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Rational Inattention and Portfolio Selection

Abstract

Costly information acquisition and processing make it rational for investors to
obtain and process important economic news only with limited frequency or
limited accuracy. With a novel portfolio selection model that is solved in an
explicit form, we show that this rational inattention to important news may
make investors overinvest or underinvest. In addition, even for an investor with
non-log preference the optimal trading strategy is “myopic” with respect to
future news frequency and news accuracy. We use an empirically calibrated
model to conduct an extensive comparative statics analysis on the optimal
news frequency, news accuracy, and trading strategy. We find that the optimal
news frequency is nonmonotonic in news accuracy and investment horizon.
Furthermore, when both news frequency and news accuracy are endogenized,
an investor with a higher risk aversion or a longer investment horizon chooses
less frequent but more accurate periodic news updates.
Journal of Economic Literature Classification Numbers: D11, D91, G11, C61.
Keywords: Inattention, Predictability, Periodic News, Estimation Risk.



Standard portfolio selection theories assume that investors can costlessly obtain and

process all the relevant information that affects investment performance. However,

this assumption does not hold for most investors, including the most sophisticated

ones. First, information production can be very costly due to necessary data collec-

tion and noise reduction (e.g., macroeconomic news and earnings forecast). Second,

information processing can also be costly in terms of required time and effort. These

costs induce limited attention.1 Hong, Torous, and Valkanov (2002), among others,

provide evidence of investors’ inattention to important economic news. Bacchetta and

van Wincoop (2005) build an overlapping generations model to explain the forward

discount and predictability puzzle with rational inattention.2 Peng and Xiong (2005)

show that inattention can lead to “category-learning” behavior and cross-sectional

return predictability.

Some unanswered questions in this literature include how to determine an in-

vestor’s optimal inattention to valuable information and how rational inattention

affects his trading strategy. To address these questions, we develop a novel portfolio

selection model in which an investor with a hyperbolic absolute risk aversion (HARA)

preference over his terminal wealth can purchase both periodically released news and

continuously released news (with different accuracies and costs) about a predictive

state variable that predicts the future expected return.3

We derive explicit forms for the value function and the optimal trading strategy.

The information cost gives rise to rational inattention to the news in the sense that

the investor chooses to receive the news only with limited frequency and/or limited

1See Kahneman (1973) and Fiske and Taylor (1991), for example, for evidence of limited attention
documented in social psychology.

2In their model, for tractability, they assume that inattentive investors live longer than attentive
investors and invest a constant fraction of wealth in stock throughout their entire life.

3In contrast to our approach, Sims (2003) and Moscarini (2004) impose an information-processing
capacity constraint on economic agents.
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accuracy. We show that with rational inattention, the trading strategy is “myopic”

with respect to news frequency and news accuracy even for an investor with non-log

preference, in the sense that as long as the current conditional distribution is the

same the optimal trading strategies will be the same irrespective of whether or not

one is going to have more information in the future. So all that matters for the

investor’s current optimal trading strategy is the current conditional distribution of

the predictive variable. Intuitively, periodic news updates may have two opposite

effects on the optimal trading strategy. On the one hand, the investor’s estimation

risk is smaller with periodic news updates than without them. Accordingly, it seems

reasonable to conjecture that the investor would invest more at time 0 in the case

with periodic news updates than in the case without them, given the same condi-

tional distribution at time 0. On the other hand, since the investor can observe the

predictive variable at the beginning of the next period, it seems also reasonable to

conjecture that the investor would reduce the current stock investment to decrease

the damage from possible estimation error and wait until the next period when he

gets better estimation for choosing a better trading strategy. We show that both of

these conjectures are incorrect. This somewhat surprising independence stems from

a fairly simple fact: Access to more accurate or more frequent news in the future

improves the investor’s utility by a constant multiple across all states and thus does

not affect the optimal trading strategy. However, because periodic news coming in

the future will almost surely change the conditional distribution, the trajectories of

the optimal trading strategies will be almost surely different across the two models

with or without periodic news.

Furthermore, we find that trading only at periodic news-update times to reduce

estimation risk at trading times (e.g., a discrete-time model) results in significant

underinvestment and welfare loss. In addition, when the investor underestimates
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(overestimates) the predictive variable, he tends to underinvest (overinvest). However,

if news about the predictive variable is very noisy, the investor may still underinvest

even with good news. Finally, our model predicts that trading volume jumps up at

news-update times due to the drop in uncertainty about the predictive variable at

these times.

We show that the optimal news frequency increases with the unconditional volatil-

ity of the predictive variable and decreases with information cost and risk aversion.

Intuitively, with a more volatile predictive variable the news updates become more

helpful, higher information cost increases the marginal cost of news updates, and

greater risk aversion decreases the benefit of more frequent news since the investor

invests less in stock. In contrast, we find that the optimal news frequency displays

nonmonotonic patterns in news accuracy, investment horizon, and the correlation be-

tween the stock return and the predictive variable. When news is very noisy, it is

not very useful and it is not worthwhile to pay for frequent news. When news is very

precise, there is no need for very frequent news because the estimation risk based on

a precise prior is small. A very short investment horizon decreases the benefit of more

frequent news. A very long horizon increases the cost of more frequent news. Finally,

although high correlation between the stock return and the state variable makes learn-

ing effective and reduces the necessity for more frequent news, very low correlation

also lowers the optimal news frequency because learning becomes ineffective and the

value of news updates is reduced.

When news accuracy is also endogenized, we find that an investor with a higher

risk aversion or a longer investment horizon chooses less frequent but more accurate

periodic news updates. Intuitively, a more risk-averse investor invests less in the stock

and is also more averse to estimation risk. As the investment horizon increases, total

information costs increase for given news frequency and news accuracy. This induces
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the investor to decrease news frequency. To partly compensate for the increase in

the estimation risk caused by less frequent news updates, the investor increases news

accuracy.

We also generalize our model to allow for intertemporal consumption, nonlinear

dynamics, and continuous choice of information. Numerical results suggest that the

above results are robust to these generalizations.

The existing model closest to ours is that of Detemple and Kihlstrom (1987). They

consider a similar portfolio selection problem where continuous news is available for

purchase throughout the investment horizon. In contrast to their model, our model

allows for both continuous news and periodic news and focuses more on the analysis of

periodic news since an important manifestation of inattention is the choice of limited

news frequency and, typically in practice, periodic news (e.g., economic statistics

announcements) is more accurate than continuous news.

Our study is also closely related to the literature on portfolio selection with return

predictability (e.g., Kandel and Stambaugh (1996), Xia (2001), and Detemple, Garcia,

and Rindisbacher (2003)). Most of the models in this literature assume that all

predictive variables are accurately observable at all trading times. For example,

the continuous-time models of Xia (2001) and Detemple et al. (2003) assume that

all predictive variables are continuously and accurately observable to the investor;

the discrete-time models of Kandel and Stambaugh (1996) and Stambaugh (1999)

assume that at the beginning of every period the investor can always accurately

observe predictive variables.4 In contrast, although the investor in our paper trades

continuously, the cost of obtaining and processing information about the predictive

4One of the justifications for a discrete-time model is the presence of transaction costs. However,
Liu (2004) and Liu and Loewenstein (2002) show that in this case the optimal rebalancing fre-
quency is not deterministic but rather stochastic, and is thus different from the predictive variable
observation frequency.
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variable makes it optimal for him to receive the periodic news only with limited

frequency. In addition, the periodic news frequency in our paper is endogenously

determined rather than exogenously given as in the existing literature.

Our model is also different from portfolio selection models with return predictabil-

ity and parameter uncertainty. Kandel and Stambaugh (1996) consider the asset al-

location implications of return predictability in the presence of predictive parameter

estimation risk. They find that although the predictive regression seems weak when

described by usual statistical measures, return predictability can have a substantial

influence on stock trading strategy. Xia (2001) also studies the impact of parameter

uncertainty on the optimal trading strategy in the presence of return predictability.

She shows that uncertainty about the predictive relation leads to a state-dependent

relationship between the optimal portfolio choice and the investment horizon. In con-

trast, we study how information production and processing costs induces inattention

to the predictive variable and how this inattention affects stock trading strategy.

It is worth noting that because the investor in our model needs to combine the

continuous filtering (from continuously observing the stock price and the continu-

ous news) and the periodic filtering (from the periodic news updates), the problem

faced by the investor is different from those problems considered by most of the port-

folio selection models with dynamic learning (e.g., Gennotte (1986), Detemple and

Kihlstrom (1987), Detemple (1989), Brennan (1998), and Xia (2001)). In most of

these models, the unknown variables that an investor tries to learn are never directly

observed. For example, Brennan (1998) assumes that the expected return of a stock

is constant and unobservable throughout the investment horizon. In contrast, in our

model the investor can obtain periodic news updates about the predictive variable.

These periodic updates periodically correct the investor’s estimation errors and sig-

nificantly change the investor’s trading strategy. The filtering problem in this paper is
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also different from that in Duffie and Lando (2001). In their model, investors observe

only periodic signals on the unobservables and therefore do not face the continuous

filtering problem on top of the discrete filtering, as we do in this paper.

The rest of the paper is organized as follows. In Section I we describe our portfolio

selection model with rational inattention. Section II provides the solution in explicit

forms. In Section III an empirical model is calibrated using Center for Research in

Security Prices (CRSP) data and consumption-to-wealth ratio data. In Sections IV,

V, and VI, we use the calibrated model to study the optimal news frequency, the

optimal news accuracies, and the effect of rational inattention on the optimal trading

strategy. In Section VII, we generalize the model to allow intertemporal consump-

tion, nonlinear dynamics, and continuous choice of information to demonstrate the

robustness of the main results. Section VIII concludes. We provide technical details

in the Appendix.

I. The Model

There are two assets that an investor can continuously trade in a financial market.

The first asset is a risk-free money market account with a constant interest rate of r.

The second asset (stock) is risky and its cum-dividend price St satisfies

dSt

St

= (µ0 + µ1Xt)dt + σSdZ1t, (1)
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where µ0, µ1, and σS are all constants, Z1t is a one-dimensional Brownian motion,

and Xt is a predictive variable that evolves as follows:5

dXt = (g0 + g1Xt)dt + ρσXdZ1t +
√

1− ρ2σXdZ2t, (2)

where g0, g1, σX , and ρ ∈ [−1, 1] are all constants and Z2t is a one-dimensional Brown-

ian motion that is independent of Z1t.
6

As opposed to the standard literature, we assume that the predictive variable

process Xt is not freely observable to the investor. Instead, there is an information

market where (possibly inaccurate) news about the predictive variable is available

only at a cost and the investor can obtain both periodic and continuous news up-

dates. The periodic news is designed to model periodic news announcements such

as economic forecasts and news letters; the continuous news is designed to model in-

house information production or inference from other continuous-information streams

such as media coverage of related economic events. For the periodic news updates, we

assume that the investor can receive N news updates at ti = (i−1) T
N

(i = 1, 2, ..., N),

where T > 0 is the investment horizon of the investor. The ith update yti received at

t = ti is a noisy signal of Xt:

yt = Xt + εt, (3)

where εt represents the noise in the news. We assume that εt is serially uncorrelated,

independent of any other random variables at any time, and identically normally

distributed with mean 0 and standard deviation α−1
ε . We interpret αε to represent the

periodic news accuracy. Note that if αε = 0, then it is equivalent to no periodic news

5Papers on return predictability include Keim and Stambaugh (1986), Lee (1992), McQueen and
Roley (1993), Kandel and Stambaugh (1996), Patelis (1997), and Stambaugh (1999).

6See the Appendix for a more general model that allows multiple stocks, multiple predictive
variables, and time-varying coefficients.
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update, whereas if αε = ∞, then it is equivalent to perfectly accurate news updates.

The cost for the ith news update is βi(αε), so the the total cost for all periodic news

updates to be paid at time 0 is equal to
∑N

i=1 βi(αε).
7 For the continuous news,

by paying a cost of βc(αν) at time 0, the investor can receive continuous news νt of

accuracy αν , where, similar to Detemple and Khilstrom (1987), νt evolves as

dνt = (h0 + h1Xt)dt + σνdZ3t, (4)

where h0, h1, and σν are all constants and Z3t is a Brownian motion that is independent

of Z1t and Z2t.
8 The accuracy αν ≡ h1/σν of the continuous news is measured by the

signal-to-noise ratio. Similar to Detemple and Khilstrom (1987), we assume that both

βc(.) and βi(.) are strictly increasing and strictly convex. To simplify exposition, in

the rest of the paper, unless the words “continuous news” are used, the word “news”

alone refers to “periodic news.”

Before the time 0 news update, the prior of the investor is that X0 is normally

distributed with mean M0− and variance V (0−). Let Ft denote the filtration at time

t generated by {Ss, νs}, {yti}, and the prior (M0− , V (0−)) for all s ≤ t and ti ≤ t. We

assume that an investor has a HARA preference over the terminal wealth at time T .

Specifically, the investor’s utility function is

u(W ) =
γ

1− γ

(
λW

γ
+ η

)1−γ

,

7Assuming that paying all the costs up front allows us to keep homogeneity of the value function
in the (effective) wealth and thus makes the model tractable. This assumption is also consistent
with common practice in subscribing to newsletters or some other services.

8This independency assumption is only for expositional simplicity. Allowing for correlations is a
straightforward extension.
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where γ, λ, η are all constants subject to the restrictions9

γ 6= 1, λ > 0, and η = 1 if γ = ∞.

Given the initial wealth W0− > 0 and the prior (M0− , V (0−)), the investor’s

problem is to choose the number N ∈ F0 of news updates, the news accuracies

αε, αν ∈ F0, and a trading strategy θt ∈ Ft to maximize the expected utility from the

terminal wealth; that is,

max
N,αε,αν ,θ

E[u(WT )],

subject to

dWt = rWtdt + θt(µ0 + µ1Xt − r)dt + θtσSdZ1t, (5)

W0 = W0− −
N∑

i=1

βi(αε)− βc(αν), (6)

the dynamics (2) of Xt, the news equations (3) and (4), and the constraint that the

wealth process Wt is bounded below, where equation (5) is the budget constraint and

equation (6) is the initial wealth after deducting the information cost.

II. The Solution

We first consider the optimal investment problem for given frequency N and accu-

racies αε and αν . Then we solve for the optimal N , αε, and αν that maximize the

obtained value function. As in Gennotte (1986) and Detemple (1989), the investor’s

9The HARA family is rich in the sense that by suitable adjustment of the parameters one can
have a utility function with increasing, decreasing, or constant absolute or relative risk aversion. See
Merton (1992, p. 138) for these cases.
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problem for given N , αε, and αν is separable in inference and optimization.10 In par-

ticular, the investor’s portfolio selection problem given N , αε, and αν is equivalent

to

max
θ

E[u(WT )],

subject to

dWt = rWtdt + θt(µ0 + µ1Mt − r)dt + θtσSdẐ1t, (7)

where Mt ≡ E[Xt|Ft] is the conditional expectation of Xt that ∀i = 1, 2, ..., N satisfies

dMt = (g0 + g1Mt)dt + σM1(t)dẐ1t + σM2(t)dẐ3t, ∀t ∈ (ti, ti+1), (8)

σM1(t) = µ1

σS
V (t) + ρσX , σM2(t) = ανV (t), where V (t) ≡ E[(Xt − Mt)

2|Ft] is the

conditional variance of Xt satisfying

dV (t)

dt
= 2g1V (t) + σ2

X −
(

µ1

σS

V (t) + ρσX

)2

− α2
νV (t)2, ∀t ∈ (ti, ti+1), (9)

Ẑ1t and Ẑ3t are the (observable) innovation processes satisfying

dẐ1t =
µ1

σS

(Xt −Mt)dt + dZ1t,

and

dẐ3t = αν(Xt −Mt)dt + dZ3t.

10The separation principle trivially applies because the objective function is independent of the
unobservable state variable (see, e.g., Fleming and Rishel (1975, Chap. 4, Sec. 11) .
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In addition, at the news update times, conditional mean and conditional variance are

updated using Bayes’ Rule:

Mti = Mt−i
+

V (t−i )

V (t−i ) + α−2
ε

(yti −Mt−i
), (10)

V (ti) =
V (t−i )α−2

ε

V (t−i ) + α−2
ε

, (11)

where

yti = Xti + εti , εti ∼ N
(
0, α−1

ε

)
. (12)

A brief discussion of the above equations is now in order. Between news updates,

the investor infers the conditional distribution of the predictive variable Xt from

the observation of stock prices and the continuous news νt. By Theorem 10.5.1 of

Kallianpur (1980), for any i = 1, 2, ..., N and time t ∈ (ti, ti+1), the conditional

mean Mt satisfies equation (8) and the conditional variance V (t) satisfies equation

(9). Right before news yti is received at time ti, the conditional distribution of Xti

is normal with mean Mt−i
and variance V (t−i ). Upon observing yti , this conditional

distribution of Xti is updated. Given equation (12), Mt−i
, and V (t−i ), Xti and yti are

jointly normal and the conditional distribution of Xti after incorporating news yti is

normal with mean Mti and variance V (ti) as in equations (10) and (11) respectively.

It is worth noting that as αν decreases to 0, the continuous signal νt becomes useless

and thus is equivalent to not observing νt.

A. No Periodic News for the Entire Horizon

In this subsection we assume that no periodic news about the predictive variable X is

obtained throughout the entire horizon T (equivalently, αε = 0). This case provides

a basis for developing the solution to the more complicated case with periodic news
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updates. Similar to Detemple and Kihlstrom (1987), after taking into consideration

of the information contained in the continuous process ν through equations (8) and

(9), the investor’s value function only depends on (W,M, t) and is independent of the

realized value ν since neither the wealth process W nor the conditional mean process

M depends on ν.11 For a given accuracy of the continuous news αν , let J be the value

function at t; that is,

J(W,M, t; αν) = max
θ

E[u(WT )|Wt = W,Mt = M ].

The value function must satisfy the Hamilton-Jacobi-Bellman (HJB) equation

Jt + max
θ
{1

2
θ2σ2

SJWW + θ(µ0 + µ1M − r)JW + θσSσM1(t)JWM}

+ rWJW +
1

2
σM(t)2JMM + (g0 + g1M)JM = 0 (13)

and the terminal condition

J(W,M, T ; αν) = u(W ),

where σM(t)2 ≡ σM1(t)
2 + σM2(t)

2. We provide the explicit solution in the following

proposition.

Proposition 1. When there is no periodic news update throughout the entire horizon,

the value function is

J(W,M, t; αν) = U(W, t)e(1−γ)(c(t)+d(t)M+ 1
2
Q(t)M2),

11Although one may use the conditional volatility V (t) as a state variable in the value function,
we combine it with time t for simplicity because V (t) is only a deterministic function of time.
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where

U(W, t) ≡ γ

1− γ

(
λW

γ
+ ηe−r(T−t)

)1−γ

,

and the optimal trading strategy satisfies

π∗t ≡
θ∗t

Wt + γη
λ

e−r(T−t)
=

µ0 + µ1Mt − r + (1− γ)σSσM1(t)(d(t) + Q(t)Mt)

γσ2
S

, (14)

where Q(t), d(t), and c(t) are as in equations (A26)–(A28) in the Appendix.

Proof. See the Appendix.

The functional form of the value function and the optimal trading strategy follows

from the fact that for a HARA investor, γη
λ

is like an extra income at time T and

his time t effective wealth is equal to the current wealth Wt plus the present value of

this extra income (γη
λ

e−r(T−t)). To simplify exposition, in the rest of this paper unless

specified otherwise we will refer to this “effective wealth” simply as “wealth” and π∗

simply as the fraction of wealth in stock.

Once we have obtained the value function for a fixed αν , we then solve the following

maximization problem

max
αν

J(W,M, 0; αν)

to compute the optimal accuracy α∗ν for the continuous news. Even though this

optimization problem does not seem to have a closed-form solution, it can be easily

solved numerically, as shown later in Sections IV, V, and VI.
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To better understand the optimal trading strategy, we can rewrite the trading

strategy as

π∗t =
µ0 + µ1Mt − r

γσ2
S

+
(1− γ)ρσX

γσS

(d(t) + Q(t)Xt)

+
(1− γ)ρσXσSQ(t)

γσ2
S

(Mt −Xt)

+
(1− γ)µ1(d(t) + Q(t)Mt)

γσ2
S

V (t). (15)

This shows that the optimal trading strategy consists of four parts: (1) the myopic

trading for the growth of wealth, (2) the hedging against the time-varying investment

opportunity set determined by the predictive variable Xt, (3) the hedging against

the estimation error of the expected stock return, and (4) the hedging against the

estimation risk of the predictive variable. Lack of perfect information generates a

hedging demand that depends on the estimation error Mt − Xt and the conditional

variance V (t) and can therefore cause an investor to overinvest or underinvest from

misestimation.

B. Periodic News Updates

Now we extend the above analysis to the case where periodic news about Xt is re-

ceived at a cost. This captures the empirical fact that, at a cost (e.g., subscribing

to analyst services or investment newsletters), an investor can typically obtain peri-

odic news updates about important predictive variables such as dividend yield, the

gross national product (GNP) growth rate, the consumption to wealth ratio, and the

inflation rate.

Suppose the number of updates is N , the news accuracy is αε and the cost is
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∑N
i=1 βi(αε). We solve the investor’s optimization problem using an iterative method.

At the beginning of the Nth period (i.e., t = tN) the results in Proposition 1 apply,

and therefore the value function at any time t ∈ [tN , T ] is

JN(W,M, t; N, αε, αν) = U(W, t)e(1−γ)(cN (t)+dN (t)M+ 1
2
QN (t)M2),

where cN(t), dN(t), and QN(t) are the respective counterparts of c(t), d(t), and Q(t)

in Proposition 1.

Now suppose the investor is in the (i − 1)th period for i = 2, 3, ..., N . Since the

investor does not know Mti before yti is revealed, he first takes the expectation with

respect to Mti conditional on Mt−i
and V (t−i ). Given expressions (10) and (11), we

have

J i−1(W,M, t−i ; N, αε, αν)

= E[J i(W,Mti , ti); N,αε, αν |Mt−i
= M,V (t−i )]

=

∫ ∞

−∞
U(W, t−i )e(1−γ)(ci+dix+ 1

2
Qix2)n(x)dx

= U(W, t−i )e(1−γ)(ĉi−1+d̂i−1M+ 1
2
Q̂i−1M2), (16)

where n(x) is the normal density function with mean Mt−i
and variance VM(ti), with

VM(ti) being the conditional variance of Mti given Mt−i
and V (t−i ), satisfying

VM(ti) =
V (t−i )2

V (t−i ) + α−2
ε

,

ĉi−1 = ci +
(1− γ)(di)2VM(ti)

2(1− (1− γ)VM(ti)Qi)
− 1

2(1− γ)
log(1− (1− γ)QiVM(ti)),

d̂i−1 =
di

1− (1− γ)VM(ti)Qi
, Q̂i−1 =

Qi

1− (1− γ)VM(ti)Qi
. (17)
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Equation (16) provides the terminal conditions for solving the investor’s problem

in period (i − 1). Note that the terminal value function J i−1 for period (i − 1) has

the same exponential form as the value function J i for period i. This stability of the

functional form makes it possible to solve the investor’s problem across all periods,

as shown below.

Proposition 2. For a given N > 0, for i = 1, 2, ..., N , the value function at time

t ∈ [ti, ti+1) is

J i(W,M, t; N,αε, αν) = U(W, t)e(1−γ)(ci(t)+di(t)M+ 1
2
Qi(t)M2)

and the optimal trading strategy is

πi∗
t ≡ θi∗

t

Wt + γη
λ

e−r(T−t)
=

µ0 + µ1Mt − r + (1− γ)σSσM1(t)(d
i(t) + Qi(t)Mt)

γσ2
S

, (18)

where Qi(t), di(t), and ci(t) are as in equations (A29)–(A31) in the Appendix.

Proof. See the Appendix.

Once we have obtained the value function for fixed N , αε, and αν , we then solve

the following maximization problem

max
N,αε,αν

J1(W,M, 0; N, αε, αν)

to compute the optimal number of news updates N∗ and the optimal news accuracies

α∗ε and α∗ν .

Equation (18) implies that, as opposed to the case with no news update, the

fraction of wealth invested in the stock jumps at observation times due to discrete

changes of the conditional mean Mt and the conditional variance V (t) at these times.
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This is consistent with the empirical evidence that trading volume increases imme-

diately after news arrival (e.g., see Balduzzi, Elton, and Green (1997), Woodruff and

Senchack (1988), Cready and Mynatt (1991)). To see the effect of a news update

more clearly, we next compare the trading strategy right before and right after news

yti is received at t = ti. Right before yti is received, the trading strategy is

µ0 + µ1Mt−i
− r

γσ2
S

+
(1− γ)(ρσXσS + µ1V (t−i ))

γσ2
S

(di−1(t−i ) + Qi−1(t−i )Mt−i
). (19)

Right after yti is observed, the trading strategy becomes

µ0 + µ1Mti − r

γσ2
S

+
(1− γ)(ρσXσS + µ1V (ti))

γσ2
S

(di(ti) + Qi(ti)Mti).

These expressions suggest that the discrete change of π at news-update times comes

from two sources. The first is the update of the conditional mean of Xti from Mt−i
to

Mti , which changes the expected return of the stock. Since the expected value of Mti

is equal to Mt−i
, this update does not affect π on average. The second source is the

update of the conditional variance of Xti from V (t−i ) to V (ti). Since V (ti) is always

smaller than V (t−i ), the news update decreases the uncertainty about the predictive

variable. Note that the difference between (di−1, Qi−1) and (di, Qi) is also caused by

the change in the conditional volatility, as can be seen from Equations (A29)–(A30).

Extensive numerical results show that this reduction of the conditional variance tend

to increase stock investment at the news update times (see Figure 6 in Section V. for

example).

Because of the periodic news updates, the investor can periodically correct his es-

timation error. This periodic correction may have two opposite effects on the optimal

trading strategy. On the one hand, the estimation risk that the investor faces with
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periodic news is smaller than the risk without periodic news. Accordingly, it seems

reasonable to conjecture that given the same current conditional distribution at time

0, the investor would invest more at time 0 with periodic news than without it. On

the other hand, at the beginning of the next period the investor can receive a news

update that will reduce estimation risk, so it also seems reasonable to conjecture that

given the same current conditional distribution at time 0, with periodic news the

investor would reduce time 0 stock investment to decrease the damage from possible

estimation error and wait until the next period when he gets better estimation for

choosing a better trading strategy. Somewhat surprisingly, the following proposition

implies that both of these conjectures are incorrect and that the periodic news up-

date affects the trading strategy only through its effect on the current conditional

distribution of the predictive variable.

Proposition 3. For any i = 1, 2,...N, at time t ∈ [ti, ti+1) the solutions (Qi(t), di(t))

to the case with periodic news updates and the solutions (Q(t), d(t)) to the case with

no periodic news are related as follows:

Qi(t) =
Q(t)

1 + (1− γ)(V (t)− V i(t))Q(t)
, (20)

di(t) =
d(t)

1 + (1− γ)(V (t)− V i(t))Q(t)
, (21)

where V (t) and V i(t) are the conditional variance of Xt in the case with no periodic

news and in the case with periodic news updates respectively. In particular, if V (t) =

V i(t), then we have Qi(t) = Q(t) and di(t) = d(t).

Proof. See the Appendix.12

12This proposition also holds for a more general model that allows multiple stocks, multiple
predictive variables, and time-varying coefficients (see the Appendix). The proof for this more
general case is available from the authors.
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Substituting (20)-(21) into (18) in Proposition 2 shows that if Mt = M i
t and

V (t) = V i(t), then the time t optimal trading strategy with periodic news will be

the same as the time t optimal trading strategy without periodic news, i.e., πi∗
t = π∗t .

This result implies that the time t optimal stock investment πi∗
t is independent of how

frequently or how accurately the investor is going to observe the predictive variable in

the future. All that matters for the investor’s current optimal trading strategy is the

current conditional distribution of the predictive variable. This somewhat surprising

“myopic” behavior (with respect to future information structure) for even non-log

investors stems from a fairly simple fact: While access to more accurate or more

frequent news in the future does improve the investor’s utility, it improves the utility

by a constant multiple across all states through ci(t) and thus does not affect the

current optimal trading strategy.

We emphasize that the optimal trading strategies with or without periodic news

are the same only when the conditional means and variances are the same across

the two models. At times s ≥ t the optimal policy πi∗
s in the model with periodic

information will almost surely differ from the optimal policy π∗s in the model with-

out periodic information, because periodic information will almost surely change the

conditional distribution. Therefore, the trajectories of the optimal trading strategies

will be almost surely different across the two models.

From the perspective of computation, Proposition 3 suggests an efficient way of

computing the trading strategy with periodic news updates. Specifically, to calculate

the optimal trading strategy πi∗
t at any time t, we only need to set Mt = M i

t and

V (t) = V i(t) in equation (14) and then we have πi∗
t = π∗t . This approach reduces N

iterations to one-period computation.
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III. An Empirical Calibration

To understand how the information cost affects optimal news frequency, news accu-

racy, and trading strategy, we apply the theoretical results derived in Section II to

study an empirical model. In this study, we will focus primarily on periodic news

because one of our main objectives is to examine the determination of the optimal

news frequency. In addition, periodic news is usually more accurate than continuous

news and is therefore typically a more important information source for an investor.

We provide analysis on the optimal continuous news accuracy in Sections VI and VII.

One of the popular predictive variables used in the predictability literature is div-

idend yield. For example, Fama and French (1988), Hodrick (1992), and Xia (2001)

use dividend yield as the predictive variable in their model calibration. However,

as demonstrated by Lettau and Ludvigson (2001), fluctuations in the aggregate con-

sumption to wealth ratio have stronger predictive power and forecast future returns

better than dividend yield.13 The economic intuition is that investors who want to

smooth consumption adjust their current consumption if they expect transitory move-

ments in their financial wealth caused by the variation in expected returns. When

the expected return becomes higher, a forward-looking investor increases his current

consumption, and when the expected return gets lower, he decreases it.

Consistent with their findings, we assume in the following analysis that the consumption-

wealth ratio predicts asset return. We first estimate the joint stochastic processes

of stock return and consumption-wealth ratio. Then we show how optimal news fre-

quency, news accuracies, and optimal trading strategy are affected by the fundamental

parameters such as risk aversion, investment horizon, and information cost.

13There have been some arguments against the estimation approach used by Lettau and Ludvigson
(2001) (see Brennan and Xia (2002) and Hahn and Lee (2001)). But Inoue and Kilian (2004) suggest
that this approach may be the correct one to improve test power.
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Specifically, we estimate the model described by equations (1) and (2), where the

stock return is the quarterly CRSP value-weighted return of stocks traded on the New

York Stock Exchange (NYSE) and Xt represents the estimated trend deviation vari-

able, cayt, for the consumption-wealth ratio as used by Lettau and Ludvigson (2001)

to predict stock return.14 µ0, µ1, g0, g1, σS, σX , and ρ are all constant parameters to

be estimated.

The estimation period is from 1952 to 2001, a period chosen because of the avail-

ability of the predictive variable cayt. The risk-free interest rate is the mean of

the continuously compounded real quarterly T-bill return, which is equal to .0034.15

Since only quarterly data of cayt are available, following Duffie, Pan, and Singleton

(2000) and Singleton (2001) we first derive the characteristic function and then use

the maximum likelihood method to estimate the parameter values (see the Appendix

for details).16 Through this procedure, we obtain the following estimates:

g0 = .117, g1 = −.180, µ0 = −1.301, µ1 = 2.040,

σS = .0801, σX = .00747, ρ = −.620.

For the numerical analyses we conduct in subsequent sections, we set the default

risk-aversion coefficient γ = 5 (as estimated, e.g., by Xia (2001)), λ = 1, η = .01 and

14Implicitly, we assume that historical quarterly consumption-wealth ratio time series data is
precisely observable to econometricians and the resulting estimates are available to investors. We
abstract away from calibrating the noise in the historical quarterly data. Quarterly data of cayt can
be downloaded from Martin Lettau’s Web page at New York University.

15Our estimate of the real risk-free interest rate is similar in magnitude to those used in the
literature (e.g., Campbell, Lo, and MacKinlay (1997)). We also use higher real interest rates, like
those in Xia (2001), to check the sensitivity of our results to our interest rate estimate and find that
our main results are robust to these changes.

16We also used monthly stock return data and quarterly cayt data to estimate the model. Specif-
ically, we maximize the likelihood function derived after taking into account the monthly Bayesian
updates on the predictive variable from the monthly observation of stock return. The qualitative
results remain the same.
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the initial value of the predictive variable X0 equal to its sample mean .649.

We assume that the prior variance V (0−) is equal to the steady-state conditional

variance V̄ = .000147 and the prior mean M0− is equal to the initial value X0. In

addition, as a default setting, we assume that each news update is unbiased and thus

the conditional mean M0 after the initial news release is also equal to X0.
17 The

investor’s initial wealth W0− is normalized to be equal to 1.

In Sections IV and V we focus on the analysis of the optimal news frequency. To

reflect that continuous news is typically less accurate and is more costly, we assume

that news accuracies are exogenously fixed at αε = 100 and αν = 10. In addition,

information costs are fixed at βi(αε) = β = .05% (5 basis points) for every periodic

news update and βc(αν) = βc = .1% for the continuous news.18 In Sections VI and

VII we study the case where the optimal frequency and the optimal accuracies are all

endogenously determined.

IV. Analysis of the Optimal News Frequency

In this section, we use the model calibrated above to examine how various fundamental

parameters affect the optimal news frequency.

A. Risk Aversion

Figure 1 plots the optimal news update frequency (measured in quarters by the time

τ between news updates) as a function of the risk-aversion coefficient γ. This figure

shows that as an investor becomes more risk averse, the investor chooses less frequent

17Implicitly, we assume that a long history of data on the stock price and the predictive variable
is available and therefore the steady-state conditional variance V̄ can be estimated and is used as
the initial conditional variance.

18Varying these parameter values does not change qualitative results.
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Figure 1: The optimal news frequency against risk aversion.
Parameter values: T = 20, µ0 = −1.301, µ1 = 2.040, g0 = .117, g1 = −.180, σS = .0801,
σX = .00747, ρ = −.620, r = .00340, X0 = .649, M0 = .649, V (0−) = .000147, βc = .1%,
αε = 100, αν = 10, η = .01, and λ = 1.

news updates. This is consistent with the standard finding that a more risk-averse

investor invests less in stock and therefore benefits less from news updates. The figure

also shows the intuitive result that as the information cost β increases, the optimal

news frequency decreases. For example, an investor with a risk aversion coefficient

of 5 chooses τ ∗ = .32 (about one update per month) when the cost is 5 basis points,

and he chooses τ ∗ = .53 (about two updates per quarter) when the cost goes up

to 10 basis points. The wedge between the two lines illustrates that an increase in

the information cost induces a larger decrease in the optimal frequency for a more

risk-averse investor.

B. Correlation

Figure 2 plots the optimal news update frequency as a function of the correlation

ρ between the stock return and the predictive variable. This figure shows that the
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Figure 2: The optimal news frequency against correlation.
Parameter values: γ = 5, T = 20, µ0 = −1.301, µ1 = 2.040, g0 = .117, g1 = −.180,
σS = .0801, r = .00340, X0 = .649, M0 = .649, V (0−) = .000147, β = .05%, βc = .1%,
αε = 100, αν = 10, η = .01, and λ = 1.

optimal news frequency is a nonmonotonic function of the correlation. Intuitively,

when the stock return and the predictive variable are highly (negatively) correlated,

the investor can infer much information about the predictive variable from observing

the stock return and therefore does not need very frequent news updates. As the

correlation decreases, the stock return becomes less informative and the investor

chooses more frequent news updates to reduce the estimation risk. However, when

the correlation becomes too low, learning is not effective and the benefit from extra

information obtained from more frequent news updates becomes smaller. Accordingly,

the investor starts to decrease the news frequency to save information cost.

This figure also shows that as the unconditional volatility of the predictive variable

increases, the investor increases the news update frequency to reduce the estimation

risk.
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C. Investment Horizon

Figure 3 plots the optimal news update frequency as a function of the investment

horizon T . This figure shows that the optimal news frequency is also nonmonotonic

in the investment horizon. When the investment horizon is short, the investor cannot

gain much from news updates, so he only needs low-frequency news updates. An

increase in the investment horizon has two opposite effects. On the one hand, as

the investment horizon increases, the gain from more frequent news updates also

increases. This effect tends to increase the optimal news frequency. On the other

hand, as the investment horizon increases, for a given frequency the total information

cost becomes higher because the number of news updates becomes larger. This effect

tends to decrease the optimal news frequency. The figure shows that although the

first effect dominates when the horizon is short, the second effect gradually takes over

as the investment horizon becomes longer. The interaction of the two opposite effects

produces the nonlinear patterns in the figure.

Figure 3 also shows that for a short investment horizon the optimal news frequency

is nonmonotonic in the news accuracy.19 Specifically, as the news becomes less accu-

rate, the optimal news frequency first increases and then decreases. The underlying

intuition is similar to that for the nonmonotonic pattern in the correlation ρ displayed

in Figure 2. When news is accurate, the investor does not need very frequent news

updates. As news becomes less reliable, more frequent news is important to reduce

estimation risk. However, when news becomes too noisy, additional news updates

increase costs without much benefit; therefore the optimal news frequency decreases.

19The nonmonotonicity of the optimal news frequency in the news accuracy actually holds for all
investment horizons, with the critical news accuracy level (at which the slope is zero) decreasing in
the horizon.
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Figure 3: The optimal news frequency against horizon.
Parameter values: γ = 5, µ0 = −1.301, µ1 = 2.040, g0 = .117, g1 = −.180, σS = .0801,
σX = .00747, ρ = −.620, r = .00340, X0 = .649, M0 = .649, V (0−) = .000147, β = .05%,
βc = .1%, αν = 10, η = .01, and λ = 1.

V. Analysis of the Optimal Trading Strategy

In this section, we use the calibrated model to examine how rational inattention

affects the optimal trading strategy.

A. Horizon

As discussed before, Propositions 2 and 3 imply that the optimal investment in the

stock at time t only depends on the conditional distribution (Mt, V (t)), but not on

the future news frequency or accuracy. Figure 4 plots the initial fraction of wealth

(π∗0) in stock against horizon T .20 Starting with the same prior (M0− , V (0−)) (except

for the lowest curve to be discussed later), the figure illustrates the optimal stock

investments right after a time 0 news update with different accuracy σε. The figure

shows that uncertainty about the predictive variable significantly reduces the stock

20As mentioned before, to simplify exposition, we simply use “wealth” to refer to the “effective
wealth” defined immediately after Proposition 1.
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investment across all horizons and the reduction increases with the horizon. When

the horizon is one year, the difference in investments between the case with σε = 0

and the case with σε = 100 is about 10 percent. As the horizon increases to five years,

this difference increases to about 20 percent.

This figure also shows that the optimal fraction of wealth in stock increases with

horizon, consistent with the typical life-cycle investment advice from a financial advi-

sor. However, the life-cycle pattern can be reversed if some of the default parameter

values are different. As an example, after we decrease the initial news accuracy

α0 ≡ 1/
√

V (0−) from 82.5 to 66.7, the optimal fraction of wealth invested in the

stock decreases with the investment horizon.21 Intuitively, there are two offsetting

effects at work. On one hand, because of the negative correlation between the stock

return and the predictive variable, the hedging benefit increases as the horizon in-

creases; the stock investment also increases with the horizon. We refer to this effect as

the hedging effect. On the other hand, as noise in observation increases, the investor

becomes less certain about the expected return of the stock and on that ground re-

duces his stock investment. As the horizon increases, the impact of this uncertainty

grows; therefore the reduction in the stock investment is greater for an investor with

a longer horizon. We refer to this effect as the uncertainty effect. Depending on the

relative magnitudes of these two opposite effects, the stock investment can increase

or decrease as the horizon increases. In the presence of parameter uncertainty, Xia

(2001) finds that the horizon pattern of the optimal stock investment depends on the

current value of the continuously observable predictive variable. In contrast, we show

that the magnitude of the uncertainty about a predictive variable can reverse the

horizon effect of return predictability. The reverse pattern illustrated in this figure

21This result suggests that if the conditional volatility is stochastic, as in a non-Gaussian setting,
the life-cycle pattern may be reversed when uncertainty is high. And if the correlation ρ between
the stock return and the predictive variable is positive, this life-cycle pattern may also be reversed.
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suggests that the horizon effect is sensitive to the existence of information cost and

news inaccuracy.

Given that news is only received at discrete times in the case with periodic news

updates, an alternative strategy is to trade only at the news update times, as in a

discrete-time model. Clearly, this is a suboptimal strategy because it imposes an

exogenous constraint on the trading frequency. What would be the effect of this

discrete trading constraint on the trading strategy? Would it cause an investor to

invest more or less? To address these questions, in Figure 4 we also plot the optimal

trading strategy of an investor who can only trade at the quarterly news update

times, assuming quarterly news is accurate. This figure shows that trading only at

news update times would result in significant underinvestment for an investor with a

long horizon. For example, the investor with a five-year horizon who can only trade

at news update times would invest about 12 percent less in the stock than an investor

who can trade continuously. When the investor is restricted to trading only at news

update times and thus cannot update his position as new information from the stock

price comes in, he is more cautious and invests significantly less in the stock.22

B. Estimation Error

Figure 5 plots the initial trading strategy difference (∆π∗0) between an investor who

receives a news update at time 0 and an investor who perfectly observes the predictive

variable against the initial estimation error (M0 −X0) for two news accuracy levels:

αε = 100 and αε = 0. It demonstrates the impact of estimation error on the optimal

trading strategy and how it changes with uncertainty about the estimation. When

22We have also found that the welfare loss (in terms of certainty equivalent wealth) of the investor
from adopting this suboptimal strategy can be very significant (as high as 8 percent of the initial
wealth for an investor with a five-year horizon and a risk-aversion coefficient of 5). We omit the
figure on this result to save space.
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Figure 4: The fraction of wealth in stock against horizon.
Parameter values: γ = 5, µ0 = −1.301, µ1 = 2.040, g0 = .117, g1 = −.180, σS = .0801,
σX = .00747, ρ = −.620, r = .00340, X0 = .649, M0− = .649, V (0−) = .000147, β = .05%,
βc = .1%, αν = 10, η = .01, and λ = 1.

a line is above (below) zero, the investor overinvests (underinvests) compared with

the optimal investment under perfect observation. The figure shows that, in general,

when the investor underestimates the predictive variable, he underinvests, and when

he overestimates, he overinvests. However, there is a region in which M0 − X0 > 0,

but the αε = 100 and αε = 0 curves are below the horizontal axis. This suggests that

if news is not very accurate (e.g., αε = 100), then the investor might still underinvest

even when he overestimates. Intuitively, news inaccuracy discounts the reliability of

the predictive variable estimate and lowers the investor’s investment in the stock.

C. Portfolio Revision at News Update Times

With periodic news updates, the investor updates his estimate of the predictive vari-

able and discretely adjusts his portfolio according to the discrete changes in the

conditional mean and conditional variance. Since the conditional expectation right
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Figure 5: The fraction of wealth in stock against initial estimation error.
Parameter values: γ = 5, T = 20, µ0 = −1.301, µ1 = 2.040, g0 = .117, g1 = −.180,
σS = .0801, σX = .00747, ρ = −.620, r = .00340, X0 = .649, V (0−) = .000147, β = .05%,
βc = .1%, αν = 10, η = .01, and λ = 1.

before a news update is an unbiased estimate of the conditional expectation after

the news update (E(Mti) = Mt−i
), the change in the portfolio weights caused by the

difference in the conditional means before and after an observation is, on average,

equal to zero. However, the conditional variance also has an impact on the portfolio

weights. Whenever a news update is received, the updated conditional variance de-

creases immediately. The reduction in uncertainty about the stock return makes the

stock more attractive, therefore the investor increases his stock investment. Figure 6,

which plots the expected percentage increase in stock holding (E[
π∗

τ∗−π∗
τ∗−

π∗
τ∗−

]× 100) at

the first news update time for an investor with a risk aversion coefficient of 5 and an

investment horizon of five years, confirms this intuition. For example, when αε = 100,

after the first news update the investor on average invests an additional 8.5 percent

of wealth into the stock if β = 0.05% and an additional 9.5 percent of wealth into the

stock if β = 0.1%. The figure also shows that the expected percentage change in the

stock holding first increases and then decreases with news accuracy αε. A decrease
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in the news accuracy αε has two opposite effects. On the one hand, a noisier news

update results in larger conditional volatility just before the next news update, which

implies a greater reduction in the conditional volatility when the next news arrives

with the same accuracy. On the other hand, for a fixed level of conditional volatility,

noisier news is less helpful in reducing the volatility. Figure 6 shows that when αε

is large, the first effect dominates and the expected adjustment increases as αε de-

creases. When αε is small, however, the second effect dominates and the expected

adjustment decreases as αε decreases.

In addition, an increase in the information cost β increases the percentage change

in the stock investment at the optimal news update time and the resulting increase

is greater for more accurate news. Intuitively, as the information cost increases, the

optimal news frequency decreases, and thus a news update causes a greater reduction

in the conditional volatility.
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Figure 6: The expected percentage change in stock fraction against news
accuracy.
Parameter values: γ = 5, T = 20, µ0 = −1.301, µ1 = 2.040, g0 = .117, g1 = −.180,
σS = .0801, σX = .00747, ρ = −.620, r = .00340, X0 = .649, M0− = .649, V (0−) = .000147,
βc = .1%, αν = 10, η = .01, and λ = 1.
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VI. Endogenous News Accuracies

In Sections IV and V we assume that an investor can only choose the news frequency

but not the news accuracies. However, it is usually the case that one can improve the

accuracy of news up to a certain limit by paying a higher information production cost.

An interesting question then is: What are the optimal news frequency and accuracies

from an investor’s point of view given the tradeoffs among frequency, accuracies, and

information costs? To shed some light on this question, we now consider the joint

choice of optimal news frequency and optimal news accuracies. For the analysis in

this section, we assume that the cost function for periodic news is the same across all

news updates with the following form:

β(αε) =

(
0.0006αε

1− 0.0025αε

)16/9

(22)

and the cost function for the continuous news is:23

βc(αν) =

(
0.0004αν

1− 0.1αν

)16/9

. (23)

We numerically solve for the optimal news frequency τ ∗, the optimal periodic

news accuracy α∗ε, and the optimal continuous news accuracy α∗ν that maximize the

investor’s value function.

We plot the optimal frequency, the optimal accuracies, and the optimal trading

strategy as functions of the risk-aversion coefficient in Figure 7. Figure 7 shows

23We present results based on these cost functions because they are increasing and convex, imply
an upper bound for possible news accuracies (i.e., αε < 400 and αν < 10), and yield an interior
solution. The difference between β and βc is chosen to capture the typical feature that the upper
bound for the continuous news accuracy is lower than that for periodic news accuracy and the cost
for continuous news is higher that for periodic news. We have tried other functional forms. For
those functional forms that yield interior solutions, we obtain the same qualitative results as those
reported in this section.
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Figure 7: Optimal news frequency, accuracies, and trading strategy against
the risk-aversion coefficient.
Parameter values: T = 20, µ0 = −1.301, µ1 = 2.040, g0 = .117, g1 = −.180, σS = .0801,
σX = .00747, ρ = −.620, r = .00340, X0 = .649, M0− = .649, V (0−) = .000147, αν = 10,
η = .01, and λ = 1.

that as an investor becomes more risk averse, he tends to choose less frequent but

more accurate periodic news updates. Intuitively, as shown in this figure, a more

risk-averse investor invests less in stock, therefore more frequent news is less helpful

to him. Accordingly, he chooses less accurate high frequency news (e.g., continuous

news) and more accurate low frequency periodic news.

Figure 8 shows that as investment horizon increases, the investor also chooses

less frequent but more accurate periodic news updates plus more accurate continuous

news. Recall that when the news accuracy is exogenously given, the optimal news

frequency is nonmonotonic in horizon (see Figure 3). With endogenous news accuracy,

the investor has a trade off between news frequency and news accuracy. In the case

shown in this figure, it is relatively cheaper to increase accuracy rather than frequency.

In addition, as in the case with exogenous news accuracy, the optimal fraction of

wealth invested in stock also increases with horizon. Since the investor chooses more

accurate news as horizon increases, this life-cycle pattern is strengthened when news
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accuracies are endogenized.

VII. Extensions

To demonstrate the robustness of the main results we obtained, in this section we

generalize our model to allow for intertemporal consumption, nonlinear dynamics, and

continuous choice of information accuracy. Specifically, we assume that an investor

derives utility from both intertemporal consumption ct and terminal wealth WT . For

the continuous news ν, the investor can continuously choose any accuracy ανt by

paying a cost at the rate of βc(ανt), and for the periodic news, the investor can

choose any accuracy αε by paying at time 0 a cost of βi(αε) for the ith observation.

The investor’s problem is to choose the number of news updates N , the periodic news

accuracy αε, the continuous news accuracy ανt ∈ Ft, the consumption ct ∈ Ft, and

the trading strategy θt ∈ Ft to maximize the expected utility from consumption and
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terminal wealth, i.e.,

max
N,αε,σν ,c,θ

E[(1− ω)

∫ T

0

e−δtu1(ct)dt + ωe−δT u2(WT )],

subject to the budget constraint

dWt = rWtdt + θt(µ0 + µ1Xt − r)dt + θtσSdZ1t − ctdt− βc(ανt)dt, (24)

the nonlinear dynamics of Xt,

dXt = (g0 + g1Xt + g2X
2
t )dt + ρσXdZ1t +

√
1− ρ2σXdZ2t, (25)

the periodic news equation (3), the continuous news equation (4), and the initial

wealth after deducting the information cost for the periodic news

W0 = W0− −
N∑

i=1

βi(αε), (26)

where δ > 0 is the time discount factor, ω ∈ [0, 1] is the weight of the utility from the

terminal wealth, and g2 is the nonlinearity coefficient, and

ui(x) =
γi

1− γi

(
λix

γi

+ ηi

)1−γi

, i ∈ {1, 2}.

Unfortunately, given the complexity of this generalized problem, it seems very

difficult, if possible at all, to obtain an explicit solution. In addition, with the HJB

partial differential equation being highly nonlinear and four-dimensional (with state

variables (W,M, V, t)), even numerically solving the HJB becomes quite challenging.

Instead, we numerically solve a discretized version of the investor’s problem using the
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projection method as described in Judd (1998). Specifically, we divide T into n time

intervals with length h. Then the investor’s objective function becomes

max
N,αε,ανj ,cj ,θj

E[(1− ω)
n∑

j=0

e−δjhu1(cj)h + ωe−δnhu2(Wn)],

and the wealth dynamics becomes

Wj+1 = Wj + (rWj + θj(µ0 + µ1Mj − r)− cj − βc(ανj)) h + θjσS

√
hz1,

where z1 is a standard normal random variable.

Discretizing the continuous-time filtering equations derived by Basin (2003), we

have the conditional mean dynamics:24

Mj+1 = Mj + (g0 + g1Mj + g2M
2
j )h +

(
µ1

σS

Vj + ρσX

)√
hz1 + ανjVj

√
hz3,

and the conditional variance dynamics

Vj+1 = Vj +

(
2g1Vj + 4g2MjVj + σ2

X −
(

µ1

σS

Vj + ρσX

)2

− α2
νjV

2
j

)
h,

where z3 is a standard normal random variable independent of z1.

Note that with a nonlinear dynamics for the predictive variable, the conditional

variance is no longer deterministic. Instead, it depends on the conditional mean M

and consequently is stochastic over time. For given number of news updates N and

24Given the nonlinear dynamics of the predictive variable Xt, it seems not feasible for us to derive
the exact filter for the discretized model. The commonly used Extended Kalman Filter for nonlinear
filtering requires another layer of approximation (in addition to time discretization) by linearizing
the nonlinear dynamics (see Chen (1993)). In comparison, direct discretization of the continuous-
time filter equations has only one layer of approximation (i.e., time discretization) and allows for the
incorporation of continuous information. This approach has also been widely used in the existing
literature (e.g., Clark (1978), James, Krishnamurthy, Le Gland (1996)).
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accuracy αε, we then solve this discrete-time problem iteratively from period n − 1

backward, taking into account the periodic news y as before. Finally, we maximize

over N and αε to obtain the solution.

To examine the robustness of the main qualitative results shown in the previous

sections, we first reestimate the nonlinear system of equations (1) and (25) for the

parameter values of µ0, µ1, σS, g0, g1, g2, σX , and ρ, using the methodology derived

in Shoji and Ozaki (1998). We then numerically compute the optimal frequency,

optimal trading strategy, optimal consumption, and/or optimal accuracies for cases

corresponding to Figures 1–8 and report a subset of these results in Table 1.25

Table 1 shows that the main qualitative results remain the same in the presence

of intertemporal consumption, nonlinear dynamics, and continuous news accuracy

choice. Specifically, in Panels A and B, we solve for the optimal periodic news fre-

quency τ ∗, the optimal trading strategy π∗, and the optimal consumption c∗ for a

given constant periodic news cost β, a continuous news accuracy αν , and a continu-

ous news cost βc, similar to Figures 1–6. Comparison of row 1 with rows 2 and 3 of

Panel A shows that, consistent with Figure 1, the optimal periodic news frequency

decreases as risk aversion or news cost increases. Consistent with Figure 2 (comparing

row 1 to rows 4–6), the optimal frequency is increasing in σX and nonmonotonic in

the correlation coefficient ρ because of the change in the informativeness of the stock

return. The results shown in rows 1, 7, and 8 suggest that, similar to Figure 4, the

optimal fraction of wealth (π∗) still increases with horizon and news accuracy. Rows 9

and 10 suggest that overestimation (underestimation) tends to cause overinvestment

(underinvestment), the same pattern as that illustrated in Figure 5. Rows 12 and

13 report results for the cases with exogenously given quarterly periodic news fre-

25More extensive numerical results we conducted confirm the same findings as reported in Table
1.
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quency and the same initial news accuracy αε0 = 100 but different news accuracy for

future periodic updates. Comparing rows 7, 12, and 13 suggests that, consistent with

Proposition 3, the optimal trading strategy is not sensitive to future news frequency

or news accuracy as long as the current news accuracy is the same.

In Panel B, we report the expected percentage changes (E[
∆π∗

τ∗
π∗

τ∗−
] × 100) in the

fraction of wealth in stock at the first news update time after time 0 for cases with

different news accuracies and news costs. Consistent with Figure 6, the expected per-

centage change is nonlinear in news accuracy and increases as the news cost increases.

In Panel C, we also endogenize the news frequency and news accuracies for both

the periodic and the continuous news. Rows 18–20 suggest that the optimal periodic

news frequency decreases with risk aversion and horizon. This is consistent with

Figure 7 and different from Figure 8. The difference from Figure 8 confirms the

nonlinearity of news frequency in investment horizon as shown in Figure 3. The

trade off between news accuracy and frequency in this example makes it cheaper

to decrease news frequency for a short horizon, as in Figure 3. Also, the optimal

periodic news accuracy increases with both risk aversion and horizon. In contrast,

the optimal continuous news accuracy decreases with risk aversion but increases with

investment horizon. Panel C also implies that the optimal consumption decreases

with risk aversion and horizon. Intuitively, as the investor gets more risk averse, he

saves more to guard against bad shock in the market, and as the consumption horizon

increases, the investor needs to spread consumption across more years and therefore

the consumption level declines.
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VIII. Conclusions

In this paper, we show that because of information production and processing cost,

inattention to important economic news that affects investment performance may be

rational. Rational inattention significantly changes optimal trading strategy and the

investor may overinvest or underinvest. Optimal news frequency (attention frequency)

displays nonmonotonic patterns in news accuracy and investment horizon. We also

find that the optimal trading strategy is myopic with respect to news frequency and

news accuracy even for an investor with non-log preference. Furthermore, an investor

with a higher risk aversion or a longer investment horizon chooses less frequent but

more accurate periodic news updates.
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Table 1. Optimal periodic news frequency, accuracies, trading strategy, and
consumption

Panel A: Optimal news frequency, trading strategy, and consumption
Row Parameter value τ∗(quarters) π∗ c∗

1 Base case 0.2 0.76 .030
2 γ2 = 6 1.6 0.61 .020
3 β = .035% 1.6 0.72 .030
4 σX = .70% 1.6 0.71 .030
5 ρ = −.95 1.2 1.06 .036
6 ρ = −.55 1.6 0.69 .030
7 T = 15 1.9 0.71 .045
8 αε = 90 1.6 0.71 .030
9 m0 = .650 0.2 0.83 .030
10 m0 = .648 0.2 0.69 .029
11 η1 = η2 = .05 1.6 0.71 .011
12 T = 15, αεt = 100, t > 0 (Quarterly news) NA 0.71 .044
13 T = 15, αεt = 90, t > 0 (Quarterly news) NA 0.71 .044

Panel B: Impact of news on stock investment
Row Parameter value π∗τ∗− π∗τ∗ ∆π∗τ∗/π∗τ∗− × 100
14 Base case .76 0.79 4.9
15 αε = 70 .72 0.76 5.4
16 αε = 50 .69 0.73 4.9
17 β = .035%, αε = 100 .63 0.73 16.0

Panel C: Optimal frequency, accuracies, trading strategy, and consumption
Row Parameter value τ∗(quarters) π∗ α∗ν α∗ε c∗

18 Base case .6 .72 9.39 95.90 .030
19 γ2 = 6 1.0 .60 9.37 96.00 .020
20 T = 15 1.1 .70 9.38 95.80 .044

Note. The table shows the optimal frequency (τ∗), the optimal fraction of wealth in
stock π∗, and the optimal consumption (c∗). Panel B shows π∗ just before and immediately
after the second periodic news update time τ∗ and the percentage changes. Panel C also
shows the optimal news accuracies. For Panels A and B, the base case parameter values
are γ1 = γ2 = 5, λ1 = λ2 = 1, η1 = η2 = .01, T = 20, µ0 = −1.275, µ1 = 1.998, g0 = −.724,
g1 = 2.423, g2 = −2.012, σS = .0802, σX = .00748, ρ = −.617, r = .00340, β = .03%, βc =
3×10−6, αε = 100, αν = 10, δ = .01, ω = .5, X0 = .649, M0− = .649, and V (0−) = .000139.
For Panel C, β, αε, and αν are all endogenous with β(αε) = (0.0001αε/(1 − 0.001αε))16/9

and βc(αν) = (0.000004αν/(1− 0.1αν))16/9.26

26To facilitate comparison we chose these same news cost functional forms as before. Some pa-
rameters are adjusted since in this generalized model the investor pays the continuous news cost
continuously. We also conducted the same analysis for other functional forms and obtained the same
qualitative results.

40



Appendix

In this Appendix, we first extend our analysis to a more general model with
multiple risky assets, multiple predictive variables, and time-varying parameters. We
then provide more details on the results in the paper.

A.1 A More General Model with Multiple Risky

Assets, Multiple Predictive Variables, and Time

Varying Parameters

There are n + 1 assets being continuously traded in the market. We assume n < m
so that there are no redundant assets. The first asset is a money market account
that is locally risk free. The other n assets (“stocks”) are risky. There are k predic-
tive variables that predict the expected returns of these assets. The first k1 predic-
tive variables Xu

t are only observable (possibly with some errors) at discrete times
t1(0), t2, ..., tN ∈ [0, T ]. The remaining k2 = k−k1 predictive variables Xo

t are contin-
uously and accurately observable. Let Bt denote the price of the locally riskless asset
and St be the cum-dividend stock price vector at time t. We assume that Bt evolves
as follows:

dBt

Bt

= (r0(t) + r2(t)X
o
t )dt,

where r0(t)(1× 1) and r2(t)(1× k2) are deterministic functions of time. In addition,
the prices of the risky assets satisfy

dSt

St

= (µ0(t) + µ1(t)X
u
t + µ2(t)X

o
t )dt + σS(t)dZt,

where µ0(t)(n× 1), µ1(t)(n× k1), µ2(t)(n× k2), and σS(t)(n×m) are deterministic
functions of time t and where dSt/St represents element-by-element division. For the
dynamics of the predictive variables, we assume that

dXu
t = (g0(t) + g1(t)X

u
t + g2(t)X

o
t )dt + σu(t)dZt,

dXo
t = (h0(t) + h1(t)X

u
t + h2(t)X

o
t )dt + σo(t)dZt,

where g0(t)(k1×1), g1(t)(k1×k1), g2(t)(k1×k2), σu(t)(k1×m), h0(t)(k2×1), h1(t)(k2×
k1), h2(t)(k2 × k2), and σo(t)(k2 × m) are all deterministic functions of time t. To
save notations, henceforth we suppress argument t wherever confusion is unlikely.

Assume that at any observation time ti (i = 1, 2, ..., N), a noisy signal on Xu

reveals that Xu(ti) is normally distributed with mean mti (“initial mean”) and with
deterministic variance vti (“initial variance”).
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Suppose that σσ> is invertible so that there are no redundant assets. Let Mt

be the time t ∈ [ti, ti+1) expectation of Xu
t conditional on observing St and Xo

t (so
M(ti) = mti). Define

σ(t) =

[
σS

σo

]
,

and

dẐt = (σσ>)−1/2

([
µ1

h1

]
(Xu

t −Mt)dt + σdZt

)
,

where Ẑt is the (observable) innovation process. By Theorem 10.5.1 of Kallianpur
(1980), Mt then evolves as follows:

dMt = (g0 + g1Mt + g2X
o
t )dt + σM(t)dẐt,

where

σM(t) =

(
V (t)

[
µ1

g1

]>
+ σuσ

>
)

(σσ>)−1/2, (A1)

and V (t) is the conditional variance of Xu
t satisfying

V̇ = g1V + V >g>1 + σuσ
>
u −

(
V

[
µ1

h1

]>
+ σuσ

>
)

(σσ>)−1

(
V

[
µ1

h1

]>
+ σuσ

>
)>

,

subject to V (ti) = vti .
Then the investor’s portfolio selection problem in this more general case is equiv-

alent to
max

π(t): t∈[0,T ]
E[u(W (T ))],

subject to the budget constraint

dWt = r(Xt, t)Wtdt + π(t)>Wt(µ(Xt, t)− r(Xt, t)1̄)dt + π(t)>WtσS(t)dẐt (A2)

and
dXt = µX(Xt, t)dt + σX(t)dẐt,

where
r(Xt, t) = r0(t) + r2(t)X

o
t ,

µ(Xt, t) = µ0(t) + µ1(t)Mt + µ2(t)X
o
t ,

µX(Xt, t) =

[
g0(t) + g1(t)Mt + g2X

o
t

h0(t) + h1(t)Mt + h2X
o
t

]
,

Xt =

[
Mt

Xo
t

]
, (A3)
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and

σX(t) =

[
σM(t)
σo(t)

]
.

A.1.1 The solution to the case where the predictive variables
are unobservable for the entire horizon

We conjecture that

J(W,X, t) =
γ

1− γ

(
λW

γ
+ ηe−r(T−t)

)1−γ

f(X, t)1−γ. (A4)

Assume that there are no redundant stocks and therefore σSσ>S is invertible. Then
the optimal fraction of wealth invested in the stocks is given by

π =
1

γ
(σSσ>S )−1

(
µ− r1̄ + (1− γ)σSσ>X

fX

f

)
. (A5)

Substituting the conjectured form of the solution into the HJB equation, we have

ft +
1

2
Tr(σXσ>XfXX>) +

(
1− γ

γ
(µ− r1̄)>(σSσ>S )−1σSσ>X + µ>X

)
fX

+

(
1

2γ
(µ− r1̄)>(σSσ>S )−1(µ− r1̄) + r

)
f +

f>XΦ1fX

2f
= 0, (A6)

where

Φ1 = σX

(
(1− γ)2

γ
σ>S (σSσ>S )−1σS − γI

)
σ>X .

We now further conjecture that

f(X, t) = ec(t)+X>d(t)+ 1
2
X>Q(t)X , (A7)

where Q(t) is set to be symmetric. Substituting equation (A7) into (A6), we obtain
the following ordinary differential equations (ODEs) for c, d, and Q:

ċ +
1

2
d>Φ1d +

1

2
Tr

(
Φ2(Q + dd>)

)
+ Φ3d + ϕc = 0, (A8)

ḋ + Q(Φ1 + Φ2)d + Φ4d + QΦ>
3 + ϕd = 0, (A9)

and
Q̇ + Q(Φ1 + Φ2)Q + Φ4Q + QΦ>

4 + ϕQ = 0, (A10)
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subject to the terminal conditions

c(T ) = 0, d(T ) = 0, Q(T ) = 0,

where

Φ2 = σXσ>X , Φ3 =
1− γ

γ
δ>0 (σSσ>S )−1σSσ>X + η>0 ,

Φ4 =
1− γ

γ
δ>1 (σSσ>S )−1σSσ>X + η>1 , ϕc =

1

2γ
δ>0 (σSσ>S )−1δ0 + r0,

ϕd =
1

γ
δ>1 (σSσ>S )−1δ0 + [r1 0]>, ϕQ =

1

γ
δ>1 (σSσ>S )−1δ1,

δ0 = µ0 − r01̄, δ1 = (µ1, µ2 − 1̄r2),

η0 =

[
g0

h0

]
, and η1 =

[
g1 g2

h1 h2

]
.

The ODEs (A9) and (A10) are matrix Riccati equations, the solutions of which are
derived in Appendix 1.3. By plugging the solutions of d(t) and Q(t) into equation
(A8), c(t) can be solved.

A.1.2 The solution to the case where the predictive variables
are periodically observable

Now we assume that a signal Yt of Xu
t can be observed periodically at t = ti (i =

1, 2, ..., N). Moreover, Yt satisfies

Yt = Xu
t + εt, (A11)

where εt represents the noise in the signal. We assume that εt is normally distributed
with mean 0 and variance-covariance matrix Σ, not serially correlated and indepen-
dent of any other random variables at any time.

Immediately before the observation of the predictive variables at ti, Xu
ti

is normally
distributed with mean Mti and variance Vti . By Bayes’ Rule, the distribution of Xu

ti

conditional on Yti is also normal with mean

mti = Mti + Vti(Vti + Σ)−1(Yti −Mti) (A12)

and variance-covariance matrix

vti = Vti(Vti + Σ)−1Σ.
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We conjecture that the value function at t ∈ [ti−1, ti) in period (i− 1) is

J i−1(W,X, t) =
γ

1− γ

(
λW

γ
+ ηe−r(T−t)

)1−γ

f i−1(X, t)1−γ, (A13)

with
f i−1(X, t) = eci−1(t)+X>di−1(t)+ 1

2
X>Qi−1(t)X , (A14)

where Xt is as defined in equation(A3), and ci−1(t), di−1(t), and Qi−1(t) are the coef-
ficients in period (i − 1). To solve the value function, we first need to pin down the
terminal conditions by calculating the expected value of J i for given Mti and Vti .

27

Let Em denote the expectation operator with respect to mti for given Mti and Vti .
According to equation (A12), mti is normally distributed with mean Mti and variance
Λ = Vti(Vti + Σ)−1Vti . Let

c = ci(ti), (A15)

d =

[
dm

do

]
= di(ti), (A16)

Q =

[
qmm qmo

q>mo qoo

]
= Qi(ti) (A17)

be the parameter values of J i at the beginning of ith period ti and

X̂t =

[
mt

Xo
t

]
. (A18)

We then have

Em[f i(X̂, ti)
1−γ] = Em[e(1−γ)(c+X̂>d+ 1

2
X̂>QX̂)]

= Em[e(1−γ)(c+d>mm+d>o Xo+ 1
2
(m>qmmm+2m>qmoXo+(Xo)>qooXo)]

= e(1−γ)(c+d>o Xo+(Xo)>qooXo)Em[e(1−γ)(d>mm+m>qmoXo+ 1
2
m>qmmm)]

=
(
eĉi−1+X>d̂i−1+ 1

2
X>Q̂i−1X

)1−γ

, (A19)

where

ĉi−1 = c +
1

2
(1− γ)d>m(I− (1− γ)Λqmm)−1Λdm − 1

2(1− γ)
log[Tr(I− (1− γ)Λqmm)],

(A20)

d̂i−1 =

[
di−1

m

di−1
o

]
=

[
(I− (1− γ)qmmΛ)−1dm

do + (1− γ)q>mo(I− (1− γ)Λqmm)−1Λdm

]
, (A21)

27Strictly speaking, Mti and Vti are values at t−i , right before Yti is observed, and mti and vti are
values at ti, right after Yti is observed.
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Q̂i−1 =

[
qi−1
mm qi−1

mo

qi−1
om qi−1

oo

]
(A22)

=

[
(I− (1− γ)qmmΛ)−1qmm (I− (1− γ)qmmΛ)−1qmo

q>mo(I− (1− γ)Λqmm)−1 qoo + (1− γ)q>mo(I− (1− γ)Λqmm)−1Λqmo

]
.

The expected value function calculated above is of the objective function for the
(i− 1)th period and therefore provides the terminal conditions.

Therefore, ci−1(t), di−1(t), and Qi−1(t) must solve ODEs (A8), (A9), and (A10),
with c(t), d(t), Q(t) replaced by ci−1(t), di−1(t), Qi−1(t) respectively, subject to the
terminal conditions

ci−1(ti) = ĉi−1, di−1(ti) = d̂i−1, Qi−1(ti) = Q̂i−1.

In this way, the investor’s problem can be solved iteratively, and in each iteration we
only need to solve the same system of ODEs with different terminal conditions.

A.2 The One-Stock, One-State Variable Case

In the case of one stock and one predictive variable, as described by equations (1),
(2), and (4), the conditional variance Vt of the predictive variable satisfies

V̇ = a1V
2 + a2V + a3,

where a1 = −( µ1

σS
)2 − α2

ν , a2 = (2g1 − 2ρσXµ1

σS
), and a3 = (1− ρ2)σ2

X . The solution is

V (t) =
−a2 − η

2a1

+
η(2a1V0 + a2 + η)

a1(2a1V0 + a2 + η − (2a1V0 + a2 − η)eηt)
,

where η =
√

a2
2 − 4a1a3 (a2

2− 4a1a3 > 0 follows trivially from a1 < 0 and a3 > 0). As
t goes to infinity, V (t) converges to −a2−η

2a1
.

Plugging σ2
M1(t) = ( µ1

σS
V (t) + ρσX)2, σ2

M2(t) = (ανV (t))2, and σ2
M(t) = σ2

M1(t) +

σ2
M2(t) into ODEs, we have

Q̇(t) + ϕ1(t)Q
2(t) + ϕ2(t)Q(t) + ϕ3 = 0, (A23)

ḋ(t) + ϕ1(t)Q(t)d(t) +
1

2
ϕ2(t)d(t) + ϕ4(t)Q(t) + ϕ5 = 0, (A24)

ċ(t) +
1

2
ϕ1(t)d

2(t) +
1

2
σ2

M(t)Q(t) + ϕ4(t)d(t) + ϕ6 = 0, (A25)
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where

ϕ1(t) =
(1− γ)2

γ
σ2

M1(t) + (1− γ)σ2
M(t), ϕ2(t) = 2

(
1− γ

γ

µ1

σS

σM1(t) + g1

)
,

ϕ3 =
1

γ

(
µ1

σS

)2

, ϕ4(t) =
1− γ

γ

µ0 − r

σS

σM1(t) + g0,

ϕ5 =
µ1(µ0 − r)

γσ2
S

, ϕ6 =
1

2γ

(
µ0 − r

σS

)2

+ r.

For the no-periodic-news case, (Q, d, c) is the solution to (A23)-(A25) subject to
the terminal conditions Q(T ) = d(T ) = c(T ) = 0. We can also obtain a series solution
for Q by transforming the nonlinear ODE for Q into a linear homogeneous ODE. The
solution for (Q, d, c) in terms of constants bj’s is:28

Q(t) =
γσ̇M(t)

(1− γ)σM(t)2

∑∞
j=0 jbj(σM(t)− σM(T ))j−1

∑∞
j=0 bj(σM(t)− σM(T ))j

, (A26)

d(t) =

∫ T

t

e
R s

t (ϕ1(k)Q(k)+ 1
2
ϕ2(k))dk(ϕ4(s)Q(s) + ϕ5)ds, (A27)

and

c(t) =

∫ T

t

(
1

2
ϕ1(s)d

2(s) +
1

2
σ2

M(s)Q(s) + ϕ4(s)d(s) + ϕ6

)
ds. (A28)

For the periodic news case, (Qi−1(t), di−1(t), ci−1(t)) (t ∈ [ti−1, ti)) is the solution
to (A23)-(A25) with V (t) replaced by V i−1(t), subject to the terminal conditions
Qi−1(ti) = Q̂i−1, di−1(ti) = d̂i−1, ci−1(ti) = ĉi−1, where (Q̂i−1, d̂i−1, ĉi−1) is as defined
in (17). Similar to the no-periodic-news case, we can also obtain a series solution as
follows:

Qi−1(t) = Q̂i−1 +
γσ̇M(t)

(1− γ)σM(t)2

∑∞
j=0 jbi−1

j (σM(t)− σM(ti))
j−1

∑∞
j=0 bi−1

j (σM(t)− σM(ti))j
, (A29)

di−1(t) = d̂i−1e
R ti

t (ϕ1(s)Qi−1(s)+ 1
2
ϕ2(s))ds

+

∫ ti

t

e
R s

t (ϕ1(k)Qi−1(k)+ 1
2
ϕ2(k))dk(ϕ4(s)Q

i−1(s) + ϕ5)ds, (A30)

28The expressions for bj and bi−1
j in (A29) are presented in an earlier version of this paper which

is available from the authors and omitted in this version to save space.
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and

ci−1(t) = ĉi−1 +

∫ ti

t

(
1

2
ϕ1(s)(d

i−1(s))2 +
1

2
σ2

M(s)Qi−1(s) + ϕ4(s)d
i−1(s) + ϕ6

)
ds.

(A31)

A.3 Proofs of Propositions 1–3

Proof of Proposition 1: By Liptser and Shiryaev (2001, Theorems 12.5 and 12.7), the
sigma algebra generated by (S0, Ẑ1, Ẑ3) and the one generated by the stock price S and
the signal process ν are equivalent, and Ẑ1 and Ẑ3 are Wiener processes. Therefore
a trading strategy is adapted to the original filtration generated by the stock price
process S and the signal process ν if and only if it is adapted to the filtration generated
by (S0, Ẑ1, Ẑ3). The dynamics (8) follows from Theorem 10.5.1 of Kallianpur (1980).
Thus the optimal trading strategy that depends only on (Wt,Mt, t) is also optimal
given the original filtration. Next we show that function J(W,M, t) in Proposition 1
is indeed the value function, and the stated trading strategy is optimal.

First, the expressions for c, d, Q follow from Part 2.2 of this Appendix. Next,
applying Itô’s lemma to the stochastic process Lt ≡ J(Wt,Mt, t), we have that the
drift of Lt is always nonpositive for any admissible trading strategy and equal to
zero for the candidate optimal trading strategy since the candidate value function
in Proposition 1 satisfies the HJB equation (13). In addition, the stochastic integral
of Lt is a martingale. Therefore, Lt is a super martingale for all admissible trading
strategy and a martingale for the candidate optimal trading strategy. Thus, we have
for all admissible trading strategy

J(W,M, 0) = L0 ≥ E[LT ] = E[u(WT )|W0 = W,M0 = M ]

with equality for the candidate optimal strategy. This shows the optimality of the
stated trading strategy and that J(Wt, Mt, t) is the value function.

The expression for the optimal trading strategy follows from the fact that π∗t
maximizes the left-hand side of the HJB equation (13), i.e.,

π∗t = −(µ0 + µ1Mt − r)JW + σSσMJWM

σ2
SWJWW

.

Proof of Proposition 2: We prove this by backward induction. In the last period
N , the proof is the same as that for Proposition 1. For period N − 1, after first
taking the expectation of the value function JN with respect to the next observation
ytN , one gets the value function JN−1(Wt−N

,Mt−N
, t−N) at t−N , and then the proof for
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Proposition 1 applies for this period. Continuing this procedure completes the proof
for Proposition 2.

Proof of Proposition 3: For the unobservable case, we divide the whole investment
horizon into the same N periods as for the periodically observable case. We use Qi

u, di
u,

and V i
u(t) to denote the Q, d, and V functions of the ith period (i = 1, 2, ..., N). Be-

cause there is no observation, these functions have no jumps, and we have Qi−1
u (ti) =

Qi
u(ti), di−1

u (ti) = di
u(ti), and V i−1

u (ti) = V i
u(ti) (recall that ti is the end of the (i−1)th

period and also the beginning of the ith period). Moreover, Qi−1
u and di−1

u follow
equations (A23) and (A24) with terminal conditions: (QN

u (T ) = 0, dN
u (T ) = 0) and

(Qi−1
u (ti) = Qi

u(ti), d
i−1
u (ti) = di

u(ti)) for i = 2, ...N .
We denote V i

p (t) as the ith period V function (i = 1, 2, ..., N) for the periodically
observable case. Because of the arrival of new information, we have

V i
p (ti) =

V i−1
p (ti)α

−2
ε

V i−1
p (ti) + α−2

ε

. (A32)

Now we define

Qi
p(t) =

Qi
u(t)

1 + (1− γ)(V i
u(t)− V i

p (t))Qi
u(t)

, (A33)

di
p(t) =

di
u(t)

1 + (1− γ)(V i
u(t)− V i

p (t))Qi
u(t)

. (A34)

It can be shown that the defined Qi
p(t) and di

p(t) are the Q and d functions of the
ith period for the periodically observable case by verifying that29

(1) they follow the same ODEs as those of the periodically observable case, and
(2) they have the same terminal conditions.
To prove 1), we only need to realize that the sole difference between the ODEs for

the unobservable case and those for the periodically observable case is V (t). From
definitions (A33) and (A34), we can easily derive

Qi
u(t) =

Qi
p(t)

1− (1− γ)(V i
u(t)− V i

p (t))Qi
p(t)

, (A35)

di
u(t) =

di
p(t)

1− (1− γ)(V i
u(t)− V i

p (t))Qi
p(t)

, (A36)

Q̇i
u(t) =

Q̇i
p(t) + (1− γ)(Qi

p(t))
2(V̇ i

u(t)− V̇ i
p (t))

[1− (1− γ)(V i
u(t)− V i

p (t))Qi
p(t)]

2
, (A37)

29More detailed proof of these claims is available from the authors.
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and

ḋi
u(t) =

ḋi
p(t)

1− (1− γ)(V i
u(t)− V i

p (t))Qi
p(t)

− (1− γ)di
p(t)[(V̇

i
u(t)− V̇ i

p (t))Qi
p(t) + (V i

u(t)− V i
p (t))Q̇i

p(t)]

[1− (1− γ)(V i
u(t)− V i

p (t))Qi
p(t)]

2
. (A38)

In addition, by (9) both V i
u(t) and V i

p (t) satisfy

V̇ = −[(
µ1

σS

)2 + α2
ν ]V

2 + (2g1 − 2ρσXµ1

σS

)V + (1− ρ2)σ2
X (A39)

and
σM1(t) =

µ1

σS

V (t) + ρσX , σM2(t) = (ανV (t))2. (A40)

Plugging (A35)-(A40) into the ODEs for the no-periodic-news case ((A23)-(A24))
and after straightforward but tedious algebra simplification, one can verify that Qi

p(t)
and di

p(t) indeed satisfy the ODEs for the case with periodic observation, i.e., claim
1) holds.

To prove 2), we start from the last period. According to Definitions (A33) and
(A34), it is trivial to see that QN

p (T ) = QN
u (T ) = 0 and dN

p (T ) = dN
u (T ) = 0. So

QN
p (t) and dN

u (t) are indeed the Q and d functions for the periodically observable
case.

Now suppose Qi
p(t) and di

p(t) are the Q and d functions of the ith period for the
periodically observable case. So at the beginning of the ith period (t = ti), we have

Qi
u(ti) =

Qi
p(ti)

1− (1− γ)(V i
u(ti)− V i

p (ti))Qi
p(ti)

(A41)

and

di
u(ti) =

di
p(ti)

1− (1− γ)(V i
u(ti)− V i

p (ti))Qi
p(ti)

(A42)

according to (A35) and (A36).
Next we move to the (i−1)th period. Considering the end of the (i−1)th period,

we have Qi−1
u (ti) = Qi

u(ti) and di−1
u (ti) = di

u(ti) for the unobservable case and thus

Qi
u(ti) = Qi−1

u (ti) =
Qi−1

p (ti)

1− (1− γ)(V i−1
u (ti)− V i−1

p (ti))Qi−1
p (ti)

,

di
u(ti) = di−1

u (ti) =
di−1

p (ti)

1− (1− γ)(V i−1
u (ti)− V i−1

p (ti))Qi−1
p (ti)

,

according to Definitions of Qi−1
p and di−1

p .
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Then by (A41) and (A42) and noting that V i−1
u (ti) = V i

u(ti) because the condi-
tional volatility does not jump for the unobservable case, it can be shown that

Qi−1
p (ti) =

Qi
p(ti)

1− (1− γ)(V i−1
p (ti)− V i

p (ti))Qi
p(ti)

and

di−1
p (ti) =

di
p(ti)

1− (1− γ)(V i−1
p (ti)− V i

p (ti))Qi
p(ti)

.

By (A32) and (17), we have

Qi−1
p (ti) =

Qi
p(ti)

1− (1− γ)VM(ti)Qi
p(ti)

and

di−1
p (ti) =

di
p(ti)

1− (1− γ)VM(ti)Qi
p(ti)

,

which are the same as the (i−1)th period terminal conditions (17) for the periodically
observable case and thus claim 2) holds.

Finally, since in the first period V 1
p (t) = V 1

u (t) for the same initial value of V (0),
we have Q1

p(t) = Q1
u(t) and d1

p(t) = d1
u(t) by (A35) and (A36). In addition, given the

same M(0), the trading strategies are the same by Proposition 2.

A.4 Parameter Estimation Method

Duffie et al. (2000) show that the conditional characteristic function of the diffusion
processes described in (1) and (2) has a closed form. Using their results, we obtain
the following characteristic function

ψ(us, uX , st+τ , Xt+τ |st, Xt) = exp[α(τ, us, uX) + βs(τ, us, uX)st + βX(τ, us, uX)Xt],

where α(τ, us, uX), βs(τ, us, uX), and βX(τ, us, uX) satisfy the following ODEs:

[ .

βs
.

βX

]
=

[
0
µ1

0
g1

] [
βs

βX

]
,

.
α =

[
µ0 − 1

2
σ2

s g0

] [
βs

βX

]
+

1

2
[βs βX ]

[
σ2

s

ρσsσX

ρσsσX

σ2
X

] [
βs

βX

]
,
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with boundary conditions α(0, us, uX) = 0, βs(0, us, uX) = us, and βX(0, us, uX) =
uX . The above ODEs have closed-form solutions:

βs (τ, us, uX) = us,

βX (τ, us, uX) =

(
uX +

µ1

g1

us

)
eg1τ − µ1

g1

us,

α (τ, us, uX) =
1

4g1

σ2
X

(
uX +

µ1

g1

us

)2 (
e2g1τ − 1

)

+
1

g1

(
g0 + ρσsσXus − µ1

g1

σ2
Xus

)(
uX +

µ1

g1

us

)
(eg1τ − 1)

+

((
1

2
σ2

s +
1

2

µ2
1

g2
1

σ2
X −

µ1

g1

ρσSσX

)
u2

s +

(
µ0 − 1

2
σ2

s −
µ1g0

g1

)
us

)
τ.

It can be easily verified that, conditional on st and Xt, the continuously com-
pounded return Rt+1 = st+1 − st and Xt+1 are jointly Gaussian, and the first and
second moments are

M1 = Et (Rt+1) =
∂ψ

∂us

|us=0,uX=0 =

(
µ0 − 1

2
σ2

s −
µ1g0

g1

)
+

µ1

g1

(eg1 − 1)

(
Xt +

g0

g1

)
,

M2 = Et (Xt+1) =
∂ψ

∂uX

|us=0,uX=0 =
g0

g1

(eg1 − 1) + eg1Xt,

σ2
1 = V art (Rt+1) =

∂2ψ

∂u2
s

|us=0,uX=0 − (Et (Rt+1))
2

=
1

2g1

(
e2g1 − 1

) µ2
1

g2
1

σ2
X +

2µ1

g2
1

(eg1 − 1)

(
ρσsσX − µ1

g1

σ2
X

)
+ σ2

s +
µ2

1

g2
1

σ2
X

−2µ1

g1

ρσsσX ,

σ2
2 = V art (Xt+1) =

∂2ψ

∂u2
X

|us=0,uX=0 − (Et (Xt+1))
2 =

1

2g1

(
e2g1 − 1

)
σ2

X ,

ρ12σ1σ2 = Covt (Rt+1, Xt+1) =
∂2ψ

∂us∂uX

|us=0,uX=0 − Et (Rt+1) Et (Xt+1)

=
µ1

2g2
1

(eg1 − 1)2 σ2
X +

1

g1

(eg1 − 1) ρσsσX .

Define

a11 = µ0 − 1

2
σ2

s −
µ1g0

g1

+
µ1g0

g2
1

(eg1 − 1) , a12 =
µ1

g1

(eg1 − 1) ,
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b11 =
g0

g1

(eg1 − 1) , b12 = eg1 .

Let Θ ≡ (a11, a12, b11, b12, σ1, σ2, ρ12). The log likelihood function can then be calcu-
lated as

£ (Θ) = log f (X1; Θ) +
t=T∑
t=2

log f (rt, Xt|Xt−1; Θ)

= −1

2
log 2π − 1

2
log

σ2
2

1− b2
12

− (X1 − b11/ (1− b12))
2

2σ2
2/ (1− b2

12)

−T − 1

2

(
log 2π + log σ2

1 + log σ2
2 + log

(
1− ρ2

12

))

− 1

2 (1− ρ2
12)

t=T∑
t=2

{(Rt − a11 − a12Xt−1)
2

σ2
1

+
(Xt − b11 − b12Xt−1)

2

σ2
2

+
2ρ12 (Rt − a11 − a12Xt−1) (Xt − b11 − b12Xt−1)

σ1σ2

}
.

We then use the maximum likelihood estimation method to estimate the parameters.
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