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Recovering the FOMC Risk Premium®

Abstract

The Federal Open Market Committee (FOMC) meetings have significant impact on
market returns. We propose a methodology to recover the risk premium associated with
FOMC meetings from option prices. We also estimate the sizes of upward/downward
market price jumps after an imminent FOMC meeting. In our empirical analysis, with
observed price data for 67 meetings and with data backed out via machine learning for
the remaining 109 meetings from 1996 to 2017, we find that the risk premium varies
from 15 to 88 basis points (bps), with an average of 38 bps which is consistent with
the average realized returns documented in the literature. The average upward jump
size is 103 bps, and the average downward jump size is 137 bps.

JEL Classification: G11, G14
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1 Introduction

The Federal Open Market Committee (FOMC) meetings announce key decisions about inter-
est rates and the growth of the United States money supply. It is generally recognized that
an FOMC announcement has a very significant influence on the market (see, e.g., Bernanke
and Kuttner (2005)). In particular, Savor and Wilson (2013) and Lucca and Moench (2015)
find that investors require a much higher risk compensation during a time interval of 24 to 48
hours before a meeting. Studies so far have only computed the ex post average realized ex-
cess return after FOMC meetings, which can be a good estimate of the FOMC unconditional
risk premium. However, if like many other types of risk premia, the FOMC risk premium
also changes with economic conditions, then the ex post average realized excess return would
not be a good estimate of the risk premia right before the meetings. The economic question
of interest is whether the FOMC risk premia are really time-varying, and if so, how we can

estimate them.

In this paper, we propose a methodology to recover the FOMC risk premium around
the FOMC meetings using options written on the S&P 500 index and a simple equilibrium
model. The main idea is as follows. If there are options that expire right after the an-
nouncement of an FOMC meeting, then in an efficient option market, the option prices right
before the announcement should correctly capture exclusively the risk from the imminent
FOMC decision. The probability that the release of information about another risk factor
coincides exactly with the FOMC announcement is virtually zero. As a result, the implied
risk premium from these option prices should be equal to the FOMC risk premium without

any contamination from other potential risk factors.

The S&P 500 options are the most liquid options written on the broad market index
and are the most widely-studied derivatives for analyzing the U.S. financial market. We
assume that immediately after an FOMC announcement, the S&P 500 index can take only

two possible values, either jumps up (corresponding to a “good” surprise) or jumps down



(corresponding to a “bad” surprise)." Accordingly, we consider a simple one-period binomial
tree model for the S&P 500 index and use the just-before-announcement prices of options
that expire right after the announcement to estimate the jump sizes. Then, in a represen-
tative agent framework with a constant relative risk aversion (RRA) utility, we recover the
corresponding physical probabilities of the potential upward and downward jumps, which,
combined with the estimated jump sizes, yield the FOMC risk premium for a given FOMC

meeting.

Empirically, consider first the estimation of jump sizes due to FOMC meetings. For
67 FOMC meetings over the recent 12 years from 2006 to 2017, the option prices with
maturity covering the 3 days around the meetings are available.? Our estimates indicate an
average upward jump size of 116 basis points (bps) and an average downward jump size of
153 bps for the S&P 500 index ex post the meetings. These estimates show a remarkable
performance in a “pseudo” prediction in which we use up or down jump returns to analyze
returns conditional on up or down. The “pseudo” predicted return has a correlation of 89%
with the realized return, and the “pseudo” out-of-sample R-squared is as high as 76.5%.
This suggests that our estimation of jump sizes is surprisingly precise. For the entire sample
of the 176 FOMC meetings between 1996 and 2017, we fill in the missing data via machine
learning to estimate the implied volatility surface, which allows in general to extrapolate
option prices for any desired strike prices and time-to-maturity from existing ones. The
average upward and downward jump sizes are 103 and 137 bps, respectively. These values
are lower than those for the 67 meetings, but their values match closely with the realized

returns during the entire sample.

The FOMC risk premium is found to be time-varying with strong empirical evidence.
Its value varies from 15 to 88 bps over the period from 1996 to 2017, assuming a typical

value of 5 for the RRA. The volatility, however, is 10 bps, much smaller than the range.

"When the time horizon under consideration is almost zero, this assumption is without loss of generality.
2Ideally, we need the just-before-announcement prices of options that mature right after the announcement
to capture only the effects of the meetings rather than other new risks arrived before or after the meetings.



Its long-term average is 38 bps, matching well those documented in the literature based on

realized returns.

Our paper is the first to recover the time-varying FOMC risk premium from option
market. Our empirical results show that the investors” demand of risk compensation around
the FOMC meeting is well reflected by the option market. This, in turn, allows us to
extract forward-looking information, and to estimate the time-dependent conditional FOMC
risk premium from option prices regarding each meeting. The large time-variation in the
estimated FOMC risk premium suggests that it is important to understand the risks of each

meeting for its asset pricing implications on investments and corporate planning.

Our paper is closely related to the literature that shows the existence of the FOMC
risk premium. Savor and Wilson (2013) and Lucca and Moench (2015) present empirical
evidence of the premium. Ai and Bansal (2018) explain the premium with a theoretical
model. Savor and Wilson (2014) and Ai et al. (2019b) show that the cross-section of stocks
also behaves differently around macroeconomic announcements. We add to the literature by

finding time-varying risk premium evidence from the option market.

Our paper also contributes to the recovery literature. Ross (2015) proposes a theory to
recover the entire physical distribution of market returns from options written on the S&P
500 index. Subsequent papers focus on recovering the expected return of assets from option
prices under normal market conditions and over a relatively long time interval (e.g., Martin
(2017), Kadan and Manela (2019), Tang (2018), Jensen et al. (2019), Kadan and Tang
(2020), and Martin and Wagner (2019)). Our paper introduces a methodology to recover

expected returns with jumps within a short time horizon on news or events.

Our paper also adds to the literature that explores the relation between the FOMC
meetings and the option market behavior. Vahamaa and Aijo (2011) and Amengual and
Xiu (2018) find that the FOMC meeting significantly influences the behavior of implied

volatility of market options through an uncertainty channel. Neuhierl and Weber (2016)



construct a slope factor based on implied volatilities of different maturities to predict future
market returns during the FOMC meetings. Ai et al. (2019a) show that S&P 500 index
option prices around the FOMC announcements identify investors’ preference for the timing
of resolution of uncertainty. Our paper shows that option prices can be directly used to

measure and predict stock jumps around the FOMC meetings.

The rest of the paper proceeds as follows. Section 2 introduces our theoretical framework
and estimation methodology. In Section 3, we conduct estimation using option prices of the

S&P 500 index. Section 4 presents further analysis and Section 5 concludes.

2 Theoretical Framework

In this section, we consider an asset whose price will likely experience either an upward or a
downward jump after an imminent event (for example, earnings announcement, important
economic news release). We begin with a one-period binomial tree model to estimate the
jump sizes from observed option prices. Then, we employ a representative agent equilibrium
model to recover physical probabilities of the upward jump and the downward jump, and the
implied risk premium for the asset associated with the event. This method can be applied
to any asset that will likely experience a jump in its price after an imminent event and has

liquidly traded options on it that mature shortly after the event.

2.1 Jump Sizes and State Prices

Consider a one-period binomial tree model for an asset where the time starts at ¢ = 0 and
ends at ¢ = 1. Let Sy denote the price of the asset at ¢ = 0. Assume an event occurs at
t = 1_, immediately after which the price of this asset either jumps up by u .Sy, or jumps
down by d Sy, with u,d > 0. Assume that there are two call options and two put options

written on this asset, all maturing at ¢ = 1. These options have prices C}, Cy, P;, and P, with



respective strike prices of K¢, K§, KI', and KI such that (1 —d) Sy < K¢, K§ < (14+u) Sy
and (1—d) Sy < KT, K¥ < (1+u) Sy. Thus, at time ¢ = 1, the call options are exercised only
when the realized state is u, with payoff (14 u) Sy — K€, and the put options are exercised
only when the realized state is d, with payoff (1 — d) Sy — K}, for i = 1,2. Otherwise, the

options are not exercised and the buyer gets zero payoff.

Let 7, denote the state price of state u (i.e., the price of an Arrow-Debreu security that

pays $1 in the up state and 0 otherwise). Then the call options are priced as
Ci=m, (1 +u)S — KF), i=1,2.

Thus we have the state price for the up state as

(1+u)Sy— K¢ (1+u)Sy— K§
Ty = = . (1)
Cy Cs

The solution to upward jump size w is then

Y K¢y — K§Cy
So (Cy — CY)

-~ 2)

Plugging (2) into (1), we obtain our estimate of the state price of the upward jump state,

O -G

Therefore, with the information contained in a pair of call options, we are able to estimate

the future upward jump size of an asset, as well as the corresponding state price.

Similarly, we can estimate the size of downward jumps and the state price 7wy for the

down state by a pair of put options. Following the same steps as above, we have that the



downward jump size d can be estimated as

and the state price of the down state d can be given by

P - P

S T 5
T KPP K 5)

Hence, using a pair of calls and a pair of puts, we can estimate both the jump sizes and

states prices, which will be used below to estimate the risk premium.

For the choice of these options, options close to the money (CTM) are preferable. This is
because CTM options are more liquid and thus their prices are less distorted by illiquidity.
We use call option prices to estimate the upward jump size and the up state price because
call options are likely to better reflect information about an upward jump.® Similarly, we

use put option prices to estimate the downward jump size and the down state price.*

2.2 Jump Risk Premium

Now, to estimate the risk premium, we consider a one-period representative agent equilibrium
model where a representative firm produces one consumption good at time 0 and time 1.
The consumption good produced at time 0 is dy and at time 1 is §, with probability p, and d4
(< d,) with probability p; = 1 —p,. The representative agent owns the firm which issues one
share of stock. The firm pays the stock holder the consumption good produced as dividend

at each point in time. The agent chooses her consumptions to maximize her expected utility

3For example, as shown in An et al. (2014), informed traders with positive news mostly trade by buying
call options.

4Since the asset itself can be viewed as an option with zero strike price, it can also be used to help estimate
the state prices and jump sizes. In an efficient financial market, this would result in the same estimates.
In our empirical analysis later, we find that the difference is smaller than 0.1%, implying a high degree of
market efficiency.



subject to a budget constraint:

max v (co) + p(puv (cu) + (1 —pu) v (ca)),

€0,CuCd

s.t. Co + TyCy + TaCq = Wy,

where v(.) is the agent’s utility function, ¢y denotes the investor’s consumption at ¢ = 0, ¢,
and cg are her consumptions in the corresponding states at ¢ = 1, p is the time discount

factor, p, is the physical probability of state u, and wy is the investor’s initial wealth.

The first order conditions with respect to ¢y, ¢,, and c¢q yield

V' (cy)
ppu Ul (CO) 7Tu7
v

which leads to

Solving for p,, we have

Ty,
Pu= ey (6)
Ty + U/(cd)ﬂd

Accordingly, the physical probability of a downward jump is given by

Pa = 1_pu (7)

=1— Tu

e S

The equation makes intuitive sense. Everything else equal, the greater the upside (downside)

state price is, the greater the upside (downside) probability is.



By the market clearing condition, we have

Co = 507Cu - 5uacd = 5d'

Using the same notation as before, let Sy be the initial stock price at t = 0, (1 + u) .Sy be
the up state stock price at t = 1, and (1 — d) Sy be the down state stock price at ¢ = 1. The
(cum-dividend) stock price at time 1 in equilibrium must be equal to the dividend payment

in each state. Therefore, we have

(u+1)80:5u,(1—d)50:5d

As a result, we must have

ey = (14 u)Sy, (8)

ca = (1—d)Sp. 9)

Thus, for any given form of the representative agent’s utility function, we are able to recover
the physical probabilities with the estimates presented in Section 2.1. In particular, based
on the estimates of physical probabilities, the estimation of the jump risk premium is given
by:

E(T) —rf = pyu — pad — 1y, (10)

where 7 is the net return of the stock and r; is the observed risk-free rate between time ¢ = 0
and ¢t = 1. In our empirical analysis, because the time period under consideration is short
(only up to a couple of days), the level of the risk free rate is not important and accordingly,

we assume that ry = 0.



2.3 CRRA Utility

To completely determine the physical probabilities from (6) and (7), we need to specify a

form of utility function. Here we focus on the constant relative risk aversion utility:

where «y is the relative risk aversion (RRA) coefficient. Then, the marginal utility is given

by v' (¢) = ¢™7, and so the estimate of physical probability of an upward jump is

Ty

T+ e

m

Pu =

Ty + —=Tq
€a
Ty,

T =—ay
Ty + Eu+1§v Td

where the last equality holds because of (8) and (9). In our estimation below, we consider
three levels of RRA: 5, 8, and 10, which are found to be reasonable levels of RRA in the
literature.” These different levels of RRA imply different values of p,. In the following

analysis, however, we focus on discussing the results with v = 5.

Recall that in Section 3.3, we estimate the state price m, (m4) of the up (down) state
using two cal (put) options under the assumption that call (put) options provide more precise
information about the up (down) state. Consistent with this assumption, we next estimate
physical probabilities in two steps. In the first step, we estimate the physical probability p,

of state u, based on the up state price 7, estimated using two call options and the implied

5See, for example, Mehra and Prescott (1985), Vissing-Jgrgensen and Attanasio (2003), and Bliss and
Panigirtzoglou (2004)



down state price 1 —m, (because the risk free rate r; is assumed to be 0 as explained before),

T
pu = (l—d)'y (1 ) (11)

WU_‘_W —7Tu)

and that of state d based on the down state price m,; estimated using two put options and

the implied up state price 1 — 7y:

1—
pa=1- (. (12)
1— g+ U=
(et 1)

As a result, we obtain two pairs of the physical probability estimates: (p,,1—p,) and
(1 — pa,pa) - Then in the second step, we calculate a weighted average of the two sets of

probabilities. In particular, we set the weights to be proportional to the jump sizes:

. u i
pu_u—i—dp“

1 —pa),
u+d< p) (13)

ﬁdzl_ﬁun

to obtain our final probability estimates. Clearly, p, + ps = 1 with both p, and p,; being
positive. Intuitively, when the upward (downward) jump size is relatively large, the up
(down) state information is more important and thus we should rely more on the up (down)

state estimates from call (put) options.

2.4 Discussions

The proposed methodology is general enough for estimating the jump sizes and jump risk
premium for any assets with liquid option trading. In this paper, we consider the Federal
Open Market Committee (FOMC) meeting day as a candidate time interval during which a
jump in the market price is likely to happen. Indeed, during the 24- to 48-hour time window
right before the FOMC meetings, significant amount of news about the monetary policy is

expected to release, bringing potential shocks to the market. Savor and Wilson (2013) and

10



Lucca and Moench (2015) find that market excess returns over this time interval account
for 60% to 80% of the market annual returns. As the dates of regular FOMC meetings are
pre-specified, the jumps are expected by the investors. Therefore, it is reasonable to assume
that a jump in the market index arrives during this time window, and the investors can

correctly predict it.

Under our framework, if we consider ¢ = 0 as 24 or 48 hours before the FOMC meeting,
and t = 1 as the meeting day, then the above methodology can be used to estimate the
upward and downward jump sizes for each meeting whenever we have option prices available.
Such estimations are time conditional and forward-looking. In addition, for any given utility
function of the representative agent, we are able to recover the risk premium of the market

right before and on the meeting day, which is the FOMC risk premium.

Notably, the FOMC risk premium is estimated in a forward-looking manner, incorporat-
ing time-conditional information. Most of the current literature that examines the FOMC
risk premium relies on the realized market returns, which only contain information about the
realized states of the jumps. In other words, there is no way to obtain information about the
downward jump state when the realization is an upward jump, and vice versa. Consequently,
the premium estimated based on the realized returns is the unconditional one, thus cannot
be utilized to examine the time-series variation of the FOMC risk premium. In contrast, we
show that, with our methodology, we are able to recover and observe the dynamic changes

of the FOMC risk premium.

3 Empirical Results

3.1 Data

The aim of our empirical analysis is to recover the FOMC risk premium from option prices.

We obtain S&P 500 option pricing data from OptionMetrics with a sample period spanning

11



January 1996 to December 2017. For each year in our sample, there are 8 regular FOMC
meetings, with a total of 176 meetings. We choose options with life span covering the 24-hour
time interval right before the closing time on the FOMC announcement days. We use the
most recent prices of these options before the FOMC meeting to estimate jumps of S&P 500
index on the meeting days. To cleanly identify the FOMC risk premium, we only consider
options that mature within three days.® For each meeting day in our sample, we retain two
calls and two puts that have strike prices closest to the current S&P 500 index level and
with the shortest available maturity horizon. In addition, we obtain S&P 500 index levels

from CRSP.

However, there are available data for only 67 out of 96 FOMC meetings over the recent
12 years from 2006 to 2017 that satisfy the above three-day expiration window. Prior to
2006, there are substantially fewer options available. In particular, there are no options that
have maturity shorter than three days but still covers the 24-hour time window right before
any FOMC meetings. The data availability is, however, not an issue going forward, as in the
current market, there are options written on the S&P 500 index maturing on every Monday,
Wednesday, and Friday (except for days that the market is closed). This promises that we
almost always have available options to estimate jumps and other related variables for any

FOMC meeting in the future.

The available options from 2006 to 2017 on the 67 meetings are all liquidly traded. Indeed,
the average trading volume is 2325.37, with the smallest trading volume being 52 contracts.
Thus, we believe that the options prices are reliable. We use the midpoint of their highest
closing bid and lowest closing ask prices for the estimation. For each pair of call and put
options, we follow the methodology presented in Section 2 to recover information about the

upward and downward jump states, respectively.

To have more samples and to make our study comparable to those with the full 176

meetings from 1996 to 2017, we also back out the rest of the data from the implied volatilities

6As a robustness check, we relax this condition to four and five days. See Section 4.1 for details.
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of options that are available 48 hours before the FOMC meetings and that expire after the
meeting announcement date. This requires us to extrapolate the volatility relation between
relatively short- and relatively long-term options. We use a recently developed machine
learning method, the smoothing-embedded matrix completion, to fit the implied volatility

surface. Details are provided in the Appendix.

3.2 Jump Estimates

Consider first the case with the actual option data for the recent 67 meetings. Panel A of
Table 1 reports summary statistics of the variables used in the estimation. The mean prices
of C1,Cy, Py, and P, are $8.7776, $11.1220, $9.5299, and $8.9813, respectively. These options
are all very close to ATM, with moneyness ranging from 0.9569 to 1.0232. Thus their strike
prices are quite likely to fall between the downward and upward jumps. There are 22.37%
of the options mature in one day, 7.46% mature in two days and the rest of them mature in

three days.

Panel B reports the summary statistics of the estimated jump sizes. The upward jump
sizes range from 30 basis points (bps) to 3.47%, with a mean of 116 bps. The downward
jump sizes are from 26 bps to 7.56%. The mean downward jump size is 153 bps. While mean

seems quite reasonable, the lowest and highest jumps deserve some analysis and explanation.

The top panel of of Figure 1 plots the time series of the jump estimates along with the
S&P 500 returns. The jump sizes are associated with volatility. The extreme low level of
7.56% downside jump occurs during the financial crisis period. Other than this one outlier,
the estimated downside jumps are in fact quite close to the realized values when the market
indeed goes down. In contrast, the extreme upward jump of 3.47% does not seem high as
compared with the actual returns when the market indeed goes up. Overall, the magnitudes

of the estimates are consistent with the realized jumps.

To better illustrate the precision of the jump estimates, we consider a pseudo prediction.
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Let

u ifr >0,
(14)

>
I

—d if7 <0,

where 7 is the realized net return of the S&P 500 index. Then 7 is the predicted jump by the
option market conditional on either upside or downside jumps. This is a pseudo prediction
because we combine the estimated jump sizes, u and d, with the directions of future realized
jumps, and so we do not observe 7 before the jump realizations. Also it should be noted

that, for each meeting, only one of u and d is realized.

Nevertheless, 7 contains information on how well the market anticipates the size of the
jump. The bottom panel of Figure 1 plots 7 and 7 over time. It is clear that there is a strong
link between pseudo predictions and realizations, indicating that our estimation of the jump
size is quite precise. Indeed, the correlation between the pseudo prediction and the realized

return is 89%. Predicting 7 with 7 yields a pseudo out-of-sample R-squared of 76.5%.

Consider now the full sample results. Figure 2 includes plots parallel to Figure 1 for
the extended sample period with the extrapolated data. The top panel plots the estimated
upward and downward jumps together with the realized returns. We can see that for the
first few years (before 2003), the jump estimates based on the extrapolated data do not
capture some of the high levels of realized jumps. This is reasonable, as the option trading
before year 2003 is rather thin, leading to the loss of certain information. The machine
learning model is trained only based on a few observations, resulting in less accuracy in our
estimation. Similarly, during the financial crisis, the estimates based on extrapolation are
not able to capture the spike in October 2008, where the one-day return of the S&P 500
index is 9.6%. Perhaps this is also because, when the volatility is too high, the estimation
becomes less accurate, and hence the gap widens between what is estimated and what is

realized in the presence of extreme events.

The bottom panel in Figure 2 presents the time-series of the realized returns with the

pseudo prediction estimated from (14). The comparison shows that except for the early

14



years and the extreme cases during financial crisis, the estimates match the realized return
pattern closely. Even for the two periods that are lack of information, the estimates are
still able to match the trend of the jumps. This demonstrates that the matrix completion

methodology applies to the option data quite efficiently.

Panel C of Table 1 reports summary statistics of the jump estimates with the extrapo-
lated data. The average estimated upward and downward jump sizes are 103 and 137 bps,
respectively. Both are slightly below the average estimated jump sizes with real data. The
reason might be due to financial crisis. During the crisis, extreme events are more likely
to happen, and so there are quite a few greater jump sizes that make the average slightly
higher. Now, on the pseudo prediction, the out-of-sample R-squared for the entire sample is
67.6%, which is still impressive as it is usually difficult to get predictors with such a high R2.
However, this value is about 10% lower than 76.5% for the subsample. It is likely caused by

using the augmented data rather than the true but unavailable ones.

3.3 State Price Estimates

We next estimate the state prices following (3) and (5). As the time interval of interest is as
short as only a few days, we assume that 7y = 0 as mentioned before. To preserve information
from both call and put options, we estimate two pairs of the state prices. In particular, we
estimate (m,, 1 — m,) following (3) with two call options, and (1 — 74, 74) following (5) with

two put options.

For the sub-sample of 67 meetings, Panel A of Table 2 reports the summary statistics.
There are two interesting facts. First, the two pairs of estimates are quite close to each
other, which means that 7, + 74 = 1 roughly holds. Indeed, the average of 7, 4+ 74 is 0.9975,
with a standard deviation of 0.0202. This is interesting because we use two different pairs of
options, and there is no guarantee that m, + 74 = 1 empirically. Furthermore, across all the

quantiles, the two pairs of estimates are very close too. Figure 3 plots their values over time

15



and their time-series patterns are very close as well. Therefore, in what follows, we continue
to use both pairs of estimates to recover physical probabilities and combine the physical ones

to recover the FOMC risk premium.

The second interesting fact is that, in general, the upward jump state has a higher
state price than the downward state. This compensates the larger average downward jump
size. The time-series plot in Figure 3 shows that the upward (downward) state prices are
countercyclical (procyclical), which implies that good news is more desired during financial

crisis than normal times.

Panel B of Table 2 presents summary statistics of the estimated state prices for the full
sample. Again, we can see that the estimates based on call and put prices are quite close.
The average of m, + 74 is 0.9921, with a standard deviation of 0.0505. Time series plot of

the state prices for the full sample in Figure 4 further confirms this.

3.4 Recovery of Physical Probabilities

Table 3 and Figure 5 present results of estimated physical probabilities based on (11) and
(12) for RRA (v) levels of 5, 8, and 10. The results are for all the 176 meetings (the
subperiod results are omitted for brevity). As expected, the physical probabilities of an
upward (downward) jump are always higher (lower) than the risk neutral ones, with the
spread being larger as v increases from 5 to 10. For example, the average physical probability
of an upward jump increases from 62% to 65% as v increases from 5 to 10, compared to
an average of 60% for the corresponding risk-neutral probability. This is due to the risk
adjustment made by the representative agent. From the plots we can easily see that the
spread of the estimates based on different levels of RRA is relatively small compared to
the time-series volatility of the probabilities. Thus, our estimates provide reasonable and

informative bounds on physical probabilities.

Table 4 and Figure 6 report estimations of weighted physical probabilities following (13).
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By comparing them with results in Table 3 and Figure 5, we can see that the estimates are
quite close. This is expected as the results in Section 3.3 show that the estimates from calls

and puts are quite similar.

3.5 Recovery of the FOMC Risk Premium

With the estimates from previous steps, now we are able to estimate the FOMC risk premium
as

E(F) = pyu — pad, (15)

for different levels of relative risk aversion, 7. Note that this equation is the same as (10)

under the simplifying assumption that r; = 0 in the one-day horizon.

Panel A of Table 5 presents summary statistics of the estimated FOMC risk premium
for RRA levels of 5, 8, and 10 for the entire sample. The average risk premium lies between
38 bps and 50 bps depending on the level of risk aversion of the representative agent. The
time-series volatility of the risk premium estimates ranges from 10 to 16 bps. This shows
substantial fluctuations of the FOMC risk premium over time. For example, when v = 8, the
FOMC risk premium ranges from 16 bps to 120 bps over the 176 FOMC meetings considered

in our sample.”

Figure 7 presents time-series plots of the estimated FOMC risk premiums for each RRA
level. The estimates fluctuate significantly over time, consistent with large time-series volatil-
ity reported in Table 5. The estimated risk premium is always positive. While during the
crisis, the FOMC risk premium is substantially higher, which indicates that investors de-
mand higher compensation for monetary policy change during the market distress time.

Under normal market conditions, the risk premium level is moderate, and is sometimes very

"For comparison, we have also estimated the risk premiums using two other approaches, Breeden and
Litzenberger (1978) with CRRA utility and Martin (2017), respectively, and found that the estimates are
too small (no greater than 3.5 bps), due to noisy out-of-money option prices when the maturity is short.
In contrast, our methodology relies only on at-the-money or nearby options whose prices are much more
reliable.
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close to zero.

We also report summary statistics of the realized S&P 500 net returns. Notice that the
realizations only reflect information of the realized jump states, thus it is expected to see
that the realized returns are much more volatile than the estimated risk premium. Indeed,
the time-series volatility of the realized returns is 160 bps and they range from -309 to 537
bps. The average realized return is 47 bps, which can be considered as an ex-post estimate
of the unconditional FOMC risk premium for the 176 FOMC meetings of interest. This
estimate falls within the interval provided by our methodology. In fact, it lies between the

option-implied FOMC risk premium under cases when v = 8 and when ~ = 10.

For completeness, we report the summary statistics of the FOMC risk premium as well as
the corresponding realized returns for the 67 subsample in Panel B of Table 5. The average
FOMC risk premium ranges from 12 to 23 bps depending on the level of relative risk aversion.
The average realized returns over life span of the corresponding options (which covers the
24-hour before the FOMC meeting) is 14 bps, falling between the estimated ranges based on
our model. Note that the average risk premium for the sub sample, which contains the crisis,
is lower than that of the entire sample. This appears counter-intuitive, but can be explained
with two reasons. First, the sub-sample (the 67 meetings) do not cover every meeting in
the recent 12 years. In particular, there are 4 missing observations for the year 2008 and
2 missing observations for the year 2009. It happens that the sub-sample does not cover
the FOMC associated with the huge upward jump in 2008, so it does not fully capture the
volatility during the crisis, and hence the associated risk premium. These missing data all
play a role in the entire sample. Second, excluding the financial crisis (year 2008 and 2009),
we find the realized return volatility before 2006 is 1.54%, much greater than 1.22%, the
return volatility after year 2006. This indicates that we can expect a greater risk premium
for the early sample than the later sample. Empirically, the data reveal the relatively sizable
difference. In contrast to the early jump size estimation whose average seems to be driven

more by the large values during the crisis, the average of the risk premium is less affected
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because the numerical values of the risk premium are smaller than those of the jumps.

4 Further Analysis

In this section, we present some further analysis to complement our main results. First,
we investigate the sensitivity of our estimates to the maximum maturity horizon allowed.
Then we present results excluding years 2008 and 2009 to learn the behavior of the FOMC
risk premium during normal times. Finally, we analyze the relation between the FOMC risk

premium with market uncertainty.

4.1 Maximum Maturity Horizon

We first check the robustness of maximum maturity allowed. In the results provided in
Sections 3.2 and 3.3, we require the maturity of options to be less than or equal to three
days, which leads to only 67 observations with real data. In this robustness check, we relax
the maximum maturity to four or five days. Notice that the relaxation does not change
the estimates for the 67 FOMC meetings, as the shortest option horizons on these days are
already shorter than four or five days. This only allows us to include more observations with

real data.

Table 6 reports the summary statistics of the estimated jump sizes under these specifi-
cations. When relaxing the maximum maturity horizon to four days, the number of days in
our sample increases to 89. It increases further to 114 when the maturity horizons up to five

days are allowed. The summary statistics are comparable to those in the main analysis.

Figure 8 plots the time-series of the pseudo prediction (estimated by (14)) along with the
realized returns. From the plots we can see that allowing more options in the calculation
extends our sample back to year 1996. When the maximum maturity is relaxed to four

or five days, the pseudo predictions still agree with the realizations quite well. The cor-
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responding out-of-sample R-squared are 72.9% and 72.5%, respectively, just slightly lower
compared to the results when we restrict the option maturity to be less or equal to three
days. These informative predictions indicate that the jump in the market index level right
before the FOMC meetings dominates other fluctuations within the neighborhood of the
meeting. However, to cleanly identify the jump sizes during the FOMC meeting, we need to
focus on a short-time window. A bias in jump size estimation could potentially happen if
more days are allowed after the announcement. Thus, all the conclusions in this paper only

apply to options with short-term maturity horizons.

4.2 Excluding Financial Crisis Period

Results in Section 3 show that the estimates, as well as the market itself, behave differently
during the financial crisis compared to normal times. In this subsection, we examine the
results by excluding years 2008 and 2009 that cover the crisis. Note that removing the two

years drops the number of FOMC meetings to 160.

Panel A of Table 7 reports the summary statistics of the estimated jump sizes. The
average upward jump size is 103 bps and the average downward jump size is 100 bps. The
average upward jump sizes are comparable to the results in Table 1, while average downward
jump sizes are 30 bps smaller. Also note that the standard deviations of the jump estimates
drop by 8 to 25 bps, which is consistent with the notion that market is more volatile during

financial crisis (See Roll (1988), Schwert (1990), and Hong et al. (2007)).

Panel B of Table 7 reports summary statistics of the FOMC risk premium for these 160
meetings. After excluding years 2008 and 2009, the average FOMC risk premium drops to
33 (when v = 5) to 44 (when v = 10) bps, with a decrement of 5 to 6 bps compared to the
whole sample. This is consistent with the observation in Section 3.5 that investors require

higher risk compensation for news announcement during financial crisis.
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4.3 Relation to Volatility

We next check the relation between our estimated FOMC risk premium and economic vari-
ables. Here we consider the CBOE Volatility Index (VIX), which is often considered as a
popular measure of the option market’s expectation of uncertainty. Similar to our FOMC
risk premium, the VIX is also estimated from options written on the S&P 500 index. There-
fore, the VIX also contains time-conditional information and can be estimated with high
frequency (daily or even intra-daily) and in a forward-looking manner. It is thus interesting

to investigate whether our recovered FOMC risk premium is related to the VIX.

In particular, we run the following time-series regression:

Ey(R) = Bo + B/iVIX, + €, (16)

where E;(R) is the FOMC risk premium evaluated at time ¢, and VIX; is the closing level
of the VIX at time t. We work with the estimated FOMC risk premiums with v =5, 8, and

10, and consider both the full sample and the sample based on real data (67 meetings during

2006 to 2017).

Table 8 reports the regression results. Columns (1) to (3) include the coefficient estimates
for the full sample. We can see that for all levels of v, the VIX is significantly related to the
FOMC risk premium at the 1% level. For example, a one-percentage-point increase in the
VIX relates to a 50-basis-point of 1% increase in the FOMC risk premium given v = 8. The
results with real data (reported in Columns (4) to (6)) exhibit similar patterns. Therefore,
we conclude that the FOMC risk premium has a positive association with the VIX, which
shows that the investors require a higher risk compensation during periods that the future

uncertainty is expected to be high.
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5 Conclusion

The Federal Open Market Committee (FOMC) meetings are major events that significantly
impact the stock market. In this paper, we propose a simple model to estimate the risk
premium of the FOMC meetings based on option prices. Our results indicate that the risk
premium varies from 15 to 88 basis points (bps) depending on investors’ risk aversion, with
an average of 38 bps consistent with the related findings in the existing literature. Modeling
the price move as a two-state jump process, we find that the average upward jump size is

103 bps, and the average downward jump size is 137 bps.

Our methodology applies not only to FOMC meetings, but also to any events after which
asset prices are likely to experience significant jumps and there are options traded on these
assets. In particular, for future research, it will be of interest to apply our approach to study
the risk premium associated with earnings announcements for individual stocks in order
to provide new insights about the findings of the vast literature on the effect of earnings

announcement.

Appendices

I. Data Augmentation

In this appendix, we present a new machine learning method, the smoothing-embedded
matrix completion (Dai et al., 2019), to extrapolate the implied volatility surface, and hence

to fill in the option data with expirations right after the FOMC meeting announcements.

The method uses low-rank matrix factorization to complete a sparse matrix based on its
underlying structure. Specifically for our problem, the implied volatility surface has a well

known matrix structure. Each row in the matrix represents a moneyness level, and each
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column corresponds to a specific maturity. The observed data fill certain matrix entries,
while leaving others blank. The matrix completion method is capable of filling the empty
entries based on a penalized low-rank matrix decomposition.® We then use these extrapolated

implied volatilities to obtain synthetic option prices.

Specifically, we consider the implied volatility data with moneyness levels from 0.5 to
1.5 and maturity values (day) from 1 to 100. Since the moneyness level is essentially a
continuous variable, we divide the considered interval into 200 segments evenly, each with
a range of 0.005. Consequently, this results in a 200-by-100 matrix in which the implied
volatility values fill the entries with corresponding moneyness levels and maturity values.
Given the selected segments, most of the observations have unique row and column indexes.
If there are multiple observations sharing the same indexes (no more than two in our data
sample), we just fill the matrix entry with the average value. The matrices for call and put

options are constructed separately.

The low-rank matrix factorization model is a prevalent tool for matrix completion (Hastie
et al., 2015), which enables us to complete the sparse matrix based on a small number of
latent factors. Let V denote the target matrix of implied volatilities, and let W denote the
observation indicator matrix with the entries to be one if the corresponding implied volatility
in V is observed and to be zero otherwise. Analogous to the singular value decomposition
of an arbitrary matrix, the low-rank matrix factorization model considers approximating
the target matrix with a few latent factors, a,’s and b,’s, through optimizing the following
penalized loss function:

11111
als,bls

K
+ A (a3 + [1b,113), (17)
r=1

K
Wo (V—Zar®br>
r=1

2
F

[P

where “o” denotes the point-wise Hadamard product, “®” denotes the outer product, and

| - ||r denotes the Frobenius norm and || - ||o denotes the Ly norm. Note that the vectors

8See Jain et al. (2013) and Hastie et al. (2015) for details.
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a, = (a1,...,a:200) and b, = (by1,...,bm100)" are essentially the latent row- and column-
factors corresponding to moneyness level and maturity, respectively. Any missing entry of
V can be imputed as XA/ij = fozl dril;m-, for the ith row, the jth column. The rank K and
the tuning parameter A\ can be pre-selected based on the cross-validation method. Dai et al.

(2019) discuss extensively on the implementation. Following their analysis, we choose K = 1

in our context.

We assume that the implied volatility surface is smooth, and further embed smoothing
into the matrix completion by posing a spline structure onto the latent factors. In particular,

we consider the cubic spline model as

M M
Qpj = Z ﬁrmhm('rl); brj ~ Z Brmhm(tj)v (18>
m=1 m=1

where h,(-)’s are spline basis functions, x; and ¢; are corresponding moneyness level and
maturity value, respectively. By combing (17) and (18), we carry out a smoothing-embedded
matrix completion which yields an extrapolation of implied volatility surface to certain mon-
eyness level and maturity value. We then use these extrapolated implied volatilities to obtain
synthetic option prices, and estimate jumps as well as state prices. With the above proce-

dure, we are able to recover information for all of the 176 meetings during 1996 to 2017.
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Figure 1: Jump Size Estimates with Real Data
Notes: The top panel presents the time-series of the jump size estimations as well as the realized
S&P 500 returns. The bottom panel presents the time-series of pseudo prediction of the S&P 500
returns by (14) and the realized S&P 500 returns. The sample includes options written on the S&P
500 index with a life span shorter than three days and those cover the 24-hour time window before
the FOMC meeting between January 1996 and December 2017. Realized returns are over the life
span of the corresponding options.
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Figure 2: Jump Sizes Over Extended Sample Period
Notes: The top panel presents the time-series of the jump size estimations as well as the realized
S&P 500 returns. The bottom panel presents the time-series of pseudo prediction of the S&P
500 returns by (14) and the realized S&P 500 returns. The sample includes all FOMC meetings
between January 1996 and December 2017. Realized returns are returns of the &P 500 index over
the 48-hour time window before the FOMC meeting.
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Figure 3: State Price Estimates with Real Data
Notes: This figure presents the time-series of the state price estimations for upward and downward
jumps. The sample includes options written on the S&P 500 index with a life span shorter than
three days and that covers the 24-hour time window before the FOMC meeting between January
1996 and December 2017. There are two sets of estimations based on a pair of calls and a pair of
puts, respectively.
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Figure 4: State Prices Over Extended Sample Period
Notes: This figure presents the time-series of the state price estimations for upward and downward
jumps. The sample includes all FOMC meetings between January 1996 and December 2017. There
are two sets of estimations by a pair of calls and a pair of puts, respectively.
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Figure 5: Physical Probabilities of Jumps
Notes: This figure presents the time-series of the estimation of physical probabilities for upward
jumps following (11) in the top panel and downward jumps following (12) in the bottom panel, as
well as the corresponding state prices. We choose the relative risk aversion levels from 5 to 10. The
sample includes all FOMC meetings between January 1996 and December 2017.
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Figure 6: Weighted Physical Probabilities of Jumps
Notes: This figure presents the time-series of the estimation of physical probabilities for upward and

downward jumps following (13) as well as their corresponding state prices. We choose the relative

risk aversion levels from 5 to 10. The sample includes all FOMC meetings between January 1996

and December 2017.
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Figure 7: The FOMC Risk Premium
Notes: This figure presents the time-series of estimation of the FOMC risk premium following (15).
We choose the relative risk aversion levels from 5 to 10. The sample includes all FOMC meetings

between January 1996 and December 2017.

34



| W

Yo}
o
|

01jan1995  01jan2000  01jan2005  01jan2010  01jan2015  01jan20z
Date

Prediction S&P 500 Return

Yo}
O T
o -
Yo}
Q_
|

01jan1995  01jan2000  01jan2005  01jan2010  01jan2015  01jan20z
Date

Prediction S&P 500 Return

Figure 8: Robustness Check — Maximum Maturity

Notes: This figure presents the time-series of pseudo prediction of the S&P 500 returns by (14) and
the realized S&P 500 returns. The sample includes options written on the S&P 500 index with a
life span shorter than four (top panel) or five (bottom panel) days and that covers the 24-hour time
window before the FOMC meeting between January 1996 and December 2017. Realized returns

are over the life span of the corresponding options.
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Table 8: Relation to VIX

This table reports the coefficient estimates of regression in (16). The FOMC risk premiums are
based on relative risk aversion of 5, 8, and 10. We consider both the whole sample (Columns (1)
to (3)) during 1996 to 2017 and the 67 meetings estimated with real option data (Columns (4) to

(6))-

(1) (2) (3) (4) (5) (6)
Dep. Var. The FOMC Risk Premium Based On Relative Risk Aversion
5 8 10 5 8 10
VIX 0.0031 0.0050 0.0061 0.0050 0.0081 0.0100
(0.0007)***  (0.0011)*** (0.0014)*** (0.0010)***  (0.0016)*** (0.0019)***
Intercept 0.0032 0.0035 0.0037 0.0028 0.0029 0.0029
(0.0002)***  (0.0003)***  (0.0003)*** (0.0002)*** (0.0003)*** (0.0004)***
Adj R-Squared 0.0896 0.0953 0.0992 0.2513 0.2726 0.2865
#0Obs 176 176 176 67 67 67
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