in the case of a financial
institution for which loans constitute a significant portion of investments. However, incorporating illiquidity into
the present model would significantly add to its complexity. We view the frictionless case as a reasonable starting
point for a first analysis of VaR-based capital requirements, especially in consideration of the increasing use
of loan securitization by financial institutions. In addition, the unhedgeable capital shocks in our model can be
interpreted as capturing the risk associated with totally illiquid assets.
14 While we do not explicitly impose short-sale constraints, our results would be unchanged by these constraints.
As will be shown in Proposition 4, capital requirements never induce financial institutions to short (long) assets
that are held long (short) in the unconstrained mean-variance efficient (MVE) portfolio. Thus, assets that are held
short in the unconstrained MVE portfolio would never be held in the presence of short-sale constraints (with or
without capital requirements) and thus can simply be ignored. On the other hand, assets that are held long in the
unconstrained MVE portfolio are also held in non-negative amounts in the presence of capital requirements and
thus are unaffected by short-sale constraints. As noted in footnote 17, margin requirements could also be easily
included in our model and would leave all qualitative results unchanged.
15 The above definition of regulatory capital differs from the market value of the institution’s equity because
the value of the institution’s default option is not included in the value of the institution’s assets. Thus, at the
terminal date T , the value of the institution’s equity is equal to K(T )+ = max[0,K(T )]. As it will become clear
from Eqs. (2) and (4), we assume that capital requirements are defined in terms of regulatory capital, but that the
institution has preferences defined over the terminal equity value.
16 This is consistent with the Basel Capital Accord, which sets the charge to cover credit risk equal to 0.08 times
the sum of asset positions multiplied by asset-specific weights ranging from 0 to 1.5 (see: Basel Committee on
Banking Supervision, 2001). This corresponds to risk weights between 0 and 0.08 × 1.5 = 0.12 in our definition.
Unrated corporate claims (including equity) are assigned a weight of 100% (0.08 in our definition). Consistently
with existing regulation, we assume a zero risk weight for investment in the money market account.
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institution must satisfy the constraint

(2)K(t) � kVaR + β�(
θ(t)+ + θ(t)−

)
at all times during the reporting period.17 We assume that this constraint can be enforced.
However, the institution’s future trading strategy, and hence the institution’s true VaR, are
unobservable by regulators: therefore, the reported VaR can differ from the true VaR.

The institution incurs a non-financial cost c at the end of each reporting period in which
the actual loss exceeds the reported VaR. This cost is meant to capture additional regulatory
actions that can be undertaken in response to exceptions (besides the increase in the reserve
multiple k) or reputation losses. For simplicity, we refer to these costs simply as reputation
costs and assume that they are proportional to the amount by which the actual loss exceeds
the reported VaR, that is, c = λ(K− −K −VaR)+, where λ � 0 is the proportional cost and
K− (respectively, K) is the value of the institution’s capital at the beginning (respectively,
at the end) of the reporting period. At the end of each backtesting period, the number i

(i = 0,1, . . . , n) of reporting periods in which the actual loss exceeded the reported VaR is
computed, and the capital reserve multiple k for the next backtesting period is set equal to
k(i), for some given positive numbers k(0) � k(1) � · · · � k(n). Clearly, reputation costs
and the revision of the capital reserve multiple k at the end of each backtesting period
represent incentives to not underreport the true VaR, while capital requirements provide an
incentive to not overreport.

Aside for the market risk represented by the normal fluctuations in the value of its assets
(as given in Eq. (1)), the institution is subject to unhedgeable idiosyncratic risk: at the end
of every reporting period, there is a small probability p that a rare event will occur resulting
in the loss of an amount equal to qK−, where q ∈ [0,1]. These rare events can force
the institution into default if they result in the value of the institution’s capital becoming
negative (implying that the institution will be unable to repay its deposits). While these
shocks are unhedgeable, the institution can control the probability of default by controlling
the probability of losses in the market value of its assets exceeding (1 −q)K− in any given
period (that is, by avoiding very risky investment strategies).18

Since the market value of deposits is fixed and there are no new equity issues, it follows
from Eq. (1) that the institution’s regulatory capital satisfies

(3)dK(t) = (
K(t)r + θ(t)�μ

)
dt + θ(t)�σ dw(t)

in the absence of rare events.
The financial institution has limited liability and preferences represented by an expected

utility function over the market value of its equity at the end of the planning horizon. Thus,

17 The constraint K(t) � β�(θ(t)+ + θ(t)−) is identical to the one that would arise in the presence of margin
requirements if the trader were allowed to earn market interest on the margin: see Cuoco and Liu (2000). Thus,
while we assume that trading is frictionless, margin requirements could be easily accommodated and would
amount to an increase in the vector of risk weights β by an amount equal to the proportional margin requirement.
It would be a straightforward extension to allow β to be different across long and short positions.
18 If the distribution of the random capital shocks has bounded support, as we assume, the institution’s default
could be avoided entirely by forcing it to maintain capital reserves in excess of the maximum possible realization
of the shock. However, we implicitly assume that such a high level of capital requirements is suboptimal or that
the distribution of the random shocks is unknown to regulators.
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it chooses a reporting and trading strategy over [0, T ] so as to maximize

(4)E
[
u
(
K(T )+

)]
,

where u is an increasing and strictly concave utility function with u(0) > −∞.19

3. Characterization results

3.1. Recursion for the value function

Let V (K,K−,VaR, i, k, t) denote the institution’s value function at time t conditional
on current capital being K , capital at the beginning of the current reporting period being
K−, the VaR reported at the beginning of the current reporting period being VaR, the num-
ber of exceptions in the current backtesting period being i and the current capital reserve
multiple being k. Without loss of generality, suppose that t is in the hth reporting period,
i.e., that t ∈ [(h − 1)τ, hτ). Finally, let T = {1,2, . . . , T } denote the set of backtesting
dates. Then it follows from the principle of dynamic programming that

V (K,K−,VaR, i, k, t) = max
θ

E
[
v
(
K(hτ),K−,VaR, i, k, hτ

) ∣∣ K(t) = K
]

(5)

s.t. dK(s) = (
K(s)r + θ(s)�μ

)
ds + θ(s)�σ dw(s),

K(s) � kVaR + β�(
θ(s)+ + θ(s)−

)
, for all s ∈ [t, hτ),

for K � kVaR, where v(K,K−,VaR, i, k, hτ) represents the value of having capital K at
the end of the current period, before the capital shock is realized. In turn,

v(K,K−,VaR, i, k, hτ)

(6)= (1 − p)v̂(K,K−,VaR, i, k, hτ) + pv̂(K − qK−,K−,VaR, i, k, hτ),

where

v̂(K,K−,VaR, i, k, hτ)

= max
VaR1�0

V (K1,K1,VaR1, i1, k1, hτ)1{K�K−−VaR}

(7)+ max
VaR2�0

V (K2,K2,VaR2, i2, k2, hτ)1{K<K−−VaR}

and

K1 = K+, K2 = (
K − λ(K− − K − VaR)

)+
,

i1 =
{

0 if hτ ∈ T ,

i otherwise,
i2 =

{
0 if hτ ∈ T ,

i + 1 otherwise,

k1 =
{

k(i) if hτ ∈ T ,

k otherwise,
k2 =

{
k(i + 1) if hτ ∈ T ,

k otherwise.

19 The case u(0) = −∞ would be less interesting, as it would rule out the possibility of default.
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The function v̂ in Eq. (7) represents the value of having capital K at the end of the
current period after the shock is realized, This value depends on: (i) whether or not a loss
exceeding the reported VaR is recorded at the end of the current reporting period (that is,
whether or not K− − K(hτ) > VaR), and (ii) whether or not the end of the current report-
ing period coincides with the end of the current backtesting period (that is, whether or not
hτ ∈ T ). If the end of the current reporting period does not coincide with the end of the
current backtesting period, the institution enters the next reporting period with the same
reserve multiple k. Moreover, in this case the number of exceptions i going into the next
period is incremented by one if a loss exceeding the reported VaR is recorded in the current
period. On the other hand, if the end of the current reporting period coincides with the end
of the current backtesting period, the reserve multiple going into the next period is set to
the new value k(i) or k(i +1) and the number of exceptions is reset to zero. In all cases, the
VaR reported at the beginning of the new period is determined optimally so as to maximize
the continuation value. Thus, if no exception is recorded in the current period and capital
after the shock realization is K , then, given limited liability, the continuation value associ-
ated with this capital is V (K+,K+,VaR1, i1, k1, hτ). If, on the other hand, an exception is
recorded, the institution incurs a reputation cost c = λ(K− −K −VaR)+, which lowers the
continuation value associated with a given capital K from V (K+,K+,VaR2, i2, k2, hτ) to
V ((K − c)+, (K − c)+,VaR2, i2, k2, hτ).20

Equations (5)–(7) make it possible to compute the value function V recursively using
the terminal condition at T

V (K,K−,VaR, i, k, T ) = u(K+)

and solving the constrained continuous-time optimal investment problem in Eq. (5) back-
ward one reporting period at a time. We therefore focus on this problem.

Remark 1. The capital requirement constraint in (5) implies

(8)K(t) � kVaR � 0 for all t ∈ [
(h − 1)τ, hτ

)
.

Hence, given limited liability, the maximum possible loss K− − K(hτ) over the reporting
period cannot exceed K− − (kVaR − qK−)+ after the capital shock. Clearly, reporting a
VaR equal to the maximum possible loss over the reporting period is sufficient to avoid all
the penalties, while reporting a VaR larger than this level is never optimal, since it provides
no additional benefit and increases the capital reserve requirement. This implies

VaR � K− − (kVaR − qK−)+,

or

(9)VaR � min

[
1,

1 + q

1 + k

]
K−.

20 The cost c is non-financial in the sense that, while it reduces the continuation value, it does not affect the
actual amount of capital with which the institutions enters the next period or the default boundary.
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3.2. PDE characterization of the value function

We next derive a PDE characterization for the value function using a martingale dual-
ity approach as in Cvitanić and Karatzas (1992) and Cuoco (1997).21,22 We start with a
preliminary result. Let

Ã = {
(ν0, ν−) ∈ R × R

m: ν0 � 0, ν0
(
1̄ − β

)
� ν− � ν0

(
1̄ + β

)}
,

and let N denote the set of Ã-valued bounded processes on [0, τ ). Finally, for ν ∈ N let

(10)ξν(t) = exp

(
−

t∫
0

(
r + ν0(s) + |κν(s)|2

2

)
ds −

t∫
0

κν(s)
� dw(s)

)
,

where

κν = σ−1(μ + ν− − ν01̄
)
.

The following result is then easily derived from Proposition 1 in Cuoco (1997).

Proposition 1. Let

(11)ṽ(z,K−,VaR, i, k, hτ) = max
K�kVaR

[
v(K,K−,VaR, i, k, hτ) − zK

]
,

where v is the function in Eq. (6) and consider the problem

min
ν∈N

E

[
ṽ
(
ψξν(hτ),K−,VaR, i, k, hτ

) − ψ

(
kVaR

hτ∫
(h−1)τ

ξν(s)ν0(s)ds − K−

)]
.

If the above problem has a solution for all ψ > 0, then

(12)V (K,K−,VaR, i, k, t) = min
ψ>0

[
Ṽ (ψ,K−,VaR, i, k, t) + ψK

]
for all K � kVaR and all t ∈ [(h − 1)τ, hτ), where

21 Cvitanić and Karatzas (1992) develop the martingale duality technique for a class of investment problems
involving convex constraints on the portfolio weights. The portfolio constraint in Eq. (5) involves the total value
of capital K and thus is not included in the setup considered by Cvitanić and Karatzas (1992). Cuoco (1997)
provides an extension of the martingale duality technique to a more general class of convex constraints on the
portfolio amounts. This class of constraints includes the one in Eq. (5).
22 The main reason to use the duality approach in this context is that the primal stochastic control problem has a
discontinuous objective function (the function v defined in Eq. (6)). This fact prevents the application of results
guaranteeing that the corresponding value function is the unique solution of the associated HJB equation and that
finite-difference numerical approximations of this equation converge. On the other hand, as it will become clear
in the sequel, the martingale duality approach leads to a stochastic control problem that has a continuous objective
function (the function ṽ in Eq. (11)).
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Ṽ (z,K−,VaR, i, k, t)

= min
ν∈N

E

[
ṽ
(
Zν(τ),K−,VaR, i, k, hτ

) − kVaR

hτ∫
t

Zν(s)ν0(s) ds
∣∣ Zν(t) = z

]
(13)s.t. dZν(t) = −Zν(t)

((
r + ν0(t)

)
dt + κν(t)

� dw(t)
)
.

Because the dual value function Ṽ solves the dynamic programming problem in Propo-
sition 1, it must solve the Hamilton–Jacobi–Bellman (HJB) equation associated with this
problem. Below we denote by ιi the ith column of the m × m identity matrix.

Proposition 2. If β ∈ R
m++, the dual value function Ṽ in Eq. (13) is strictly decreasing and

strictly convex in z for all t ∈ [(h − 1)τ, hτ) and it solves the HJB equation

(14)0 = Ṽt − rzṼz + z2Ṽzz min
ν∈Ã

[
1

2

∣∣σ−1(μ + ν− − ν01̄
)∣∣2 − Ṽz + kVaR

zṼzz

ν0

]
with terminal condition

Ṽ (z,K−,VaR, i, k, hτ) = ṽ(z,K−,VaR, i, k, hτ).

Moreover, the process ν∗ attaining the minimum in Eq. (14) satisfies

0 � ν∗
0 � M

and

M
(
1̄ − β

)
� ν− � M

(
1̄ + β

)
,

where M = max{|ι�i μ|/ι�i β: i = 1, . . . ,m}. Hence, ν∗ ∈ N .

Remark 2. The dual value function for the institution’s optimization problem in the ab-
sence of capital requirements (that is, with k = β = λ = 0) satisfies the PDE in Eq. (14)
with Ã = {0} (and hence ν∗ = 0).

3.3. Optimal investment strategy

Once the dual value function Ṽ is known, the optimal trading strategy θ and the process
for the institution’s capital K can be easily recovered. To prevent excessively cumbersome
notation, we suppress from now on the dependence of the dual value function on the vari-
ables (K−,VaR, i, k) which are constant within each reporting period.

Proposition 3. If β ∈ R
m++, the optimal trading strategy θ for the constrained problem

in (5) is given by θ(t) = θ(Zν∗(t), t), where

(15)θ(z, t) = zṼzz(z, t)(σσ�)−1(μ + ν∗−(z, t) − ν∗
0 (z, t)1̄

)
.

Moreover, under the optimal trading strategy, the institution’s capital at time t is given by
K(t) = K(Zν∗(t), t), where

(16)K(z, t) = −Ṽz(z, t).
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In particular,

K(z,hτ) = arg max
K

[
v(K,hτ) − zK

]
.

Remark 3. The above proposition with ν∗ = 0 also characterizes the optimal trading strat-
egy for the unconstrained problem.

The next result provides an explicit characterization of the optimal trading strategy in
the presence of capital requirements. We denote by Ii the i × m matrix consisting of the
first i rows of the m × m identity matrix.

Proposition 4. Suppose that β ∈ R
m++ and that all the components of the uncon-

strained mean-variance efficient portfolio (σσ�)−1μ are different from zero.23 For i, j ∈
{1,2, . . . ,m}, j � i, let

ηi,j = ι�j HI�
i (Iiσσ�I�

i )−1Iiμ

ι�j HI�
i (Iiσσ�I�

i )−1IiHβ
,

where

(17)H = diag
(
sign

(
(σσ�)−1μ

))
and suppose without loss of generality that the assets are sorted so that

ηi,i = min{ηi,j : ηi,j > 0, j = 1, . . . , i}.
For i = 1,2, . . . ,m, let

hi = β�HI�
i

(
Iiσσ�I�

i

)−1
Ii(μ − ηi,iHβ)

and let

hm+1 = β�H(σσ�)−1μ.

Then

0 = h1 � h2 � · · · � hm+1.

If

− Ṽz(z, t) + kVaR

zṼzz(z, t)
� hm+1,

then ν∗
0 (z, t) = 0 and

(18)θ(z, t) = zṼzz(z, t)(σσ�)−1μ.

23 If an asset is not included in the unconstrained mean-variance efficient portfolio, it would not be included in
the constrained portfolio and thus can be ignored.
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If

hi � − Ṽz(z, t) + kVaR

zṼzz(z, t)
< hi+1,

for i = 1,2, . . . ,m then

(19)ν∗
0 (z, t) =

β�HI�
i (Iiσσ�I�

i )−1Iiμ + Ṽz(z,t)+kVaR
zṼzz(z,t)

β�HI�
i (Iiσσ�I�

i )−1IiHβ

and

(20)θ(z, t) = zṼzz(z, t)I
�
i

(
Iiσσ�I�

i

)−1
Ii

(
μ − ν∗

0 (z, t)Hβ
)
.

In particular, Hθ � 0, that is, the components of the constrained optimal portfolio never
have the opposite sign of the corresponding components of the mean-variance efficient
portfolio.

The result in Proposition 4 that the components of the constrained optimal portfolio
never have the opposite sign of the corresponding components of the mean-variance effi-
cient (MVE) portfolio implies that the nonlinear portfolio constraint in Eq. (5) is equivalent
to the pair of linear constraints

(21)Hθ(s) � 0,

(22)K(s) � kVaR + β�Hθ(s),

where H , as defined in Eq. (17), is the diagonal matrix whose ith diagonal element is
the sign of the ith component of the MVE portfolio. The characterization of the opti-
mal portfolio strategy in the previous proposition is then quite intuitive. As long as the
non-negativity constraint in Eq. (21) is not binding, constrained optimal portfolios are
combinations of a long position in the portfolio that maximizes expected return for a
given variance (the MVE portfolio) and a short position in the portfolio that maximizes
the charge for credit risk β�Hθ for a given variance. We refer to the latter portfolio
as the constrained minimum-variance (CMV) portfolio, since it is also the portfolio that
minimizes variance subject to a constraint on the charge for credit risk. More generally,
for hi < −(Ṽz(z, t) + kVaR)/(zṼzz(z, t)) � hi+1 the non-negativity constraint in Eq. (21)
binds for the last m − i assets, so that ι�j θ(z, t) = 0 for j = m − i, . . . ,m and (as shown in
Eq. (20))

θ(z, t) = zṼzz(z, t)π
MVE
i − zṼzz(z, t)ν

∗
0 (z, t)πCMV

i ,

where

πMVE
i = (

Iiσσ�I�
i

)−1
Iiμ

denotes the MVE portfolio of the first i risky assets and

πCMV
i = (

Iiσσ�I�
i

)−1
IiHβ

denotes the CMV portfolio of the first i risky assets.



D. Cuoco, H. Liu / Journal of Financial Intermediation 15 (2006) 362–394 377
Both h(z, t) = −(Ṽz(z, t) + kVaR)/(zṼzz(z, t)) and K(z, t) = −Ṽz(z, t) are monotoni-
cally decreasing functions of z.24 Thus, Proposition 4 shows that when capital K(Zν∗(t), t)
is large (that is, when Zν∗(t) is small and h(Zν∗(t), t) � hm+1), the capital constraint
does not bind (that is, ν∗

0 (Zν∗(t), t) = 0) and the financial institution holds the mean-
variance efficient portfolio of risky assets πMVE

m . For lower levels of capital (that is, when
h(Zν∗(t), t) < hm+1), the constraint starts to bind (that is, ν∗

0 (Zν∗(t), t) becomes positive)
and the institution is forced to alter its leverage to satisfy the constraint. At the same time,
it finds it optimal to rebalance its portfolio of risky assets: this rebalancing is done by
shorting the constrained minimum-variance portfolio πCMV

m .
For even lower levels of capital (higher values of Zν∗(t)), shorting of the corrective

portfolio progressively increases, until the institution reaches a point where its investment
in the mth asset is zero (this happens when h(Zν∗(t), t) = hm). Beyond this point, the
institution simply drops the mth asset from its portfolio, since it is never optimal to short
(respectively, long) an asset that is held in positive (respectively, negative) amounts in
the unconstrained mean-variance efficient portfolio. If the assets are uncorrelated (σ is
diagonal) the mth asset is the one with the lowest ratio of absolute risk premium |ι�j μ| to
risk weight ι�j β . If the assets are correlated, then correlations are also taken into account in
deciding which asset is dropped first from the portfolio, and the mth asset is the one with
the lowest ratio ηm,j . Thus, in either case, as the institution is forced to reduce its allocation
to risky assets to satisfy the capital constraint, it finds it optimal to tilt its portfolio toward
assets with high absolute risk premia and low risk weights.25

If capital decreases (Zν∗(t) increases) even further and the constraint becomes even
more severe, the institution sequentially drops other risky assets from its portfolio, concen-
trating on those characterized by progressively higher absolute risk premia and lower risk
weights. This happens each time that h(Zν∗(t), t) exceeds a new value hj . Eventually, if
h(Zν∗(t), t) = h1 = 0 (that is, if K(Zν∗(t), t) = kVaR), the institution is forced to invest its
entire portfolio in the riskless asset. In general, whenever h(Zν∗(t), t) is between hi and
hi+1, the institution only holds the first i risky assets and its portfolio is a combination
of the riskless asset and two funds of risky assets: the mean-variance efficient portfolio of
the first i assets, πMVE

i and the constrained minimum-variance portfolio of the first i as-
sets, πCMV

i . Thus, locally (that is, between any pair hi and hi+1), optimal portfolios satisfy
three-fund separation.

3.4. The one-dimensional case

Not surprisingly, the results in the previous two subsections take a very simple form in
the case of a single risky asset, as shown in the following corollary.

24 The term ν∗
0 can be interpreted as the Lagrangian multiplier on the constraint in the primal problem in Eq. (5):

thus ν∗
0 is inversely related to capital K . Since h is a decreasing function of ν∗

0 (as shown in Eq. (19)), h must be
an increasing function of K (that is, a decreasing function of z).
25 This substitution effect is similar to the one described by Kohen and Santomero (1980) and Kim and San-
tomero (1988) in a static setting and by Blum (1999) in a two-period setting.
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Corollary 1. In the case of a single risky asset, a positive risk premium and a positive risk
weight (m = 1, μ > 0, β > 0) the HJB equation (14) reduces to

0 = Ṽt − rzṼz + z2Ṽzz min

[(μ

σ

)2
,−μ

β

(
Ṽz + kVaR

zṼzz(z, t)

)]

− 1

2
z2Ṽzz min

[(μ

σ

)2
,
(σ

β

)2
(

Ṽz + kVaR

zṼzz(z, t)

)2]
.

Moreover, the optimal investment strategy in (15) reduces to

(23)θ(z, t) = min

[
zṼzz(z, t)

μ

σ 2
,

1

β

(
K(z, t) − kVaR

)]
= min

[
1

Γ (z, t)

μ

σ 2
K(z, t),

1

β

(
K(z, t) − kVaR

)]
,

where

Γ (z, t) = − Ṽz(z, t)

zṼzz(z, t)

is the relative risk aversion coefficient of the primal value function.26

Because, as noted in Proposition 4, the optimal portfolio in the presence of capital re-
quirements always has the same sign as the MVE portfolio, in the case of a single risky
asset the assumption of a positive risk premium implies a non-negative allocation to the
risky asset. The constraint in Eq. (5) then implies

(24)θ(z, t) � 1

β

(
K(z, t) − kVaR

)
.

Equation (23) shows that, under the stated assumptions, the optimal portfolio allocation is
equal to the minimum of 1

Γ (z,t)
μ

σ 2 K(z, t), which can be interpreted as the optimal portfolio
allocation in the absence of currently-binding capital requirements, and the upper bound
in Eq. (24), which represents the maximum feasible portfolio allocation under capital re-
quirements.

26 By duality,

z = VK

(
K(z, t), t

) = VK

(−Ṽz(z, t), t
)

and hence (differentiating with respect to z and rearranging)

− Ṽz(z, t)

zṼzz(z, t)
= −K(z, t)VKK(K(z, t), t)

VK(K(z, t), t)
.
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4. Analysis of optimal policies

For our numerical analysis, we fix throughout the backtesting period to one year, the
investment horizon to two years (T = 2) and the reporting period to one business day
(n = 250, τ = 1/250). We assume that the risk weight used to determine the capital charge
to cover credit risk is β = 0.08,27 and that the reserve multiple used to determine the capital
charge to cover market risk is determined according to the schedule proposed by the Basel
Committee, that is,28

k(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3.00
√

10 = 9.49 if i � 4,

3.40
√

10 = 10.75 if i = 5,

3.50
√

10 = 11.07 if i = 6,

3.65
√

10 = 11.54 if i = 7,

3.75
√

10 = 11.86 if i = 8,

3.85
√

10 = 12.17 if i = 9,

4.00
√

10 = 12.65 if i � 10.

We consider the cases in which the number m of risky assets equals 1 or 2: since, as noted
in the previous section, optimal investment policies satisfy local three-fund separation,
considering additional risky assets would not affect the analysis. In either case, we set r = 0
and choose the vector of risk premia μ and the volatility matrix σ so that the risk premium
(respectively, the volatility) of the mean-variance efficient portfolio of risky assets equals
0.059 (respectively, 0.22).29 In the case of two risky assets, we assume in addition that the
volatility of the first asset (respectively, the second asset) is 25% higher (respectively, 25%
lower) than the volatility of the mean-variance efficient portfolio and that the correlation
coefficients between the returns on the two assets is 0.50.30 We assume the probability p

of the rare capital shock at the end of each reporting period is equal to 0.001 and the
size q of the shock is 0.9. In addition, we assume a CRRA utility function, i.e., u(K) =
K1−γ /(1 − γ ) for some γ ∈ (0,1). Under this assumption,

V (K,K−,VaR, i, k, t) = K
1−γ
− V (K/K−,VaR/K−, i, k, t)

and hence it follows from Proposition 3 and Eq. (3) that the proportional portfolio alloca-
tion

π(t) = θ(t)

K(t)
= −Zν∗(t)Ṽzz(Zν∗ , t)

Ṽz(Zν∗ , t)
(σσ�)−1(μ + ν∗−(Zν∗ , t) − ν∗

0 (Zν∗ , t)1̄
)

and the distribution of K(t)/K− are independent of K−.
We solve for the dual value function recursively as explained in the previous section

by numerically integrating the PDE (14) using a finite-difference approximation.31 This is

27 See footnote 16.
28 See footnote 8.
29 These values correspond to the mean risk premium and the return standard deviation of the market portfolio
as estimated by Ibbotson and Sinquefeld (1982).
30 These assumptions imply that μ = ( 0.07225

0.02937

)
and σ = ( 0.27500 0.00000

0.08250 0.14289

)
in our simulations with m = 2.

31 Convergence of this approximation in our problem can be verified by rewriting the problem in terms of the
state variable zν = log(Zν) and then using Theorem IX.4.1 in Fleming and Soner (1992).
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done for each value of i and k and for a grid of values for the reported VaR between zero
and the upper bound in Eq. (9). We also compute the distribution function P of the state
variable Zν∗ at the end of each reporting period by using a finite-difference approximation
to solve the PDE

∂

∂t
P (z, t) = 1

2

∂

∂z

(∣∣κν∗(z, t)z
∣∣2

Pz(z, t)
) + (

r + ν∗
0 (z, t)

)
zPz(z, t),

(25)P
(
z, (h − 1)τ

) = 1{z�ψ∗},

for t ∈ [(h − 1)τ, hτ), where ψ∗ is the value of ψ solving the minimization in (12) with
t = (h − 1)τ .32 This allows us to compute the distribution of the financial institution’s
capital using Eq. (16), and hence the true VaR of the portfolio, which we compare to the
reported VaR. For comparison purposes, we also compute the optimal policies and the
true VaR for the unconstrained problem with no capital requirements using the results
in Remarks 2 and 3. Finally, we compute and report the probabilities of default in both
the constrained and the unconstrained problem. Given the assumption of a CRRA utility
function (and hence of infinite marginal utility at zero), the probability of the institution
defaulting conditional on there being no capital shock is zero. On the other hand, the prob-
ability of the institution defaulting conditional on there being a capital shock is equal to
the probability that end-of-period capital before the shock is insufficient to cover the loss
associated with the shock, that is to the probability that end-of-period capital is below qK−.

4.1. One risky asset

Table 1 shows the optimal reporting and investment strategy at the beginning of the first
and of the last reporting period in the first year (t = (h−1)τ , where h = 1 and h = 250, re-
spectively) for three different values of the number of violations in the current backtesting
period (i = 0, i = 5 and i = 9) and two different values of the current reserve multiple
(k = 9.49 and k = 12.65) for the case γ = 0.25, λ = 0.01 and m = 1. For each combina-
tion of (h, i, k), the table shows the reported VaR normalized by the beginning-of-period
capital, v = VaR/K−, the beginning-of-period maximum possible proportional allocation
to the risky asset under the capital requirement constraint, π̄ ((h − 1)τ ) = 1

β
(1 − kv),33

the beginning-of-period proportional allocation to risky assets, π((h− 1)τ ), the true 1-day
90 and 99% VaRs normalized by the initial capital value, v0.90 and v0.99, and the default
probability conditional on a capital shock, pD . For comparison purposes, the table also
shows the beginning-of-period proportional allocation to risky assets, πU((h − 1)τ ), the

32 The PDE in (25) is obtained by integrating the forward Kolmogorov equation

∂

∂t
p(z, t) = 1

2

∂2

∂z2

(∣∣κν∗ (z, t)z
∣∣2p(z, t)

) + ∂

∂z

((
r + ν∗

0 (z, t)
)
zp(z, t)

)
solved by the density function p(z, t) = Pz(z, t).
33 See Eq. (24).



D. Cuoco, H. Liu / Journal of Financial Intermediation 15 (2006) 362–394 381
Table 1
Results for the parameter values: γ = 0.25, λ = 0.01, m = 1

h i k v π̄ π v0.90 v0.99 pD πU vU
0.90 vU

0.99 pU
D

1 0 9.49 .0699 4.212 4.212 .0699 .0699 .0092 4.861 .0811 .1529 .0584
1 0 12.65 .0542 3.930 3.872 .0542 .0542 .0074 4.861 .0811 .1529 .0584
1 5 9.49 .0703 4.164 4.141 .0703 .0703 .0016 4.861 .0811 .1529 .0584
1 5 12.65 .0532 4.093 4.093 .0532 .1033 .0130 4.861 .0811 .1529 .0584
1 10 9.49 .0692 4.291 4.291 .0692 .1074 .0165 4.861 .0811 .1529 .0584
1 10 12.65 .0531 4.097 4.097 .0531 .1033 .0130 4.861 .0811 .1529 .0584

250 0 9.49 .0692 4.293 4.293 .0692 .1077 .0164 4.861 .0811 .1529 .0584
250 0 12.65 .0531 4.096 4.096 .0531 .0824 .0063 4.861 .0811 .1529 .0584
250 5 9.49 .0702 4.170 4.151 .0702 .0702 .0053 4.861 .0811 .1529 .0584
250 5 12.65 .0544 3.903 3.822 .0544 .0544 .0033 4.861 .0811 .1529 .0584
250 10 9.49 .0692 4.293 4.293 .0692 .1174 .0310 4.861 .0811 .1529 .0584
250 10 12.65 .0531 4.097 4.097 .0531 .1034 .0131 4.861 .0811 .1529 .0584

Note. The table shows the values of the reported normalized daily VaR (v), the upper bound on the portfolio
allocation to the risky asset (π̄ ), the portfolio allocation to the risky asset (π ), the true normalized 90 and 99%
VaRs (v0.90 and v0.99) and the conditional probability of default (pD ) in the presence of capital requirements, as
well as the portfolio allocation to the risky asset (πU ), the true normalized 90 and 99% VaRs (vU

0.90 and vU
0.99)

and the conditional probability of default (pU
D

) in the absence of capital requirements at the beginning of two
different reporting periods.

true normalized 1-day 90 and 99% VaRs, vU
0.90 and vU

0.99, and the conditional default prob-
ability, pU , in the unconstrained case.34

For the set of parameters considered in Table 1, a financial institution not subject to cap-
ital shocks or capital requirements would choose a proportional allocation to risky assets of
κ/(γ σ) = 487.6%. As shown in Table 1, an institution not subject to capital requirements
but subject to capital shocks would lower the beginning-of-period portfolio weight slightly
to 486.1% in response to the additional risk represented by the capital shocks. The lighter
line in Fig. 1 shows how this beginning-of-period portfolio weight varies as a function of
the normalized capital K/K−: when capital is large, the background risk becomes rela-
tively less relevant and the portfolio allocation converges to κ/(γ σ). On the other hand,
when capital is below the conditional default point (that is, when K/K− < q = 0.9), the
institution has incentives to exploit its limited liability and “bet for resurrection” by in-
creasing its risk taking. In fact, as the end of the period approaches, the portfolio weight
becomes unboundedly large if the institution is just below the default point. The lighter
line in Fig. 2 shows the corresponding probability distribution of end-of-period capital.
This probability distribution assigns no mass to values of end-of-period capital around the
conditional default point: in other words, given limited liability, the institution will find
it optimal not to default for infinitesimal amounts, choosing instead a trading strategy as
described above to avoid such an outcome. As shown in Table 1, the probability mass to
the left of the conditional default point in Fig. 2 is pU

D = 5.84%, which corresponds to an
unconditional default probability ppU

D = 0.00584%.

34 We report the portfolio allocation and VaRs normalized by capital K (rather than by total assets A = D +K),
since these values are independent of the institution’s leverage.
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Fig. 1. The graph plots the optimal portfolio allocation to risky assets at the beginning of the first reporting period
in the presence of capital requirements (heavier solid line) and in the absence of capital requirements (lighter
solid line), for the case γ = 0.25, λ = 0.01, m = 1, i = 5, k = 12.65.

Fig. 2. The graph plots the probability distribution of normalized capital at the end of the first reporting period in
the presence of capital requirements (heavier solid line) and in the absence of capital requirements (lighter solid
line), for the case γ = 0.25, λ = 0.01, m = 1, i = 5, k = 12.65.

The heavier line in Fig. 1 (respectively, Fig. 2) shows the beginning-of-period portfolio
weight (respectively, the probability distribution of end-of-period capital) for an institution
subject to capital requirements, assuming the number of exceptions recorded in the current
backtesting period is i = 5 and that the applicable reserve multiple is k = 12.65. As shown
in Table 1, such an institution would choose to report a normalized VaR v = 5.32% at
the beginning of the period. Two critical levels of capital then become relevant in Figs. 1
and 2. The first is the point below which, conditional on a capital shock occurring, the
continuation value equals zero. This is the point at which

K − qK− − λ
(
K− − VaR − (K − qK−)

)+ = 0,
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or K/K− = q + λ(1 − v)/(1 + λ) = 0.909375. The second is the point below which an
exception is recorded for the current period. This is the point at which K = K− − VaR,
or K/K− = 1 − v = 0.9468. For the same reasons described above in the unconstrained
case, the institution has incentives to increase its risk taking as the end of the period
approaches if capital is just below either of these two points. This behavior is however
restricted by capital requirements. In fact, Eq. (23) implies that, with a single risky as-
set, the portfolio weight equals the minimum of 1

Γ (t)
κ
σ

, which represents the portfolio
weight that would be chosen in the absence of currently-binding capital requirements and
π̄(t) = 1

β
(1 − kv

K(t)/K− ), which represents the maximum feasible portfolio weight under
capital requirements. Figure 3 plots the optimal portfolio weight at the beginning of the
first reporting period (heavier solid line), together with the portfolio weight that would be
chosen in the absence of currently-binding capital requirements and the maximum feasible
portfolio weight (dotted line). Figure 4 plots the same curves at time t = 0.003. As shown
in both figures, when normalized capital is large, capital requirements become not binding
and the portfolio weights in both the constrained and the unconstrained model converge to
the same value, κ/(γ σ). However, when normalized capital is low, capital requirements
bind and the institution is forced to reduce its allocation to risky assets. In particular, as
shown in Table 1, the institution would have to lower its allocation to 409.3% at the begin-
ning of the period (when K/K− = 1) in order to meet capital requirements. Moreover, as
shown in the figures, any increase in risk taking for values of capital just below the two crit-
ical points mentioned above is also prevented by binding capital requirements. As a result
of the reduction in risk taking induced by capital requirements when normalized capital
is low, Fig. 2 shows that the institution is unable to drive the probability of end-of-period
levels of capital just below the two critical points to zero.

Figures 3 and 4 also show that, due to the costs associated with a violation of the re-
ported VaR, the institution has incentives to decrease its risky position as the end of the
period approaches and capital is just above the point below which an exception is recorded

Fig. 3. The graph plots the optimal portfolio allocation to risky assets at the beginning of the first reporting period
(heavier solid line), the allocation that would be chosen in the absence of currently-binding capital requirements
(lighter solid line) and the maximum feasible portfolio allocation (dotted line), for the case γ = 0.25, λ = 0.01,
m = 1, i = 5, k = 12.65.
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Fig. 4. The graph plots the optimal portfolio allocation to risky assets at time t = 0.003 (heavier solid line), the
allocation that would be chosen in the absence of currently-binding capital requirements (lighter solid line) and
the maximum feasible portfolio allocation (dotted line), for the case γ = 0.25, λ = 0.01, m = 1, i = 5, k = 12.65.

(that is, as K/K− is just above 1−v = 0.9468), so as to reduce the probability of recording
an exception. This reduction in risk taking is consistent with capital requirements and in-
duces a singularity in the probability density in Fig. 2 at the point K/K− = 1−v = 0.9468:
in other words, there is a positive probability that end-of-period capital will exactly equal
this critical level.

Because capital requirements result in a decrease in risk taking, the end-of-period capital
distribution in the presence of capital requirements has a thinner left tail than that in the
absence of capital requirements. This is reflected in Table 1 in a reduction of both the 90
and the 99% true VaRs compared to the case of no capital requirements. More importantly,
the conditional default probability is significantly reduced, from 5.84 to 1.30%. Since, as
noted in Fig. 2, there is a positive probability that end-of-period capital will be exactly
K− − VaR, several different VaR values are concentrated at exactly the reported VaR. As
shown in Table 1, for the case under consideration the 90% VaR happens to coincide with
the reported VaR.

A general examination of Table 1 shows that, for all values of h, i and k, VaR-based
capital requirements are effective in curbing the risk of trading portfolios and correspond-
ing default probabilities. It is also interesting to note from the table that, given the number
of exceptions in the current period, a larger value of the reserve multiplicative factor k

does not necessarily result in more stringent capital requirements and lower default prob-
abilities, since the institution has stronger incentives to underreport its true 99% VaR
the higher the value of the multiplicative factor. Nevertheless, the penalties associated
with backtesting appear to be effective in mitigating the incentives to underreport and,
for the set of parameters considered in Table 1, reported VaRs are never below the true
90% VaR.

The incentives to underreport also depend critically on the institution’s risk aversion.
Since the utility loss of capital requirements is larger the lower the risk aversion, institu-
tions with low risk aversion have a stronger incentive to underreport their true VaR, while
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Table 2
Results for the parameter values: γ = 0.50, λ = 0.01, m = 1

h i k v π̄ π v0.90 v0.99 pD πU vU
0.90 vU

0.99 pU
D

1 0 9.49 .0835 2.596 2.332 .0364 .0650 .0000 2.355 .0411 .0714 .0003
1 0 12.65 .0634 2.476 2.306 .0358 .0634 .0000 2.355 .0411 .0714 .0003
1 5 9.49 .0835 2.596 2.332 .0362 .0649 .0000 2.355 .0411 .0714 .0003
1 5 12.65 .0634 2.474 2.303 .0358 .0634 .0000 2.355 .0411 .0714 .0003
1 10 9.49 .0835 2.597 2.332 .0362 .0651 .0000 2.355 .0411 .0714 .0003
1 10 12.65 .0634 2.476 2.306 .0358 .0634 .0000 2.355 .0411 .0714 .0003

250 0 9.49 .0835 2.597 2.332 .0363 .0650 .0000 2.355 .0411 .0714 .0003
250 0 12.65 .0634 2.478 2.306 .0356 .0634 .0000 2.355 .0411 .0714 .0003
250 5 9.49 .0835 2.596 2.332 .0364 .0651 .0000 2.355 .0411 .0714 .0003
250 5 12.65 .0634 2.474 2.303 .0356 .0634 .0000 2.355 .0411 .0714 .0003
250 10 9.49 .0835 2.597 2.332 .0367 .0653 .0000 2.355 .0411 .0714 .0003
250 10 12.65 .0634 2.478 2.306 .0360 .0634 .0000 2.355 .0411 .0714 .0003

Note. See Table 1.

institutions with high risk aversion have a stronger incentive to overreport. As shown in
Table 2, an institution with a risk aversion coefficient of 0.50 (or larger) would never un-
derreport its true VaR at t = 0 and possibly over-report.35

Higher costs associated with exceptions (higher values of λ) lead to a decrease in risk-
taking (as measured by the initial portfolio allocation π ) and an increase in reported VaRs.
With a value of λ equal to 5%, Table 3 shows that an institution with risk aversion γ =
0.25 would only underreport its true VaR in the extreme case in which the number of
exceptions recorded in the current period has already reached i = 10, so that there is no
opportunity cost of higher capital requirements in the future associated with additional
exceptions (since no additional increases in the multiplicative factor k are imposed once
the number of exceptions exceeds 10). As a consequence of the reduction in risk-taking,
higher reputation costs also result in a reduction in the conditional default probabilities,
so that these probabilities become essentially zero for the set of parameters considered in
Table 3.

4.2. Two risky assets

To check how the results reported in the previous subsection are affected by the assump-
tion of a single risky asset, we also compute the optimal reporting and investment strategies
for the case of two risky assets. As mentioned at the beginning of this section, in order to
allow a comparison with the case of a single risky asset, we choose the price coefficient
μ and σ so that the risk premium and volatility of the mean-variance efficient portfolio of
risky assets are the same as in previous examples. Finally, we assume that the two assets

35 Berkowitz and O’Brien (2002) compare daily VaR reports with historical daily profit and losses for a sample
of 6 large US commercial banks and conclude that the banks in their sample tend to overestimate (or to overreport)
their true VaR. Our results suggest that it should be possible to relate the extent of under- or over-reporting in
a cross section of financial institutions to the volatility of the institution’s asset value (which proxies for the
institution’s risk aversion).
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Table 3
Results for the parameter values: γ = 0.25, λ = 0.05, m = 1

h i k v π̄ π v0.90 v0.99 pD πU vU
0.90 vU

0.99 pU
D

1 0 9.49 .0710 4.076 4.076 .0710 .0710 .0000 4.861 .0811 .1529 .0584
1 0 12.65 .0557 3.689 3.658 .0557 .0557 .0000 4.861 .0811 .1529 .0584
1 5 9.49 .0710 4.078 4.078 .0710 .0710 .0000 4.861 .0811 .1529 .0584
1 5 12.65 .0557 3.688 3.657 .0557 .0557 .0000 4.861 .0811 .1529 .0584
1 10 9.49 .0710 4.075 4.075 .0710 .0710 .0000 4.861 .0811 .1529 .0584
1 10 12.65 .0557 3.688 3.658 .0557 .0557 .0000 4.861 .0811 .1529 .0584

250 0 9.49 .0711 4.074 4.074 .0711 .0711 .0000 4.861 .0811 .1529 .0584
250 0 12.65 .0557 3.688 3.658 .0335 .0557 .0000 4.861 .0811 .1529 .0584
250 5 9.49 .0711 4.074 4.074 .0711 .0711 .0000 4.861 .0811 .1529 .0584
250 5 12.65 .0557 3.688 3.657 .0466 .0577 .0000 4.861 .0811 .1529 .0584
250 10 9.49 .0710 4.077 4.077 .0710 .1174 .0000 4.861 .0811 .1529 .0584
250 10 12.65 .0557 3.688 3.658 .0557 .1034 .0000 4.861 .0811 .1529 .0584

Note. See Table 1.

Table 4
Results for the parameter values: γ = 0.25, λ = 0.01, m = 2

h i k v π1 + π2 π1 + π2 v0.90 v0.99 pD πU
1 + πU

2 vU
0.90 vU

0.99 pU
D

1 0 9.49 .0711 4.071 4.071 .0711 .0711 .0079 4.861 .0811 .1529 .0584
1 0 12.65 .0555 3.721 3.721 .0555 .0555 .0060 4.861 .0811 .1529 .0584
1 5 9.49 .0717 4.002 4.002 .0717 .0717 .0016 4.861 .0811 .1529 .0584
1 5 12.65 .0542 3.923 3.923 .0542 .1046 .0131 4.861 .0811 .1529 .0584
1 10 9.49 .0702 4.169 4.169 .0702 .1089 .0168 4.861 .0811 .1529 .0584
1 10 12.65 .0541 3.942 3.942 .0541 .1053 .0137 4.861 .0811 .1529 .0584

250 0 9.49 .0703 4.168 4.168 .0703 .1101 .0133 4.861 .0811 .1529 .0584
250 0 12.65 .0541 3.941 3.941 .0541 .0823 .0067 4.861 .0811 .1529 .0584
250 5 9.49 .0716 4.010 4.010 .0716 .0716 .0049 4.861 .0811 .1529 .0584
250 5 12.65 .0558 3.684 3.684 .0558 .0558 .0028 4.861 .0811 .1529 .0584
250 10 9.49 .0703 4.167 4.167 .0703 .1203 .0309 4.861 .0811 .1529 .0584
250 10 12.65 .0541 3.941 3.941 .0541 .1051 .0145 4.861 .0811 .1529 .0584

Note. The table shows the values of the reported normalized daily VaR (v), the upper bound on the total portfolio
allocation to risky assets (π1 + π2), the total portfolio allocation to risky assets (π1 + π2), the true normalized
90 and 99% VaRs (v0.90 and v0.99) and the conditional probability of default (pD ) in the presence of capital
requirements, as well as the portfolio allocation to risky assets (πU

1 +πU
2 ), the true normalized 90 and 99% VaRs

(vU
0.90 and vU

0.99) and the conditional probability of default (pU
D

) in the absence of capital requirements at the
beginning of two different reporting periods.

have the same risk weights, so that the risk weight for the market portfolio is also the same
as in the previous examples.

Table 4 reports the results for the same set of parameters as in Table 1, but with m = 2.
The ability to engage in asset substitution to limit the impact of capital requirements in the
presence of multiple risky assets results in higher VaRs than in the case of a single risky
asset. However, a comparison of the results in Table 4 with those in Table 1 shows that
this effect is quite small. Moreover, all the qualitative features of the optimal reporting and
trading strategy described in the previous subsection also apply in the presence of multiple
risky assets.
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Fig. 5. The graph plots the optimal total portfolio allocation to risky assets (heavier solid line) and to each of
the two risky assets (lighter solid lines) at the beginning of the first reporting period in the presence of capital
requirements, for the case γ = 0.25, λ = 0.01, m = 2, i = 5, k = 12.65.

This is confirmed by Fig. 5, which plots the total allocation to risky assets as a function
of normalized capital at the beginning of the first reporting period, for the case i = 5 and
k = 12.65, as well as the contribution of the two risky assets to the total portfolio alloca-
tion. As implied by Proposition 4, the optimal portfolio policy significantly diverges from
two-fund separation. As the constraint increasingly binds (that is, as normalized capital
decreases), the weight of the second asset (the one with the lower ratio of risk premium to
risk coefficient) in the optimal risky asset portfolio is progressively reduced. If normalized
capital is sufficiently low, the second asset is entirely omitted from the optimal portfo-
lio. However, in spite of this lack of portfolio separation, the total allocation to stocks
π1 + π2 almost exactly matches that in Figs. 1 and 3 for the case of a single risky as-
set.

5. Concluding remarks

We study the dynamic investment and reporting problem of a financial institution sub-
ject to capital requirements based on self-reported VaR estimates, as in the Basel Com-
mittee’s Internal Models Approach (IMA). We characterize the solution of this problem
using martingale duality and parametric quadratic programming techniques. We find that
capital requirements based on the IMA can be very effective in curbing portfolio risk and
inducing revelation of this risk. Even with constant price coefficients, optimal portfolios
in the presence of capital requirements do not display two-fund separation: we show that
as capital requirements become progressively more binding following losses, financial in-
stitutions find it optimal to rebalance their portfolios in favor of assets characterized by
high expected returns (high systematic risks) relative to the regulatory risk weights. How-
ever, optimal portfolios satisfy a local three-fund separation property, the three funds being
the riskless asset, the mean-variance efficient portfolio of risky assets and a risk-weight-
constrained minimum-variance portfolio of risky assets. For no choice of the parameters
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we find IMA-based capital requirements leading to an increased probability of default or
of extreme losses.
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Appendix A. Proofs

Proof of Proposition 1. Letting α = K − θ�1̄, the constraint in Eq. (5) is equivalent to
(αs, θs) ∈ A, where

A = {
(α, θ) ∈ R × R

m: α � kVaR − (
1̄ − β

)�
θ+ + (

1̄ + β
)�

θ−}
.

For ν = (ν0, ν−) ∈ R × R
m, let δA(ν) = sup(α,θ)∈A[−(αν0 + θν−)] denote the support

function of −A and let Ã = {ν ∈ R
m+1: δA(ν) < +∞} denote its dual cone. It is easily

verified that

Ã = {
(ν0, ν−) ∈ R × R

m: ν0 � 0, ν0
(
1̄ − β

)
� ν− � ν0

(
1̄ + β

)}
,

and

δA(ν) = −kVaRν0 for ν ∈ Ã.

The claim then follows from Proposition 1 in Cuoco (1997).36 �
Proof of Proposition 2. The monotonicity and convexity of Ṽ follow from the fact that
Eq. (13) implies

(26)

Ṽz(z, t) = E

[
e− ∫ hτ

t (r+ν∗(u)+ 1
2 κν∗ (u)2)du−∫ hτ

t κν∗ (u)dw(u)

× ṽz

(
z e− ∫ hτ

t (r+ν∗(u)+ 1
2 κν∗ (u)2)du−∫ hτ

t κν∗ (u)dw(u)
)

− kVaR

hτ∫
t

e− ∫ u
t (r+ν∗(s)+ 1

2 κν∗ (s)2)ds−∫ u
t κν∗ (s)dw(s)ν∗(u)du

]

36 It can be easily verified that the proof of Proposition 1 in Cuoco (1997) remains valid for the problem in
Eq. (5) in spite of the fact that v(K,K−,VaR, i, k, hτ) is discontinuous at K = K− − VaR.
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and the fact that ṽ is strictly decreasing and convex in z.
The PDE (14) is the HJB equation associated with the minimization problem in Eq. (13).

The fact that the dual value function Ṽ is a (viscosity) solution of this PDE can be verified
by rewriting the dual stochastic control problem in terms of the state variable zν = log(Zν)

and then using Theorem 3 in Vargiolu (2001).
The bounds on ν∗ follow from the fact that, letting ζ = ν− − ν01̄, the minimization

problem in Eq. (14) is equivalent to

(27)min
ν0�0

−ν0β�ζ�ν0β

[
1

2

∣∣σ−1(μ + ζ )
∣∣2 − Ṽz + kVaR

zṼzz

ν0

]
.

The unconstrained solution to Eq. (27) is given by ζ ∗ = −μ, which satisfies the constraints
in Eq. (27) as long as ν0 � M = max{|ι�i μ|/ι�i β: i = 1, . . . ,m}. Since K = −Ṽz, the con-
straint in Eq. (5) implies

Ṽz + kVaR � −β�(θ+ + θ−) � 0.

Hence, the term multiplying ν0 in Eq. (27) is nonnegative. Thus, taking ν0 > M in Eq. (27)
increases the second term while leaving the first unchanged. Hence, ν∗

0 � M . The bounds
on ν∗− then follow immediately from the definition of Ã. �
Proof of Proposition 3. The proof of Theorem 1 in Cuoco (1997) shows that

K(t) = E

[
−Zν∗(hτ)

Zν∗(t)
ṽz

(
Zν∗(hτ)

) + kVaR

hτ∫
t

Zν∗(u)

Zν∗(t)
ν∗(u)du

∣∣Ft

]
.

Equation (16) then follows from Eq. (26), while Eq. (15) follows from an application of
Itô’s lemma to Eq. (16). �
Proof of Proposition 4. Letting ζ = ν− − ν01̄, the minimization in Eq. (14) can be rewrit-
ten as

(28)min
ν0�0

−ν0β�ζ�ν0β

[
1

2

∣∣σ−1(μ + ζ )
∣∣2 + hν0

]
,

where

h = − Ṽz + kVaR

z2Ṽzz

.

Letting (ν∗
0 , ζ ∗) denote the solution to Eq. (28), it will be shown below that ν∗

0 is a
monotonically decreasing function of h. Since the constraints on ζ in Eq. (28) become
less binding as ν∗

0 increases, a constraint that does not bind for a given value of h will
never bind for lower values of h. It is easy to see that when h is large ν∗

0 is close to zero
and exactly one constraint binds for each component of ζ . The above argument then im-
plies that the other constraint will never bind. Let H be the m × m diagonal matrix whose
ith diagonal element is equal to +1 (respectively, −1) if the lower bound (respectively, the
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upper bound) binds on the ith component of ζ for h sufficiently large. The constraints on ζ

in Eq. (28) is then equivalent to

Hζ + ν0β � 0.

The Lagrangian for this problem is

L = 1

2
(μ + ζ )�(σσ�)−1(μ + ζ ) + hν0 − λ�(Hζ + ν0β),

where λ is a vector of Lagrangian multipliers.
Now suppose without loss of generality that, after resorting the assets if needed, for a

given value of h only the first i � m constraints on ζ bind. Then the last m− i components
of λ equal 0 (that is, λ = I�

i Iiλ) and the first-order conditions for a minimum are

(29)(σσ�)−1(μ + ζ ∗) − Hλ = 0,

(30)Ii

(
Hζ ∗ + ν∗

0β
) = 0,

(31)h − λ�β � 0,

(32)(h − λ�β)ν∗
0 = 0.

From Eq. (29)

(33)ζ ∗ = −μ + σσ�Hλ

and hence, from Eq. (30) and the fact that λ = I�
i Iiλ

λ = I�
i

(
IiHσσ�HI�

i

)−1
Ii

(
Hμ − ν∗

0β
)

= I�
i IiHHI�

i

(
IiHI�

i Iiσσ�I�
i IiHI�

i

)−1
IiHH

(
Hμ − ν∗

0β
)

= I�
i IiHI�

i IiHI�
i

(
IiHI�

i

)−1(
Iiσσ�I�

i

)−1(
IiHI�

i

)−1
IiHI�

i IiH
(
Hμ − ν∗

0β
)
(34)= HI�

i

(
Iiσσ�I�

i

)−1
Ii

(
μ − ν∗

0Hβ
)
.

Substituting the above expression for λ in Eq. (33) gives

(35)ζ ∗ = −μ + σσ�I�
i

(
Iiσσ�I�

i

)−1
Ii

(
μ − ν∗

0Hβ
)
,

while substituting the same expression in Eq. (31) and using Eq. (32) gives

(36)ν∗
0 =

(
β�HI�

i (Iiσσ�I�
i )−1Iiμ − h

β�HI�
i (Iiσσ�I�

i )−1IiHβ

)+
.

As already noted, it is clear from Eq. (28) that there must exist some constant hm such
that ν∗

0 is close to zero when h > hm and hence the constraint on each component of ζ binds
(that is, all the components of λ are strictly positive). The above analysis (with i = m) then
implies

λ = H(σσ�)−1(μ − ν∗
0Hβ

)
, ζ ∗ = −ν∗

0Hβ,

ν∗
0 =

(
β�H(σσ�)−1μ − h

β�H(σσ�)−1Hβ

)+
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for h > hm. Let

hm+1 = β�H(σσ�)−1μ > hm.

For h � hm+1, ν∗
0 = 0, ζ ∗ = 0 and λ = H(σσ�)−1μ. For all the components of λ to be

strictly positive, we must have

H = diag
(
sign

(
(σσ�)−1μ

))
.

On the other hand, for hm < h < hm+1 the strict positivity of λ amounts to

(37)ν∗
0 < min{ηm,j : ηm,j > 0, j = 1,2, . . . ,m},

where

ηm,j = ι�j H(σσ�)−1μ

ι�j H(σσ�)−1Hβ
.

The fact that H(σσ�)−1H is positive definite and β ∈ R
m++ implies that there must be at

least one ηm,j > 0, so that the minimum in (37) is well defined. By resorting the assets if
needed, we can assume without loss of generality that the minimum is attained by ηm,m.
The condition on ν∗

0 is then equivalent to

h > β�H(σσ�)−1(μ − ηm,mHβ).

Thus,

hm = β�H(σσ�)−1(μ − ηm,mHβ).

When h � hm, the constraint on the last component of ζ no longer binds and there must
exist some constant hm−1 � hm such that for hm−1 < h � hm the constraint on each of the
first m−1 components of ζ binds. Since ν∗

0 must be continuous at hm (see, e.g., Theorem 1
in Tøndel et al., 2003) and hence strictly positive, for these values of h we must have (from
Eqs. (34)–(36) with i = m − 1)

ν∗
0 = β�HI�

m−1(Im−1σσ�I�
m−1)

−1Im−1μ − h

β�HI�
m−1(Im−1σσ�I�

m−1)
−1Im−1Hβ

,

ζ ∗ = −μ + σσ�I�
m−1

(
Im−1σσ�I�

m−1

)−1
Im−1

(
μ − ν∗

0Hβ
)
,

λ = HI�
m−1

(
Im−1σσ�I�

m−1

)−1
Im−1

(
μ − ν∗

0Hβ
)
.

The strict positivity of the first m − 1 components of λ amounts to

(38)ν∗
0 < min{ηm−1,j : ηm−1,j > 0, j = 1,2, . . . ,m − 1},

where

ηm−1,j = ι�j HI�
m−1(Im−1σσ�I�

m−1)
−1Im−1μ

ι�j HI�
m−1(Im−1σσ�I�

m−1)
−1Im−1Hβ

.
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The fact that Im−1λ is continuous (see, e.g., Theorem 1 in Tøndel et al., 2003) and hence
strictly positive at hm, so that

Im−1HI�
m−1

(
Im−1σσ�I�

m−1

)−1
Im−1μ

> ηm,mIm−1HI�
m−1

(
Im−1σσ�I�

m−1

)−1
Im−1Hβ,

HI�
m−1(Im−1σσ�I�

m−1)
−1Im−1H is positive definite and β ∈ R

m++ implies that there must
be at least one ηm−1,j > 0. Without loss of generality, we can assume that the minimum
in (38) is attained by ηm−1,m−1. The condition on ν∗

0 is then equivalent to

h > β�HI�
m−1

(
Im−1σσ�I�

m−1

)−1
Im−1(μ − ηm−1,m−1Hβ).

Thus,

hm−1 = β�HI�
m−1

(
Im−1σσ�I�

m−1

)−1
Im−1(μ − ηm−1,m−1Hβ).

Continuing this way we obtain additional values {h1, h2, . . . , hm−2} with

hi = β�HI�
i

(
Iiσσ�I�

i

)−1
Ii(μ − ηi,iHβ)

such that for hi < h � hi+1 only the constraint on the first i components of ζ bind, in
which case

ν∗
0 = β�HI�

i (Iiσσ�I�
i )−1Iiμ − h

β�HI�
i (Iiσσ�I�

i )−1IiHβ
,

ζ ∗ is given by Eq. (35) and λ is given by Eq. (34). Since h � 0 (see the proof of Proposi-
tion 2) and h1 = 0, this characterization exhausts all possible cases.

The expressions for the optimal trading strategy immediately follow from the fact that
for hi < h < hi+1

θ(z, t) = zṼzz(z, t)(σσ�)−1(μ + ζ ∗)

(39)=
{

zṼzz(z, t)(σσ�)−1μ if h � hm+1,

zṼzz(z, t)I
�
i (Iiσσ�I�

i )−1Ii(μ − ν∗
0Hβ) if hi < h � hi+1.

The fact that sign(Hθ) � 0 follows from the fact that Eq. (29) implies

Hθ = zṼzzλ � 0. �
Proof of Corollary 1. Letting ζ = ν− − ν0, it follows from Eqs. (35) and (36) in the proof
of Proposition 4 that, when m = 1 and μ > 0,

(40)ζ ∗ = −ν∗
0β

and

(41)ν∗
0 =

(
μ

β
+

(σ

β

)2 Ṽz + kVaR

zṼzz

)+
.

Substituting Eqs. (40) and (41) into Eq. (14) yields the PDE in the corollary. The expression
for the optimal trading strategy follows directly from Eqs. (39)–(41). �
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