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We examine the optimal trading strategy for a CRRA investor who maximizes the
expected utility of wealth on a finite date and faces transaction costs. Closed-form solu-
tions are obtained when this date is uncertain. We then show a sequence of analytical
solutions converge to the solution to the problem with a deterministic finite horizon.
Consistent with the common life-cycle investment advice, the optimal trading strategy
is found to be horizon dependent and largely buy and hold. Moreover, it might be opti-
mal for the investor in our model not to buy any stock, even when the risk premium is
positive. Further analysis of the optimal policy is also provided.

Financial advisers typically recommend that younger investors should allo-
cate a greater share of wealth to stocks than older investors and all investors
should follow a largely buy-and-hold strategy. Representative of this conven-
tional wisdom, Malkiel (2000), in his popular book A Random Walk Down
Wall Street, states that “The longer period over which you can hold on to
your investments, the greater should be the share of common stocks in your
portfolio. � � � [M]oreover, these returns are gained by the steady strategy of
buying and holding your diversified portfolio.” To be consistent with this
clearly horizon-dependent portfolio rule, a model must be of finite horizon
by definition. Moreover, when an investor invests for a specific event, such as
bequest or retirement, his horizon is also clearly finite. However, the finite-
ness of the horizon alone is not sufficient to justify the horizon-dependent
investment strategy. For example, in Samuelson (1969) and Merton (1971),
even though the investor has a finite horizon, his optimal fraction of wealth
invested in the stock is still horizon independent.

Assuming time-varying investment opportunities or other time-varying
parameters would imply horizon-dependent portfolio rules [Kim and
Omberg (1996), Brennan, Schwartz, and Lagnado (1997), Liu (1999)]. How-
ever, these models do not produce buy-and-hold rules and it is still hard
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to explain in general why, as an investor gets older, he should invest a
smaller fraction of wealth in stock. Introduction of labor income can poten-
tially explain the inverse relationship between age and the fraction of wealth
invested in stocks [Bodie, Merton, and Samuelson (1992), Jagannathan and
Kocherlakota (1996), Campbell and Viceira (1999)]. However, these models
generally do not produce buy-and-hold strategies either.

Jagannathan and Kocherlakota (1996) examine several possible explana-
tions of the above life-cycle investment advice. In particular, they show that
if investors with constant relative risk aversion (CRRA) preferences over
terminal wealth are restricted to buy-and-hold strategies due to transaction
costs, the optimal portfolio choice is largely horizon independent. However,
they do not account for the transaction costs incurred by an investor, and in
this case whether an investor optimally chooses to engage in a buy-and-hold
strategy should depend on the time interval over which the portfolio is held.

In this article, instead of assuming time-varying parameters or labor in-
come or buy and hold as in the above articles, we show that the presence
of transaction costs (which are certainly present in most financial markets)
together with a finite horizon would imply a time-varying and largely buy-
and-hold trading strategy which is consistent with the above life-cycle invest-
ment advice.1 In particular, we examine the optimal transaction policy for
a CRRA investor who has a finite horizon and is subject to proportional
transaction costs in stock trading. Our analysis reveals that an investor with
a longer horizon would tend to hold more stock in his portfolio. Thus the
horizon becomes an important element of the investor’s optimal decision pro-
cess. Moreover, even small transaction costs lead to dramatic changes in the
optimal behavior for an investor: from continuous trading to virtually buy-
and-hold strategies. For example, an investor whose horizon is 10 years may
expect to hold a position in the asset subject to transaction costs for 5 years.
In addition, for the first time in the literature (as far as we know), we derive
explicit bounds on the transaction boundaries. Our analysis also shows that
an investor might optimally never buy the stock subject to transaction costs,
even when there is a positive risk premium. We provide explicit necessary
and sufficient conditions for this to happen in all the cases we analyze. Intu-
itively, an investor who does not expect to live long enough for the excess
return on the asset to overcome the transaction costs would optimally never
buy the asset.

There are a large number of articles studying the optimal transaction policy
for an agent facing transaction costs in the financial markets. Constantinides
(1979, 1986), Davis and Norman (1990), and Shreve and Soner (1994) study
an infinite horizon problem where the investor maximizes discounted utility
of intermediate consumption. Dumas and Luciano (1991) study the problem

1 Adding labor income to our model would clearly reinforce the main results in the article in the same manner
as in Jagannathan and Kocherlakota (1996).
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of maximizing terminal utility of wealth in the limit as the horizon gets very
large. For these analyses, the investor’s horizon is infinite and, as a result,
if the risk premium is positive the investor always optimally invests in the
stock, even with transaction costs. Davis, Panas, and Zariphopoulou (1993)
show the existence and uniqueness of the solution to a deterministic finite
horizon problem and provide a discretization scheme to numerically solve the
problem. Cvitanić and Karatzas (1996) and Loewenstein (2000) also study
a deterministic finite horizon problem but do not provide specific solutions.
Gennotte and Jung (1994) and Balduzzi and Lynch (1999) use binomial or
discrete approximations to numerically compute the optimal trading strategy
for an investor with a finite horizon. While a numerical approach may allow
more flexible specifications of the form of the asset market, it provides lit-
tle insight into the global properties of the optimal solutions. Moreover, the
optimal solutions in these approaches can be sensitive to the choice of dis-
cretization. In contrast, this article proposes a methodology to analytically
approximate the optimal strategy. It shows that this approach is indeed valid
and provides approximations that are less prone to approximation error.

In order to focus on the effect of the horizon on an investor’s investment
decision in the presence of transaction costs, we restrict our attention to
the case where the investor wishes to maximize the utility of wealth on a
finite date, although much of our analysis is applicable to the case with
intermediate consumption. This choice of objective function is appropriate
for an individual who is investing for a specific event in the future. A direct
attack on solving the transaction cost problem with a deterministic horizon
involves solving a partial differential equation with two free boundaries; this
is difficult because these two free boundaries also change through time.2 Here
we propose a different approach, based on an idea in Carr (1998).

We first examine the optimization problem for an investor maximizing
expected CRRA utility of wealth at an uncertain time, which is assumed to
be the first jump time of an independent Poisson process (thus the horizon
is exponentially distributed). This analysis is of independent interest since
many lifetime events such as disability or retirement occur at an uncertain
time.3 This case bears some resemblance, although with important economic
differences, to the analysis in Dumas and Luciano (1991), where they exam-
ine the limiting strategy as the investor’s horizon becomes large. In particular,
the optimal trading strategy is also time independent in this case. However,
in contrast to the asymptotic analysis in Dumas and Luciano (1991), who
found no bias in favor of cash in the optimal portfolio, a finite horizon can
induce a bias in favor of cash; our investor may optimally never buy the asset
subject to transaction costs if the expected horizon is short.

2 Recall that there is only one moving boundary for an American put option with finite maturity.
3 Previous asset pricing literature has explored portfolio optimization in frictionless markets with uncertain

lifetime such as Cass and Yaari (1967), Merton (1971), and Richard (1975).
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As in most of the literature on optimal investment with transaction costs
[e.g., Davis and Norman (1990), Grossman and Laroque (1990), Cuoco and
Liu (2000)], the optimization problem in this case amounts to a singular
stochastic control problem. We obtain analytic expressions for the value func-
tion as the closed form solution to an ordinary differential equation subject
to certain free boundary conditions. We find that the optimal transaction pol-
icy is to maintain the ratio of the dollar amount in the risk-free asset to the
amount in the risky asset within a wedge, represented by the buy boundary
and the sell boundary.

We also derive explicit, horizon-independent bounds on the boundaries.
We show that the ratio at the buy boundary is always greater than the ratio
in the absence of transaction costs (the Merton line). However, the ratio at
the sell boundary could also be greater than the Merton line, which means
that the entire no-transaction region could be above the Merton line.

We then extend the above analysis to the case where the terminal date
occurs at the time of the nth (n > 1) jump of an independent Poisson process
(thus the horizon is Erlang distributed). As expected, the optimal transaction
boundaries become state dependent and jump each time the Poisson process
jumps. We also demonstrate that the bounds on the transaction boundaries
obtained in the previous case still apply.

Finally, we show that the value function and transaction boundaries in
the Erlang distributed case converge to the value function and transaction
boundaries, respectively, for an investor with a deterministic finite horizon.
This implies that the bounds on boundaries derived in the previous cases are
also valid for the deterministic horizon case. We also show that the trading
boundaries for the exponentially distributed horizon case can be regarded as
approximations to the trading boundaries for the deterministic finite horizon
case.

Since the optimal trading boundaries for investors with exponentially dis-
tributed horizons approximate those for the Erlang distributed and deter-
ministic horizons, we provide detailed analysis of the trading behavior of
investors with exponentially distributed horizons. In particular, we examine
how the optimal transaction boundaries change as the coefficients of the
model change. In general, the comparative statics follow those known in the
frictionless case. However, we find that the buy boundary is more sensitive
to parameter changes than the sell boundary. Furthermore, the sensitivity of
the buy boundary increases as the horizon decreases. We also examine the
expected time to sale after purchase and find that the optimal trading strat-
egy is indeed largely buy and hold, consistent with much of the conventional
wisdom.

The remainder of the article is organized as follows. In Section 1 we
describe the basic model where an investor has a finite deterministic horizon.
In Section 2 we solve the problem for an investor with an exponentially
distributed horizon. In Section 3 we extend the problem to the case where
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the investor’s horizon is Erlang distributed, and in Section 4 we show that
the solutions in Section 3 converge to those for the basic model specified
in Section 1. Section 5 provides comparative statics and further analysis of
optimal trading policies. Section 6 concludes with some possible extensions
of the model and applications of the methodology.

1. The Basic Model

1.1 The asset market
Throughout this article we are assuming a probability space ���� � P� and
a filtration 	�t�. Uncertainty in the model is generated by a standard one-
dimensional Brownian motion w. We will assume that wt is adapted.

There are two assets our investor can trade. The first asset (“the bond”)
is a money market account growing at a continuously compounded, constant
rate r . The second asset (“the stock”) is a risky investment. The investor can
buy the stock at the ask price, SA

t = St , and sell the stock at the bid price,
SB

t = �1−��St ,
4 where 0 ≤ � < 1 represents the proportional transaction cost

rate5 and St is given by

St = S0e
��−�2/2�t+�wt � (1)

where we assume all parameters are positive constants and � > r .
When � > 0, the above model gives rise to equations governing the evo-

lution of the amount invested in the bond, xt , and the amount invested in the
stock, yt:

dxt = rxt dt−dIt + �1−��dDt� (2)

dyt = �yt dt+�yt dwt +dIt −dDt� (3)

where the processes D and I represent the cumulative dollar amount of sales
and purchases of the stock, respectively. These processes are nondecreasing,
right continuous adapted processes with D�0� = I�0� = 0. Let x0 and y0 be
the given initial positions in the bond and the stock, respectively. We let
��x0� y0� denote the set of admissible trading strategies �D� I� such that
Equations (2) and (3) are satisfied and the investor is always solvent, that is,

xt + �1−��yt ≥ 0�∀ t ≥ 0� (4)

4 We choose the ask price SA
t instead of the midpoint [as in Davis and Norman (1990)] as the numeraire for

notational simplicity without any loss of generality. This does not imply no transaction costs when purchasing
the stock. In fact, SA

t should be interpreted as the stock price inclusive of the transaction cost for purchasing.
5 In our model, the case where � = 1 is a trivial case since no investor with monotonic preferences would ever

buy the stock.
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1.2 The investor’s problem
In order to highlight the role of the horizon, we assume the utility of an
investor only depends on the market value of his portfolio at a determin-
istic time T . This is consistent with earlier models in the literature [e.g.,
Dumas and Luciano (1991), Brennan, Schwartz, and Lagnado (1997)]. The
investor’s problem is to choose trading strategies D and I so as to maximize
E u�xT + �1−��yT �" subject to Equations (2), (3), and (4). We assume that
the investor has CRRA preference, that is, u�W� = W 1−$

1−$
for $ > 0, $ �= 1.6

To solve this problem, we define the value function at time t as

V �x� y� t� = sup
�D� I�∈��x� y�

E

[
�xT + �1−��yT �1−$

1−$

∣∣∣∣�t

]
� (5)

1.3 Optimal policies with no transaction costs
For the purpose of comparison we present results, due to Merton (1971),
for the case when there are no transaction costs (� = 0) without proof. In
this case, the cumulative purchases and sales of the stock can be of infinite
variation. The investor’s problem can be written as

V �x� y�0� = sup
	yt &t≥0�

E

[
�xT +yT �1−$

1−$

]
�

subject to

d�xt +yt� = r�xt +yt�dt+ ��− r�yt dt+�yt dwt� (6)

In this case, it is well known that the optimal policy involves investing
a constant fraction of wealth in the stock and the fraction is independent
of the investor’s horizon. It is important to note that as long as � > r , the
investor always optimally holds some of the risky asset. Here we will sketch
the solution and define parameters which will be used in the sequel. Without
transaction costs, the optimal stock investment policy can be shown to be

y∗
t =

1
r∗ +1

�x∗
t +y∗

t � (7)

for all 0 < t < T , where the “Merton line” r∗ is given by

r∗ = $�2

�− r
−1� (8)

The lifetime expected utility is

V �x� y�0� = e'T �x+y�1−$

1−$
� (9)

6 Similar results for $ = 1 (i.e., log utility) can be derived.
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where

' = �1−$�

(
r + (

$

)
(10)

and

( = ��− r�2

2�2
� (11)

1.4 The transaction cost case
In the case where � > 0, the problem is considerably more complicated.
Here we outline a direct approach: first, we postulate that the region where
the investor has positive wealth, the solvency region,

� = 	�y� x� & x+ �1−��y > 0��

at each point in time splits into a “buy” region, a “no-transaction” region,
and a “sell” region, as in Davis and Norman (1990). Under regularity condi-
tions on the value function, we have the following Hamilton–Bellman–Jacobi
(HJB) equation,

1
2
�2y2Vyy + rxVx +�yVy +Vt = 0�

in the no-transaction region. In the buy region, the marginal cost of decreas-
ing the amount in the bond is equal to the marginal benefit of increasing the
amount in the stock, that is,

Vx = Vy�

Similarly, in the sell region, the marginal benefit of increasing the amount in
the bond must be equal to the marginal cost of decreasing the amount in the
stock, that is,

�1−��Vx = Vy�

In addition, we must have the terminal condition

lim
t→T

V �x� y� t� = �x+ �1−��y�1−$

1−$
�

It follows immediately from the homogeneity of the utility function u, the
convexity of the set of admissible strategies, and the fact that ��)x�)y� =
)��x� y� for all ) > 0 that the value function V is concave and homogeneous
of degree 1−$ in �x� y� [cf. Fleming and Soner (1993), Lemma VIII.3.2].
This homogeneity implies

V �x� y� t� = y1−$*

(
x

y
� t

)
�

for some function *& ��−1���×  0� T " → �. Let
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z = x

y
(12)

denote the ratio of the amount invested in the bond to the amount invested in
the stock. The homogeneity property then implies that the buy, no-transaction,
and sell regions can be described by two functions of time r1�t� and r2�t�.
The buy region corresponds to z ≥ r2�t�, the sell region to z ≤ r1�t�, and the
no-transaction region to r1�t� < z < r2�t�, as depicted in Figure 1.

Using these properties, we obtain a partial differential equation for * in
the no-transaction region (r1�t� < z < r2�t�):

1
2
�2z2*zz + �$�2 − ��− r��z*z − �1−$��$�2/2−��*+*t = 0�

In the buy region (z ≥ r2�t�), we have

�z+1�*z�z� t� = �1−$�*�z� t��

Similarly, in the sell region (z ≤ r1�t�), we have

�z+1−��*z�z� t� = �1−$�*�z� t��

In addition, * must also satisfy the terminal condition

lim
t→T

*�z� t� = �z+1−��1−$

1−$
�

This system of equations involves finding a pair of moving boundaries r1�t�
and r2�t� and is difficult to solve. In the subsequent sections we develop an

Figure 1
The solvency region
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alternative methodology which can circumvent this difficulty and lead to a
solution for the optimal trading policy.

2. Exponentially Distributed Horizon

In this section, as a first step toward solving the problem, we modify the opti-
mization problem so that our investor has an uncertain horizon. In particular,
the investor’s problem is now to choose admissible trading strategies D and
I so as to maximize E u�x, + �1−��y,�" for an event which occurs at the
first jump time , of a standard, independent Poisson process with intensity
-. , is thus exponentially distributed with parameter -, that is,

P	, ∈ dt� = -e−-t dt�

This modified model yields a closed-form solution for the value function
and serves as a foundation for solving the basic model specified in the pre-
vious section. Moreover, it can also be of independent interest. For example,
bequest, accidents, retirement, and many other events happen on uncertain
dates.

If , is interpreted to represent the investor’s uncertain lifetime [as in
Merton (1971) and Richard (1975)], the investor’s average lifetime is then
1/- and the variance of his lifetime is accordingly 1/-2.

We can then write the value function as

v�x� y� = sup
�D� I�∈��x� y�

E

[
�x, + �1−��y,�

1−$

1−$

]
� (13)

In light of our assumptions on , and the asset market, this can be rewritten
as [see Merton (1971), Carr (1998)]

v�x� y� = sup
�D� I�∈��x� y�

-E

[∫ �

0
e−-t �xt + �1−��yt�

1−$

1−$
dt

]
� (14)

Thus the investor’s problem [Equation (13)] can be solved by solving the
transformed problem [Equation (14)]. The critical difference from the basic
model is the absence of the time dimension, which significantly simplifies
the problem.

2.1 Optimal policies with no transaction costs
Again, for purpose of comparison, let us first consider the case without trans-
action costs (� = 0). In this case, the investor’s problem becomes

v�x� y� = sup
	yt &t≥0�

-E

[∫ �

0
e−-t �xt +yt�

1−$

1−$
dt

]
�

subject to the self-financing condition [Equation (6)].
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The above problem is formally similar to the one studied by Merton
(1971). As in Merton (1971), a condition on the parameters is required for
the existence of the optimal solution.7

Assumption 1. The investor’s expected horizon parameter - satisfies

- > �1−$�

(
r + (

$

)
�

where ( is as defined in Equation (11).

Assumption 1 is necessary because if the investor expects to live a long
time (- is small) then the risk-free rate must be low enough and the stock
cannot deliver too high a risk premium ��− r� with low risk (�), otherwise
the investor can obtain bliss levels of utility by investing in either the stock
(if ( is too high) or the bond (if r is too high). We summarize the main result
for this case of no transaction costs without proof in the following lemma.

Lemma 1. Suppose that � = 0. Then the optimal stock investment policy is
Equations (7) and (8) for 0 ≤ t ≤ , . Moreover, the lifetime expected utility is

v�x� y� = -

-−'

�x+y�1−$

1−$
�

where ' is as defined in Equation (10).

Thus, without transaction costs, the optimal policy involves investing the
same horizon-independent, constant fraction of total wealth in the stock and
the bond as in the deterministic horizon case in Section 1.3. This is similar
in spirit to the observation in Samuelson (1969) that the optimal portfolio
does not depend on the investor’s horizon. Moreover, it is always optimal to
invest some in the stock if the expected return in the stock is greater than the
interest rate. We will see later that all these features disappear in the presence
of even small transaction costs.

2.2 Optimal policies with transaction costs
Suppose now that � > 0. As in Section 1.4, the value function is homoge-
neous of degree 1−$ in �x� y�. This implies that

v�x� y� = y1−$/

(
x

y

)
(15)

for some concave function /& ��−1��� → �.

7 Introducing time discounting in the preference or restricting to the case with $ > 1 would make this assump-
tion unnecessary or automatically satisfied and all the subsequent results still hold with, at most, minor
modifications.
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Similar to Section 1.4, the solvency region splits into three regions: buy
region, sell region, and no-transaction region. In contrast to Section 1.4, how-
ever, because of the time homogeneity of the value function, these regions
can be identified by two critical numbers (instead of functions of time) r1 and
r2. The buy region corresponds to z ≥ r2, the sell region to z ≤ r1, and the
no-transaction region to r1 < z < r2, where z is as defined in Equation (12).

Under regularity conditions on v, we have the following HJB equation:

1
2
�2y2vyy + rxvx +�yvy −-v+ -�x+ �1−��y�1−$

1−$
= 0 (16)

in the no-transaction region, with the associated conditions

vx = vy

in the buy region, and
�1−��vx = vy

in the sell region.
Using Equation (15), we can simplify the PDE in Equation (16) to get the

following ordinary differential equation in the no-transaction region:

z2/zz +)2z/z +)1/+)0

�z+1−��1−$

1−$
= 0� (17)

where )2 = 2�$�2−��−r��/�2, )1 =−2�-+�1−$��$�2/2−���/�2, and
)0 = 2-/�2. The associated boundary conditions are transformed into

�z+1�/z�z� = �1−$�/�z�

for all z ≥ r2 and
�z+1−��/z�z� = �1−$�/�z�

for all z ≤ r1. Define

n1�2 =
�1−)2�±

√
�1−)2�

2 −4)1

2
�

Assumption 1 implies that �1−)2�
2−4)1 > 0. The solutions to the homoge-

neous part of Equation (17) can therefore be characterized by the fundamental
solutions /1 and /2, where

/1�z� = �z�n1� /2�z� = �z�n2 �

The general solution to Equation (17) can thus be written as

C1/1�z�+C2/2�z�+/p�z��
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where C1 and C2 are integration constants and the particular solution [see
Boyce and DiPrima (1969)]

/p�z� = )0

∫ z

r∗

/1�2�/2�z�−/1�z�/2�2�

/′
1�2�/2�2�−/1�2�/′

2�2�

�2+1−��1−$

�1−$�22
d2�

The above discussions imply that

/�z� =




A�z+1�1−$

1−$
if z ≥ r2

C1/1�z�+C2/2�z�+/p�z� if r1 ∨0 < z < r2 ∨0

�C1/1�z�+ �C2/2�z�+/p�z� if r1 ∧0 < z < r2 ∧0

B �z+1−��1−$

1−$
if �−1 < z ≤ r1�

(18)

for some constants A�B�C1�C2� �C1� �C2� r1, and r2.
We have the following result on the existence of the value function and

the optimal trading strategy for the modified model.

Theorem 1. There exist constants A, B, C1, C2, �C1, �C2, r1, and r2 such that

1. /�z� is a C2 function on ��−1�0� and �0���,
2. /�z� satisfies the following: if r2 =�, then

lim
y→0�x>0

y1−$/

(
x

y

)
= -

-− �1−$�r

x1−$

1−$
(19)

and if r1 ≤ 0 ≤ r2, then

lim
x→0

y1−$/

(
x

y

)

= -

�1−$��-− �1−$��+$�1−$��2

2 �
��1−��y�1−$� (20)

3. v�x� y� = y1−$/
(

x
y

)
is the value function.

Moreover, the optimal transaction policy is to transact the minimal amount
in order to maintain z between r1 and r2.

Proof. The proof is similar to the references below. Since this is not the
focus of our analysis, we refer the interested reader to these sources for
details. The basic idea is to note that the value function in Equation (14) is a
piecewise C2 solution of Equation (16).8 This, combined with convex analysis

8 Here we need to allow for the fact that the value function may not be a C2 function at z = 0 (and thus not a
classic solution) if the x axis is contained in the no-transaction region. This really causes no problem, since
the optimal policy will never cross the axis in this case. Proposition 5 formally demonstrates this fact.
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of the value function along the lines of Shreve and Soner (1994), reveals that
the value function itself will satisfy the conditions stated in the theorem.
Thus we are assured of the existence of the function above. The existence of
an optimal transaction policy then follows directly from Fleming and Soner
(1993), Theorem VIII.4.1. �

In order to solve for the value function and the optimal trading strategy, we
need to consider three cases. If r2 is finite and the no-transaction region does
not contain 0, then we need to determine six constants A�B�C1�C2� r1, and
r2 using Equation (18) and the C2 property (the “smooth pasting conditions”)
of / across r1 and r2. If r2 is finite but the no-transaction region contains
0, then we need to determine eight constants A�B�C1�C2� �C1� �C2� r1, and r2

using Equation (18), the C2 property of / across r1 and r2 and the condition
[Equation (20)] at z = 0. If r2 is infinite, then the only boundary condition
at r2 would be Equation (19), but other boundary conditions apply as in the
previous two cases. For the first case, algebraic manipulation can reduce the
six equations to two nonlinear equations for r1 and r2, which can be solved
numerically. Of course this search is easier if we can find bounds on r1 and
r2 and conditions which tell us when r2 is infinite. The next section provides
this information.

2.3 The behavior of the no-transaction region
Before we prove general properties of the transaction boundaries, we first
turn our attention to Figure 2, which plots optimal boundaries for the bond-

Figure 2
Optimal boundaries for the bond-to-stock ratio as functions of the expected lifetime
The graph plots r1 and r2 against 1/- for parameters r = 0�05, � = 0�12, � = 0�20, � = 0�01, and $ = 2.
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to-stock ratio as functions of the expected lifetime.9 It shows that both
the buy boundary r2 and the sell boundary r1 increase as the expected
lifetime 1/- decreases. This implies that starting with all the wealth in
the bond, the optimal fraction of wealth invested in the stock decreases
as the horizon decreases, consistent with the typical life-cycle investment
advice. In fact, the speed of decrease in the optimal fraction of wealth
invested in the stock increases as the horizon shortens. In addition, the
buy boundary is much more sensitive to the lifetime than the sell boundary.
Section 5 contains more analysis and comparative statics for this modified
model.

In contrast to many of the previous studies, our investor has a finite horizon
and is subject to transaction costs. Due to the finiteness of the horizon and
the presence of transaction costs, it may be suboptimal to buy additional
stock even when the risk premium is positive. In this case, the optimal buy
boundary is vertical, or in other words, r2 =�. Intuitively, if the investor does
not have a long enough expected horizon to recover at least the transaction
costs, then it does not pay to buy any additional stock. The following result
confirms this intuition and provides a necessary and sufficient condition under
which this occurs.

Proposition 1. Suppose 0 < � < 1. A necessary and sufficient condition for
r2 to be infinite is

�− r ≤ ��-− �1−$�r�� (21)

Proof. See the appendix. �

Recall that in the notransaction cost case, or in the infinite horizon trans-
action cost analysis of Davis and Norman (1990), Shreve and Soner (1994),
and Dumas and Luciano (1991), the investor always optimally buys some
of the risky asset if and only if �− r > 0.10 In contrast, in our model, the
above result says that if the investor does not expect to live long (i.e., -
is large), or the transaction cost rate � is high, or the investor is highly
risk averse (i.e., $ is large), or the risk premium is low, then the investor
will never buy the stock, even when the risk premium is positive. Thus, as
opposed to the frictionless case, the trading strategy is now clearly horizon
dependent.

While the above condition involves the expected lifetime 1/-, the follow-
ing lemma provides bounds on the transaction boundaries which are inde-
pendent of -.

9 The optimal boundaries are computed using the smooth pasting conditions at r1 and r2 for the first case
described in the last paragraph in the previous subsection.

10 As in Equation (21), this condition is independent of � .
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Proposition 2. We have the following bounds on the boundaries of the no-
transaction region, r1 and r2:

�1−��r∗ ≥ r1 ≥
$�2�1−��

2��− r�
− �1−�� (22)

and

r2 ≥ r∗� (23)

where r∗ is the Merton line as defined in Equation (8). Moreover, if $�2 =
�− r , then r1 = 0.

Proof. See appendix. �

Proposition 2 shows that the buy boundary is always above the Merton
line r∗. It also shows that the sell boundary is always below �1−��r∗. In
particular, if r∗ > 0, then the sell boundary is always below the Merton line.
However, it is not the case that the sell boundary is always a decreasing
function of transaction cost rate. In fact, if r∗ < 0, then the sell boundary can
be above the Merton line (which implies that the entire no-transaction region
is above r∗) for large enough transaction cost rate. This is because when
� = 1, the sell boundary has to be on or above 0 (which is the solvency line
in this case).

3. Erlang Distributed Horizon

As a second step toward solving the basic model, we generalize the model
described in the previous section. In this section we assume the investor’s
horizon , occurs after the nth i.i.d. Poisson jump, which means that , will
be Erlang distributed as shown in Carr (1998). Therefore, if we let

P	,i ∈ dt� = -i

�i−1�! t
i−1e−-t dt�

then , = ,n.
Under this assumption the expected horizon is i/- when there are i jumps

left. The variance of , is n/-2. To help solve the problem with finite deter-
ministic horizon T , we consider the case where , always has expected value
E ," = T . Thus we set the intensity - = n/T in this and the next section.
The variance of , is then T 2/n, which approaches 0 as n increases. For
the existence of a solution, we still maintain Assumption 1, which will be
satisfied if n is large enough for a fixed T . The investor’s problem is once
again to choose admissible D and I so as to maximize E u�x, + �1−��y,�"
subject to Equations (2), (3), and (4).
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3.1 Optimal policies with no transaction costs
In this subsection we present results without proof for the case when there are
no transaction costs (�= 0) and the investor’s horizon , is Erlang distributed.
The investor’s problem can be written as

vn�x� y� = sup
	yt &t≥0�

E

[
�x, +y,�

1−$

1−$

]
�

subject to the budget constraint in Equation (6).

Lemma 2. Suppose that � = 0. The optimal stock investment policy is then

y∗
t =

1
r∗ +1

�x∗
t +y∗

t ��

Moreover, the lifetime expected utility is

vn�x� y� = -n

�-−'�n

�x+y�1−$

1−$
�

where ' is as defined in Equation (10). Moreover, with - = n/T , we have

lim
n→�vn�x� y� = e'T �x+y�1−$

1−$
= V �x� y�0��

where V �x� y�0� is as defined in Equation (9).

Once again, without transaction costs, the optimal policy involves investing
a constant fraction of total wealth in the stock and the bond, and this is
independent of the investor’s horizon. Also, notice that as we make n very
large, the value function converges to the value function for the deterministic
horizon case. We will show in Section 4 that this convergence result also
holds in the presence of transaction costs.

3.2 Optimal policies with transaction costs
Let vi�x� y� be the value function when there are i jumps left until the hori-
zon,

vi�x� y� = sup
�D� I�∈��x� y�

E

[
�x�,i�+ �1−��y�,i��1−$

1−$

]
�

and thus v0�x� y� = �x+�1−��y�1−$

1−$
. Then to compute vi�x� y�, we can solve the

following recursive structure:

vi�x� y� = -E

[∫ �

0
e−-tvi−1�xt� yt� dt

]
� i = 1� � � � � n� (24)
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As before, because of the homogeneity of vi�x� y�, there exists some function
/i such that

vi�x� y� = y1−$/i

(
x

y

)
�

Solving Equation (24) reduces to finding functions /i�z� such that

z2/i
zz +)2z/

i
z +)1/

i +)0/
i−1 = 0� i = 1� � � � � n (25)

with the associated boundary conditions

�z+1�/i
z�z� = �1−$�/i�z�� (26)

for all z ≥ r i
2 and

�z+1−��/i
z�z� = �1−$�/i�z�� (27)

for all z ≤ r i
1, where )2, )1, and )0 are the same as in Equation (17) and r i

1

and r i
2 represent the sell and buy boundaries, respectively, when there are i

jumps left. Moreover, the homogeneous solutions to Equation (25) are also
the same as those for Equation (17). This leads to the general solution to
Equation (25),

Ci
1/1�z�+Ci

2/2�z�+/i
p�z�� (28)

where Ci
1 and Ci

2 are integration constants and the particular solution

/i
p�z� = )0

∫ z

r∗

/1�2�/2�z�−/1�z�/2�2�

/′
1�2�/2�2�−/1�2�/′

2�2�

/i−1�2�

22
d2�

Equations (25)–(28) imply that

/i�z� =




Ai �z+1�1−$

1−$
if z ≥ r i

2

Ci
1/1�z�+Ci

2/2�z�+/i
p�z� if r i

1 ∨0 < z < ri
2 ∨0

�Ci
1/1�z�+ �Ci

2/2�z�+/i
p�z� if r i

1 ∧0 < z < ri
2 ∧0

Bi �z+1−��1−$

1−$
if �−1 < z ≤ r i

1�

for some constants Ai,Bi,Ci
1,Ci

2, �Ci
1, �Ci

2 and the boundaries r i
1 and r i

2.
As in the previous section, we need to find coefficients that make /i�z� a

C2 function on ���0� and �0��� and satisfy the appropriate limiting condi-
tions when r i

2 is infinite or r i
2 ≥ 0 ≥ r i

1. Notice that in this case the coefficients
Ai,Bi,Ci

1,Ci
2, �Ci

1, �Ci
2, and the boundaries r i

1 and r i
2 change each time the Pois-

son jump occurs. To save space, we omit the analogue of Theorem 1 for the
Erlang distributed horizon, but we are assured of the existence of a solution
to these equations by such a result.
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To compute the optimal boundaries when there are i > 1 jumps left, we
first compute r1

1 and r1
2 using the approach described in the last paragraph of

Section 2.2. We then iterate i−1 times using the same approach to obtain r i
1

and r i
2.

3.3 Behavior of the no-transaction region
Figure 3 plots r i

1 and r i
2 for i from 1 to 25 when T = 25 and n = 25 (i.e.,

- = 1). For example, when there remain 25 jumps until the event time, the
sell boundary is 0.0980 and the buy boundary is 0.1903. As is clear from
the graph, as the number of remaining jumps decreases, the changes in the
boundaries become larger. This feature is similar to that in Figure 2. It is also
consistent with the intuition that as an investor gets closer to the terminal
date, buying stock becomes less attractive and eventually the investor never
buys any additional stock.

Some other important features are also worth noting. Let us compare the
case in Figure 2, where there is only one jump to the terminal date, but
with expected time of 25 years, and the case in Figure 3, where there are
25 jumps to the terminal date, but with expected time of 1 year to the next
jump. The optimal no-transaction range in the first case is �0�1026�0�2091�
versus �0�0980�0�1903� in the second case. First, we note that even if the
two cases have the same expected time to the terminal date, the investor in
the first case will be less willing to buy stock. The intuition is that with
only one jump to go (even if the expected time to the jump is longer), the

Figure 3
Optimal boundaries for the bond-to-stock ratio corresponding to the remaining number of jumps
The graph plots r i

1 and r i
2 for i from 1 to 25 when T = 25 and n = 25 for parameters - = 1, r = 0�05,

� = 0�12, � = 0�20, � = 0�01, and $ = 2.
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uncertainty in the first case is much greater. In the second case, the investor
has a better idea along the way about how much time is left. It is this higher
uncertainty that makes the investor in the first case less willing to buy stock.
We also note that even though the first case has a much coarser grid than the
second case, the differences between the initial trading boundaries in these
two cases are small, only 0.0046 and 0.0188, respectively, for the sell and
buy boundary. Thus we conjecture that the analysis in Section 2 will produce
a fairly accurate description of the initial trading boundaries for reasonable
parameter values.

Next we provide the analogues to Propositions 1 and 2 for the investor
who has an Erlang distributed horizon:

Proposition 3. Suppose 0 < � < 1. A necessary and sufficient condition for
r i

2 to be infinite is

�1−��
1
i �-− �1−$�r� ≤ �-−�+$r��

We also have the following bounds:

�1−��r∗ ≥ r i
1 ≥

$�2�1−��

2��− r�
− �1−��

and
r i

2 ≥ r∗�

Moreover, if $�2 = �− r , then r i
1 = 0.

Proof. Similar to Propositions 1 and 2. �

4. Deterministic Horizon

The deterministic finite horizon case in Section 1 can now be dealt with
by using the model of the previous section. Suppose that in the previous
model we make n very large and always maintain E ," = T (i.e., - = n/T ).
Intuitively we should expect that the limiting value function would converge
to the value function of the case with a deterministic horizon T , since the
variance of , goes to zero as n gets large. This is indeed the case in the no
transaction cost case as shown in Lemma 2 of Section 3.1. The following
theorem confirms that this is also the case with the presence of transaction
costs.

Theorem 2. Let V �x� y� t� be as defined in Equation (5). Then

lim
n→�vn�x� y� = V �x� y�0��

Proof. See the appendix. �

This result shows that to approximate the value function for the prob-
lem with finite deterministic horizon, one can solve the case with Erlang
distributed horizon with a large n.

823



The Review of Financial Studies / v 15 n 3 2002

4.1 Behavior of the no-transaction region
A natural question is whether the optimal transaction boundaries converge.
Theorem 25.5 in Rockafellar (1970) implies that the value function will be
differentiable on a dense set of the solvency region, and the homogene-
ity property of the value function implies this dense set can be written as
the union of open convex cones. Theorem 25.7 in Rockafellar (1970) then
implies that the derivatives of the value functions for the Erlang distributed
horizon will converge to those of the value function for the deterministic
horizon on this union. Thus the transaction boundaries (which are defined by
the ratio of the derivatives) must also converge. In addition, the necessary
and sufficient condition for not buying any additional stock will converge to
the condition for the deterministic finite horizon case. Moreover, since the
bounds in Proposition 3 are independent of -, they are still valid for the
deterministic horizon case. In particular, this shows that in the deterministic,
finite horizon case, the time-varying buy boundary will always be above the
Merton line r∗, and if r∗ > 0, the time-varying sell boundary will always be
below the Merton line. We summarize the preceding remarks in the following
proposition.

Proposition 4. Let r1�t� and r2�t� be the optimal no-transaction boundaries
at t ∈  0� T " for the deterministic horizon problem as defined in Equation (5).
A necessary and sufficient condition for r2�t� to be infinite is

�− r ≤− 1
T − t

log�1−���

We also have the following bounds: ∀ t ∈  0� T ",

�1−��r∗ ≥ r1�t� ≥
$�2�1−��

2��− r�
− �1−��

and
r2�t� ≥ r∗�

Moreover, if $�2 = �− r , then ∀ t ∈  0� T "� r1�t� = 0.

Proof. This is summarized in the discussion preceding the proposition. �

As far as we know, this is the first time explicit bounds for the opti-
mal no-transaction boundaries are derived in the deterministic finite hori-
zon case. Some articles, for example, Gennotte and Jung (1994), have used
discrete approximations to solve the deterministic horizon investor problem
with transaction costs. However, these approximations can produce no trade
regions which violate the above bounds due to discretization.

Theorem 2 and Figure 3 suggest that �0�0980�0�1903� is a good approxi-
mation to the initial optimal range for the case with a deterministic horizon
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of 25 years. According to Theorem 2, Figure 3 also approximates the behav-
ior of the transaction boundaries as a function of remaining time in the case
with a deterministic horizon of 25 years.

Also, if we compare Figure 2 with Figure 3, we see that we can closely
approximate the initial trading boundaries for an investor with a deterministic
horizon T by the boundaries for an investor with an exponentially distributed
horizon with mean T . In addition, Propositions 4 and 2 imply that the buy
boundary in the deterministic finite horizon case is infinite for a remaining
lifetime of less than 0.1436, while the buy boundary is infinite in the expo-
nentially distributed horizon case for an expected lifetime of less than 0.1439,
which is only 0.0003 away. We thus conjecture that the trading boundaries
for exponentially distributed horizons produce a reasonable approximation of
the trading boundaries for the deterministic horizon for reasonable parameter
values.

5. Further Analysis of the Exponential Horizon Case

In the previous section we showed that we can regard the optimal trading
boundaries for the exponentially distributed horizon case in Section 2 as
a good approximation of the initial trading boundaries in the deterministic
horizon case. In this section we provide further analysis of the optimal poli-
cies for an investor with an exponentially distributed horizon. This analysis
should provide a fairly accurate description of the trading behavior of an
investor with a deterministic horizon.

5.1 Changes in risk aversion
Figure 4 shows the effect of the coefficient of relative risk aversion, $, on
the optimal trading boundaries for expected horizons of 1 year and 25 years.
As $ increases, both r1 and r2 increase and the width of the no-transaction
region increases. Essentially a more risk-averse investor holds more of the
risk-free asset. Of interest is that the sell boundary r1 is not sensitive to
horizon, even as risk aversion increases, but the buy boundary r2 increases
at a faster rate as the horizon decreases.

5.2 Changes in risk
Figure 5 shows how the optimal transaction boundaries change as we change
the riskiness of the stock � for investors with expected horizons of 1 year
and 25 years. As stock return volatility increases, we see that not only r1

and r2, but also the width of the no-transaction region increase. Intuitively
the risk-averse investor tends to invest less in the stock on average as the
risk rises and he needs to widen the no-transaction region in order to avoid
transacting too frequently as the volatility increases. Also note that the sell
boundary is not sensitive to the horizon as � increases. The buy boundary, on
the other hand, increases at a significantly higher rate for a shorter-horizon
investor as the risk increases.
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Figure 4
Changes in risk aversion
The graph plots r1 and r2 against $. The dotted lines correspond to - = 1 and the solid lines correspond to
- = 0�04. The thin line in the middle is the Merton line. Other parameters are r = 0�05, � = 0�12, � = 0�20,
and � = 0�01.

Figure 5
Changes in risk
The graph plots r1 and r2 against � . The dotted lines correspond to - = 1 and the solid lines correspond to
- = 0�04. The thin line in the middle is the Merton line. Other parameters are r = 0�05, � = 0�12, � = 0�01,
and $ = 2.
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Figure 6
Changes in expected return of the stock
The graph plots r1 and r2 against �. The dotted lines correspond to - = 1 and the solid lines correspond to
- = 0�04. The thin line in the middle is the Merton line. Other parameters are r = 0�05, � = 0�2, � = 0�01,
and $ = 2.

5.3 Changes in the expected return of the stock
Figure 6 shows how the buy and sell boundaries change as the expected
stock return changes for expected horizons of 1 year and 25 years. We see
that as the expected return increases both r1 and r2 decrease. Naturally, as
the expected return on the stock becomes more attractive, an investor would
want to hold more stock, all else being equal. However, this relationship
is also affected by the horizon of the investor. We see that for investors
with shorter horizons the buy boundary moves much farther up for smaller
expected returns than for investors with longer horizons. Once again, the sell
boundary is much less sensitive to the horizon than the buy boundary.

5.4 Changes in transaction costs
Figure 7 shows how the transaction boundaries change as the transaction cost
rate � changes. The sell boundary is much less sensitive to the change in
the transaction cost rate than the buy boundary. When � = 1%, the investor
would let the ratio of the bond to the stock fluctuate between 0.1032 and
0.2037 before adjusting. In the absence of transaction costs, the investor
would constantly keep the ratio at 0.1428. In contrast to Dumas and Luciano
(1991), who found no bias toward cash in the optimal portfolio, here we
see that as transaction cost rate increases, there is a clear bias toward cash
in the optimal portfolio caused by the finiteness of the horizon. Notice the
convexity of the buy boundary when � gets large enough (about 2%). In fact,
this has to be the case because by Proposition 1, as the transaction cost rate
� increases to 77.8%, the buy boundary has to approach infinity.
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Figure 7
Optimal boundaries for the bond-to-stock ratio as a function of the transaction cost rate
The graph plots r1 and r2 against � for parameters - = 0�04, r = 0�05, � = 0�12, � = 0�20, and $ = 2. The
thin line in the middle is the Merton line.

5.5 Frequency of trading
In order to analyze in more detail the stochastic behavior of the investment
in the stock, we note that within the no-transaction region

dzt = ��2 − ��− r��zt dt−�zt dwt�

Now fix z0 = z ∈ �r1� r2� and define

,e = inf	t ≥ 0 & zt � �r1� r2��

to be the time of the next transaction. Let

Pz�,e < �� = P�,e < � � z0 = z�

denote the conditional probability that ,e is finite and

Ez ,e" = E ,e � z0 = z"

denote the conditional expectation of ,e.
The following proposition confirms that the investor will never buy the

stock if and only if the buy boundary r2 is � and that if r1 ≤ 0 ≤ r2, then 0
can never be reached.

Proposition 5. If 0 �∈  r1� r2" and r2 <�, then Pz�,e <��= 1 and Ez ,e" <
� for all z ∈ �r1� r2�. Moreover, either boundary of the no-transaction region
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can be reached with positive probability. On the other hand, if 0 ∈  r1� r2"
(r2 =�, respectively), 0 (�, respectively) is never reached from within the
interior of the first and the fourth orthants in the �y� x� plane.

Proof. This follows immediately from propositions in Section 5.5 of
Karatzas and Shreve (1988). �

The previous analysis implies that if 0 ∈  r1� r2", then zt can never cross
the x-axis, which shows that the value function might not be C2 at 0 in this
case as pointed out in note 8. However, if 0 �∈  r1� r2" and r2 < �, then both
boundaries can be reached in finite expected time and we can compute a
set of measures of trading frequency, for example, expected time to the next
trade, expected time to the next sale after a purchase, etc. In this section we
are going to focus on the expected time to the next sale after a purchase to
measure the average turnover time. To do this we utilize the following result.

Proposition 6. Suppose 0 �∈  r1� r2" and r2 < �. Then

E ,s ∧ ,�x0 = x� y0 = y" = F �x/y��

where

,s ≡ inf	t ≥ 0 & zt = r1��

F �z� = k1�r2�k1 �z�k2 −k2�r2�k2 �z�k1

-�k2�r1�k1 �r2vert
k2 −k1�r1�k2 �r2�k1�

+ 1
-

�

and

k1�2 =
−( 1

2�
2 − ��− r�

)±√( 1
2�

2 − ��− r�
)2 +2-�2

�2
�

Proof. See the appendix. �

Figure 8 displays the expected time to the next sale after a purchase as
a function of the transaction cost �. Even for a small transaction cost rate
of 1%, it would take about 5 years to sell after a purchase for an investor
with an expected lifetime of 25 years. For a transaction cost rate of � = 2%,
it takes about 10 years to sell after a purchase. This is consistent with the
buy-and-hold advice in Malkiel (2000) and illustrates the dramatic impact of
even small transaction costs; recall that without transaction costs, the investor
would transact continuously.

To further illustrate the buy-and-hold strategy implied by the model and
the trading frequency as a function of the expected horizon, we plot the
expected time to next sale after purchase versus expected horizon in Figure 9.
For investors with short horizons, on the order of three years or less, the
expected time to sale after a purchase is roughly equal to the investor’s
expected horizon. Therefore this model indeed implies a largely buy-and-
hold trading strategy. The figure also shows that as the expected horizon
increases, the expected turnover time increases.
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Figure 8
Expected time to the next sale after purchase as a function of transaction cost
The graph plots E ,s ∧ ," against � for parameters - = 0�04, r = 0�05, � = 0�12, � = 0�20, and $ = 2.

Figure 9
Expected time to the next sale after purchase as a function of expected horizon
The graph plots E ,s ∧ ," against 1/- for parameters r = 0�05, � = 0�12, � = 0�20, � = 0�01, and $ = 2.
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6. Conclusion

In this article we propose a methodology to study the optimal transaction
policy for an investor with a finite horizon who is also subject to transaction
costs. In particular, we show that, in contrast to the frictionless case, there
is a clear link between the investor’s horizon and the optimal portfolio trad-
ing strategy: investors with shorter horizons will buy relatively less of the
risky asset and basically follow a buy-and-hold strategy. This is consistent
with the conventional wisdom on life-cycle investing. Our analysis derives
explicit solutions for investors whose horizons are exponential and Erlang
distributed. We then show that the solution to the case with an Erlang dis-
tributed horizon converges to the solution to the deterministic finite horizon
problem. We demonstrate that the optimal trading boundaries for the case
with an exponentially distributed horizon can be a good approximation for
those for the case with a deterministic horizon. In addition, we derive explicit
bounds on the transaction boundaries for all the cases we consider. More-
over, we obtain the necessary and sufficient conditions under which it is not
optimal to buy any stock, even when the risk premium is positive.

Our approach could be exploited to give approximate solutions for a
greater range of transaction cost problems with finite horizons. First, we
can generalize our model to allow for a dividend paying stock and still have
closed-form solutions for the exponentially distributed horizon case. Second,
the analysis in this article can be further generalized to cover the case where
the coefficients (including -) change at each jump of the Poisson process.
From our analysis, we can conjecture that these value functions will converge
to the value function for an economy where the coefficients are time varying.
Such generalizations could lead to interesting market microstructure studies
in the future.

Our approach should also find applications in a greater range of optimal
consumption/investment problems with time-varying components. To employ
this methodology, one could first derive a modified problem with time invari-
ant solution and then solve a series of such problems whose solutions con-
verge to the optimal solution to the original problem.

Appendix

In this appendix, we collect the proofs for Propositions 1, 2, 6, and Theorem 2.

Proof of Proposition 1. The proof relies on the inequality

u�x�−u�y� ≥ u′�x��x−y�� (A.1)

which is valid for differentiable concave functions [see Rockafellar (1970), Theorem 25.1].
Suppose our investor starts with initial endowments x0 > 0 and y0 = 0. For convenience, we
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take S0 = 1. To show necessity, notice that if it is optimal not to buy stock, we must have for
x� y corresponding to any feasible �D� I� ∈ ��x0� y0�,

E u′�x, + �1−��y,��x, + �1−��y, −x0e
r, �" ≤ 0�

In particular, letting x, = �1−a�x0e
r, and y, = ax0S, for 0 < a < 1, we have

E u′��1−a�x0e
r, +ax0�1−��S,���1−��S, − er, �" ≤ 0�

Choose a sequence 0 < an < 1 which goes down to 0. Taking limits as an ↓ 0 and interchanging
the limit and expectation, which is justified from using dominated convergence, since u′�x0�e

r, +
S,�� ≤ u′��1−an�x0e

r, +anx0�1−��S,� ≤ u′�x0�1−a0�e
r, �, we then have

E u′�x0e
r, ���1−��S, − er, �" ≤ 0�

which leads to ∫ �

0
�x0e

rt�−$��1−��E St"− ert�-e−-t dt ≤ 0�

Recalling E St" = e�t , we can integrate the above equations to get Equation (21). To prove
sufficiency, if we can show

E u′�x0e
r, ��x0e

r, −x, − �1−��y,�" ≥ 0 (A.2)

for x� y corresponding to any �D� I� ∈ ��x0� y0�, then from Equation (A.1), it is not optimal to
buy stock. Note that Equation (A.2) is equivalent to

∫ �

0
x0e

�−-+�1−$�r�t dt ≥
∫ �

0
e�−-−$r�tE �xt + �1−��yt�" dt� (A.3)

By Equation (21), it is easy to check that

∫ s

0
e�−-−$r�t�1−��E St" dt ≤

∫ s

0
e�−-−$r�tert dt (A.4)

for all s ≥ 0. This implies that the right-hand side of Equation (A.3) is maximized by lending
x0 and not buying any stock. �

Proof of Proposition 2. If r1 �= 0�/ is C2 at r1 and

/�z� = B
�z+1−��1−$

1−$
� ∀ z ≤ r1�

Notice B > 0, since v�x� y� is strictly increasing in x and y. Putting this expression evaluated at
r1 into Equation (16), we get (after simplification)

− 1
2
$� 2�1−��2B+ ��− r��1−���r1 +1−��B

+
[
− �-− �1−$�r�

B

1−$
+ -

1−$

]
�r1 +1−��2 = 0� (A.5)

If r1 = 0, then B = -

-−�1−$��+$�1−$� �2
2

by Equation (20) and direct substitution shows that Equa-

tion (A.5) still holds. In either case we know that B �x+y�1−���1−$

1−$
≥ -�x+y�1−���1−$

�1−$��-−�1−$�r�
, since the

investor must do at least as well as liquidating his stock holdings and lending until the horizon.
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Applying this inequality to the last term in Equation (A.5) leads to the lower bound in Equa-
tion (22). For the upper bound in Equation (22), let us first define [recalling the definition of (

in Equation (11)]

f �z� =−B

(√
(

$
�z+1−��−��1−��

√
$

2

)2

and

g�z� =
(
− �-− �1−$��r + (

$
��B

1−$
+ -

1−$

)
�z+1−��2�

Notice f �z� ≤ 0 and y1−$�f �z�+g�z�� is equal to the left-hand side of Equation (16) evaluated
at z ≤ r1. The supermartingale property of v�xt� yt� then implies

f �z�+g�z� ≤ 0� ∀ z ≤ r1

and Equation (A.5) implies

f �r1�+g�r1� = 0� (A.6)

If f �r1� = 0, then r1 = $�2�1−��

�−r
− �1−�� = �1−��r∗. If f �r1� < 0, then g�r1� > 0 by Equa-

tion (A.6). This implies g�z� > 0, ∀ z ≤ r1, which in turn implies that f �z� < 0, ∀ z ≤ r1. Since
f ��1−��r∗�= 0, we must have r1 < �1−��r∗. The lower bound for r2 can be similarly derived.

Finally, if �− r = $� 2 (i.e., r∗ = 0), then from above we must have r1 ≤ 0. Comparing
the optimal strategy for some z ≤ r1 to the strategy of immediately closing out the short bond
position and holding stock until the horizon gives

B

1−$
≥ -

�1−$�
(
-− �1−$��+$�1−$� �2

2

) = -

�1−$�
(
-− �1−$�

(
r + (

$

)) �
or in other words,

− �-− �1−$��r + (
$
��B

1−$
+ -

1−$
≤ 0�

This implies that g�r1� ≤ 0. Equation (A.6) and the fact that f �r1� ≤ 0 implies in fact that
g�r1� = f �r1� = 0. As a result,

(√
(

$
�r1 +1−��−��1−��

√
$

2

)2

= 0�

which implies r1 = 0. �

Proof of Theorem 2. Let xt� yt correspond to any feasible strategy �D� I� ∈ ��x� y� with the
properties that t → E u�xt + �1−��yt�" is continuous and for all t, xt + �1−��yt > : for some
fixed constant : > 0. Notice that this ensures u�xt +�1−��yt� is bounded uniformly from below
for all t ≤ T . We can modify each strategy in ��x� y� to be feasible for horizon , by liquidating
at , if , ≤ T and otherwise liquidating at T and leaving all wealth in the bond until , . Let
V t�x� y�0� be the value function corresponding to the optimization problem of Equation (5), but
with the deterministic horizon t. Then from the feasibility of the above strategy for horizon , ,
we deduce

E
[
u
(
�xT∧, + �1−��yT∧, �e

r�,−T �1	,>T �
)]≤ vn�x� y� ≤

∫ �

0
V t�x� y�0�

(
n
T

)n
�n−1�! t

n−1e− n
T t dt�
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Notice that V t�x� y�0� is bounded above by the Merton (1971) frictionless value function for
a deterministic horizon t, as in Equation (9), and bounded below by the value function cor-
responding to the strategy which liquidates all wealth and lends until the horizon t. In other
words,

u��x+ �1−��y�ert� ≤ V t�x� y�0� ≤ e'tu�x+y��

where ' is defined in Equation (10). Moreover, using Theorem 2 of Davis, Panas, and
Zariphopoulou (1993), it is easy to verify that the conditions for a variant of the Helly–Bray
theorem hold. As a result [see Chow and Teicher (1988), Theorem 8.1.2],

E u�xT + �1−��yT �" ≤ lim
n→�

vn�x� y� ≤ V T �x� y�0�� (A.7)

The theorem then follows from the fact that Equation (A.7) holds for any : > 0 and by taking
the supremum over all feasible strategies on the left-hand side. �

Proof of Proposition 6. Let *�x� y�=E �,s ∧,��x0 = x� y0 = y". Since , follows the exponen-
tial distribution, we have

*�x� y� = E

[∫ �

0
-e−-t�,s ∧ t�dt

∣∣∣x0 = x� y0 = y

]
= E

[∫ ,s

0
e−-t dt

∣∣∣x0 = x� y0 = y

]
�

It is easily verified that * is homogeneous of degree 0 in �x� y�, so that *�x� y� = F �x/y� for
some function F . By Itô’s lemma and the fact that the process

e−-t*�xt� yt�+
∫ t

0
e−-s ds

is a martingale ∀ t < ,s , F must be the unique solution to the ordinary differential equation

1
2
� 2z2Fzz + �� 2 − ��− r��zFz −-F +1 = 0

on �r1� r2�, with boundary conditions F �r1� = 0 and Fz�r2� = 0. It is straightforward to check
that the function F defined in the proposition solves the above ODE. �
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