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Abstract

We examine the intertemporal optimal consumption and investment problem in
a continuous-time economy with a divisible durable good. Consumption services are
assumed to be proportional to the stock of the good held and adjustment of the stock is
costly, in that it involves the payment of a proportional transaction cost. For the case in
which the investor has an isoelastic utility function and asset prices follow a geometric
Brownian motion, we establish the existence of an optimal policy and provide an explicit
representation for the value function. We show that the investor acts so as to maintain
the ratio of the stock of the durable to total wealth in a "xed (nonstochastic) range and
that the optimal investment policy involves stochastic portfolio weights. The dependence
of the optimal policies on the parameters of the model is also discussed. ( 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

This paper studies, in a continuous-time economy with constant price coe$-
cients, the intertemporal optimal consumption and investment problem of an
in"nitely lived investor with an isoelastic utility function for the services pro-
vided by a perfectly divisible durable good. The consumption services provided
by the durable good are assumed to be proportional to the current holdings of
the good (net of depreciation), and thus depend on past purchasing decisions.
Investments in the durable good are reversible, but a proportional transaction
cost has to be paid whenever the good is bought or sold. We allow for di!erent
transaction cost rates on purchases and sales.

In the absence of transaction costs, the solution to the problem we study can
be easily obtained through a straightforward change of variables from the
classical model with a perishable good (Merton, 1971). The investor would
continuously adjust the stock of the durable good so as to maintain the marginal
utility of consumption equal to the marginal utility of wealth. With the prices of
risky assets following geometric Brownian motions, this amounts to keeping
a constant fraction of wealth invested in the durable. Similarly, the optimal
portfolio policy would involve constant weights.

In the presence of transaction costs, adjusting the stock of the durable
continuously would lead to incurring in"nitely large transaction costs. There-
fore, the stock of the durable is adjusted only infrequently: transaction costs
introduce a wedge between the marginal utility of consumption and the mar-
ginal utility of wealth, and the optimal consumption policy involves possibly
a discrete change (jump) in the initial stock of the durable, followed by the
minimal amount of transactions necessary to maintain the fraction of wealth
invested in the durable in a given constant range. The optimal portfolio policy
involves investing in the same portfolio of risky assets (the mean-variance
e$cient portfolio) as in the Merton case (no transaction costs), but the fraction
of wealth allocated to stocks becomes stochastic.

As in the literature dealing with optimal consumption in the presence of
proportional costs for transactions in the risky assets (e.g., Davis and Norman,
1990; Shreve and Soner, 1994; Akian et al., 1996) or with optimal investment in
the presence of costly reversibility (e.g., Bertola and Caballero, 1994; Abel and
Eberly, 1996), the problem we study amounts to a singular stochastic control
problem. We show that the same condition on the parameters of the model that
is necessary and su$cient to guarantee the existence of an optimal policy in the
Merton case is also su$cient to guarantee the existence of an optimal policy in
the presence of proportional transaction costs. Moreover, we show that the
boundaries of the optimal range for the fraction of wealth invested in the
durable good can be determined by solving a system of nonlinear equations, and
we provide an explicit representation for the value function for the problem. For
the case in which the transaction cost rate for durable sales is 100%, i.e.,
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1 In their analysis of optimal portfolio policies in the presence of proportional transaction costs,
Shreve and Soner (1994, Remark 11.3) provided a su$cient (but not necessary) condition for the
optimal fraction of wealth invested in the stock to be uniformly lower than what would be optimal in
the absence of transaction costs.

purchases are irreversible, we provide a closed-form expression for the bound-
aries of the optimal consumption range and for the value function.

As expected given the nature of the problem (cf. "ksendal, 1997), we "nd that
small transaction costs can induce large deviations from the amount of durable
consumption that would be optimal in the Merton case. The extent of these
deviations depends critically on the depreciation rate of the durable good: the
optimal policy for short-lived durables involves much more frequent purchases
than the one for longer-lived durables. The boundaries of the optimal range for
the fraction of wealth invested in the durable are not necessarily monotonic
functions of the transaction cost rates, and the fraction of wealth invested in the
durable good can be uniformly (i.e., throughout the optimal range) lower than
what would be optimal in the Merton case, due to additional savings by the
investor to meet future transaction costs. We provide a simple necessary and
su$cient condition on the parameters of the model for this to happen.1

We also show that the optimal proportional investment in the durable good
converges to a steady-state distribution, which we obtain in closed form.
Numerical computations show that, even in cases where the size of the no-
transaction region is monotonically increasing in the transaction cost rates, the
steady-state average investment in the durable is always monotonically decreas-
ing in the transaction cost rates.

While transaction costs in the market for the consumption good can induce
large deviations of the holdings of the good from the Merton case, deviations of
the fraction of wealth invested in risky assets are by comparison more limited.
We show that this fraction is always higher than in the Merton case when the
investor's wealth is high relative to the current stock of durable (i.e., immediately
before or after a purchase), and is always lower when the investor's wealth is low
(i.e., immediately before or after a sale). As a result, the investor can behave in
either a more or a less risk-averse manner than in the absence of transaction
costs, depending on his current wealth and durable holdings, even though the
steady-state average investment in stocks is monotonically decreasing in the
transaction cost rates. Since two-fund separation holds, the standard CAPM
would characterize equilibrium prices in this economy. On the other hand, the
consumption-based CAPM (CCAPM) would fail to hold due to the possible
divergence between the marginal utility of consumption and the marginal utility
of wealth.

Closely related models of optimal consumption of a durable good have been
previously analyzed by Grossman and Laroque (1990) and Hindy and Huang
(1993).
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2 In comparing the model with proportional adjustment costs to the one with "xed costs, it may
also be worth pointing out that the solution for the former model is much easier to compute
numerically and, as we show in the paper, can be reduced to "nding the zero of a continuous
real-valued function that changes sign at the boundaries of a given "nite interval. It is thus
straightforward to implement numerical solution algorithms that always converge.

Grossman and Laroque (1990) consider an economy similar to ours, but in
which the durable good comes in stocks of various sizes and is indivisible once
bought. Moreover, the consumer does not derive additional utility from holding
multiple units of the good. Therefore, in order to change his durable consump-
tion beyond what is caused by depreciation, the consumer must sell the existing
stock and buy a new one. Accordingly, any adjustment in the stock of the
durable held involves the payment of a transaction cost that is proportional to
the existing stock. As Grossman and Laroque point out, this transaction cost
acts as a xxed cost in an optimal stopping problem. The optimal consumption
policy again involves only infrequent adjustments, but the corresponding dur-
able holding process is discontinuous, as the investor makes discrete (rather
than continuous) adjustments to the durable stock at the boundaries of the
no-transaction region.

The analysis in Grossman and Laroque (1990) and the one in this paper are
thus complementary, the "rst conforming closer to the case of an indivisible
durable good such as a house or a car, and the second being a more natural
modeling choice for divisible durable goods such as furniture or clothing. This
appears to be consistent with the empirical evidence in Caballero (1993). In
examining the extent to which models of durable consumption based on the
presence of "xed costs can explain the behavior of aggregate expenditure on cars
and furniture, Caballero reports that expenditure on furniture is much smoother
than expenditure on cars: for this aggregate behavior to be consistent with the
presence of "xed costs (which induce lumpy expenditure at the microeconomic
level), one must assume that the optimal no-transaction region (and hence, the
average time between purchases or sales) is much larger for furniture than for
cars. In particular, Caballero reports an implied average time between indi-
vidual car transactions of 4.35 yr, versus an implied average time between
furniture transactions of 13.5 yr. Caballero points out that the latter estimate
seems too large and that `allowing for other realistic features like habit forma-
tion (e.g., Constantinides, 1990; Heaton, 1993) and nonseparabilities across
goods and time (e.g., Eichenbaum and Hansen, 1987; Heaton, 1993) should [2]
reduce the need for large inaction range estimatesa. We conjecture that an
alternative explanation might lie in the presence of proportional (rather than
"xed) transaction costs for furniture expenditure and in the ensuing continuity
in the optimal holding process at the microeconomic level.2 In addition, divis-
ibility is a natural assumption in models with a single (i.e., composite) durable
good.
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3Detemple and Giannikos (1996) have recently considered a model with irreversible durable
purchases in which the durable provides &status' as well as consumption services. The latter are
assumed as usual to be proportional to the stock of the durable held, while &status' is related to
contemporaneous purchases. As a result, in the model they consider the investor's preferences are
a!ected by both the stock of the durable held and current purchases.

Hindy and Huang (1993) study, in a general continuous-time Markovian
economy, the optimal consumption problem of an investor with preferences
over the service #ows from irreversible purchases of a durable good. They
provide su$cient conditions for a consumption and portfolio policy to be
optimal and derive a closed-form solution for the case in which the investor has
isoelastic preferences and asset prices follow a geometric Brownian motion.
Their closed-form solution is a special case of ours when the transaction cost
rate for sales equals 100% (as in this case reselling the durable would clearly
never be optimal) and there are no transaction costs for purchases.3

Also closely related to our analysis is the work of Dybvig (1995), who studies
the optimal intertemporal consumption of a perishable good given extreme
habit formation that prevents consumption from ever falling. His closed-form
solution for this problem can also be obtained as a special case of ours when the
transaction cost rate for sales is 100% and there are no transaction costs for
purchases, by a straightforward change of variables that sets the instantaneous
consumption rate of the perishable good in Dybvig's model equal to the
instantaneous durable rental rate in our model.

The rest of the paper is organized as follows. Section 2 describes in more detail
the economy we consider. Section 3 solves the investor's optimal consumption
problem in the absence of transaction costs. This provides a benchmark for the
subsequent analysis. Section 4 contains a heuristic derivation of the optimal
policies in the presence of transaction costs and provides su$cient conditions
under which the conjectured policies are indeed optimal. Section 5 shows that
an optimal policy exists and derives an explicit representation for the value
function. Section 6 contains an analysis of the optimal policies. Section 7 con-
cludes the paper and points to some possible extensions.

2. The economy

We consider an in"nite-horizon, continuous-time stochastic economy, with
the uncertainty represented by a "ltered probability space (X,F, F, P) on which
is de"ned a d-dimensional Brownian motion w.

The investment opportunities are represented by n#1 long-lived securities.
The "rst security (the `bonda) is a money market account growing at a continu-
ously compounded interest rate r'0. The other n assets (the `stocksa) are risky
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4 If n'd or rank(p)(n, some stocks are redundant and can be omitted from the analysis.

5 If i"0 (i.e., k"r1), then the optimal investment policy involves no investment in the risky
assets and the optimal consumption policy is deterministic.

6While assuming that n"0 can be done without loss of generality, by taking as numeraire the
purchase price of the good inclusive of any non-monetary search or adjustment costs, we prefer to
capture these additional costs explicitly.

and their price process S (inclusive of reinvested dividends) is an n-dimensional
geometric Brownian motion with drift vector k and di!usion matrix p, i.e.,

S
t
"S

0
#P

t

0

IS
s
k ds#P

t

0

IS
s
p dw

s
,

where IS
t
denotes the n]n diagonal matrix with elements S

t
. We assume without

loss of generality that 14n4d and that rank(p)"n.4 Also, letting

i"1
2
(k!r1)T(ppT)~1(k!r1), (1)

where 1"(1,1,2,1)T3Rn, we assume that i'0.5 Notice that if n(d the
market is dynamically incomplete. Trading in the bond and in the stocks takes
place continuously and is frictionless (in particular, there are no transaction
costs in the securities market). There is a single durable consumption good and
holding a stock K of the good provides a consumption service #ow s(K) that is
proportional to the stock, i.e., s(K)"aK, where a'0. The good depreciates at
a rate b50. Adjusting the stock of the durable is costly and involves the
payment of a proportional transaction cost, at a rate n50 for purchases and
d3[0,1] for sales.6 A consumption and investment strategy is then characterized
by a triple (I,D, h), where h is an n-dimensional adapted process with

P
=

0

Dh
t
D2 dt(R a.s.

representing portfolio holdings of the risky assets, and I and D are nondecreas-
ing, right-continuous adapted processes with I

0
"D

0
"0 representing, respec-

tively, cumulative purchases and sales of the durable good.
Now consider an investor who starts with an initial total wealth of=

0
50, of

which an amount K
0
50 is invested in the durable good and the remainder

=
0
!K

0
in "nancial assets. Given the choice of a consumption and investment

strategy (I, D, h), the investor's stock of the consumption good at time t equals
the initial stock, plus purchases, minus sales and depreciation, i.e.,

K
t
"K

0
!P

t

0

bK
s
ds#I

t
!D

t
, (2)
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7The case of logarithmic preferences (c"1) can be analyzed along similar lines. To avoid
redundancies, we report all the results for this case (without proofs) in Appendix B.

while his total wealth equals the initial wealth, plus the portfolio gains, minus
depreciation and total transaction costs paid, i.e.,

=
t
"=

0
#P

t

0

(r(=
s
!K

s
)#hT

s
(k!r1)!bK

s
) ds

#P
t

0

hT
s
pdw

s
!nI

t
!dD

t
. (3)

A consumption and investment strategy is admissible if it satis"es the solvency
constraint

=
t
!dK

t
50 ∀t50

(i.e., if total wealth after liquidating the stock of the durable good is nonnegative)
and

K
t
50 ∀t50.

The investor's preferences are represented by a time-additive, isoelastic, von
Neumann}Morgenstern utility function

;(K)"ECP
=

0

e~otu(s(K
t
)) dtD , (4)

where o'0 is a time-preference parameter and u(c)"c1~c/(1!c) for some
c'0, cO1.7

The investor's consumption/investment problem is then that of choosing an
admissible trading strategy (IH, DH, hH) so that the corresponding durable hold-
ing process KH in (2) maximizes his lifetime expected utility (4).

Remark 1. The solution of the linear stochastic di!erential equation (2) is given
by

K
t
"K

0
e~bt#P

t

0

e~b(t~s)(dI
s
!dD

s
).

It is then immediate to see that the in"nite-horizon model considered in Hindy
and Huang (1993), in which the investor's preferences are de"ned over an
exponentially-weighted average of past purchases (to capture durability and
local substitution), is a special case of the model we consider with a"b, n"0
and d"1 (in which case DH,0).
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8The optimal policies and the value function for the case d"1 are given at the end of Section 5.

Remark 2. Letting a"r, b"n"0, d"1 and c"rK, the investor's problem
can be rewritten as

max
(I,h)

ECP
=

0

e~otu(c
t
)dtD ,

subject to

c
t
"c

0
#rI

t
,

=
t
"=

0
#P

t

0

(r=
s
#hT

s
(k!r1)!c

s
) ds#P

t

0

hT
s
p dw

s
,

=
t
5

c
t
r

.

This is the problem studied by Dybvig (1995), who considered optimal con-
sumption of a perishable good under absolute intolerance for any decline in
consumption.

Remark 3. The general consumption/investment problem we consider is feasible
if and only if =

0
!dK

0
50, since it is always possible to liquidate the initial

assets and invest all the proceeds in the durable (in which case=
t
"K

t
5dK

t
for all t'0). Moreover, if along any feasible strategy=(t,u)!dK(t,u)"0 for
some (t,u)3[0,R)]X, then K(s,u)"0 for all s5t, unless d"1. This can be
seen by noticing that (2) and (3) imply

d(=
t
!dK

t
)"(r(=

t
!dK

t
)#hT

t
(k!r1)!(1!d)(r#b)K

t
) dt

#hT
t
p dw

t
!(n#d) dI

t
.

Therefore, if=(t,u)!dK(t,u)"0 and d(1, the only way to avoid a positive
probability of violating the solvency constraint immediately afterward is to have
h(t,u)"0 and K(t,u)"0. On the other hand, if d"1, then the only rational
continuation strategy would involve h(s,u)"0 and K(s,u)"K(t,u)e~b(s~t) for
all s5t.

To rule out the special case noticed in Remark 3, we assume unless otherwise
noted that d(1.8 Moreover, we assume that=

0
!dK

0
'0, so that the inves-

tor can a!ord a strictly positive durable-holding process. Since lim
cs0

u
c
(c)"R,

we can then restrict ourselves without loss of generality to admissible trading
strategies (I, D, h) for which the corresponding optimal wealth and durable-
holding processes (=,K) are strictly positive and satisfy =

t
!dK

t
'0 for all

t50. We let H(=
0
, K

0
) denote this set of trading strategies.
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9We allow in this case durable holding processes K that are not necessarily of "nite variation, i.e.,
that do not necessarily have representation (2) for some nondecreasing processes I and D. Durable
holding processes of in"nite variation are suboptimal in the presence of a proportional adjustment
cost, as they involve an in"nite cost.

3. Optimal policies with no transaction costs

For purpose of comparison, let us consider "rst the case of no transaction
costs (i.e., n"d"0). In this case, letting c"(r#b)K denote the instantaneous
durable holding cost, we can rewrite the investor's problem as9

max
(c,h)

ECP
=

0

e~otuA
a

r#b
c
tBdtD

s.t. =
t
"=

0
#P

t

0

(r=
s
#hT

s
(k!r1)!c

s
) ds#P

t

0

hT
s
p dw

s
,

c
t
50, =

t
50.

The above problem is formally similar to the one studied by Merton (1971). An
optimal policy exists if and only if either=

0
"0 or the following assumption,

which will be maintained for the rest of the paper, is satis"ed (otherwise
arbitrarily large expected utility can be obtained by postponing consumption
and investing in the stock market).

Assumption 1. The investor's impatience parameter o satis"es

o'(1!c)(r#i/c),

where i is the constant in (1).

We summarize the main result for the case of no transaction costs in the
following theorem.

Theorem 1. Suppose that d"n"0 and let

rH"c(r#b)/m, (5)

where

m"o!(1!c)(r#i/c)'0. (6)

Then the optimal policies are

KH
t
"

1

rH
=H

t

and

hH
t
"

(ppT)~1(k!r1)

c
=H

t
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for all t'0. The lifetime expected utility is

v(=
0
)"

a1~c(rH)c
(1!c)(r#b)

=1~c
0

.

Thus, with no transaction costs, the optimal policy involves investing a con-
stant fraction of total wealth in the durable good and in each of the traded
assets. Moreover, the value function v depends only on the investor's initial total
wealth=

0
.

4. Optimal policies with transaction costs

Suppose from now on that d#n'0 and let

v(w,k)" sup
(I,D,h)|H(w,k)

;(K)

denote the value function for the investor's problem in this case (we will prove
later that, under Assumption 1, the value function is "nite for w'dk'0).

It follows immediately from the concavity of the utility function u, the
convexity of the set of admissible strategies H(w, k) and the fact that
H(jw,jk)"jH(w,k) for all j'0 that the value function v is concave and
homogeneous of degree 1!c (cf. Fleming and Soner, 1993, Lemma VIII.3.2).
This in turn implies that

v(w,k)"k1~ctA
w

kB (7)

for some concave function t : (d,R)PR.
To get some idea on the shape of the optimal policies, let us consider "rst, as

in Davis and Norman (1990), a restricted class of policies in which I and D are
required to be absolutely continuous with bounded derivatives, i.e.,

I
t
"P

t

0

i
s
ds

and

D
t
"P

t

0

d
s
ds

for some processes i, d with 04i
t
, d

t
4g for some g(R and all t'0.
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10Since we de"ne the investor's wealth w to include investment in the durable, the marginal utility
of durable consumption equals v

w
#v

k
.

The Hamilton}Jacobi}Bellman (HJB) equation for the investor's problem
is then

0"max
(i,d,h) C

1

2
DhTpD2v

ww
#[r(w!k)#hT(k!r11 )!bk]v

w

!bkv
k
#(v

k
!nv

w
)i!(v

k
#dv

w
)d!ov#

(ak)1~c
1!c D.

The maximum is achieved by

h"!(ppT)~1(k!r11 )
v
w

v
ww

,

i"g1MvkznvwN
,

d"g1Mvky~dvwN.

Thus, the agent tries to adjust the stock of durable so as to keep the marginal
utility of durable consumption between (1!d) times the marginal utility of
liquid wealth and (1#n) times the marginal utility of liquid wealth.10 As a result,
the optimal durable adjustment policies are bang-bang (that is, adjustments in
the stock of durable only take place at the maximum possible rate) and the
solvency region

S"M(w, k): k'0, w!dk'0N

splits into three regions: &buy' (B), &sell' (S) and &no transaction' (N¹). At the
boundary between S and N¹ v

k
"!dv

w
, while at the boundary between N¹

and B v
k
"nv

w
.

If the restriction that the optimal policies be absolutely continuous is re-
moved, transactions in the durable will take place at in"nite speed: that is, the
investor will make an initial discrete transaction to the boundary of N¹, and
after that all subsequent transactions will take place at the boundary and
involve the minimum amount necessary to maintain the durable stock in the
N¹ region.

Also, it follows from the homogeneity of the value function that if v is
continuously di!erentiable, then

v
w
(jw,jk)"j~cv

w
(w, k)

and

v
k
(jw, jk)"j~cv

k
(w, k)

for all j'0, so that the boundaries between the B and N¹ regions and between
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the N¹ and S regions are straight lines through the origin in the (w, k) space. Call
the slopes of these lines 1/rH

1
and 1/rH

2
, respectively, with 1/rH

1
(1/rH

2
(1/d.

Since the optimal policy in S or B is to immediately proceed to the boundary
with N¹ by moving along a line of slope 1/d in S or !1/n in B, the value
function is constant along these lines. In terms of the function t in (7), this
amounts to

t(x)"G
A

1!c
(x!d)1~c for d(x(rH

2
,

B

1!c
(x#n)1~c for x'rH

1

(8)

for some constants A,B.
On the other hand, in N¹ the value function satis"es the HJB equation

!i
v2
w

v
ww

#[r(w!k)!bk]v
w
!bkv

k
!ov#

(ak)1~c
1!c

"0.

Equivalently, since

v
w
"k~ct@,

v
ww

"k~(1`c)tA

and

v
k
"(1!c)k~ct!wk~(1`c)t@,

the above HJB equation translates into an ordinary di!erential equation for t:

!i
(t@)2
tA

#(r#b)(x!1)t@!(o#(1!c)b)t

#

a1~c
1!c

"0 for rH
2
4x4rH

1
. (9)

The following veri"cation theorem formalizes the previous heuristic dis-
cussion. For simplicity, we only consider investment policies involving bounded
portfolio weights. We let

HK (=
0
, K

0
)"M(I,D, h)3H(=

0
,K

0
): Dh

t
D4g=

t

for some g(R and all t50N

denote this restricted class of policies.

Theorem 2. Suppose that there exists an increasing, strictly concave, twice continu-
ously diwerentiable function t: (d,R)PR satisfying

!i
(t@)2
tA

#(r#b)(x!1)t@!(o#(1!c)b)t#

a1~c
1!c

40 on S, (10)
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(t@)2
tA

#

1!c
c

t50 on S (11)

and (8)}(9) for some constants A, B, rH
1
, rH

2
with rH

1
'rH

2
'd. Let

N¹"M(w, k): k'0, rH
2
k4w4rH

1
kN

and for (w, k)3N¹ set

hH(w,k)"!(ppT)~1(k!r1)k
t@(w/k)

tA(w/k)
. (12)

Then, for any initial endowment (=
0
, K

0
)3N¹, there exist unique continuous

processes (=H, KH, IH, DH) with IH, DH nondecreasing such that

=H
t
"=

0
#P

t

0

(r(=H
s
!KH

s
)#hH(=H

s
, KH

s
)T(k!r11 )!bKH

s
) ds

#P
t

0

hH(=H
s
, KH

s
)Tp dw

s
!nIH

s
!dDH

s
,

KH
t
"K

0
!P

t

0

bKH
s

ds#IH
t
!DH

t
,

IH
t
"P

t

0

1MW
H
s /r

H
1K

H
s
N dIH

s
,

DH
t
"P

t

0

1MW
H
s /r

H
2K

H
s
N dDH

s
,

and the policy (IH,DH, hH) is optimal in HK (=
0
, K

0
). Otherwise, as long as

(=
0
,K

0
)3S, the optimal policy consists of an immediate transaction to the closest

boundary of NT, followed by an application of the policy (IH,DH, hH). The maximal
lifetime expected utility is

v(=
0
,K

0
)"K1~c

0
tA
=

0
K

0
B. (13)

5. Existence and explicit solution

In this section we use Theorem 2 to derive an explicit representation for the
value function and to prove the existence of an optimal policy.

Di!erentiating the HJB equation (9) once with respect to x and
dividing by tA gives a "rst-order di!erential equation in u(x)"
!t@(x)/tA(x)'0:
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iuu@!(o!r!cb#i)u!(r#b)(x!1)"0. (14)

Integrating the above ODE leads to the following result.

Lemma 1. For l50, x3R, let ul(x)5max[a
1
(x!1), a

2
(x!1)] denote the

unique solution of the equation

[ul(x)!a
1
(x!1)]b1[ul(x)!a

2
(x!1)]b2"l, (15)

where

a
1
"

o#i!r!cb!J(o#i!r!cb)2#4(r#b)i
2i

(0,

a
2
"

o#i!r!cb#J(o#i!r!cb)2#4(r#b)i
2i

'0,

b
1
"a

1
/(a

1
!a

2
)3(0,1) and b

2
"1!b

1
3(0,1). If t satisxes the assumptions of

Theorem 2, then

!

t@(x)

tA(x)
"ul(x) (16)

for all x3(rH
2
, rH

1
) and some l50.

Proof. See Appendix A. h

Integrating Eq. (16) twice and recalling (8) gives an explicit representation for
t (and hence for the value function v) up to the "ve constants A, B, l, rH

1
, rH

2
, plus

two additional constants of integration. However, these can be determined using
the HJB equation (9) and smooth-pasting of t and of its "rst two derivatives at
the boundaries of the N¹ region.

Theorem 3. Suppose that d(1 and there exist constants rH
1
'rH

2
and lH'0 solving

C
1

c
(rH
1
#n)!a

1
(rH
1
!1)D

b1

C
1

c
(rH
1
#n)!a

2
(rH
1
!1)D

b2

"lH, (17)

C
1

c
(rH
2
!d)!a

1
(rH
2
!1)D

b1

C
1

c
(rH
2
!d)!a

2
(rH
2
!1)D

b2

"lH, (18)

and

rH
2
!d#(1!c)P

r
H
1

r
H
2

expA!P
y

r
H
2

dz

ulH(z)B dy

" (rH
1
#n)expA!P

r
H
1

r
H
2

dz

ulH(z)B. (19)
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Then the function

t(x)"G
A

1!c
(x!d)1~c if d(x(rH

2
,

C
1
!C

2
:rH1
x
expA:rH1y

dz

ulH(z)B dy if rH
2
4x4rH

1
,

B

1!c
(x#n)1~c, if x'rH

1
,

(20)

where

A"

a1~c
g

(rH
2
!d)c expAP

r
H
1

r
H
2

dz

ulH(z)B ,

B"

a1~c
g

(rH
1
#n)c,

C
1
"

a1~c
g(1!c)

(rH
1
#n),

C
2
"

a1~c
g

and

g"m(rH
1
#n)#(1!c)(r#b)(1#n), (21)

satisxes the conditions of Theorem 2.

Proof. See Appendix A. h

Before establishing the existence of a solution to (17)}(19), we record some
useful inequalities.

Proposition 1. If rH
1

and rH
2

satisfy the conditions of Theorem 3, then

c(r#b)(1#n)

m
!n(rH

1
(1!

1#n

1!ca
2

(22)

and

1!
1!d

1!ca
1

(rH
2
4

c(r#b)(1!d)

m
#d. (23)

Moreover, the constant g in (21) is strictly positive.
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11The proof of the theorem also reveals that the solution of the system is easily computed once the
zero of a real-valued continuous function h (de"ned in Eq. (A.17)) has been found. Moreover, it is
shown that

hA1!
1!d

1!ca
1
B'0'hA

c(r#b)(1!d)

m
#dB.

Thus, it is trivial to implement numerical search procedures that always converge to the constants
rH
1
, rH

2
and lH identifying the optimal policies.

We are now ready to show that, under Assumption 1, the nonlinear system
(17)}(19) always has a solution.11 This establishes the existence of an optimal
policy.

Theorem 4. If d(1, there exist constants rH
1
'rH

2
and lH'0 solving (17)}(19).

Proof. See Appendix A. h

Remark 4. Since the function t in (20) solves the HJB equation (9), we have

0"!i
t@(rH

2
)2

tA(rH
2
)
#(r#b)(rH

2
!1)t@(rH

2
)![o#(1!c)b]t(rH

2
)#

a1~c
1!c

"

a1~c
(1!c)g

expAP
r
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1

r
H
2

dz

ulH(z)BCg expA!P
r
H
1

r
H
2

dz

ulH(z)B
!m(rH

2
!d)!(1!c)(r#b)(1!d)

!(o#(1!c)b)ArH2!d#(1!c)P
r
H
1

r
H
2

expA!P
y

r
H
2

dz

ulH(z)B dy

!(rH
1
#n)expA!P

r
H
1

r
H
2

dz

ulH(z)BBD ,

so that Eq. (19) is equivalent to

m(rH
2
!d)#(1!c)(r#b)(1!d)"g expA!P

r
H
1

r
H
2

dz

ulH(z)B (24)

provided that oO(c!1)b. If the latter condition is satis"ed, Eq. (24) is more
convenient to use than Eq. (19) in numerical search algorithms for (rH

1
, rH

2
, lH),

since it involves a single, rather than a double, integration.

We conclude this section by providing an explicit solution for the case d"1.
Clearly, in this case it is never optimal to sell the durable, so that the solvency

region contains only a &no transaction' (N¹) and a &buy' (B) region (i.e,
rH
2
"d"1). Also, if =H(t, u)"KH(t, u) for some (t,u)3[0,R)]X, then, as
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already observed in Remark 3, the only rational continuation strategy involves
hH(s,u)"0 and KH(s, u)"KH(t, u)e~b(s~t) for all s5t. Thus, t satis"es the
ODE (9) in N¹, with the boundary condition

t(1)"P
=

0

e~ot
(ae~bt)1~c

1!c
dt.

To ensure that the above value is "nite, assume that o'(c!1)b. We can then
obtain the value function for this case from Theorem 3. Since rH

2
"d"1, we

have from (18) that lH"0. Eq. (17) then gives

rH
1
"

ca
2
#n

ca
2
!1

'1.

Also, since u
0
(x)"a

2
(x!1) for x51, we have from (20)

t(x)"G
a1~c

(1!c)(o#(1!c)b)
#

a1~c
g

(rH
1
!1)1@a2

(x!1)1~1@a2
1!1/a

2

if 14x4rH
1
,

a1~c
g

(rH
1
#n)c

(x#n)1~c
1!c

if x'rH
1
,

where g is the constant in (21). While our veri"cation result (Theorem 2) does not
apply directly to this case (since rH

2
"d), it is straightforward to use a similar

argument to show that the value function for this case is indeed given by

v(w,k)"k1~ctA
w

kB ,

with t as above. Moreover, the optimal investment policy is given by

hH
t
"!(ppT)~1(k!r1)KH

t

t@(=H
t
/KH

t
)

tA(=H
t
/KH

t
)
1MW

H
t ;K

H
t
N ,

and the optimal consumption policy involves only purchasing the durable when
KH

t
"(1/rH

1
)=H

t
(and never selling it).

6. Analysis of optimal policies

Recall from Theorem 2 that the optimal consumption policy consists of
maintaining the fraction KH

t
/=H

t
of total wealth invested in the durable in the

range [1/rH
1
, 1/rH

2
], while the optimal portfolio weights are given by

hH
t
=H

t

"!(ppT)~1(k!r1)
KH

t
=H

t

t@(=H
t
/KH

t
)

tA(=H
t
/KH

t
)
"

(ppT)~1(k!r1)

C(=H
t
/KH

t
)

, (25)
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12While the analysis so far has focused on the case cO1, the case of logarithmic utilities (c"1)
can be analyzed in a similar fashion. The relevant results are reported in Appendix B.

where

C(x)"!

xtA(x)

t@(x)

denotes the Arrow}Pratt relative risk aversion coe$cient of the indirect utility
function t. In the case of no transaction costs (d"n"0),

1

rH
1

"

1

rH
2

"

1

rH
"

o!(1!c)(r#i/c)
c(r#b)

and

hH
t
=H

t

"

(ppT)~1(k!r1)

c
.

6.1. The no-transaction region

Table 1 shows the optimal ranges for the fraction of wealth invested in the
durable good for di!erent levels of the relative risk aversion coe$cient c and of
the transaction cost rates d and n. As in Grossman and Laroque (1990), we
assume that n"1, k"0.069, p"0.22 and r"0.01. Moreover, we take
o"0.01 and b"0 (no depreciation), so as to allow a direct comparison
between the values in the table and those reported in Table I in Grossman and
Laroque (1990).

As expected, a small percentage transaction cost can induce large deviations
of optimal consumption from the Merton line. For example, in the absence of
transaction costs an investor with logarithmic utility12 would keep the invest-
ment in the durable good equal to total wealth (any stock investment would be
"nanced entirely by borrowing). The same investor would let the ratio of
durable investment to wealth #uctuate between 0.672 and 1.416 with a transac-
tion cost rate of 0.5% in either direction, and between 0.221 and 1.899 with
a transaction cost rate of 25%. Not surprisingly, the optimal ranges for the
fraction of wealth invested in the durable reported in Table I of Grossman and
Laroque (1990), computed under the assumption that the durable good is
indivisible, are considerably larger and always strictly contain the correspond-
ing ranges for the model we study.

In the examples reported in Table 1, the lower bound of the optimal range for
the fraction of wealth invested in the durable appears to be strictly decreasing in

578 D. Cuoco, H. Liu / Journal of Economic Dynamics & Control 24 (2000) 561}613



13A similar behavior can be detected in Table I of Grossman and Laroque (1990). The non-
monotonicity of the no-transaction region is also a feature of models with proportional costs for
transaction in the risky asset: cf. Shreve and Soner (1994, Remark 11.3).

Table 1
Optimal range for the fraction of wealth invested in the durable

c"0.9

n"0 n"0.005 n"0.05 n"0.10 n"0.25 n"1

d"0 (0.556,0.556) (0.394,0.765) (0.259,1.057) (0.210,1.210) (0.145,1.481) (0.065,2.045)
d"0.005 (0.395,0.767) (0.360,0.828) (0.253,1.076) (0.207,1.222) (0.144,1.486) (0.065,2.039)
d"0.05 (0.265,1.063) (0.258,1.081) (0.215,1.210) (0.185,1.313) (0.136,1.520) (0.064,1.984)
d"0.10 (0.220,1.209) (0.216,1.220) (0.189,1.305) (0.167,1.380) (0.128,1.542) (0.063,1.920)
d"0.25 (0.161,1.382) (0.160,1.386) (0.147,1.421) (0.136,1.454) (0.110,1.532) (0.059,1.731)
d"1 (0.094,1.000) (0.094,1.000) (0.090,1.000) (0.086,1.000) (0.077,1.000) (0.049,1.000)

c"1

n"0 n"0.005 n"0.05 n"0.10 n"0.25 n"1

d"0 (1.000,1.000) (0.731,1.326) (0.497,1.744) (0.409,1.947) (0.290,2.284) (0.136,2.901)
d"0.005 (0.732,1.325) (0.672,1.416) (0.486,1.764) (0.403,1.956) (0.288,2.279) (0.135,2.879)
d"0.05 (0.503,1.693) (0.492,1.716) (0.415,1.874) (0.361,1.995) (0.271,2.227) (0.133,2.686)
d"0.10 (0.421,1.805) (0.414,1.817) (0.366,1.911) (0.328,1.990) (0.255,2.153) (0.130,2.497)
d"0.25 (0.312,1.779) (0.310,1.783) (0.287,1.811) (0.267,1.838) (0.221,1.899) (0.123,2.045)
d"1 (0.185,1.000) (0.184,1.000) (0.178,1.000) (0.171,1.000) (0.154,1.000) (0.102,1.000)

c"2

n"0 n"0.005 n"0.05 n"0.10 n"0.25 n"1

d"0 (1.899,1.899) (1.611,2.165) (1.300,2.414) (1.163,2.509) (0.950,2.641) (0.578,2.824)
d"0.005 (1.605,2.153) (1.533,2.214) (1.279,2.410) (1.151,2.498) (0.944,2.623) (0.577,2.800)
d"0.05 (1.272,2.260) (1.255,2.271) (1.143,2.339) (1.058,2.387) (0.895,2.468) (0.564,2.597)
d"0.10 (1.125,2.191) (1.115,2.195) (1.044,2.230) (0.981,2.258) (0.849,2.310) (0.551,2.403)
d"0.25 (0.904,1.888) (0.900,1.889) (0.865,1.897) (0.831,1.905) (0.747,1.922) (0.517,1.959)
d"1 (0.592,1.000) (0.591,1.000) (0.581,1.000) (0.569,1.000) (0.538,1.000) (0.421,1.000)

Note: The table shows numerical values of the interval (1/rH
1
, 1/rH

2
) for di!erent values of the

investor's risk aversion and of the proportional transaction cost rates. The other parameters are set
as follows: r"0.01,k"0.069,p"0.22, b"0 and o"0.01.

the percentage transaction costs d and n, while the upper bound appears to be
strictly increasing in n, but not necessarily a monotonic function of d.13 Indeed, it
is easy to see that the upper bound 1/rH

2
cannot be monotonically increasing in

D. Cuoco, H. Liu / Journal of Economic Dynamics & Control 24 (2000) 561}613 579



d if n"0 and rH(1, i.e., if

o'(1!c)(r#i/c)#c(r#b).

This is so because we must have 1/rH
2
"1/rH'1 for d"0 and 1/rH

2
"1 for

d"1. The following proposition con"rms the above analysis.

Proposition 2. Let rH
1
, rH

2
satisfy the conditions of Theorem 3. Then rH

1
is strictly

increasing in n and d, while rH
2

is strictly decreasing in n.

Proof. It is easy to see from Eqs. (17)}(19) that rH
1
"r

1
(d, n) and rH

2
"r

2
(d, n) for

some continuously di!erentiable functions r
1
, r

2
. Also, letting

t
1
(x, r

1
, n)"

a1~c(r
1
#n)c

m(r
1
#n)#(1!c)(r#b)(1#n)

(x#n)1~c
1!c

and

t
2
(x, r

2
, d)"

a1~c(r
2
!d)c

m(r
2
!d)#(1!c)(r#b)(1!d)

(x!d)1~c
1!c

,

it follows from Eqs. (20) and (19) that t(x)"t
1
(x, rH

1
, n) for x5rH

1
and

t(x)"t
2
(x, rH

2
, d) for d(x4rH

2
.

Since t(x) represents the value function for the investor's problem when
K

0
"1 and the maximum expected utility is strictly decreasing in the transac-

tion cost rates d and n (this follows from the fact that the optimal policy always
involves a positive probability of hitting either boundary: see Proposition 4), we
must have Lt

1
(x, r

1
(d, n), n)/Ld(0 and Lt

1
(x, r

1
(d, n), n) n/Ln(0 for all x5r

1
(d, n)

and Lt
2
(x, r

2
(d, n), d)/Ln(0 for all d(x4r

2
(d, n).

The "rst inequality amounts to

0'
Lt

1
(x, rH

1
, n)

Lr
1

Lr
1
(d, n)

Ld

"!

a1~c(rH
1
#n)c~1[m(rH

1
#n)!c(r#b)(1#n)]

[m(r
1
#n)#(1!c)(r#b)(1#n)]2

(x#n)1~c
Lr

1
(d, n)

Ld
.

Since the "rst fraction in the above expression is strictly positive (by Proposition
1), we conclude that Lr

1
(d, n)/Ld'0. The proof that Lr

1
(d, n)/Ln'0 and

Lr
2
(d, n)/Ln(0 is similar. h

The fact that the upper bound 1/rH
2

of the optimal range for the fraction of
wealth invested in the durable is not necessarily monotonically increasing in
d may at "rst appear counterintuitive. However, it can be rationalized as follows.
An increase in the transaction cost rates d and n a!ects the location of the
optimal range for K/= in two di!erent ways. First, since adjusting the stock of
durable becomes more expensive, the investor will tend to widen the no-
transaction region by decreasing 1/rH

1
and increasing 1/rH

2
(the &transaction-
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avoidance e!ect'). On the other hand, an increase in d or n also induces the
investor to save more to compensate for lower future consumption due to higher
future transaction costs: this is obtained by decreasing the upper bound 1/rH

2
(and possibly the lower bound 1/rH

1
) of the optimal range for the fraction of

wealth invested in the durable good (the &saving' e!ect). While both e!ects will
tend to unambiguously decrease 1/rH

1
as the transaction cost rates increase, the

net impact on 1/rH
2

depends on which factor dominates.
Since 1/rH

1
is decreasing in d and n and 1/rH

1
"1/rH for d"n"0, we always

have 1/rH
1
41/rH. On the other hand, since 1/rH

2
is not necessarily increasing in d,

it is possible that 1/rH
2
41/rH, i.e., that the no-transaction region does not

contain the Merton line. In this case, the investor always consumes less, for any
given level of wealth, than what he would consume in the absence of adjustment
costs. The following proposition provides a simple necessary and su$cient
condition for this to happen.

Proposition 3. Let rH be as in Theorem 1 and let rH
2

be as in Theorem 3. There exists
a d3(0,1) such that rH

2
'rH if and only if rH(1, i.e., if and only if

o'(1!c)(r#i/c)#c(r#b).

Proof. The condition on o is equivalent to

c[a
1
m#(1!ca

1
)(r#b)]

m
(1.

Fix d with

c[a
1
m#(1!ca

1
)(r#b)]

m
(d(1.

Then it follows from Proposition 1 that

rH
2
'1!

1!d
1!ca

1

'

c(r#b)

m
"rH.

Conversely, suppose that rH
2
'rH for some d3(0, 1). Then it follows from

Proposition 1 that

0(rH
2
!rH4

c(r#b)(1!d)

m
#d!rH

"d
o!(1!c)(r#i/c)!c(r#b)

m
. h

Assuming a durable's depreciation rate of 5% and no transaction costs
for purchases (n"0), Fig. 1 shows how the no-transaction region changes as
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Fig. 1. Boundaries of the optimal range for the fraction of wealth invested in the durable as
a function of the transaction cost rate. The graph plots 1/rH

1
and 1/rH

2
against d for two di!erent

values of the investor's time preference parameter: o"0.01 (top graph) and o"0.10 (bottom graph).
The other parameters are set as follows: r"0.01, k"0.069, p"0.22, n"0, b"0.05 and c"1.

a function of the transaction cost rate d for a log investor (c"1) and for two
di!erent values of the time-preference parameter (o"0.01 and o"0.10). In the
"rst case (in which rH'1) the no-transaction region becomes monotonically
larger as the transaction cost rate increases, and it always includes the Merton
line, while in the second case (in which rH(1) the no-transaction region is not
monotonically increasing and it fails to include the Merton line when the
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14An optimal policy does not exist in Fig. 2 for

c(cH"
J(o!r#i)2#4ri!(o!r#i)

2r
"0.815,

as Assumption 1 is violated in this case. Moreover, as cBcH, the optimal policy involves postponing
consumption to increase investment in the stock market. Thus, both boundaries of the no-
transaction region converge to zero. In Fig. 3, as b CR, the durable behaves increasingly as
a perishable good, so that lim(1/rH

1
)"lim(1/rH

2
)"lim(1/rH)"0.

Fig. 2. Boundaries of the optimal range for the fraction of wealth invested in the durable as
a function of the investor's relative risk aversion coe$cient. The graph plots 1/rH

1
, 1/rH

2
and 1/rH

against c. The other parameters are set as follows: r"0.01, k"0.069, p"0.22, d"0.05,
n"0, b"0.05 and o"0.01.

transaction cost rate is large enough. This re#ects the fact that in the latter case
the investor is more impatient and thus initially less willing to save. Since this
implies a higher marginal utility for future consumption, a reduction in future
consumption due to an increase in transaction costs induces him to increase his
savings proportionally more than a less impatient investor. Thus, the &saving'
e!ect dominates the &transaction-avoidance' e!ect.

Figs. 2 and 3 show, respectively, how the boundaries of the no-transaction
region change as a function of the investor's relative risk aversion c and of the
durable's depreciation rate b. As would be the case in the absence of transaction
costs, the region's boundaries are a nonmonotonic function of the investor's
risk-aversion coe$cient and a decreasing function of the durable's depreciation
rate.14 Moreover, the size of the no-transaction region is a nonmonotonic
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Fig. 3. Boundaries of the optimal range for the fraction of wealth invested in the durable
as a function of the durable's depreciation rate. The graph plots 1/rH

1
, 1/rH

2
and 1/rH against b.

The other parameters are set as follows: r"0.01, k"0.069, p"0.22, d"0.05, n"0, o"0.01
and c"1.

function of the risk aversion and a monotonically decreasing function of the
depreciation rate. Thus, the optimal consumption policy for short-lived durable
goods is to purchase small quantities frequently, while the optimal policy for
long-lived durables calls for more sporadic and larger purchases. This agrees
with the "nding of Hindy and Huang (1993) for the case d"1.

6.2. Stochastic behavior of the investment in the durable

In order to analyze in more detail the stochastic behavior of the investment in
the durable, let x

t
"=H

t
/KH

t
denote the inverse of the fraction of wealth invested

in the durable at time t. An application of Ito( 's lemma shows that, within the
no-transaction region,

dx
t
"a(x

t
) dt#b(x

t
)T dw

t
,

where

a(x)"(r#b)(x!1)#2iulH(x)

and

b(x)"[(k!r1)T(ppT)~1p]TulH(x).
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Now "x x
0
"x3(rH

2
,rH
1
), and let

q"infMt50: x
t
N (rH

2
, rH

1
)N.

denote the time of the next transaction in the durable. Also, let

P
x
(q(R)"P(q(R Dx

0
"x)

denote the conditional probability that q is "nite and let

E
x
[q]"E[q D x

0
"x]

denote the conditional expectation of q. Finally, "x an arbitrary number
c3(rH

2
, rH

1
) and de"ne the scale function

s(x)"P
x

c

expA!2P
y

c

a(z)

D b(z) D 2
dzBdy

as well as the speed density

m(x)"
2

s@(x) D b(x) D 2
.

Proposition 4. If d(1, then P
x
(q(R)"1 and E

x
[q](R for all x3(rH

2
, rH

1
).

Moreover, either boundary of the no-transaction region can be reached with
positive probability. On the other hand, if d"1 then P

x
(q(R)"1 if

o4r#i#cb and 0(P
x
(q(R)(1 otherwise. In either case, the lower

boundary is never reached.

Proof. Since ulH(x)'0 for all x3(rH
2
, rH

1
), we have (recalling the standing assump-

tion that i'0)

D b(x) D 2'0 ∀x3(rH
2
, rH

1
).

Moreover, since both a(x) and b(x) are continuous on (rH
2
, rH

1
),

∀x3(rH
2
, rH

1
), &e'0 such that P

x`e

x~e

1# D a(x) D
D b(x) D 2

dx(R.

Now let

q(x)"P
x

c

(s(x)!s(y))m(y) dy"P
x

c

s@(y)AP
y

c

m(z) dzBdy.

If d(1, then ulH(x)'0 for all x3[rH
2
, rH

1
], so that s and m are de"ned and

continuous on [rH
2
, rH

1
], and we have q(rH

2
)(R and q(rH

1
)(R. The fact that

E
x
[q](R (and hence that q(R a.s.) then follows from Proposition 5.5.32(i)
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in Karatzas and Shreve (1988), while the fact that either boundary can be
reached with positive probability follows from Proposition 5.5.22(d).

If d"1, then the above argument is not necessarily true, since
ulH(rH2)"u

0
(1)"0. On the other hand, since u

0
(x)"a

2
(x!1), for any x'1,

we have in this case

s(x)"P
x

c

expA!2P
y

c

r#b#2ia
2

2ia2
2
(z!1)

dzBdy

"P
x

c

(y!1)~f
(c!1)~f

dy

"G
(c!1)fA

(x!1)1~f
1!f

!

(c!1)1~f
1!f B if fO1,

(c!1)logA
x!1

c!1B otherwise

and

q(x)"P
x

c

(y!1)~f
(c!1)~fAP

y

c

2(c!1)~f
2ia2

2
(z!1)2~f

dzBdy

"G
(x!1)1~f!(c!1)1~f
ia2

2
(c!1)1~f(1!f)2

!

ln(x!1)!ln(c!1)

ia2
2
(1!f)

if fO1,

1

2ia2
2
AlogA

x!1

c!1BB
2

otherwise,

where

f"
r#b#2ia

2
ia2

2

.

If o4r#i#cb, then f51, and hence s(rH
1
)(R, s(rH

2
#)"s(1#)"!R,

q(rH
1
)(R and q(rH

2
#)"q(1#)"#R. The fact that P

x
(q(R)"1 then

follows from Proposition 5.5.32(ii) in Karatzas and Shreve (1988), while the fact
that the lower boundary is never reached follows from Proposition 5.5.22(c).
On the other hand, if o'r#i#cb, then f(1, and hence s(rH

1
)(R,

s(rH
2
)"s(1)'!R, q(rH

1
)(R and q(rH

2
#)"q(1#)"#R, so that it

follows from Propositions 5.5.29 and 5.5.32 in Karatzas and Shreve (1988) that
0(P

x
(q(R)(1. The fact that the lower boundary is never reached follows

from the fact that q(#R)"#R and Proposition 5.5.29 in Karatzas and
Shreve (1988). h

As a consequence of the fact that, when d(1, the expected time to
reach either boundary is "nite, it follows that x is a positively recurrent process

586 D. Cuoco, H. Liu / Journal of Economic Dynamics & Control 24 (2000) 561}613



Fig. 4. Steady-state average fraction of wealth invested in the durable as a function of the
transaction cost rate. The graph plots the average of KH/=H under the steady-state distribution
against d. The other parameters are set as follows: r"0.01, k"0.069, p"0.22,
n"0, b"0.05, o"0.01 and c"1.

and that

f (x)"
m(x)

:rH1
r
H
2
m(y) dy

is a stationary (or steady-state) probability density (Borodin and Salminen,
1996, Section II.12). In addition, x is ergodic and the distribution of x

t
converges

to the stationary distribution, that is

lim
t?=

A sup
A|B(*rH2,rH1+)

KPx
(x

t
3A)!P

A

f (z) dzKB"0

where B([rH
2
, rH

1
]) denotes the Borel sigma-"eld on [rH

2
, rH

1
] (Borodin and

Salminen, 1996, Section II.35}36).
Fig. 4 shows the steady-state average fraction of wealth invested in

the durable as a function of the transaction cost rate d. As it could be
expected, even though the no-transaction region is monotonically increasing in
this case (as shown in Fig. 2), the steady-state average proportional investment
in the durable good declines monotonically as the transaction costs increase.

6.3. Frequency of transactions in the durable

For the case in which d(1 (so that E
x
[q](R), we can compute the

expected time to the next transaction in the durable using the following result.
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Fig. 5. Expected length of time (in years) to the next transaction in the durable as a function of the
fraction of wealth invested in the durable. The graph plots E

x
[q] against 1/x"KH/=H for di!erent

values of d. Each curve is plotted over the optimal range for KH/=H. The other parameters are set as
follows: r"0.01, k"0.069, p"0.22,n"0, b"0.05, o"0.01 and c"1.

Proposition 5. Suppose that d(1. Then the function ¹(x)"E
x
[q] solves the

ordinary diwerential equation

1
2
D b(x) D2¹A(x)#a(x)¹@(x)#1"0

on (rH
2
, rH

1
), with boundary conditions ¹(rH

2
)"¹(rH

1
)"0.

Proof. This follows immediately from Karlin and Taylor (1981, p. 192). h

Fig. 5 plots the expected length of time (in years) to the next adjustment in the
stock of the durable ¹(x)"E

x
[q] as a function of the current fraction of wealth

invested in the durable KH/=H"1/x for di!erent levels of the transaction cost
rate d. While the values in Fig. 5 are conditional expectations based on the
current value of x, Figs. 6 and 7 plot the unconditional expectation of the time to
the next transaction in the durable under the steady-state distribution for x, as
a function of the transaction cost rate d and of the depreciation rate b. The latter
"gure con"rms our earlier statement that the optimal policy for longer-lived
durables involves more sporadic adjustments. As expected, these "gures also
indicate that changes in durable consumption are much more frequent in the
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Fig. 6. Steady-state average time to the next transaction in the durable as a function of the
transaction cost rate. The graph plots the unconditional mean of the time to the next transaction
under the steady-state distribution of x as a function of d. The other parameters are set as follows:
r"0.01, k"0.069, p"0.22, n"0, b"0.05, o"0.01 and c"1.

case of a divisible durable good than in the case of an indivisible good studied by
Grossman and Laroque (1990).

An alternative assessment of the frequency of transactions in the durable can
be obtained by examining the expected discounted value of the lifetime pur-
chases and sales of the durable.

Proposition 6. Let j, j
1
, j

2
be arbitrary constants with

j'r#2i
rH
1
#n

crH
1

.

Then

ECP
=

0

e~jt D j
1
dIH

t
#j

2
dDH

t
D KKH

0
"K,=H

0
"=D(R

for all (=,K) with K'0 and =/K3[rH
2
, rH

1
] if and only if

ECP
=

0

e~jt(j
1
dIH

t
#j

2
dDH

t
)KKH

0
"K, =H

0
"=D"Kg(=/K; j, j

1
, j

2
),

where g(x)"g(x; j, j
1
, j

2
) solves the ordinary diwerential equation

1
2
D b(x) D 2gA(x)#a(x)g@(x)!(j#b)g(x)"0 (26)
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Fig. 7. Steady-state average time to the next transaction in the durable as a function of the
depreciation rate. The graph plots the unconditional mean of the time to the next transaction under
the steady-state distribution of x for di!erent values of b. The other parameters are set as follows:
r"0.01, k"0.069, p"0.22, d"0.05, n"0, o"0.01 and c"1.

on [rH
2
, rH

1
] with boundary conditions

g(rH
1
)!(rH

1
#n)g@(rH

1
)#j

1
"0

and

g(rH
2
)!(rH

2
!d)g@(rH

2
)!j

2
"0.

Proof. Suppose "rst that there is a solution g to ODE (26) with the associated
boundary conditions and let C(=,K)"Kg(=/K). An application of Ito( 's
lemma gives

C(=,K)"e~jtC(=H
t
, KH

t
)!P

t

0

e~jsC
W
(=H

s
, KH

s
)hHT

s
p dw

s

!P
t

0

e~js(1
2
C

WW
(=H

s
,KH

s
) D hHT

s
p D 2

#C
W

(=H
s
,KH

s
)[r=H

s
#hHT

s
(k!r)!(r#b)KH

s
]

!C
K
(=H

s
,KH

s
)bKH

s
!jC(=H

s
,KH

s
))ds
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#P
t

0

e~js(nC
W
(=H

s
, KH

s
)!C

K
(=H

s
, KH

s
)) dIH

s

#P
t

0

e~js(dC
W
(=H

s
,KH

s
)#C

K
(=H

s
,KH

s
)) dDH

s

"e~jt=H
t

g(x
t
)

x
t

!P
t

0

e~js=H
s

g@(x
s
)

x
s

ulH(xs
)(k!r1)T(ppT)~1p dw

s

!P
t

0

e~jsKH
s A

1

2
D b(x

s
) D 2gA(x

s
)#a(x

s
)g@(x

s
)!(j#b)g(x

s
)Bds

!P
t

0

e~js(g(rH
1
)!(rH

1
#n)g@(rH

1
)) dIH

s

#P
t

0

e~js(g(rH
2
)!(rH

2
!d)g@(rH

2
)) dDH

s

"e~jt=H
t

g(x
t
)

x
t

!P
t

0

e~js=H
s

g@(x
s
)

x
s

ulH(xs
)(k!r1)T(ppT)~1pdw

s

#j
1P

t

0

e~jsdIH
s
#j

2P
t

0

e~jsdDH
s
.

Since x
t
3[rH

2
, rH

1
] for all t, the function (g@(x)/x)ulH(x) is continuous, and hence

bounded on [rH
2
, rH

1
] and=H is square-integrable on [0, t], the stochastic integral

in the previous expression has zero expectation, so that

C(=,K)"ECe~jt=H
t

g(x
t
)

x
t
D#ECP

t

0

e~js(j
1
dIH

s
#j

2
dDH

s
)D.

Letting n"hH/=H denote the portfolio weights process, we will show below
that

0(nT
t
(k!r1)"2i

ulH(xt
)

x
t

42i
rH
1
#n

crH
1

.

The claim then follows from the monotone convergence theorem, using the fact
that g(x)/x is bounded on [rH

2
, rH

1
] and that the process

N
t
"=expA!

1

2P
t

0

D nT
s
p D 2ds#P

t

0

nT
s
pdw

sB
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is a martingale, so that

E[e~jt=H
t
]4ECexpAP

t

0

(r#nT
s
(k!r1)!j) dsBNtD

4expAAr#2i
rH
1
#n

crH
1

!jBtBE[N
t
]

"expAAr#2i
rH
1
#n

crH
1

!jBtB=P0 as tPR.

Conversely, letting

C(=,K)"ECP
=

0

e~jt(j
1
dIH

t
#j

2
dDH

t
) KKH

0
"K,=H

0
"=D,

it is easily veri"ed that C is homogeneous of degree one in (=,K), so that
C(=,K)"Kg(=/K) for some function g. The ODE for g then follows from
Ito( 's lemma and the fact that the process

e~jtC(=
t
,K

t
)#P

t

0

e~js(j
1
dIH

s
#j

2
dDH

s
)

is a martingale. Finally, to show that

ulH(xt
)

x
t

4

rH
1
#n

crH
1

,

let

l(x, y)"b
1
log[yx!a

1
(x!1)]#b

2
log[yx!a

2
(x!1)].

Since l is strictly increasing in y and

rH
1
#n

crH
1

rH
2
'

rH
2
!d
c

,

it follows from (17) and (18) that

lArH1,
rH
1
#n

crH
1
B"log(lH)(lArH2,

rH
1
#n

crH
1
B.

The concavity of l in x then implies

lAx,
rH
1
#n

crH
1
B5log(lH) for all x3[rH

2
, rH

1
].

The claim now follows from the fact that

lAx,
ulH(x)

x B"log(lH)

by (15) and l is increasing in y. h
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15The same monotonic pattern prevails in the case in which o"0.10, even though (as shown in
Fig. 1) the boundaries of the no-transaction region are non-monotonic in this case.

Fig. 8. Expected discounted lifetime purchases of the durable over existing stock as a function of the
transaction cost rate. The graph plots the unconditional mean of g(x; 0.10, 1, 0) under the steady-
state distribution of x for di!erent values of d. The other parameters are set as follows:
r"0.01, k"0.069, p"0.22, n"0, b"0.05, o"0.01 and c"1.

The above proposition allows to compute the expected discounted value of
the lifetime purchases (respectively, sales) of the durable good, conditional on
the current values of =H and KH, by solving ODE (26) for g with j

1
"1 and

j
2
"0 (respectively, j

1
"0 and j

2
"1). Figs. 8 and 9 report the unconditional

expected discounted values of the lifetime purchases and sales of the durable, as
a fraction of the initial stock of the durable, for di!erent levels of the transaction
cost rate d. The unconditional expected discounted values are computed under
the steady-state distribution of x and the discount rate j is set at 0.1. While
the expected discounted purchases and sales are both monotonically decreasing
in d, the latter are more responsive than the former to changes in selling
costs.15

6.4. The portfolio policy

Looking next at the optimal portfolio policies, (25) shows that investors still
hold the same portfolio of risky assets they would hold in the absence of
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Fig. 9. Expected discounted lifetime sales of the durable over existing stock as a function of the
transaction cost rate. The graph plots the unconditional mean of g(x; 0.10, 0, 1) under the steady-
state distribution of x for di!erent values of d. The other parameters are set as follows:
r"0.01, k"0.069, p"0.22, n"0, b"0.05, o"0.01 and c"1.

transaction costs. However, their risk aversions, and hence the fraction of their
wealth invested in stocks, are changed as a result of the presence of transaction
costs. More precisely, the following proposition shows that investors are less
risk averse than they would be in the absence of transaction costs when their
wealth is large relative to the stock of durable (i.e., immediately before or after
a purchase), and more risk averse when their wealth is small (i.e., immediately
before or after a sale).

Proposition 7. Let rH
1
, rH

2
satisfy the conditions of Theorem 3. Then

C(rH
1
)4c4C(rH

2
).

Proof. Let lH be the constant in (17) and (18). Since ulH(rH1)"(rH
1
#n)/c and

ulH(rH2)"(rH
2
!d)/c by (15), (17) and (18), we have from (16):

C(rH
1
)"

rH
1

ulH(rH1)
"

crH
1

rH
1
#n

4c4
crH

2
rH
2
!d

"

rH
2

ulH(rH2)
"C(rH

2
). h

Table 2 shows the optimal ranges for the fraction of wealth invested in stocks for
di!erent levels of the relative risk aversion coe$cient c and of the transaction
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16As in Table 1, we set b"0 to allow direct comparison with the values in Table 1 of Grossman
and Laroque (1990).

Table 2
Optimal range for the fraction of wealth invested in stocks

c"0.9

n"0 n"0.005 n"0.05 n"0.10 n"0.25 n"1

d"0 (1.354,1.354) (1.354,1.357) (1.354,1.372) (1.354,1.383) (1.354,1.404) (1.354,1.443)
d"0.005 (1.349,1.354) (1.349,1.357) (1.347,1.372) (1.346,1.382) (1.344,1.403) (1.341,1.443)
d"0.05 (1.282,1.354) (1.281,1.356) (1.273,1.369) (1.266,1.379) (1.251,1.400) (1.220,1.441)
d"0.10 (1.191,1.354) (1.189,1.356) (1.178,1.367) (1.167,1.377) (1.146,1.398) (1.094,1.439)
d"0.25 (0.887,1.354) (0.885,1.356) (0.873,1.364) (0.862,1.373) (0.836,1.392) (0.768,1.435)
d"1 (0.000,1.354) (0.000,1.355) (0.000,1.361) (0.000,1.366) (0.000,1.380) (0.000,1.421)

c"1

n"0 n"0.005 n"0.05 n"0.10 n"0.25 n"1

d"0 (1.219,1.219) (1.219,1.223) (1.219,1.249) (1.219,1.269) (1.219,1.307) (1.219,1.384)
d"0.005 (1.211,1.219) (1.210,1.223) (1.208,1.249) (1.207,1.268) (1.205,1.307) (1.201,1.384)
d"0.05 (1.116,1.219) (1.114,1.222) (1.105,1.244) (1.097,1.263) (1.083,1.302) (1.055,1.381)
d"0.10 (0.999,1.219) (0.997,1.222) (0.986,1.241) (0.976,1.259) (0.957,1.297) (0.915,1.378)
d"0.25 (0.677,1.219) (0.676,1.221) (0.667,1.237) (0.659,1.252) (0.640,1.286) (0.596,1.369)
d"1 (0.000,1.219) (0.000,1.220) (0.000,1.230) (0.000,1.240) (0.000,1.266) (0.000,1.343)

c"2

n"0 n"0.005 n"0.05 n"0.10 n"0.25 n"1

d"0 (0.610,0.610) (0.610,0.614) (0.610,0.649) (0.610,0.680) (0.610,0.754) (0.610,0.962)
d"0.005 (0.603,0.610) (0.603,0.614) (0.602,0.648) (0.602,0.680) (0.602,0.753) (0.601,0.961)
d"0.05 (0.541,0.610) (0.540,0.613) (0.538,0.644) (0.537,0.674) (0.534,0.746) (0.530,0.953)
d"0.10 (0.476,0.610) (0.476,0.613) (0.474,0.641) (0.472,0.669) (0.469,0.739) (0.463,0.945)
d"0.25 (0.322,0.610) (0.322,0.612) (0.320,0.636) (0.319,0.660) (0.317,0.723) (0.311,0.924)
d"1 (0.000,0.610) (0.000,0.611) (0.000,0.627) (0.000,0.644) (0.000,0.691) (0.000,0.866)

Note: The table shows numerical values of the interval ((k!r)/(C(rH
2
)p2),(k!r)/(C(rH

1
)p2)) for

di!erent values of the investor's risk aversion and of the proportional transaction cost rates. The
other parameters are set as follows: r"0.01, k"0.069, p"0.22, b"0 and o"0.01.

cost rates d and n.16 Transaction costs on the durable good appear to have
a smaller impact on the portfolio weights than on the fraction of wealth invested
in the durable. For the parameters we are considering, a logarithmic investor
would keep the ratio of stock investment to wealth equal to 1.219 in the absence
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Fig. 10. Fraction of wealth invested in stocks as a function of the fraction of wealth invested in the
durable. The graph plots hH/=H against KH/=H for di!erent values of d. Each curve is plotted over
the optimal range for KH/=H. The other parameters are set as follows: r"0.01, k"0.069,
p"0.22,n"0, b"0.05, o"0.01 and c"1.

of transaction costs. This ratio would #uctuate between 1.210 and 1.223 with
a transaction cost of 0.5% in either direction, and between 0.640 and 1.286 with
a transaction cost of 25%.

Fig. 10 shows, for the logarithmic case (c"1) and for di!erent levels of the
transaction cost rates, how the fraction of wealth invested in stocks, hH/=H,
varies as a function of the fraction of wealth invested in the durable, KH/=H.
While the relationship between hH/=H and KH/=H is non-monotonic, an
increase in the transaction cost rates seems to have the unambiguous result of
reducing the fraction of wealth invested in stocks, for any given level of the
investor's current consumption and wealth within the no-transaction region.
The next proposition con"rms that this is indeed the case.

Proposition 8. Let rH
1
, rH

2
satisfy the conditions of Theorem 3 and let x3(rH

2
, rH

1
).

Then C(x) increases as d or n increase, as long as x remains in the no-transaction
region.

Proof. If x3(rH
2
, rH

1
), then

C(x)"!

xtA(x)

t@(x)
"

x

ulH(x)
,
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where lH is the constant in (17) and (18). Since it follows immediately from the
de"nition that ulH(x) is increasing in lH, it is enough to show that LlH/Ld(0 and
LlH/Ln(0.

Let

l
1
(x)"C

1

c
(x#n)!a

1
(x!1)D

b1

C
1

c
(x#n)!a

2
(x!1)D

b2

.

Then lH"l
1
(rH
1
) and l@

1
(x)(0 for x'c(r#b)(1#n)/m!n. The fact that

LlH/Ld(0 then follows immediately from Propositions 1 and 2. The proof that
LlH/Ln(0 is similar. h

In the special case in which d"1, we have 1"rH
2
(rH

1
and lH"0, so that

C(x)"!

xtA(x)

t@(x)
"

x

u
0
(x)

"

x

a
2
(x!1)

and
hH
t
=H

t

"a
2
(ppT)~1(k!r1)A1!

KH
t
=H

t
B.

Hence, the optimal portfolio weights are a linearly decreasing function of the
fraction of wealth invested in the durable. Alternatively,

hH
t

=H
t
!KH

t

"a
2
(ppT)~1(k!r1),

so that the optimal portfolio policy involves investing a constant fraction of
liquid wealth=H

t
!KH

t
in stocks. Moreover, it can be shown that a

2
'1/c and

a
2
P1/c as bPR. Both of these results are consistent with the "ndings of

Hindy and Huang (1993), who considered irreversible purchases of the con-
sumption good.

Fig. 11 plots the steady-state average fraction of wealth invested in stocks as
a function of the transaction costs rate d. Even though within the no-transaction
region proportional investment in the stock can be higher or lower than in the
Merton case, the average proportional investment is monotonically decreasing
in the transaction cost rate d, and thus always lower than in the Merton case.

6.5. Welfare impact of transaction costs

Fig. 12 plots the unconditional expected discounted values of the lifetime
transaction costs, as a fraction of the initial stock of the durable, for di!erent
levels of the transaction cost rate d. The expected values are computed under the
steady-state distribution for x and the discount rate is set to 0.1. An increase in
the transaction cost rate has a non-monotonic impact on expected lifetime costs,
as beyond a certain level an increase in d is more than compensated by
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Fig. 11. Steady-state average fraction of wealth invested in stocks as a function of the transaction
cost rate. The graph plots the steady-state average of hH/=H against d. The other parameters are set
as follows: r"0.01, k"0.069, p"0.22,n"0, b"0.05, o"0.01 and c"1.

Fig. 12. Expected discounted lifetime transaction costs over existing stock of the durable as
a function of the transaction cost rate. The graph plots the unconditional mean of dg(x; 0.10, 0, 1)
under the steady-state distribution of x as a function of d for two di!erent values of o. The other
parameters are set as follows: r"0.01, k"0.069, p"0.22, n"0, b"0.05 and c"1.
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Fig. 13. Welfare impact of transaction costs. The graph plots the combinations of initial wealth and
transaction cost rate d that would give a logarithmic investor a constant lifetime expected utility.
The other parameters are set as follows: r"0.01, k"0.069, p"0.22, b"0.05,n"0, o"0.01 and
c"1.

a corresponding decrease in the expected level of sales (as shown in Fig. 10). In
fact, it follows from Proposition 4 that when d"1 the lower boundary of the
no-transaction region is never reached, and hence that expected sales and costs
equal zero.

While Fig. 12 illustrates the direct cost associated with an illiquid market for
the durable good, it does not capture the additional utility loss due to a subopti-
mal investment in the durable. In order to assess the welfare impact of transac-
tion costs, Fig. 13 plots, for di!erent levels of the initial holdings of the durable,
the combinations of initial wealth and transaction cost rates that would give
a logarithmic investor the same lifetime expected utility that he would be able to
obtain with no transaction costs and unit wealth. For example, in the case in
which transaction costs are only paid on sales of the durable, Fig. 13 shows that
an investor who starts with all of his endowment in liquid securities, would be
willing to give up about 8.3% of his wealth to avoid paying transaction costs if
d"0.25, about 10% if d"0.5 and about 10.5% if d"1. Additional increases in
the transaction cost rates have a progressively smaller impact on the investor's
welfare and can be compensated by progressively smaller increases in wealth.
Moreover, since Fig. 13 is plotted for the case of no transaction costs on
purchases, the welfare impact of transaction costs is higher the higher the initial
fraction of wealth invested in the durable.
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7. Conclusions and extensions

We have examined a continuous-time model in which an investor derives
utility from the service #ow provided by a durable consumption good. Adjust-
ment of the stock of the durable is costly and entails a proportional transaction
cost. Our analysis thus complements that of Grossman and Laroque (1990), who
considered the case in which adjustment in the stock of durable involves
payment of transaction cost proportional to the existing stock (rather than to
the amount bought or sold). We show that an optimal consumption policy exists
under the same set of conditions that are necessary and su$cient for existence in
the absence of transaction costs. Moreover, we provide a closed-form expression
for the value function in terms of three constants solving a system of nonlinear
equations.

For the case of no-transaction costs, a change of variables reduces this
problem to the one studied in Merton (1971). The optimal policies consist of
maintaining a constant fraction of wealth invested in the durable and constant
portfolio weights. In the presence of transaction costs, the optimal consumption
policy consists of maintaining the fraction of total wealth invested in the durable
good in a non-stochastic interval, which is easily computed. This interval may or
may not include the ratio of durable to wealth that would be optimal in the
no-transaction case. The optimal portfolio strategy involves investing in the
same portfolio of risky assets that would be optimal in the absence of transac-
tion costs, but the fraction of wealth allocated to risky assets is stochastic and
depends on the current level of wealth relative to the stock of durable. Since the
fraction of wealth invested in the durable is within a deterministic interval, the
same is true for the fraction of wealth invested in stocks. We show that this
interval always brackets the proportion that would be optimal in the absence of
transaction costs. Moreover, numerical simulation reveals that this interval is
typically small, so that the optimal investment strategy is not very sensitive to
the presence of transaction costs for adjusting durable consumption. We also
provide an explicit solution for the case in which the transaction cost rate for
selling the durable is 100%. Clearly, the optimal consumption policy in this case
involves never selling the durable.

Since the investor's optimal consumption policy does not satisfy the usual
"rst-order condition due to the presence of transaction costs, the Consump-
tion-based Capital Asset Pricing Model (CCAPM) would not hold in equilib-
rium in the economy we study. On the other hand, since investors still hold the
same portfolio of risky assets (the mean-variance e$cient portfolio) the standard
Capital Asset Pricing Model (CAPM) would hold in equilibrium. This is
analogous to what Grossman and Laroque (1990) reported for the case of an
indivisible durable good.

Finally, we point out that it is easy to extend our analysis to the case in which
the investor derives utility from both a durable good and a perishable consump-
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tion good, as long as the utility function is additive and the relative price of the
two goods is constant. The value function for the extended problem is given by

v(=
0
,K

0
)" max

W10`W20/W0

v
1
(=

10
, K

0
)#v

2
(=

20
),

where v
1

is the value function for the problem with only the durable good (as
studied in this paper) and v

2
is the value function for the problem with only the

perishable good (as in Merton, 1971). The optimal consumption and investment
policies can also be immediately retrieved. Clearly, the CAPM would still
characterize the equilibrium in this economy, while the CCAPM would hold
relative to aggregate nondurable consumption, but not relative to aggregate
total consumption.

8. For further reading

The following references are also of interest to the reader: CvitanicH and
Karatzas, 1996; Harrison, 1985.

Appendix A

Before embarking on the proof of Theorem 2, whose argument is adapted
from Davis and Norman (1990), we start with a preliminary result.

Lemma A.1. Under the assumptions of Theorem 2, the function v dexned in (13) is
concave and satisxes:

max
h C

1

2
DhTpD2v

ww
#[r(w!k)#hT(k!r1)!bk]v

w

!bkv
k
!ov#

(ak)1~c
1!c D40 (A.1)

on S, with equality on NT. Moreover,

nv
w
!v

k
50 on S, with equality on B (A.2)

and

dv
w
#v

k
50 on S, with equality on S. (A.3)

Proof. Recalling the de"nition of v and letting x"w/k, we have

v
ww

(w, k)"k~(1`c)tA(x)(0
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and

v
ww

(w, k)v
kk
(w, k)!v

wk
(w, k)2

"!ck~2(1`c)((1!c)t(x)tA(x)#ct@(x)2)50,

where the "rst inequality follows from the strict concavity of t and the second
inequality follows from (11). This establishes the concavity of v. On the other hand,

nv
w
(w, k)!v

k
(w, k)"k~c((x#n)t@(x)!(1!c)t(x))"k~ct@(x)g(x),

where

g(x)"x#n!(1!c)
t(x)

t@(x)
.

By (8), g(x)"0 for x'rH
1
, and, by (11),

g@(x)"c#(1!c)
t(x)tA(x)

t@(x)2
40.

This establishes (A.2). The proof of (A.3) is similar, while (A.1) follows immedi-
ately from (9) and (10). h

Proof of Theorem 2. Since

hH(w,k)"!(ppT)~1(k!r1)
t@(w/k)

(w/k)tA(w/k)
w

and the function t@(x)/(xtA(x)) is continuous and hence bounded on [rH
2
, rH

1
], we

conclude that DhH(w,k)D4gw holds for some g(R and all (w, k)3N¹. Also,
since the de"nition of hH implies that hH(jw, jk)"jhH(w, k) for all j'0, hH is
Lipschitz continuous on N¹. The existence and uniqueness of processes
(=H, KH, IH,DH) satisfying the conditions of the theorem for all t(q"
infMt50: =H

t
"KH

t
"0N then follows from the construction of di!usions with

oblique re#ections in Lions and Sznitman (1984) or Dupuis and Ishii (1993) (see
the proof of Lemma 9.3 in Shreve and Soner (1994) for details).

We will start by showing that q"R a.s., so that (IH, DH, hH)3HK (=
0
,K

0
).

Recalling the de"nition of v, an application of Ito( 's lemma shows that

e~otv(=H
t
,KH

t
)"v(=

0
,K

0
)expA!P

t

0

a1~c
(1!c)t(=H

s
/KH

s
)
dsBNt

(A.4)

for all t(q, where

N
t
"expA!P

t

0

(t@(=H
s
/KH

s
))2

t(=H
s
/KH

s
)tA(=H

s
/KH

s
)
(k!r1)T(ppT)~1p dw

s

!

1

2P
t

0
K

(t@(=H
s
/KH

s
))2

t(=H
s
/KH

s
)tA(=H

s
/KH

s
)
(k!r1)T(ppT)~1pK

2
dsB. (A.5)
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Since the function (t@)2/(ttA) is continuous, and hence bounded, on [rH
2
, rH

1
] and

(1!c)t is bounded below away from zero (because of (11)), the above implies
that

0(lim
ttq

Dv(=
t
, K

t
)D(R on Mq(RN.

On the other hand, (8) implies that

lim
ttq

v(=
t
,K

t
)"G

0 if c(1,

!R otherwise.

Thus q"R, almost surely. Next, let

M
t
"P

t

0

e~os
(aKH

s
)1~c

1!c
ds#e~otv(=H

t
, KH

t
).

An application of Ito( 's lemma shows that
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e~osv
w
(=H

s
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s
, KH

s
)Tpdw
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(A.6)

It then follows from Lemma A.1 that the "rst three integrals in the previous
expression are identically zero. Turning next to the stochastic integral, we have
from the continuity of xct@(x) that

Dv
w
(w, k)hH(w, k)D"w1~cD(w/k)ct@(w/k)D DhH(w, k)/wD4gw1~c

for some g(R and all (w, k)3N¹. Also, we have from (3) that

04=
t
4=

0
expAP

t

0
Cr#nT

s
(k!r1)!

1

2
DnT

s
pD2Dds#P

t

0

nT
s
pdw

sB
(A.7)

for any (I,D, h)3H(=
0
,K

0
), where n"h/= denotes the vector of portfolio

weights. It then follows from the fact that n is uniformly bounded for
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(I,D, h)3HK (=
0
, K

0
) that the stochastic integral has zero expectation. Therefore,

v (=
0
, K

0
)"lim

tt=
E[M

t
]

"ECP
=

0

e~ot
(aKH

t
)1~c

1!c
dtD#lim

tt=
E[e~otv(=H

t
,KH

t
)]

"ECP
=

0

e~ot
(aKH

t
)1~c

1!c
dtD ,

where the second equality follows from the monotone convergence theorem and
the third from (A.4), using the fact that 1/[(1!c)t] is bounded below away from
zero on N¹ and that the process N in (A.5) is a martingale. Therefore, v is indeed
the lifetime expected utility from following the proposed optimal policy.

To conclude the proof, we only need to show that

v(=
0
, K

0
)5ECP

=

0

e~ot
(aK

t
)1~c

1!c
dtD (A.8)

for any investment policy (I,D, h)3HK (=
0
,K

0
). Accordingly, "x from now on an

arbitrary (I,D, h)3HK (=
0
, K

0
) and let (=,K) denote the corresponding wealth

and durable-holding processes.
Suppose at "rst that c(1. It then follows easily from the de"nitions that

there exists a constant ge'0 such that

Dv(w,k)D#Dwv
w
(w,k)D4gew1~c for all (w, k)3S with w!dk'e'0.

(A.9)

Let ve(w, k)"v(w#e, k) for e'0, and consider the process
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t
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t
). (A.10)

It then follows from the generalized Ito( 's lemma that
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Since
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it follows from Lemma A.1 and the fact that v
w
'0 that the "rst three integrals

in the above expression are nonpositive, while the term in the summation is
nonpositive by the concavity of ve. We then conclude from (A.9) that Me is
a supermartingale. Hence,
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Since veBv as eB0, we obtain the desired inequality.
Finally, suppose that c'1. Fix an arbitrary j with 0(j(r/(r#(1#n)b)

and for any e'0 let ve(w, k)"v(w#e, k#je). It can be immediately veri"ed
from the de"nitions that ve and ve

w
are bounded on S. Moreover,
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where the "rst inequality follows from (A.1) and(A.2). We then have from (A.11)
that the process Me in (A.10) is a supermartingale. Hence,
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where the last equality follows from the boundedness of ve. Since vePv as eB0,
we conclude that the policy (IH, DH, hH) is optimal for all cO1. h

Proof of Lemma 1. It is easy to verify that any solution of the ODE (14) satis"es

Dul(x)!a
1
(x!1)Db1Dul(x)!a

2
(x!1)Db2"l

for some l and that any nonnegative solution has one of three possible shapes on
the positive orthant:

1. 04ul(x)4a
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3. ul(x)5max[a

1
(x!1),a

2
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(see Lemma 3 in Grossman and Laroque (1987) for details). We can rule out the
"rst two solutions as follows. Let
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f (rH

2
)"f (rH

1
)"0. Hence, f @(rH

2
)50 and f @(rH

1
)40. Since

f @(x)"t@(x)A
1

c
!u@l(x)B , (A.13)

we cannot have uAl(x)40 on (rH
2
, rH

1
), unless uAl(x)"0 and u@l(x)"1/c for
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Proof of Proposition 1. Let
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which are de"ned for x3[r
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1
] and x3[r
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], respectively, where
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, we must also have rH

1
'r(

1
. The

latter inequality implies g'0.
Finally, letting f be the function in (A.12), (20) and the continuity of t imply

that f (rH
2
)"f (rH

1
)"0. Since ulH is convex, (A.13) then implies that f @(rH

2
)50, or

cu@lH(rH2)41.

Since ulH solves (14), we have

u@lH(x)"
(o!r!cb#i)ulH(x)#(r#b)(x!1)

iulH(x)
.

Moreover, (15) and (18) imply

ulH(rH2)"(rH
2
!d)/c.

Thus,

(o!r!cb#i)(rH
2
!d)#c(r#b)(rH

2
!1)

i/c (rH
2
!d)

41.

Rearranging the latter inequality gives rH
2
4r(

2
. h
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Proof of Theorem 3. The fact that t is twice continuously di!erentiable and
satis"es ODE (9) can be easily veri"ed. The fact that t is increasing and strictly
concave follows from the fact that the constants A,B and C

2
are all strictly

positive (because g'0).
Next, letting f (x) be the function in (A.12), it follows from the de"nition of

t that f (x)"0 for x3(d, rH
2
]X[rH

1
,R). Eq. (A.13), the convexity of ulH and the

continuity of f then imply f (x)50 on (rH
2
, rH

1
), and hence condition (11) of

Theorem 2 is satis"ed.
Also, letting

g(x)"!i
t@(x)2

tA(x)
#(r#b)(x!1)t@(x)!(o#(1!c)b)t(x)#

a1~c
1!c

,

Eq. (9) implies that g(x)"0 for x3[rH
2
, rH

1
]. Since

t@(x)2

tA(x)
"!

1!c
c

t(x) for x3(d, rH
2
]X[rH

1
,R),

we have

g(x)"(r#b)(x!1)t@(x)!(o#(1!c)(b!i/c))t(x)#
a1~c
1!c

for x3(d, rH
2
]X[rH

1
,R).

Thus, for x'rH
1
,

g@(x)"(r#b)(x!1)tA(x)!(o!r!cb!(1!c)i/c)t@(x)

"

tA(x)

c
(m(x#n)!c(r#b)(1#n))(0,

where the inequality follows from the concavity of t and the fact that
x'rH

1
'c(r#b)(1#n)/m!n (by (22)). Hence, g(x)(0 for x'rH

1
. The proof

that g(x)(0 for d(x(rH
2

is similar, using the fact that
rH
2
4c(r#b)(1!d)/m#d (by (23)).
Finally, the fact that rH

2
'd follows from the fact that rH

2
5

1!(1!d)/(1!ca
1
) (by (23)) and a

1
(0. h

Proof of Theorem 4. Let l
1
, l

2
, r

1
, r6

1
, r

2
, r6

2
, r(

1
and r(

2
be as in the proof of

Proposition 1. For r
2
3[r

2
, r(

2
], let r

1
(r
2
) denote the unique solution with r

1
'r

2
of the equation l

1
(r
1
)"l

2
(r
2
). Since l

2
(x)'0 for x3(r

2
, r(

2
], the existence of

constants rH
1
'rH

2
and lH'0 satisfying (17)}(19) amounts to the existence of

a rH
2
3(r

2
, r(

2
] such that h(rH

2
)"0, where

h(x)"x!d#(1!c)P
r1(x)

x

expA!P
y

x

dz

ul2(x)(z)Bdy
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!(r
1
(x)#n)expA!P

r1(x)

x

dz

ul2(x)(z)B. (A.17)

We will show below that h(r
2
)'0'h(r(

2
). The claim then follows from the

continuity of h on (r
2
, r(

2
). Since l

2
(r
2
)"0, it follows from (15) that

ul2(r2)(x)"G
a
1
(x!1) if x41,

a
2
(x!1) if x51.

Since r
2
(1 and 1/a

2
'0'1/a

1
, we then have, for all y'1,

expA!P
y

r2

dz

ul2(r2)(z)B
" lim

es0 CexpA!P
1~e

r2

dz

a
1
(z!1)

!P
y

1`e

dz

a
2
(z!1)BD

" lim
os0
CexpAA

1

a
2

!

1

a
1
Blog(e)#

log(1!r
2
)

a
1

!

log(y!1)

a
2

BD
"0

and hence (since r
1
(r
2
)"r6

1
'1)

h(r
2
)"r

2
!d#(1!c)P

rN 1

r2

expA!P
y

r2

dz

ul2(r2)(z)Bdy

"r
2
!d#(1!c)P

1

r2

expA!P
y

r2

dz

a
1
(z!1)Bdy

"r
2
!d#(1!c)

1!r
2

1!
1

a
1

"

1!d

1!
1

a
1

'0.

Next, it follows immediately from the de"nitions of l
2

and ul that

ul2(r( 2)(r( 2)"(r(
2
!d)/c.

Also, since ul2(r( 2) solves ODE (14), we have

u@l2(r( 2)(r( 2)"
o!r!cb#i

i
#

(r#b)(r(
2
!1)

iul2(r( 2)(r( 2)
"

1

c
.

It then follows from the convexity of ul2(r( 2) that

ul2(r( 2)(x)'
x!d

c
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for all x'r(
2
. Now, suppose "rst that c'1. Then the above implies

h(r(
2
)(r(

2
!d#(1!c)P

r1(r( 2)

r( 2

expA!P
y

r( 2

cdz

z!dBdy

!(r
1
(r(
2
)#n)expA!P

r1(r( 2)

r( 2

c dz

z!dB
"r(

2
!d#(1!c)P

r1(r( 2)

r( 2
A
r(
2
!d

y!dB
c
dy!(r

1
(r(
2
)#n)A

r(
2
!d

r
1
(r(
2
)!dB

c

"!(d#n)A
r(
2
!d

r
1
(r(
2
)!dB

c
(0.

On the other hand, if c(1,

h(r(
2
)"expA!P

r1(r( 2)

r( 2

dz

ul2(r( 2)(z)BC(r( 2!d) expAP
r1(r( 2)

r( 2

dz

ul2(r( 2)(z)B
#(1!c)P

r1(r( 2)

r( 2

expAP
r1(r( 2)

y

dz

ul2(r( 2)(z)Bdy!(r
1
(r(
2
)#n)D

(expA!P
r1(r( 2)

r( 2

dz

ul2(r( 2)(z)BC(r( 2!d)expAP
r1(r( 2)

r( 2

cdz

z!dB
#(1!c)P

r1(r( 2)

r( 2

expAP
r1(r( 2)

y

cdz

z!dBdy!(r
1
(r(
2
)#n)D

"expA!P
r1(r( 2)

r( 2

dz

ul2(r( 2)(z)BC(r( 2!d)A
r
1
(r(
2
)!d

r(
2
!d B

c

#(1!c)P
r1(r( 2)

r( 2
A
r
1
(r(
2
)!d

y!d B
c
dy!(r

1
(r(
2
)#n)D

"!(d#n)expA!P
r1(r( 2)

r( 2

dz

ul2(r( 2)(z)B(0. h

Appendix B

We collect in this appendix the results for the logarithmic case (c"1). Since
the derivation is similar to that for the power case (cO1), all the results are
stated without proof.

First, if d"n"0, the optimal policies can be obtained directly from the
analysis in Merton (1971) and are given by

KH
t
"

1

rH
=H

t

610 D. Cuoco, H. Liu / Journal of Economic Dynamics & Control 24 (2000) 561}613



and

hH
t
"(ppT)~1(k!r1)=H

t
,

where

rH"(r#b)/o.

The lifetime expected utility is

v(=
0
)"

r!o#i
o2

#

1

o
logA

a=
0

rH B.
Next, if d#n'0 and d(1, the lifetime expected utility is given by

v(=
0
, K

0
)"

1

o
log(K

0
)#tA

=
0

K
0
B ,

where

t(x)"G
A#

1

o
log(x!d) if d(x(rH

2
,

C
1
!C

2
:rH1
x
expA:rH1y

dz

ulH(z)Bdy if rH
2
4x4rH

1
,

B#

1

o
log(x#n) if x'rH

1
,

and

C
1
"

log(a)

o
#

i#r

o2
!

(r#b)(1#n)

o2(rH
1
#n)

,

C
2
"

1

o(rH
1
#n)

,

A"C
1
!

log(rH
2
!d)

o
!

:rH1
r
H
2
expA:rH1y

dz

ulH(z)Bdy

o(rH
1
#n)

,

B"C
1
!

log(rH
1
#n)

o
,

and rH
1
, rH

2
, lH solve (17)}(19) with c"1. The optimal policies are as in Theorem 2.

Finally, if d"1, the lifetime expected utility is given by

v (=
0
, K

0
)"

1

o
log(K

0
)#tA

=
0

K
0
B ,
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where

t (x)"G
1

o Alog(a)!
b
oB#

(rH
1
!1)1@a2

g
(x!1)1~1@a2

1!
1

a
2if 14x41/rH

1

1

oAlog(a)!
b
o
#

1

a
2
!1

!log(rH
1
#n)B#

1

o
log(x#n)

if x'1/rH
1
,

rH
1
"

a
2
#n

a
2
!1

,

and g"o(rH
1
#n). The optimal investment policy is given by

hH
t
"!(ppT)~1(k!r1)KH

t

t@(=H
t
/KH

t
)

tA(=H
t
/KH

t
)
1MW

H
t ;K

H
t
N ,

and the optimal consumption policy involves only purchasing the durable when
KH

t
"=H

t
/rH

1
(and never selling it).
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