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Liquidity Premia and Transaction Costs

BONG-GYU JANG, HYENG KEUN KOO, HONG LIU,
and MARK LOEWENSTEIN∗

ABSTRACT

Standard literature concludes that transaction costs only have a second-order effect
on liquidity premia. We show that this conclusion depends crucially on the assumption
of a constant investment opportunity set. In a regime-switching model in which the
investment opportunity set varies over time, we explicitly characterize the optimal
consumption and investment strategy. In contrast to the standard literature, we find
that transaction costs can have a first-order effect on liquidity premia. However, with
reasonably calibrated parameters, the presence of transaction costs still cannot fully
explain the equity premium puzzle.

TRANSACTION COSTS ARE PREVALENT in almost all financial markets. Extensive re-
search has been conducted on the optimal consumption and investment policy
in the presence of transaction costs since the seminal work of Constantinides
(1979, 1986). The presence of transaction costs significantly changes optimal
consumption and investment strategies. For example, in the presence of trans-
action costs, continuous trade incurs infinite transaction costs, and thus even a
small transaction cost can dramatically decrease the frequency of trade. How-
ever, most studies find that the utility loss due to the presence of transaction
costs is small. In particular, Constantinides (1986) finds that the liquidity pre-
mium (i.e., the maximum expected return an investor is willing to exchange
for zero transaction cost) is small relative to the transaction cost, even for a
suboptimal trading strategy, and hence concludes that transaction costs only
have a second-order effect for asset pricing. Indeed, in this framework it seems
unlikely that transaction costs can have an important role in explaining the
cross-sectional patterns of expected returns, the equity premium puzzle, or the
small stock risk premia. This finding contrasts with many empirical studies
that highlight the importance of transaction costs or related measures such as
turnover in influencing the cross-sectional patterns of expected returns.1
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One of the common assumptions of the existing literature on optimal con-
sumption and investment with transaction costs is that the investment op-
portunity set stays constant. For example, Constantinides (1986), Vayanos
(1998), Liu and Loewenstein (2002), and Liu (2004) all assume that the ex-
pected stock return, the return volatility, and the liquidity (transaction costs)
are constant throughout the investment horizon. Empirical research, however,
documents a great deal of evidence that is inconsistent with the constant invest-
ment opportunity set hypothesis. For example, Schwert (1989) and Campbell
and Hentschel (1992) conclude that the volatilities of stock returns vary sub-
stantially over time. Campbell (1991) and Lewellen (2004) find that expected
returns on equities also change over time. In addition, the existence of large
liquidity shocks (e.g., the 1987 crash, the 1998 Long Term Capital Management
event) suggests that transaction costs can also vary over time.

Taking into account the stochastic nature of the investment opportunity
set may qualitatively change the conclusion in the standard literature (e.g.,
Constantinides (1986)) that transaction costs only have a second-order ef-
fect. Intuitively, the presence of transaction costs reduces an investor’s wel-
fare through two mechanisms, namely, the transaction cost payment and the
deviation from the optimal strategy in the no-transaction-cost case. If invest-
ment opportunity set parameters change over time, the optimal stock invest-
ment target in the no-transaction-cost case should also change over time. Thus,
as market conditions change over time, compared to the constant-investment-
opportunity-set case, an investor should rebalance more often to avoid being
too far away from the target if the transaction cost rate is small. The rela-
tive impact of the transaction cost should therefore increase, mainly because
of a greater transaction cost payment resulting from more frequent trading. In
addition, if liquidity can vary dramatically over time, an investor should sig-
nificantly change his trading strategy to minimize the loss from a bad liquidity
shock, and thus the impact of transaction costs should also increase signifi-
cantly, mainly due to the substantial deviation from the optimal strategy in the
no-transaction-cost case.

To quantify this intuition, we build a model similar to that of Constantinides
(1986) and Davis and Norman (1990), but with regime switching for fundamen-
tal parameters. Specifically, we consider the optimal consumption and invest-
ment problem for a small investor (i.e., one with no price impact) who derives
constant relative risk aversion (CRRA) utility from intertemporal consumption
and bequest.2 The investor can invest in one risky asset and one risk-free asset.
In contrast to most of the existing literature, we assume that the investment op-
portunity set is not constant and that there are two regimes (“Bull” and “bear”)
with different fundamental parameters such as expected return, volatility, and
liquidity. One regime switches to the other regime at the first jump time of a
market-independent but possibly regime-dependent Poisson process.3

2 The bequest can also be interpreted as an exogenous need for cash.
3 The investor we consider in this paper can be an institutional investor who does not have any

price impact and who updates the estimates of fundamental parameters from time to time.
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We explicitly characterize the solution to the investor’s problem in a general
setting.4 Using parameter estimates from Ang and Bekaert (2002), our exten-
sive numerical analysis demonstrates that in contrast to the standard conclu-
sion that transaction costs only have a second-order effect, transaction costs
can have a first-order effect if the investment opportunity set varies over time.
Specifically, the liquidity premium to transaction cost (LPTC) ratio could be
well above one. The consideration of a stochastic investment opportunity set
makes this ratio typically more than 4 times and in many cases 10 times higher
than what Constantinides finds, even for the optimal policies.5 In addition, we
find that the LPTC ratio increases as the Bull regime investment opportunity
set becomes more and more attractive than the bear regime investment op-
portunity set. Intuitively, as the difference in, for example, expected returns
increases, an investor invests more (less) in the risky asset in the Bull (bear)
regime, revises the portfolio more dramatically, and thus incurs higher transac-
tion costs. Our analysis therefore suggests that consideration of a time-varying
investment opportunity set is an important factor in explaining the high vol-
ume of trade and the relation between transaction costs and the cross-sectional
patterns of expected returns. However, our analysis also suggests that even
when the investment opportunity set is time-varying, the magnitude of liquid-
ity premia cannot be large enough to fully explain the equity premium puzzle
(see Mehra and Prescott (1985)).

Unlike the no-transaction-cost case, smoothing of trading strategies across
regimes is optimal in the presence of transaction costs. Without transaction
costs, the optimal investment policy in one regime is independent of parameters
in the other regime. In contrast, our analysis shows that in the presence of
transaction costs, an investor optimally responds to changes in one regime by
altering investment behavior in both regimes. For example, as the transaction
cost in one regime increases (all else equal), the investor trades less in this
regime and trades more in the other regime because the latter regime becomes
relatively cheaper to trade in. This finding of cross-regime smoothing suggests
that the presence of transaction costs can lead to patterns of optimal investment
behavior that would seem suboptimal if only the current market conditions were
considered.

As far as we know, in the literature with regime switching, this paper is the
first to provide a verification theorem for a candidate solution, explicit bounds
on the no-transaction regions, and the steady-state distribution function for the
portfolio holding.

Our theoretical analysis suggests that extending the two-regime model to
a multi-regime setting is straightforward but requires significantly more in-
tensive computation. However, the qualitative results we obtain in the paper

4 We also derive closed-form solutions up to some constants in special cases such as the no-
intertemporal-consumption case. Results are not reported in this paper to save space, but are
available from the authors.

5 Recall that Constantinides (1986) uses a suboptimal consumption policy to emphasize how
small the liquidity premium is.
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should stay the same. For example, as long as the transaction cost is small rela-
tive to the changes in the optimal portfolio target across regimes, we expect an
investor to optimally incur transaction costs when a regime switches. This fun-
damental intuition also applies to the case in which the investment opportunity
set depends on a continuous state variable. Hence, jumps in the fundamental
parameters in the financial market are not critical for our results.

Our paper is related to a large body of literature that addresses the optimal
transaction policy for an investor facing transaction costs. Dumas and Luciano
(1991) derive a closed-form solution for an investor with a long-term growth
objective. Schroder (1995) uses a numerical method to solve for the optimal
transaction policy in the presence of fixed costs. Vayanos (1998) derives the
asset pricing impact of transaction costs in an overlapping generations frame-
work. Leland (2000) examines a multiasset investment fund that is subject to
transaction costs and capital gains taxes. He develops a relatively simple nu-
merical procedure to compute the multidimensional no-transaction region. Lo,
Mamaysky, and Wang (2004) study the effect of fixed transaction costs on asset
prices and find that even small fixed costs can give rise to significant illiq-
uidity discounts on asset prices. Shreve and Soner (1994) provide important
theoretical results and an analysis of the liquidity premium. All these papers
assume that the investment opportunity set is constant. Our analysis suggests
that a stochastic investment opportunity set is an important consideration in
generating both a higher volume of trade and a greater impact of transaction
costs.

While some previous results characterize optimal policies in more general
models (e.g., Koo (1992) and Loewenstein (2000)), they do not lead to transpar-
ent statements concerning liquidity premia and transaction frequency. Lynch
and Balduzzi (2000) examine the impact of stock return predictability and
transaction costs on portfolio rebalancing rules by discretizing both time and
states to obtain a numerical approximation. However, due to some nonstan-
dard modelling choices, it is difficult to interpret their results. For example,
for some of their analysis they assume that consumption is financed by cost-
lessly liquidating the stock and the riskless asset in proportions given by the
pre-rebalancing portfolio weights. As a result, the post-consumption but pre-
rebalancing portfolio weights are unchanged. When the investor rebalances
these portfolio weights, a transaction cost proportional to post-consumption
wealth is then incurred and paid by costlessly liquidating the stock and the
riskless asset in proportions given by the post-rebalancing portfolio weights.
Thus, an investor who does not want to change the dollar amount invested in
the stock would first need to sell stock to finance consumption and then incur a
transaction cost to buy back the stock. In contrast, in our model and the stan-
dard literature (e.g., Constantinides (1986)), the transaction cost payment and
consumption withdrawals are financed using an optimal trading strategy. In
addition, we provide a transparent and tractable model in which we can explic-
itly compute bounds on the transaction boundaries, liquidity premia, trading
frequency, and expected lifetime transaction cost expenditures.

The rest of the paper is organized as follows. Section I presents the model
with transaction costs and regime switching and provides characterizations
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of the solution. Numerical and graphical analysis is presented in Section II.
Section III closes the paper. All of the proofs are in the Appendix.

I. Optimal Consumption and Investment

A. The Basic Model

Throughout this paper we assume a probability space (�, F , P ), where un-
certainty and the filtration {Ft} are generated by a standard one-dimensional
Brownian motion w and two independent Poisson processes representing the
regime-switching risk and the mortality risk. We assume that all stochastic
processes in this paper are adapted.

An investor can trade two assets, a money market account (“the bond”) and
a risky investment (“the stock”). There are two regimes, “Bull” (regime B) and
“bear” (regime b). The fundamental parameters in the financial market may be
regime dependent. We assume that regime i switches into regime j at the first
jump time of an independent Poisson process with intensity λi, for i, j ∈ {B, b}.
In regime i, the risk-free interest rate is ri, and the investor can buy the stock at
the ask SA

t = (1 + θi)St or sell the stock at the bid SB
t = (1 − αi)St, where θi ≥ 0

and 0 ≤ αi ≤ 1 represent the proportional transaction cost rates and St satisfies

dSt

St
= µi dt + σi dwt , (1)

where all parameters are positive constants and µi > ri.
In regime i ∈ {B, b}, when θi + αi > 0 the above model gives rise to equations

governing the evolution of the dollar amount invested in the bond, xt, and the
dollar amount invested in the stock, yt:

dxt = rixt dt − (1 + θi) dIt + (1 − αi) dDt − ct dt, (2)

dyt = µi yt dt + σi yt dwt + dIt − dDt , (3)

where ct is the consumption rate and the processes D and I represent the
cumulative dollar amount of sales and purchases of the stock, respectively.
These processes are nondecreasing and right-continuous adapted processes
with D(0) = I(0) = 0. Let x0 and y0 be the given initial positions in the bond
and in the stock, respectively. Let 	(x0, y0) denote the set of admissible trading
strategies (c, D, I) such that (2) and (3) are satisfied, ct ≥ 0,

∫ t
0 cs ds < ∞ for all

t, and the investor is always solvent, that is,6

xt + (1 − αi) yt ≥ 0, ∀t ≥ 0 and i ∈ {B, b}. (4)

Similar to Constantinides (1986), we consider a CRRA investor who derives
von Neumann–Morgenstern time additive utility from intertemporal consump-
tion c with weight 1 − k and bequest at death with weight k, with a time discount

6 The assumption that µi > ri implies that the investor never shorts the stock and thus that
yt ≥ 0.
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rate of ρ. For simplicity, we assume that death occurs at the first jump time
of an independent Poisson process with intensity δ. Thus, after integrating out
the mortality risk, the investor solves

sup
(c,D, I )∈	(x0, y0)

E

[∫ ∞

0
e−(ρ+δ)t

(
(1 − k)

c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi) yt)1−γ

1 − γ

)
dt

]
. (5)

B. Optimal Policies with No Transaction Costs

In this section, we solve the optimal consumption and portfolio selection prob-
lem in the absence of transaction costs, that is, θi = αi = 0, under the regime-
switching model presented in the previous section. The results in this section
serve as a benchmark for the subsequent analysis.

In this case, the cumulative purchases and sales of the stock can be of infinite
variation. Let τi be the first jump time since the beginning of regime i. The
investor’s problem in regime i ∈ {B, b} can be rewritten as

Vi(W ) = sup
{ yt :t≥0}

E

[∫ τi

0
e−(ρ+δ)t

(
(1 − k)

c1−γ
t

1 − γ
+ kδ

W 1−γ
t

1 − γ

)
dt + e−(ρ+δ)τi V j (Wτi )

]

(6)

subject to

dWt = riWt dt + (µi − ri) yt dt + σi yt dwt , (7)

where Wt ≡ xt + yt ≥ 0 and Vj(W) is the value function in regime j �= i.
Under regularity conditions on Vi and Vj, the Hamilton–Jacobi–Bellman

(HJB) equations take the form

sup
(ci , yi )

{
1
2

σ 2
i y2

i ViWW + riW ViW + (µi − ri) yiViW − ciViW

− (ρ + δ + λi)Vi + λiV j + (1 − k)
c1−γ

i

1 − γ
+ kδ

W 1−γ

1 − γ

}
= 0, (8)

where i, j ∈ {B, b}, i �= j. We conjecture

Vi(W ) = Mi
W 1−γ

1 − γ
, for a constant Mi > 0, i ∈ {B, b}. (9)

By the first-order conditions, we have

ci =
(

ViW

1 − k

)− 1
γ

and yi = − (µi − ri)ViW

σ 2
i ViWW

.
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Then, plugging (9) into (8), we have that Mi and Mj satisfy the system of equa-
tions

−(ηi + λi)Mi + γ (1 − k)1/γ M 1−1/γ

i + λi M j + kδ = 0, (10)

where

ηi = ρ + δ − (1 − γ )

(
ri + κ2

i

2γ

)
, κi = µi − r

σi
, i, j ∈ {B, b}, i �= j . (11)

To ensure the existence of an optimal solution, we adopt the following assump-
tion, similar to that of Merton (1971):

ASSUMPTION 1: ηi > 0, i ∈ {B, b}.

LEMMA 1: Under Assumption 1, there is a unique solution (MB, Mb) to (10).

Proof: See the Appendix.

The following verification theorem shows that, indeed, our conjecture is
correct.

THEOREM 1: Under Assumption 1 for regime i ∈ {B, b}, Vi defined in (9) is the
value function defined in (6). In addition, the optimal consumption policy is
c∗

i = ( Mi
1 − k )−

1
γ W and the optimal fraction of wealth invested in the stock is π∗

i =
µi − ri

γ σ 2
i

.

Proof: This follows from an argument similar to (although simpler than)
that presented in the proof of Theorem 2. See the Appendix. Q.E.D.

Theorem 1 implies that both the optimal consumption and the optimal dollar
amount invested in the stock are constant fractions of the investor’s wealth in
each regime. Even though the investor smooths consumption across regimes (as
reflected in the fact that Mi and Mj are jointly determined by equation (10)), the
optimal investment policy is myopic in the sense that π∗

i only depends on the
current regime parameters. This follows from the fact that the risk of regime
switching is unhedgeable using the existing securities and that the investor can
rebalance at regime-switching time without any transaction costs. As we show
later, the presence of transaction costs makes the optimal trading strategy no
longer myopic.

C. Optimal Policies with Transaction Costs

Now suppose there are transaction costs in both regimes, that is, θi + αi >

0, i ∈ {B, b}. Using similar notation to that in the previous section, we can
rewrite the investor’s problem as
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x

y

Si

NTi

Bi

Merton-Line of state ix + (1 − αi)y = 0

Figure 1. The solvency region splits into the buy region Bi, sell region Si, and no-trade
region NTi.

vi(x, y) = sup
(c,D, I )

E

[∫ τi

0
e−(ρ+δ)t

(
(1 − k)

c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi) yt)1−γ

1 − γ

)
dt

+ e−(ρ+δ)τi v j (xτi , yτi )

]
, (12)

subject to (2) through (4), where vi(x, y) denotes the value function in regime i.
It can be easily verified that the value functions vB and vb are concave and

homogeneous of degree 1 − γ in (x, y) (see, for example, Constantinides (1979)
and Fleming and Soner (1993), Lemma VIII.3.2). As in Davis and Norman
(1990) and Liu and Loewenstein (2002), the solvency region Si splits into three
regions: A “no-trading” (NTi) region, a “buy” (Bi) region, and a “sell” (Si) region.
The homogeneity of vi implies that the transaction boundaries are straight lines
in the (x, y) plane (see Figure 1). In addition, there exists an interval [z

¯i, z̄i] such
that in regime i, the investor trades only the minimum amount to keep the bond
to stock ratio,

z ≡ x
y

,

inside the interval. We depict this analysis in Figures 2 and 3. Figure 2 shows
the solvency region when the two no-transaction regions (NTB and NTb) are
separated. Intuitively, this case occurs when the difference between the two
regimes is large (e.g., the expected return on the stock in the Bull regime is suf-
ficiently greater than that in the bear regime), the regime transition probability
is low, and the transaction cost is relatively small. Otherwise, the no-transaction
regions can be overlapped, as shown in Figure 3.

The optimal transaction policy above implies that the HJB equation takes
the following form:
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x(bond)

y(stock)

αB − 1

1

zB z̄bzbz̄B

Figure 2. The solvency region with separated no-trade regions.

x(bond)

y(stock)

αB − 1

1

zB z̄bz̄Bzb

Figure 3. The solvency region with overlapped no-trade regions.

1
2

σ 2
i y2viyy + rixvix + µi yviy + γ (1 − k)1/γ

1 − γ
v1−1/γ

ix

− (ρ + δ)vi + kδ
(x + (1 − αi) y)1−γ

1 − γ
+ λi(vj − vi) = 0, (13)

for j �= i in NTi. In the sell region, the investor transacts immediately to the
sell boundary. Therefore,
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vi(x, y) = Ai
(x + (1 − αi) y)1−γ

1 − γ
, (14)

where Ai is a positive constant to be determined. Similarly, in the buy region,
the investor transacts immediately to the buy boundary. Therefore,

vi(x, y) = Bi
(x + (1 + θi) y)1−γ

1 − γ
, (15)

where Bi is also a positive constant to be determined.
By the homogeneity of the value functions, there exists a function ψi :

(αi : −1, ∞) → R in regime i satisfying

vi(x, y) ≡ y1−γ ψi

(
x
y

)
. (16)

This implies that

ψi(z) =




Ai
(z + (1 − αi))1−γ

1 − γ
z < z

¯i

Bi
(z + (1 + θi))1−γ

1 − γ
z > z̄i.

(17)

Using equation (16) and the ratio z, we can simplify the partial differential
equation (PDE) to obtain the following ordinary differential equation (ODE) in
NTi:

βi
2z2ψ ′′

i (z) + βi
1zψ ′

i (z) + βi
0ψi(z) + γ (1 − k)1/γ

1 − γ
ψ ′

i (z)1−1/γ

+ kδ
(z + (1 − αi))1−γ

1 − γ
+ λiψ j (z) = 0, (18)

i �= j for z ∈ (z
¯i, z̄i), where βi

2 = 1
2σ 2

i , βi
1 = γ σ 2

i − (µi − ri), and βi
0 = 1

2σ 2
i γ (γ −

1) + (1 − γ )µi − ρ − δ − λi. We then have the following verification theorem:7

THEOREM 2: For i, j ∈ {B, b} and j �= i, suppose we have concave, increasing, and
homothetic C2,2 solutions to

7 The conditions in Theorem 2 assume that the value function has the required smoothness and
that the investor always optimally buys some stock. The smoothness issue is examined in Shreve
and Soner (1994) for the case k = 0 and in Liu and Loewenstein (2002) for k = 1 in models with
no regime shifting. The main difficulty encountered is when the x = 0 axis is contained in the
no-transaction region and the value function might not have the required smoothness on the x = 0
axis. It is also known that in the case k = 1 a short horizon might lead an investor to never buy stock
(see Liu and Loewenstein (2002)). Accommodating both of these possibilities does not present much
difficulty although it requires some additional technical arguments. For our purposes Theorem 2
is sufficient.
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1
2

σ 2
i y2viyy + rixvix + µi yviy + γ (1 − k)1/γ

1 − γ
v

1− 1
γ

ix − (ρ + δ)vi

+ kδ
(x + (1 − αi) y)1−γ

1 − γ
+ λi(vj − vi) ≤ 0, (19)

with equality for x
y ∈ [z

¯i, z̄i] and with αi − 1 < z
¯i < z̄i < ∞, which satisfy

(1 + θi)vix ≥ viy (20)

with equality for x
y > z̄i and

(1 − αi)vix ≤ viy (21)

with equality for x
y < z

¯i. Then vi is the value function, the optimal consumption
is given by

c∗ =
(

vix

1 − k

)− 1
γ

, (22)

and the optimal transaction policy is to transact the minimum amount to keep
x
y between z

¯i and z̄i.

Proof: See the Appendix.

Since functions ψB and ψb need to be solved simultaneously through the
coupled ODEs for the two regimes, the value function and the optimal trading
strategy in one regime are affected by the investment opportunity set in the
other regime. Therefore, in the presence of transaction costs, the optimal trading
strategy is no longer myopic, and the investor smooths not only consumption
but also trading strategies across regimes.

The following proposition provides some bounds on the value functions and
on the optimal no-transaction boundaries for the leading cases we analyze
later. Similar bounds can be developed for a more general specification of our
model. These bounds facilitate numerical computation by suggesting useful
starting values for the boundaries. They also provide useful information on the
width of the no-transaction regions. In addition, the proof suggests that similar
bounds can be obtained using the same approach when there are more than
two regimes.

PROPOSITION 1: Suppose γ > 1, k = δ = 0, rB = rb = r, θB = θb = θ , and αB = αb =
α. Then assuming we have a solution satisfying the conditions of Theorem 2, we
have the following bounds.

(i) For any 1 − α ≤ ζ ≤ 1 + θ and for i ∈ {b, B},
C

1 − γ
(x + (1 − α) y)1−γ ≤ vi(x, y) ≤ Mi

1 − γ
(x + ζ y)1−γ , (23)
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where C = ( ρ − (1 − γ )r
γ

)−γ and Mi is as given in Lemma 1.
(ii) If σ 2

i ≤ σ 2
j and µi ≥ µj, then vi(x, y) ≥ vj(x, y) and

z
¯i ≥ (1 − α)

(
γ σ 2

i

2(µi − r)
− 1

)
. (24)

(iii) For i, j ∈ {b, B}, i �= j, if z
¯i ≤ z

¯ j , then

z
¯i ≤ (1 − α)

(
γ σ 2

i

µi − r
− 1

)
. (25)

(iv) For i, j ∈ {b, B}, i �= j, if z̄i ≥ z̄ j , then

z̄i ≥ (1 + θ )

(
γ σ 2

i

µi − r
− 1

)
. (26)

Proof: See the Appendix.

II. Liquidity Premium, Trading Strategy,
and Transaction Costs

Constantinides (1986) introduces the concept of liquidity premia to measure
the effect of transaction costs on expected returns. He defines the liquidity
premium to be the maximum expected return an investor is willing to exchange
for zero transaction cost. He concludes that transaction costs have only a second-
order effect on investors’ utility, that is, the LPTC ratio is an order of magnitude
smaller than one. However, he obtains this result under the assumption of
a constant investment opportunity set, which tends to decrease the effect of
transaction costs because the investor trades infrequently. In contrast to that
of Constantinides (1986), the investment opportunity set in our model changes
stochastically. This stochastic opportunity set may induce an investor to trade
more frequently or to alter trading strategies more significantly and thus may
produce a first-order effect of the transaction cost.

Following Constantinides (1986), we define the liquidity premium to be the
maximum expected return that an investor is willing to give up in both regimes
in exchange for zero transaction costs.

DEFINITION 1: Let �i(x0, y0) be the liquidity premium in regime i at (x0, y0) for
i ∈ {B, b}. Then �i is such that

vi(x0, y0) = Mi
(x0 + y0)1−γ

1 − γ
, (27)
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where Mi is the unique solution of (10) with

κi = (µi − �i − ri)+

σi
, κ j = (µ j − �i − r j )+

σ j
, and j �= i. (28)

In this measure, we take the positive parts because an investor’s utility is
minimized when the risk premium is zero.

By the homogeneity of the value function, the liquidity premium only depends
on the initial fraction z0 = x0

y0
. We use the steady-state distribution of zt to

compute the average liquidity premium.8 This can be interpreted as a cross-
sectional liquidity premium average for different investors. Let �i(x0, y0) be the
liquidity premium in regime i at (x0, y0) for i ∈ {B, b}, as defined in Definition 1.
Then the average liquidity premium �̄i in regime i for i ∈ {B, b} is equal to

�̄i =
∫ z̄i

z
¯i

�i(z, 1)
λB + λb

λ j
φi(z) dz, (29)

where j �= i and φi(z) is the steady-state density of z in regime i, which is charac-
terized in Proposition 2 in the Appendix. The average liquidity premium across
both regimes is equal to

�̄ = λb

λB + λb
�̄B + λB

λB + λb
�̄b. (30)

In the following analysis we use parameter values similar to those esti-
mated for the U.S. equity market by Ang and Bekaert (2002) for the base case:
µB = 0.1394, µb = 0.1394, σB = 0.1313, σ b = 0.2600, λB = 0.2353, λb = 1.7391,
ρ = 0.1, γ = 2.0, rB = rb = 0.05, θB = αB = 0.01, θb = αb = 0.01, k = 0, and
δ = 0. These parameter values reflect the fact that volatility is significantly
higher in the bear market regime than in the Bull market regime, and that the
null hypothesis that the mean returns are the same across regimes cannot be
rejected by the data.9 As in Constantinides (1986), we set k = 0 and δ = 0 so
that the utility is derived only from consumption and the investor has an in-
finite horizon.10 The Poisson jump intensities are chosen to be consistent with
the observation that a Bull regime typically lasts longer (on average 4.25 years)
than a bear regime (on average 0.58 years). In our calibrated model, an investor
can infer the state of the current regime from observing stock return volatility,
which is the only parameter that varies across regimes in our benchmark case.

8 We have also computed liquidity premia at the Merton line and on y0 = 0 as in Constantinides
(1986) and obtained similar results.

9 To address any concerns that the estimation for the expected return µb in the bear regime
might be imprecise, we vary µb in Figure 9.

10 It is well known that the investor’s horizon can affect liquidity premia (see Liu and Loewenstein
(2002), for example). We focus on an infinite horizon case to approximate the case with a long
horizon.
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A. Optimal Trading Strategies

In the absence of transaction costs, it is straightforward to calculate the op-
timal trading strategies by solving the system of equations given by (10). As
discussed before, the optimal portfolio strategies are myopic: The investor opti-
mally maintains a ratio of stock investment to wealth of 2.5923 in the Bull
regime and of 0.6612 in the bear regime. The optimal consumption across
regimes displays cross-regime smoothing with a consumption-to-wealth ratio
of 12.793% in the Bull market and 12.530% in the bear market.11

In the presence of transaction costs, we use an iterative method to solve the
coupled free boundary value problem described in equations (17) and (18). Ta-
ble I depicts the optimal trading strategies for the case with transaction costs,
as well as how these strategies change with parameter values. With transaction
costs, the optimal consumption to liquidated wealth ratios are around 12.5%.
For the base case, we also see cross-regime smoothing in the portfolio holdings.
The investor optimally maintains the ratio of the dollar amount invested in
the stock to liquidated wealth between 1.9469 and 2.8934 in the Bull regime
and between 0.6005 and 0.9183 in the bear regime. Compared with the opti-
mal trading policy in the bear regime with no transaction costs, the investor
tends to hold more stock in the bear regime to reduce transaction cost payments
upon regime switching because on average the duration of the bear regime is
relatively short. This cross-regime smoothing is indicated in Figure 4, which
plots the behavior of the bear regime transaction boundaries against changes
in transaction costs in the Bull market. The bear market optimal portfolio pol-
icy is clearly sensitive to the Bull market transaction costs. In fact, when the
Bull market transaction cost is relatively high compared to the bear market
transaction cost, the optimal transaction boundary in the bear market is en-
tirely above the myopic policy (the “Merton Line”) in the no-transaction-cost
case. This possibility arises because it is cheaper to buy the asset in the bear
regime, which is expected to last a short time, and enjoy the benefits in the Bull
regime.

Table I provides further information on how the optimal policies change
with parameter values. While the general comparative statics follow intuitively,
changes in the Bull regime parameter values have a relatively greater impact
on the optimal policies than those in the bear regime because the Bull regime
lasts longer on average.

Table I also displays the liquidity premia averaged across regimes using the
steady-state distribution of portfolio holdings. Regime switching increases the
liquidity premia by four to five times those reported in Constantinides (1986).
We examine this finding in more detail in the subsequent analysis.

11 In a model with no regime switching, the optimal consumption to wealth ratio for parameter
values equal to those in the Bull regime is 13.295%, and the optimal consumption to wealth ratio
for parameter values equal to those in the bear regime is 8.978%.
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Figure 4. The fraction of wealth invested in the stock in the bear regime as a function of
the transaction cost rate in the Bull regime. Parameters: Expected returns µB = µb = 0.1394,
volatilities σB = 0.1313, σb = 0.2600, regime-switching intensities λB = 0.2353, λb = 1.7391, time-
discount rate ρ = 0.1, risk aversion γ = 2.0, interest rates rB = rb = 0.05, transaction cost rates
θB = αB, θb = αb = 0.01, bequest weight k = 0, and mortality rate δ = 0.
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Figure 5. The average liquidity premium to transaction cost ratio as a function of the
transaction cost rate in the Bull regime. Parameters: Expected returns µB = µb = 0.1394,
volatilities σB = 0.1313, σb = 0.2600, regime-switching intensities λB = 0.2353, λb = 1.7391, time-
discount rate ρ = 0.1, risk aversion γ = 2.0, interest rates rB = rb = 0.05, transaction cost rates
θB = αB, θb = αb = 0.01, bequest weight k = 0, and mortality rate δ = 0.

B. Liquidity Premia in the Regime-switching Model

Figure 5 plots the steady-state average liquidity premia against the transac-
tion cost in the Bull regime. This figure shows that when the transaction cost is
small, the liquidity premium to transaction cost ratio is four to six times higher
than that found in Constantinides (1986). This suggests that the stochastic na-
ture of the investment opportunity set is a much more important determinant
of the liquidity premium than previously thought.

The fundamental intuition that leads to the small liquidity premium in Con-
stantinides (1986) is that an investor optimally reduces trading frequency and
in turn reduces transaction cost payments. We examine how regime shifting
changes this behavior in Figures 6 and 7. For both of these figures, the Constan-
tinides model corresponds to a model with no regime shifts and with volatility
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Figure 6. The expected time from purchase to sale as a function of the risk aversion.
Parameters: Expected returns µB = µb = 0.1394, volatilities σB = 0.1313, σb = 0.2600, regime-
switching intensities λB = 0.2353, λb = 1.7391, time-discount rate ρ = 0.1, interest rates rB = rb =
0.05, transaction cost rates θB = αB = 0.01, θb = αb = 0.01, bequest weight k = 0, and mortality rate
δ = 0. The Constantinides model corresponds to the one-regime case with volatility σ = 0.1466.
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Figure 7. The expected discounted transaction costs as the fraction of the liquidated
wealth against the risk aversion. Parameters: Expected returns µB = µb = 0.1394, volatilities
σB = 0.1313, σb = 0.2600, regime-switching intensities λB = 0.2353, λb = 1.7391, time-discount
rate ρ = 0.1, interest rates rB = rb = 0.05, transaction cost rates θB = αB = 0.01, θb = αb = 0.01,
bequest weight k = 0, and mortality rate δ = 0. The Constantinides model corresponds to the one-
regime case with volatility σ = 0.1466.

set to the unconditional volatility across the regimes in our model. Figure 6
shows the Bull regime’s expected time from purchase to sale (see the Appendix
for the derivation of this measure) as a function of risk aversion in both the Con-
stantinides model and our model. When the investment opportunity set is not
constant, the expected holding period for stock is significantly shorter, consis-
tent with the higher liquidity premium found in Figure 5. For the range of risk
aversion displayed, the expected time to sale after a purchase is monotonically
decreasing in the risk aversion in the Constantinides model but nonmonotonic
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in the regime-switching model. Intuitively, by changing the no-transaction re-
gion boundaries, an investor can change both the average stock holding and the
trading frequency. As the risk aversion decreases, on average the investor keeps
more invested in the stock. In the single-regime model, lower risk aversion re-
duces frequency of trade in part through a higher consumption to wealth ratio
and in part through a modification to the relative position of the boundaries to
reduce rebalancing costs. However, if there are two regimes, the investor needs
to also take into account the transaction costs to be paid at future regime-
switching times. Less frequent rebalancing prior to the regime shift can lead
to the possibility of larger revisions when the regime changes. Thus, loosely
speaking, in the regime-shifting model the investor optimally trades off the
large lump-sum transaction costs incurred at future regime-switching times
against more frequent but smaller rebalancing costs within a regime. When
risk aversion is low, the concern over large lump-sum transaction costs is espe-
cially serious because the investor tends to hold more stock and turnover more
of the stock when the regime shifts.

To confirm that the changing opportunity set leads to higher transaction
costs, Figure 7 displays the Bull regime’s expected discounted lifetime trans-
action costs as a fraction of the liquidated wealth (see the Appendix for the
derivation of this measure) against risk aversion in our model and in the Con-
stantinides model. Using a continuously compounded discount rate of 12%,
we see that for low levels of risk aversion, the expected discounted lifetime
transaction costs can amount to 40% of initial wealth versus only about 5% in
the Constantinides model. The expected discounted transaction costs decrease
with risk aversion because a more risk-averse investor holds less and trades
less stock.

One might wonder how large the liquidity premia can become in our model. To
obtain very large liquidity premia, our previous analysis suggests that we need
a fairly large difference between the investment opportunity sets, a relatively
low transaction cost, and relatively frequent transitions between regimes. Fig-
ure 8 shows how the liquidity premium to transaction cost ratio changes as
we vary the frequency of switching from the Bull regime to the bear regime.
The figure suggests that the changing opportunity set alone cannot generate a
liquidity premium much greater than 1.6% with reasonable parameter values.
To generate a 1.6% liquidity premium, one would need to assume that the Bull
regime lasts only about 0.6 years, which is much shorter than the time frame
empirically observed. This finding suggests that transaction costs alone cannot
fully explain the equity premium puzzle even in the presence of a stochastic
investment opportunity set. Nevertheless, it also shows that transaction costs,
along with a stochastic investment opportunity set, can play a more important
role than previously thought.

To address any concerns that the estimation for the expected return µb in
the bear regime might be imprecise, in Figure 9 we plot the steady-state aver-
age liquidity premia against µb. This figure shows that our main finding that
a stochastic investment opportunity set can produce a much higher liquidity
premium is robust to changes in the bear regime expected return. In addition,
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Figure 8. The liquidity premium to transaction cost ratio, as a function of the Bull
regime switch intensity. Parameters: Expected returns µB = µb = 0.1394, volatilities σB =
0.1313, σb = 0.2600, bear-regime-switching intensity λb = 1.7391, time-discount rate ρ = 0.1, risk
aversion γ = 2.0, interest rates rB = rb = 0.05, transaction cost rates θB = αB = 0.01, θb = αb =
0.01, bequest weight k = 0, and mortality rate δ = 0.
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Figure 9. The average liquidity premium to transaction cost ratio as a function of the
expected return in the bear regime. Parameters: Bull-regime expected return µB = 0.1394,
volatilities σB = 0.1313, σb = 0.2600, bear-regime-switching intensity λb = 1.7391, time-discount
rate ρ = 0.1, risk aversion γ = 2.0, interest rates rB = rb = 0.05, transaction cost rates θB = αB =
0.01, θb = αb = 0.01, bequest weight k = 0, and mortality rate δ = 0.

when the expected return in the bear regime decreases, the liquidity premium
becomes even greater. This is because as the investment opportunity sets differ
more across regimes, the no-transaction regions become more separated, and
an investor incurs higher transaction costs at the regime-switching time.

III. Conclusion

Standard portfolio selection literature (e.g., Constantinides (1986)) finds that
although transaction costs alter trading strategies significantly, they only have
a second-order effect on liquidity premia. In this paper, we show that this conclu-
sion depends crucially on the assumption of a constant investment opportunity
set. In contrast, in a stochastic regime-switching model with transaction costs,
we show that transaction costs can have a first-order effect on liquidity pre-
mia for a wide range of parameter values. This suggests that transaction costs



2348 The Journal of Finance

can be very important for asset pricing when an investment opportunity set is
stochastic. Our analysis therefore suggests that a stochastic investment oppor-
tunity set with small transaction costs may help partially explain the equity
premium puzzle and other related anomalies. We believe that further insights
on liquidity premia can be generated based on our regime-switching model.
For example, one can model liquidity crashes as a regime with extremely high
transaction costs. In this setting it is possible to generate significant liquidity
premia because the optimal portfolio composition can be dramatically changed
by liquidity risk.

Appendix

In this Appendix, we first provide results on the computation of the steady-
state distribution, the expected holding period, and the expected lifetime trans-
action costs. We then present proofs for the propositions and theorems in this
paper.

A.1. Steady-State Distribution, Expected Holding Period, and Expected
Lifetime Transaction Costs

A.1.1. Steady-State Distribution

It can be verified that

dzt = µzi(zt) dt − σizt dwt , (A1)

where

µzi(z) = (
ri − µi + σ 2

i

)
z −

(
ψ ′

i (z)
1 − k

)−1/γ

. (A2)

For simplicity, we focus on the case with separated no-transaction regions. The
corresponding results for other cases can be derived using the same method.
We have the following result for computing the steady-state distribution of zt.

PROPOSITION 2: Suppose z
¯ B < z̄ B < z

¯b < z̄b. Let φi(z) be the steady-state density
function. Then we have

φ(z) =




φB(z) z
¯ B < z < z̄ B

φb(z) z
¯b < z < z̄b

0 otherwise,

(A3)

where φB(z) and φb(z) solve

1
2

σ 2
Bz2φ′′

B(z) − (
µz B(z) − 2σ 2

Bz
)
φ′

B(z) − (
λB − σ 2

B + µ′
z B(z)

)
φB(z) = 0
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subject to

1
2

σ 2
Bz

¯
2
Bφ′

B(z
¯B) − (

µz B(z
¯ B) − σ 2

Bz
¯ B

)
φB(z

¯ B) = 0,

1
2

σ 2
Bz̄2

Bφ′
B(z̄ B) − (

µz B(z̄ B) − σ 2
Bz̄ B

)
φB(z̄ B) − λbλB

λb + λB
= 0,

and

1
2

σ 2
b z2φ′′

b(z) − (
µzb(z) − 2σ 2

b z
)
φ′

b(z) − (
λb − σ 2

b + µ′
zb(z)

)
φb(z) = 0

subject to

1
2

σ 2
b z

¯
2
bφ

′
b(z

¯b) − (
µzb(z

¯b) − σ 2
b z

¯b
)
φb(z

¯b) + λbλB

λb + λB
= 0,

1
2

σ 2
b z̄2

bφ
′
b(z̄b) − (

µzb(z̄b) − σ 2
b z̄b

)
φb(z̄b) = 0.

Proof: See Section A.2 in this Appendix.

Note that Proposition 2 implies that∫ z̄ B

z
¯ B

φB(z) dz = λb

λb + λB
and

∫ z̄b

z
¯b

φb(z) dz = λB

λb + λB
.

A.1.2. Expected Holding Period

Next, to investigate the frequency of trade in our model, we show how to
compute the expected time to the next sale from a given initial position. Again,
we focus on the case in which the no-transactions regions are separated.

In this case, we can define the next sale time to be

τs = inf{t ≥ 0 : zt = z
¯ B or zt = z

¯b}
and the expected time to the next sale starting from z in regime i to be

Ti(z) = E[τs | z0 = z].

The following proposition provides results on computing the expected time to
the next sale.

PROPOSITION 3: Suppose z
¯ B < z̄ B < z

¯b < z̄b. Then

(i) TB(z) solves

1
2

σ 2
Bz2T ′′

B(z) + µz B(z)T ′
B(z) − λBTB(z) + 1 = 0,
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with boundary conditions

TB(z
¯ B) = 0, T ′

B(z̄ B) = 0;

(ii) Tb(z) solves

1
2

σ 2
b z2T ′′

b (z) + µzb(z)T ′
b(z) + λb(TB(z̄ B) − Tb(z)) + 1 = 0,

with boundary conditions

Tb(z
¯b) = 0, T ′

b(z̄b) = 0,

where µzi is as defined in (A2).

Proof: See Section A.2 in this Appendix.

A.1.3. Expected Transaction Costs

Another measure of the effect of transaction costs is the expected discounted
transaction costs an investor expects to pay over the entire investment horizon.
The following proposition shows one way of computing these costs for the case
with separated no-transaction regions.

PROPOSITION 4: Suppose ν > maxi∈{B,b}[−λi + ri + (µi − ri)/(z
¯ B + 1)] and z

¯ B <

z̄ B < z
¯b < z̄b. Let Ci(xt, yt)(i ∈ {B, b}) be the expected discounted transaction costs

in regime i starting from (xt, yt). Then, given the optimal policy (C∗
t , I∗

t , D∗
t ),

Ci(x, y) ≡ E
[∫ τi

0
e−νt(θi dI∗

t + αi dD∗
t

) + e−ντi C j (xτi , yτi )
]

= y gi(x/ y),

where for z
¯i ≤ z ≤ z̄i, gi(·) solves

1
2

σ 2
i z2 g ′′

i (z) −
(

(µi − ri)z +
(

ψ ′
i (z)

1 − k

)−1/γ
)

g ′
i(z)

− (ν + λi − µi)gi(z) + λi g j (z) = 0, (A4)

subject to

gi(z̄i) − (z̄i + 1 + θi)g ′
i(z̄i) + θi = 0 (A5)

and

gi(z¯i) − (z
¯i + 1 − αi)g ′

i(z¯i) − αi = 0. (A6)

In addition,

gB(z) = 1
z̄ B + 1 + θB

((z + 1 + θB)gB(z̄ B) + (z − z̄ B)θB) (A7)
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for z > z̄ B, and

gb(z) = 1
z
¯b + 1 − αb

((z + 1 − αb)gb(z
¯b) + (z

¯b − z)αb) (A8)

for z < z
¯b.

Proof: See Section A.2 in this Appendix.

A.2. Proofs

Proof of Lemma 1: We conduct the proof for the case ηi < ηj. The other case
can be proven using a similar argument. Equation (10) implies that

M j = f (Mi) = ηi + λi

λi
Mi − γ

λi
(1 − k)1/γ M 1−1/γ

i − kδ

λi
.

For i ∈ {B, b}, let M̄i > 0 be the unique solution of

−ηi Mi + γ (1 − k)1/γ (Mi)1−1/γ + kδ = 0

and let M
¯ i > 0 be the unique solution of

−(ηi + λi)Mi + γ (1 − k)1/γ (Mi)1−1/γ + kδ = 0.

Define

g (Mi) = −(η j + λ j ) f (Mi) + γ (1 − k)1/γ f (Mi)1−1/γ + λ j Mi + kδ.

After simplification, we have

g (M̄i) = (ηi − η j )M̄i < 0.

In addition, it can be easily verified that g (M
¯ i) = λ j M¯ i + kδ ≥ 0. By continu-

ity, there exists an Mi such that g(Mi) = 0. This implies that M̄i ≥ Mi ≥ M
¯ i.

Finally, if γ < 1, then f ′(x) > 1 and thus g′(x) < 0, ∀x > 0. The solution is there-
fore unique. If γ > 1, direct computation reveals that g′′(x) < 0, g′(0) > 0, and
g (M

¯ i) > 0, which also implies that the solution is unique. Q.E.D.

Proof of Theorem 2: We first state some properties of the candidate value
function that satisfies the conditions in Theorem 2.

LEMMA 2: Suppose vi(x, y) and vj(x, y) are as in Theorem 2. Then for any ε > 0,
we have

(i) vi(x, y) ≥ vi(x + (1 − αi)y, 0).
(ii) For x

y > αi − 1 + ε, there exist finite constants ki and Ki such that

ki(x + y)1−γ ≤ vi(x, y) ≤ Ki(x + y)1−γ . (A9)
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(iii) yviy

vi
is bounded for x

y > αi − 1 + ε.

(iv) v
γ−1

γ

ix
vi

is bounded for x
y > αi − 1 + ε.

Proof of Lemma 2: Part 1 follows from the well-known inequality for any
concave function U:

∇U (z1) · (z1 − z2) ≤ U (z1) − U (z2). (A10)

[vix(x, y)viy(x, y)][x − (x + (1 − αi) y) y]� ≤ vi(x, y) − vi(x + (1 − αi) y , 0).
(A11)

Using condition (21) and assumptions in Theorem 2, we have

0 ≤ y(viy(x, y) − (1 − αi)vix(x, y)) ≤ vi(x, y) − vi(x + (1 − αi) y , 0), (A12)

which proves Part 1.
Part 2 follows from the fact that vi(x, y) = (x + y)1−γ vi( x

x + y , y
x + y ) and vi is

continuous in the interior of the solvency region, so the function vi(h, 1 − h)
attains its finite maximum and minimum for x

y > αi − 1 + ε.
Part 3 follows from the fact that vi(x, y) = y1−γ ψi( x

y ), viy = (1 − γ ) y−γ ψi( x
y ) −

y−γ x
y ψ ′

i (
x
y ), and thus yviy

vi
= (1 − γ ) −

x
y ψ ′

i (
x
y )

ψi ( x
y ) . This quantity is bounded for x

y >

αi − 1 + ε, since in NTi this is a continuous function on a compact set so it
attains its maximum and minimum, and outside NTi the conclusion is implied
by equation (17).

Part 4 follows from the fact that vix = y−γ ψ ′
i (

x
y ), v

1− 1
γ

ix = y1−γ (ψ ′
i (

x
y ))1− 1

γ , and

thus v
γ−1

γ

ix
vi

= (ψ ′
i (

x
y ))1− 1

γ

ψi ( x
y ) , which can be shown to be bounded using the same logic

as in the proof of Part 3. Q.E.D.

Now we are ready to prove Theorem 2.
The proof relies on results first proved in Davis and Norman (1990). We re-

peat many of their arguments here, after making adaptations to our particular
setting. Applying Itô’s lemma to log[e−(ρ+δ+λi )t(1 − γ )vi(x(t), y(t))] leads to

e−(ρ+δ+λi )tvi(xt , yt)

= vi(x, y) exp

(∫ t

0

1
vi

(
Gv − (1 − k)

c1−γ
s

1 − γ
− kδ

(xs + (1 − αi) ys)1−γ

1 − γ
− λiv j

)
ds

+
∫ t

0

1
vi

[(viy − (1 + θi)vix) dIs + ((1 − αi)vix − viy) dDs]

+
∫ t

0

1
vi

viy ysσ dws − 1
2

∫ t

0

v2
iy

v2
i

σ 2 y2
s ds

)
, (A13)
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where Gv ≡ 1
2σ 2 y2viyy + rixvix − cvix + µi yviy − (ρ + δ)vi + λi(vj − vi) + (1 −

k) c1−γ

1 − γ
+ kδ

(x + (1 − αi ) y)1−γ

1 − γ
.

In particular, setting c = c∗ ≡ ( vix
1 − k )−

1
γ and following the candidate transac-

tion policy, we have Gv ≡ 0 in the no-transaction cost region, the terms involv-
ing dI and dD are zero, and 1

vi
((1 − k) c1−γ

1 − γ
+ kδ

(x + (1 − αi ) y)1−γ

1−γ
+ λiv j ) is a positive

bounded function bounded away from zero. Moreover, viy y
vi

is a bounded function
for the candidate transaction policy. These properties are proved in Lemma 2.
Notice that using Itô’s Lemma we also have for a sequence of stopping times
τn → ∞
vi(x, y)

= E

[∫ τn∧t

0
e−(ρ+δ+λi )s

(
(1 − k)

c∗1−γ
s

1 − γ
+ kδ

(
x∗

s + (1 − αi) y∗
s

)1−γ

1 − γ
+ λiv j

(
x∗

s , y∗
s

))
ds

+ e−(ρ+δ+λi )τn∧tvi
(
x∗

τn∧t , y∗
τn∧t

)]
. (A14)

From (A13) we see that if γ > 1,

0 ≥ vi
(
x∗

τn∧t , y∗
τn∧t

)

≥ vi(x, y) exp

(∫ τn∧t

0

1
vi

viy y∗
s σ dws − 1

2

∫ τn∧t

0

v2
iy

v2
i

σ 2 y∗2
s ds

)
e(ρ+δ+λi )t , (A15)

while if 0 < γ < 1,

0 ≤ vi
(
x∗

τn∧t , y∗
τn∧t

)

≤ vi(x, y) exp

(∫ τn∧t

0

1
vi

viy y∗
s σ dws − 1

2

∫ τn∧t

0

v2
iy

v2
i

σ 2 y∗2
s ds

)
e(ρ+δ+λi )t . (A16)

We remind the reader that the exponential local martingales in equations (A15)
and (A16) are in fact Class D martingales since 1

vi
viy y is bounded. Letting

n → ∞ in equation (A14), observe that random variables vi(x∗
τn∧t , y∗

τn∧t) are
bounded by uniformly integrable random variables and using the dominated
convergence theorem (Royden (1988), Proposition 18, p. 270),

vi(x, y)

= E

[∫ t

0
e−(ρ + δ + λi )s

(
(1 + k)

c∗1 − γ
s

1 − γ
+ kδ

(
x∗

s + (1 − αi) y∗
s

)1−γ

1 − γ
+ λiv j

(
x∗

s , y∗
s

))
ds

+ e−(ρ+δ+λi )tvi
(
x∗

t , y∗
t

)]
. (A17)
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Using (A13), we also have

e−(ρ+δ+λi )tvi(xt , yt)

= vi(x, y) exp

(∫ t

0

1
vi

(
−(1 − k)

c∗1−γ
s

1 − γ
− kδ

(
x∗

s + (1 − αi) y∗
s

)1−γ

1 − γ
− λiv j

)
ds

)

× exp

(∫ t

0

1
vi

viy y∗
s σ dws − 1

2

∫ t

0

v2
iy

v2
i

σ 2 y∗2
s ds

)
. (A18)

Since 1
vi

(−(1 − k)−(1 − k)c∗1−γ
s

1 − γ
− kδ

(x∗
s + (1 − αi ) y∗

s )1−γ

1 − γ
− λiv j ) is a negative function

bounded away from zero, and the exponential local martingale is a Class D
martingale, we have limt→∞ e−(ρ+δ+λi )t E[vi(x∗(t), y∗(t))] = 0. As a result,

vi(x, y)

= E

[∫ ∞

0
e−(ρ+δ+λi )s

(
(1 − k)

c∗1−γ
s

1 − γ
+ kδ

(
x∗

s + (1 − αi) y∗
s

)1−γ

1 − γ
+ λiv j

(
x∗

s , y∗
s

))
ds

]
.

(A19)

Next we show that given vj, vi is the value function and vice versa. We start by
considering the case γ > 1. Consider trading strategies that start with (x + ε, y),
follow an admissible consumption and trading strategy for initial endowments
(x, y), say (c, x̂, ŷ) ∈ 	(x, y), and maintain additional εert in the risk-free account.
For these strategies, a simple application of Itô’s lemma for a set of stopping
times τn → ∞ leads to

vi(x + ε, y)

≥ E

[∫ τn∧t

0
e−(ρ+δ+λi )s

(
(1 − k)

c1−γ
s

1 − γ
+ kδ

(
x̂s + εers + (1 − αi) ŷs

)1−γ

1 − γ

+ λiv j
(
x̂s + εers, ŷs

))
ds + e−(ρ+δ+λi )τn∧tvi

(
x̂τn∧t + εerτn∧t , ŷτn∧t

)]
. (A20)

From monotonicity and Part 1 of Lemma 2, we have

0 ≥ e−(ρ+δ+λi )τn∧tvi
(
x̂τn∧t + εerτn∧t , ŷτn∧t

)
≥ e−(ρ+δ+λi )τn∧tvi

(
x̂τn∧t − (1 − αi) ŷτn∧t + εerτn∧t , 0

)
≥ e−(ρ+δ+λi )τn∧tvi(ε, 0)
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and so by the dominated convergence theorem, we can let n → ∞ to obtain

vi(x + ε, y) ≥ E

[∫ t

0
e−(ρ+δ+λi )s

(
(1 − k)

c1−γ
s

1 − γ
+ kδ

(
x̂s + εers + (1 − αi

)
ŷs)1−γ

1 − γ

+ λiv j
(
x̂s + εers, ŷs

))
ds + e−(ρ+δ+λi )tvi

(
x̂t + εert , ŷt

)]
. (A21)

Letting t → ∞ we have 0 ≥ e−(ρ+δ+λi )tvi(x̂t + εert , ŷt) ≥ e−(ρ+δ+λi )tvi(ε, 0) → 0.
Using the monotone convergence theorem, we then have

vi(x + ε, y) ≥ E

[∫ ∞

0
e−(ρ+δ+λi )s

(
(1 − k)

c1−γ
s

1 − γ
+ kδ

(
x̂s + εert + (1 − αi) ŷs

)1−γ

1 − γ

+ λiv j
(
x̂s + εers, ŷs

))
ds

]
. (A22)

Next, letting ε ↓ 0 and using the continuity of vi and the monotone conver-
gence theorem, we have

vi(x, y)

≥ E

[∫ ∞

0
e−(ρ+δ+λi )s

(
(1 − k)

c1−γ
s

1 − γ
+ kδ

(xs + (1 − αi) ys)1−γ

1 − γ
+ λiv j (xs, ys)

)
ds

]

(A23)

for all feasible consumption trading strategies in 	(x, y). This implies vi is the
value function given vj.

In the case 0 < γ < 1, we have

vi(x, y) ≥ E

[∫ τn∧t

0
e−(ρ+δ+λi )s

(
(1 − k)

c1−γ
s

1 − γ
+ kδ

(xs + (1 − αi) ys)1−γ

1 − γ

+ λiv j (xs, ys)

)
ds + e−(ρ+δ+λi )τn∧tvi(xτn∧t , yτn∧t)

]
(A24)

and vi(xt, yt) ≥ 0. This leads immediately to the conclusion

vi(x, y)

≥ E

[∫ ∞

0
e−(ρ+δ+λi )s

(
(1 − k)

c1−γ
s

1 − γ
+ kδ

(xs + (1 − αi) ys)1−γ

1 − γ
+ λiv j (xs, ys)

)
ds

]

(A25)

for all feasible consumption trading strategies from the initial position (x, y).
This implies vi is the value function given vj. Similar arguments show that vj
is the value function given vi.
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Finally, we show that vi and vj are the value functions in regimes i and j,
respectively. Let vn(x, y) = vj(x, y) if n is odd and vn(x, y) = vi(x, y) if n is even.
Let τn be the time of the nth regime change. The above proof implies

vi(x, y) = E

[∫ τ1

0
e−(ρ+δ)t

(
(1 − k)

c∗1−γ
t

1 − γ
+ kδ

(
x∗

t + (1 − αi) y∗
t

)1−γ

1 − γ

)
dt

+ e−(ρ+δ)τ1v1
(
x∗

τ1
, y∗

τ1

)]
(A26)

and for all feasible consumption–investment strategies

vi(x, y) ≥ E

[∫ τ1

0
e−(ρ+δ)t

(
(1 − k)

c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi) yt)1−γ

1 − γ

)
dt

+ e−(ρ+δ)τ1v1(xτ1 , yτ1 )

]
. (A27)

Given time τ 1 information, we also know

v1(xτ1 , yτ1 )

= Eτ1

[∫ τ2

τ1

e−(ρ+δ)(t−τ1)e−(ρ+δ)t

(
(1 − k)

c∗1−γ
t

1 − γ
+ kδ

(
x∗

t + (1 − αi) y∗
t

)1−γ

1 − γ

)
dt

+ e−(ρ+δ)(τ2−τ1)v2
(
x∗

τ2
, y∗

τ2

)]
(A28)

and for all feasible consumption–investment strategies

v1(xτ1 , yτ1 ) ≥ E

[∫ τ2

τ1

e−(ρ+δ)(t−τ1)e−(ρ+δ)t

(
(1 − k)

c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi) yt)1−γ

1 − γ

)
dt

+ e−(ρ+δ)(τ2−τ1)v2(xτ2 , yτ2 )

]
. (A29)

Inserting these expressions into equations (A26) and (A27) yields

vi(x, y) = E

[∫ τ2

0
e−(ρ+δ)t

(
(1 − k)

c∗1−γ
t

1 − γ
+ kδ

(
x∗

t + (1 − αi) y∗
t

)1−γ

1 − γ

)
dt

+ e−(ρ+δ)τ2v2
(
x∗

τ2
, y∗

τ2

)]
(A30)



Liquidity Premia and Transaction Costs 2357

and

vi(x, y) ≥ E

[∫ τ2

0
e−(ρ+δ)t

(
(1 − k)

c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi) yt)1−γ

1 − γ

)
dt

+ e−(ρ+δ)τ2v2(xτ2 , yτ2 )

]
. (A31)

Continuing in this manner, we have

vi(x, y) = E

[∫ τn

0
e−(ρ+δ)t

(
(1 − k)

c∗1−γ
t

1 − γ
+ kδ

(
x∗

t + (1 − αi) y∗
t

)1−γ

1 − γ

)
dt

+ e−(ρ+δ)τnvn
(
x∗

τn
, y∗

τn

)]
(A32)

and

vi(x, y) ≥ E

[∫ τn

0
e−(ρ+δ)t

(
(1 − k)

c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi) yt)1−γ

1 − γ

)
dt

+ e−(ρ+δ)τnvn(xτn , yτn)

]
. (A33)

We now consider the case γ > 1. As before, consider strategies that start with
an initial position (x + ε, y), follow a feasible consumption and trading strategy
for an initial position (x, y), and always maintain additional εert in the riskless
account. Similar arguments as those above lead to the conclusion

vi(x + ε, y) ≥ E

[∫ ∞

0
e−(ρ+δ)t

(
(1 − k)

c1−γ
t

1 − γ
+ kδ

(
xt + εert + (1 − αi) yt

)1−γ

1 − γ

)
dt

]
,

(A34)

and letting ε → 0, we have

vi(x, y) ≥ E

[∫ ∞

0
e−(ρ+δ)t

(
(1 − k)

c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi) yt)1−γ

1 − γ

)
dt

]
(A35)

for all feasible consumption and trading strategies.
Since vn < 0 from equation (A32), it follows that

vi(x, y) ≤ E

[∫ τn

0
e−(ρ+δ)t

(
(1 − k)

c∗1−γ
t

1 − γ
+ kδ

(
x∗

t + (1 − αi) y∗
t

)1−γ

1 − γ

)
dt

]
(A36)

and since τn → ∞ almost surely as n → ∞, we have from the monotone
convergence theorem that
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vi(x, y) ≤ E

[∫ ∞

0
e−(ρ+δ)t

(
(1 − k)

c∗1−γ
t

1 − γ
+ kδ

(
x∗

t + (1 − αi) y∗
t

)1−γ

1 − γ

)
dt

]
. (A37)

Thus, from equations (A35) and (A37), we have

vi(x, y) = E

[∫ ∞

0
e−(ρ+δ)t

(
(1 − k)

c∗1−γ
t

1 − γ
+ kδ

(
x∗

t + (1 − αi) y∗
t

)1−γ

1 − γ

)
dt

]
(A38)

and

vi(x, y) ≥ E

[∫ ∞

0
e−(ρ+δ)t

(
(1 − k)

c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi) yt)1−γ

1 − γ

)
dt

]
(A39)

for all feasible trading and consumption strategies. We have proved the result
for γ > 1.

When 0 < γ < 1, vn > 0. From equation (A33), we have

vi(x, y) ≥ E

[∫ ∞

0
e−(ρ+δ)t

(
(1 − k)

c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi) yt)1−γ

1 − γ

)
dt

]
(A40)

for all feasible consumption and trading strategies. To conclude the proof, we
need to show that

lim
n→∞ E

[
e−(ρ+δ)τnvn

(
x∗

τn
, y∗

τn

)] = 0, (A41)

since this and equation (A32) imply

vi(x, y) = E

[∫ ∞

0
e−(ρ+δ)t

(
(1 − k)

c∗1−γ
t

1 − γ
+ kδ

(
x∗

t + (1 − αi) y∗
t

)1−γ

1 − γ

)
dt

]
. (A42)

Equation (A41) follows from the observation that

lim
τn→∞ E

[∫ ∞

τn

e−(ρ+δ)t

(
(1 − k)

c∗1−γ
t

1 − γ
+ kδ

(
x∗

t + (1 − αi) y∗
t

)1−γ

1 − γ

)
dt

]
= 0,

so

lim
n→∞ E

[
e−(ρ+δ)τn

(
(1 − k)

c∗1−γ
τn

1 − γ
+ kδ

(
x∗

τn
+ (1 − αi) y∗

τn

)1−γ

1 − γ

)]
= 0

and

0 ≤ vn(x, y) ≤ K

(
(1 − k)

c∗1−γ
τn

1 − γ
+ kδ

(
x∗

τn
+ (1 − αi) y∗

τn

)1−γ

1 − γ

)
(A43)
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for a suitable constant K, which can be derived from the homotheticity proper-
ties of vi and vj (implied by Parts 2 and 4 in Lemma 2). Q.E.D.

LEMMA 3: Suppose the conditions in Proposition 1 hold and φ(x, y) satisfies

(1 − α)φx ≤ φ y ≤ (1 + θ )φx , (A44)

(xt, yt) correspond to the stock and bond accounts using the optimal c, I, and D
in regime i,

lim
T→∞

E
[
e−(ρ+λi )T φ(xT , yT )

] = 0, (A45)

and E[
∫ T

0 φ y y2
t σ 2

i dwt] = 0. Let S1 be the set of (x, y) ∈ S such that

0 >
1
2

σ 2
i y2φyy + rxφx + µi yφ y − ρφ + γ

1 − γ
(φx)1− 1

γ + λi(vj − φ), (A46)

and let S2 = {(x, y) ∈ S | φ(x, y) ≥ vi(x, y)}. Then if S1 ∪ S2 = S, φ(x, y) ≥
vi(x, y) for all (x, y) ∈ S.

Proof: We just need to consider (x, y) ∈ S1. Let (xt, yt) correspond to the op-
timal bond and stock accounts using the optimal c, D, and I in regime i, and
let τ = inf{t | 1

2σ 2
i y2φyy + rxφx + µi yφ y − ρφ + γ

1 − γ
(φx)1− 1

γ + λi(vj − φ) ≥ 0}. In
other words, τ = inf{t | (xt , yt) ∈ S2 \S1}. By Ito’s lemma we have

e−(ρ+λi )T∧τ φ(xT∧τ , yT∧τ ) +
∫ T∧τ

0
e−(ρ+λi )t

(
c1−γ

t

1 − γ
+ λiv j (xt , yt)

)
dt

= φ(x0, y0) +
∫ T∧τ

0
e−(ρ+λi )t

(
1
2

σ 2
i y2

t φyy + rxtφx + µi ytφ y − ctφx + c1−γ
t

1 − γ

− ρφ + λi(vj − φ)

)
dt +

∫ T∧τ

0
e−(ρ+λi )t(φ y − (1 + θ )φx) dIt

+
∫ T∧τ

0
e−(ρ+λi )t((1 − α)φx − φ y ) dDt +

∫ T∧τ

0
e−(ρ+λi )tσi yφ y dwt . (A47)

We then have −ctφx + c1−γ
t

1 − γ
≤ γ

1−γ
(φx)1− 1

γ . Taking expectations, we obtain

φ(x, y) ≥ E

[ ∫ T∧τ

0
e−(ρ+λi )ρt

(
c1−γ

t

1 − γ
+ λiv j (xt , yt)

)
dt + e−(ρ+λi )T φ(xT , yT )1{T≤τ }

+ e−(ρ+λi )τ vi(xτ , yτ )1{τ<T }

]
.
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Letting T → ∞ gives

φ(x, y) ≥ E

[∫ ∞∧τ

0
e−(ρ+λi )t

(
c1−γ

t

1 − γ
+ λiv j (xt , yt)

)
dt

+ e−(ρ+λi )τ vi(xτ , yτ )1{τ<∞}

]
= vi(x, y). (A48)

Q.E.D.

Proof of Proposition 1: Proof of statement 1. The left-hand inequality sim-
ply expresses the fact that the investor cannot be worse off than follow-
ing the feasible strategy of liquidating the stock, investing all wealth in the
money market, and optimally consuming. To establish the right-hand inequal-
ity, we follow the strategy of Shreve and Soner (1994), Theorem 9.9. Con-
sider the function φ(x, y) = A

1 − γ
(x + ζ y)1−γ , where 1 − α ≤ ζ ≤ 1 + θ . We have

(1 − α)φx ≤ φy ≤ (1 + θ )φx. Moreover, evaluating the PDE (13),

1
2

σ 2
i y2φyy + rxφx + µi yφ y − ρφ + γ

1 − γ
(φx)1− 1

γ + λi(vj − φ) (A49)

is equal to

−A(x + ζ y)1−γ ×




ρ + λi − (1 − γ )

(
r + κ2

i

2γ

)

1 − γ
+

(√
γ

2
σi

ζ y
x + ζ y

− κi

√
1

2γ

)2

−γ A− 1
γ

1 − γ
− λi

A
vj

(x + ζ y)1−γ

]
, (A50)

where κi = µi−r
σi

. To apply the argument of Shreve and Soner (1994), we want to
choose A to guarantee the bracketed term in (A50) is nonnegative. A sufficient
condition for this is

ρ + λi − (1 − γ )

(
r + κ2

i

2γ

)

1 − γ
− γ A− 1

γ

1 − γ
− λi

A
vj

(x + ζ y)1−γ
≥ 0, (A51)

and since vj < 0, we can choose A so that

ρ + λi − (1 − γ )

(
r + κ2

i

2γ

)

1 − γ
− γ A− 1

γ

1 − γ
= 0 (A52)

or A = ( ηi + λi
γ

)−γ = M
¯ i where ηi is defined in (11) and M

¯ i is defined in the proof of

Lemma 1. It follows from using Lemma 3 that vi(x, y) ≤ M
¯ i

1 − γ
(x + ζ y)1−γ . Also
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note that this implies vj (x, y) ≤ M
¯ j

1 − γ
(x + ζ y)1−γ . Having obtained this bound,

we can improve on it by substituting inequality (A51) for vj and producing a
new bound. Iterating in this manner leads to the result.

Proof of statement 2. We have

0 ≥ 1
2

σ 2
i y2viyy + rxvix + µi yviy − ρvi + γ

1 − γ
(vix)1− 1

γ + λi(vj − vi), (A53)

which can be written as

0 ≥ 1
2

σ 2
j y2viyy + rxvix + µ j yviy − ρvi + γ

1 − γ
(vix)1− 1

γ

+ 1
2

(
σ 2

i − σ 2
j

)
y2viyy + (µi − µ j ) yviy + λi(vj − vi). (A54)

Thus, if the first line is greater than or equal to zero, vi(x, y) ≥ vj(x, y). If the
first line is less than zero, then expanding vi using the parameters in regime j
and applying Lemma 3 also lead to vi(x, y) ≥ vj(x, y). Using this result and the
fact that (A53) holds with equality at x

y = z
¯i, we can rewrite the PDE in regime

i at x
y = z

¯i as

0 ≤ −γ

2
σ 2

i (1 − α)2 + (µi − r)(1 − α)(z
¯i + 1 − α)

+
{
−(ρ − (1 − γ )r)

1
1 − γ

+ γ

1 − γ
A

− 1
γ

i

}
(z
¯i + 1 − α)2, (A55)

so

0 ≤ −γ

2
σ 2

i (1 − α)2 + (µi − r)(1 − α)(z
¯i + 1 − α), (A56)

from which the bound on z
¯i follows.

Proof of statement 3. Suppose z
¯i < z

¯ j . Then for x
y = z

¯i, vi(x, y) = Ai
1 − γ

(x +
(1 − α) y)1−γ and vj (x, y) = Aj

1 − γ
(x + (1 − α) y)1−γ . Using these expressions in

the PDE (13) leads to

0 = −γ

2
σ 2

i (1 − α)2 Ai + (µi − r)(1 − α)(z
¯i + 1 − α)Ai

+
{
−(ρ − (1 − γ )r)

Ai

1 − γ
+ γ

1 − γ
A

1− 1
γ

i + λi
A j − Ai

1 − γ

}
(z
¯i + 1 − α)2, (A57)

which can be written as

f (z
¯i) + g (z

¯i) = 0, (A58)
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where

f (z) = −Ai




√
κ2

i

2γ
(z + 1 − α) − σi(1 − α)

√
γ

2




2

≤ 0, (A59)

g (z) =


−

(ρ − (1 − γ )

(
κ2

i

2γ
+ r

)
Ai

1 − γ
+ γ

1 − γ
A

1− 1
γ

i + λi
A j − Ai

1 − γ


 (z + 1 − α)2,

(A60)

with κi = (µi − r)
σi

. Also from PDE (13), it follows that for z ≤ z
¯i,

f (z) + g (z) ≤ 0. (A61)

If f (z
¯i) < 0, then from (A58) g (z

¯i) > 0 which implies g(z) > 0 for all z > α − 1.
Thus, for (A61) to hold for all α − 1 < z ≤ z

¯i, we must have

z
¯i < (1 − α)

(
γ σ 2

i

µi − r
− 1

)
. (A62)

If f (z
¯i) = 0, then the above inequality holds with equality, and it follows that

g(z) = 0 for all z.
Proof of statement 4. This is similar to the proof of statement 3. Q.E.D.

Proof of Proposition 2: Given the optimal transaction policy, any steady-state
density function φi of zt in regime i must have the form of (A3). In addition, for
any C2 functions f (z, B) and f (z, b) such that f ′(z

¯ B, B) = f ′(z̄ B, B) = f ′(z
¯b, b) =

f ′(z̄b, b) = 0, we must have

∫ z̄ B

z
¯ B

(
1
2

σ 2
Bz2 f ′′(z, B) + µz B(z) f ′(z, B) + λB( f (z

¯b, b) − f (z, B))
)

φB(z) dz

+
∫ z̄b

z
¯b

(
1
2

σ 2
b z2 f ′′(z, b) + µzb(z) f ′(z, b) + λb( f (z̄ B, B) − f (z, b))

)
φb(z) dz = 0.

By the property of the continuous-time Markov chain, we must have

∫ z̄ B

z
¯ B

φB(z) dz = λb

λb + λB
and

∫ z̄b

z
¯b

φb(z) dz = λB

λb + λB
.
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Then, by integration by parts, we have

∫ z̄ B

z
¯ B

[
1
2

σ 2
B

(
z2φB(z)

)′′ − (µz B(z)φB(z))′ − λBφB(z)
]

f (z, B) dz

+
∫ z̄b

z
¯b

[
1
2

σ 2
b

(
z2φb(z)

)′′ − (µzb(z)φb(z))′ − λbφb(z)
]

f (z, b) dz

+ f (z
¯B, B)

[
1
2

σ 2
B

(
z
¯

2
Bφ′

B(z
¯ B) + 2z

¯ BφB(z
¯ B)

) − µz B(z
¯ B)φB(z

¯ B)
]

− f (z̄ B, B)
[

1
2

σ 2
B

(
z̄2

Bφ′
B(z̄ B) + 2z̄ BφB(z̄ B)

) − µz B(z̄ B)φB(z̄ B) − λbλB

λb + λB

]

+ f (z
¯b, b)

[
1
2

σ 2
b

(
z
¯

2
bφ

′
b(z

¯b) + 2z
¯bφb(z

¯b)
) − µzb(z

¯b)φb(z
¯b) + λbλB

λb + λB

]

− f (z̄b, b)
[

1
2

σ 2
b

(
z̄2

bφ
′
b(z̄b) + 2z̄bφb(z̄b)

) − µzb(z̄b)φb(z̄b)
]

= 0.

Since f (z, B) and f (z, b) are arbitrary C2 functions (only need to satisfy
f ′(z

¯ B, B) = f ′(z̄ B, B) = f ′(z
¯b, b) = f ′(z̄b, b) = 0), we must have that each brack-

eted term is equal to zero, which implies that Proposition 2 holds after some
simplification. Q.E.D.

Proof of Proposition 3: Let τi(i ∈ {B, b}) be the first regime-switching time and
τis be the first time reaching z

¯i. Since the no-transaction region is separated,
upon regime switching from regime B to regime b the investor immediately
sells, and thus in regime B we have

E[τs | z0 = z] = E[τBs ∧ τB | z0 = z] = E
[∫ τBs

0
e−λBt dt | z0 = z

]
.

Hence, Part (i) follows from Proposition 6 in Liu and Loewenstein (2002). In
regime b, upon regime switching from regime b to regime B the investor always
buys enough to reach z̄ B, and the expected time to the next sale starting from
z̄ B is TB(z̄ B). Thus, we have

E[τs | z0 = z] = E[τbs ∧ τb | z0 = z] + TB(z̄ B)E[1{τb≤τbs} | z0 = z]

= E
[∫ τbs

0
(1 + λbTB(z̄ B))e−λbt dt | z0 = z

]
, (A63)

and in turn Part (ii). Q.E.D.

Proof of Proposition 4: Define Wt ≡ xt + yt and πt ≡ yt
xt + yt

. Direct application
of Itô’s lemma to e−(ν+λi )tCi(xt , yt)(i ∈ {B, b}) yields
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e−(ν+λi )sCi(xs, ys) − Ci(x, y)

=
∫ s

0
e−(ν+λi )t

(
1
2

σ 2
i z2 g ′′

i (z) −
(

(µi − ri)z +
(

ψ ′
i (z)

1 − k

)−1/γ
)

× g ′
i(z) − (ν + λi − µi)gi(z)

)
yt dt

+
∫ s

0
e−(ν+λi )t(gi(zt) − (zt + 1 + θi)g ′

i(zt)) dI∗
t

−
∫ s

0
e−(ν+λi )t(gi(zt) − (zt + 1 − αi)g ′

i(zt)) dD∗
t

+
∫ s

0
e−(ν+λi )t(gi(zt) − zt g ′

i(zt))σi yt dwt

= −
∫ s

0
e−(ν+λi )t

[
θi dI∗

t + αi dD∗
t + λiCj (xt , yt) dt

]

+
∫ s

0
e−(ν+λi )t(gi(zt) − zt g ′

i(zt))σiπt Wt dwt , (A64)

where the second equality follows from (A4) through (A6). We then have

dWt = riWt dt + (µi − ri)πt Wt dt + σiπt Wtdwt − ct dt − αidD∗
t − θidI∗

t (A65)

and in turn

Wt ≤ W0e
∫ t

0 (ri+(µi−ri )πs)ds Nt , (A66)

where

Nt ≡ e− 1
2

∫ t
0 (πsσi )2ds+∫ t

0 πsσidws

is a martingale. Thus,

0 ≤ E
[
e−(ν+λi )tCi(xt , yt)

] = E
[
e−(ν+λi )tπt Wt gi(xt/ yt)

]
≤ E

[
e−(ν+λi )t M Wt

]
≤ ME

[
e
∫ t

0 (ri+(µi−ri )πs−ν−λi ) dsNt
]

≤ Me−(ν+λi−ri−(µi−ri )/(z
¯ B+1))t → 0, as t → ∞, (A67)

where M is a constant, the first inequality follows from the boundedness of the
optimal πt and g(.), the second inequality follows from (A66), the third inequality
holds because the optimal πt is bounded below by 1/(z

¯ B + 1) and E[Nt] = 1, and
the convergence follows from the first assumption in the proposition.

In addition, (A66) also implies that the last term in (A64) is a martingale.
Therefore, taking the expectation and limit as s → ∞, and using (A64) and
(A67), we have that
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ygi(x/ y) = E
[∫ τi

0
e−νt(θi dI∗

t + αi dD∗
t

) + e−ντi C j (xτi , yτi )
]

.

The expressions in (A7) and (A8) follow from the fact that in these transac-
tion regions, the investor immediately transacts to the corresponding bound-
aries, incurring the costs represented by the first terms. This completes the
proof. Q.E.D.
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