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Fast or Slow: Optimal Trading Strategies with
Speed-Dependent Transaction Cost

Abstract

The effective transaction cost rates (TCRs) facing large institutional investors often de-

pend on their trading speeds. We propose a continuous time work-horse model to s-

tudy optimal trading strategies with speed-dependent TCRs. Unlike the existing lit-

erature, our model allows the TCRs to be a general function of trading speeds. We

apply our framework to the optimal portfolio rebalancing problem and the optimal liq-

uidation/acquisition problem of financial institutions. Our model implies the commonly

observed order-shredding strategy and U-shaped trading speeds against time. We show

that adopting some naive trading strategies can be economically costly.
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1 Introduction

Transaction costs are prevalent in financial markets and economically important for in-

vestors. For example, Wermers (2000) concludes that transaction costs drag down net

mutual fund returns by as much as 0.8%, about the same impact as fund expenses.

The prevalence of turnover constraints for mutual funds also suggests the importance of

transaction costs (e.g., Clarke et al. (2002)). Prior studies on portfolio selection with

transaction costs assume that the transaction cost rate (TCR) at which an investor pays

the trading cost per share is independent of the trading speed.1 While this assumption is

reasonable for retail investors who trade a small number of shares, it does not represent

well the transaction cost structure faced by large institutional investors, because they

consume a significant portion of market liquidity and thus the effective TCR they face

can increase significantly with trading speeds (e.g., Keim and Madhavan (1996), Dufour

and Engle (2000), Almgren et al. (2005)).2

To fill this gap, in this paper, we propose a portfolio choice model for a financial

institution (“fund” hereafter) that aims to maximize its expected utility from final wealth

in the presence of speed-dependent transaction costs. The fund can invest in a risk-free

bond and a risky stock. Unlike most of the existing literature, the transaction cost

rate for the stock in our model is a general step function of the trading speed, which is

consistent with the cost structure reflected in typical limit order books and what is found

in the empirical literature (e.g., Niemeyer and Sandas (1993) and Weber and Rosenow

(2005)). In addition, because it is largely nonparametric, it is suitable for calibrations to

approximate a general function of the trading speed.3 As a result of the speed-dependent

1 See, for example, Constantinides (1986), Davis and Norman (1990), Shreve and Soner (1994),
Vayanos (1998), Liu and Loewenstein (2002), Liu (2004), Lo, Mamaysky, and Wang (2004), Lynch and
Tan (2010, 2011), Dai, Jin, and Liu (2011), Chen and Dai (2013), Garleanu and Pedersen (2013), Dai et
al. (2016), Chen et al. (2020).

2 For example, if a large investor trades against a limit order book or negotiates a block trade with
a counterparty, she will have to trade at worse prices as her trading size per unit of time increases to
compensate the liquidity providers for taking on increased risks.

3 For example, studies on price impact of large orders usually assume the magnitude of price impact
follows a power law. The step transaction cost rate function used in our model can be used to approximate
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transaction cost rates, the fund optimally chooses its trading speed dynamically to trade

off risk exposure, risk premium, and transaction costs.

We first apply the model to an optimal portfolio rebalancing problem of a fund that

maximizes its expected utility from the before-transaction-cost asset under management

(AUM) at a fixed terminal time. This is motivated by the fact that the compensation

of fund managers often increases linearly with the before-transaction-cost AUM. The

optimal trading strategy in this application displays the following decreasing trading

speed pattern: when the risk exposure is far from the optimal risk exposure in the

absence of transaction costs (i.e., the Merton line), the fund trades at an infinite speed

(i.e., performs a lump sum trade); when the risk exposure gets close enough to the Merton

line, the fund reduces trading speed in steps until the risk exposure is sufficiently close

to the Merton line so that the fund stops trading. This trading pattern is consistent

with the order-shredding behavior for large orders commonly observed in practice.4 In

contrast, in the existing literature on portfolio choice with linear transaction costs, it is

optimal to either trade the full amount at the infinite speed or not to trade at all, and

thus the existing literature cannot explain the order-shredding strategy.

The intuition behind the above results can be explained as follows. When choosing

its trading speed, the fund optimally trades off the risk exposure effect (i.e., bearing

the target level of the market price risk), the risk premium effect (i.e., earning higher

returns by holding stocks rather than holding cash), and the transaction cost effect (i.e.,

reducing transaction costs). The risk exposure effect makes the fund trade fast when the

exposure is far from the target position (i.e., the Merton line), the risk premium effect

increases the purchasing speed but reduces the selling speed, while the transaction cost

effect reduces the trading speed. Thus, the optimal trading speed depends on the time

well the power law function. In addition, if a large investor is trading against a limit order book, then the
transaction cost rate is exactly a step function of trading speed (see, e.g., Niemeyer and Sandas (1993)
and Weber and Rosenow (2005)).

4 See, for example, Chan and Lakonishok (1995), Keim and Madhavan (1995, 1996), and Kervel and
Menkveld (2019).
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to the investment horizon, the distance between the current position and the target, the

market liquidity, the expected return, and the volatility. When the fund over-invests in

the stock, it would like to sell to reduce risk exposure as soon as possible, but because

transaction cost rates increase with the trading speed, the fund’s optimal selling speed

is determined by the balance between the benefit and the cost. In particular, it depends

on the degree of overinvestment and the number of shares to sell in order to reach an

optimal exposure. The more the fund overinvests, the stronger the exposure effect, and

hence the faster the fund should sell. Similar intuition applies to the case where the fund

underinvests in the stock.

We then apply the model to an optimal liquidation/acquisition problem of a financial

institution. This application is motivated by the observation that institutional investors

often need to trade a large number of shares by a certain date in markets where liq-

uidity is limited and trading is costly5 and that the related literature typically assumes

special functional forms for the transaction cost rates that may not represent well the

transaction cost structure in practice.6 Thus, it is important to understand how financial

institutions should optimally execute large trades in these markets where the transaction

cost structure is not well captured by the existing functional forms considered in the

literature.

In particular, we consider a fund that needs to liquidate or acquire a large number

of shares of a risky asset by a fixed date.7 The optimal liquidation/acquisition strategy

implied by our model can be described as follows. When the fund’s position is far away

from the target, it is optimal for the fund to first trade a lump sum of the shares (i.e.,

5 Even for relatively liquid markets, significant cost incurred by large block trading has also been
found. See, for example, Biais, Hillion, and Spatt (1995), Almgren et al. (2005), and Coval and Stafford
(2007). For an estimate of the effective trading cost incurred by institutional investors, see, for example,
Chan and Lakonishok (1997).

6 See, for example, Almgren and Chriss (2000), Ting, Warachka, and Zhao (2007), and Gatheral,
Schied and Slynko (2012).

7 Specifically, as an example, we assume the fund’s target is to liquidate (or acquire) 1 million shares
of a small cap stock in a week.
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at an infinite speed), then at the highest finite speed, then at a lower speed, and so on,

and finally liquidate/acquire all the remaining shares (if any) on the terminal date to

reach the target. Thus, the optimal execution strategy also displays the order-shredding

pattern as in the optimal rebalancing problem.8 Loosely speaking, when the number of

shares to be liquidated/acquired is large, the optimal trading speed implied by our model

is a U-shape: trading fast first, then slow, and then fast again. These results also apply

to the optimal trading of informed traders.

The economic forces behind the above results for the optimal liquidation/acquisition

problem are similar to those for the optimal portfolio rebalancing problem. We take the

optimal liquidation problem as an example. When the number of shares remaining is too

large relative to the target, the risk exposure effect dominates the transaction cost effect

and the risk premium effect, and thus the fund sells fast. As the distance from the target

decreases, the risk exposure effect decreases, and thus the fund decreases its trading speed

to reduce the transaction cost payment and earns the higher expected return along the

way. Different from the optimal rebalancing problem, there is a target level that the fund

must achieve on the terminal date. As a result, when the time-to-horizon is short, the

fund starts to increase its trading speed to reach the target in time to save transaction

costs from a large lump sum trade at the terminal date.9 In contrast, in the optimal

rebalancing problem, the fund does not have such a target level to achieve and thus its

trading speed does not increase as the time-to-horizon shrinks.10

We also calculate the costs incurred from adopting some suboptimal trading strate-

gies. For the optimal portfolio rebalancing problem, we show that assuming a constant

8 If, on the other hand, the fund has an initial position close to the target or the fund is risk-neutral
(i.e., it maximizes expected net revenue from liquidation or minimizes expected net cost of acquisition),
it can be optimal to directly start trading at a finite speed to reduce the transaction costs.

9 If the risk premium effect dominates, it can even be optimal to trade against the intended target
when the time-to-horizon is long and the market condition is favorable. For example, purchasing shares
before the terminal date can be optimal in a liquidation program if the stock price is sufficiently low.

10 If the fund manager’s compensation was based on the after-liquidation AUM at the investment
horizon, then it would also increase trading speed towards the end of the horizon.
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transaction cost rate, as does the existing literature, can be costly for a fund that aims to

maximize its expected utility from the final wealth. For example, in our numerical analy-

sis, for a fund with an investment horizon of 5 years and zero initial stock allocation, such

an incorrect assumption can result in a certainty equivalent wealth loss (CEWL) of 104

basis points in terms of the fund’s initial wealth. For the optimal liquidation/acquisition

problem, as noted by Bertsimas and Lo (1998), some naive trading strategies, such as

trading at a constant speed over the execution horizon or liquidating/acquiring all posi-

tion instantly to avoid any market price risk, are not uncommon in practice. We find,

for example, for a relatively risk-averse fund with an absolute risk aversion coefficient of

5× 10−6, when the fund aims at liquidating 1 million shares within one week, liquidation

at a constant speed can result in a loss of about 5,000 shares, while the immediate com-

plete liquidation can cost the fund about 4,000 shares.11 These results clearly suggest the

economic importance of adopting the optimal trading strategy.

Our optimal liquidation model nests a special case in which the fund’s objective is

to maximize its expected revenue from liquidation, because it is equivalent to assuming

the fund is risk neutral. Because a risk-neutral fund does not care about price risk, to

reduce transaction costs and earn stock risk premium, the fund tends to liquidate shares

faster only when the final horizon is approaching. This is in contrast to the risk-averse

fund which tends to liquidate faster at the beginning of the liquidation horizon. We find

that the risk-averse fund can achieve a substantially higher Sharpe ratio. This suggests

that the optimal liquidation strategy derived from our model can be useful for managing

revenue risk.

Beyond the analysis presented in this paper, we believe that the approach proposed

here can find potential applications in many interesting cases when transaction costs are

present. For example, how should a large investor optimally change positions in response

11 Note that these costs are accrued within a short period of one week, and they can be even larger if
the fund’s trading horizon becomes longer.
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to changing market conditions? How should a fund liquidate large blocks of managed

assets to meet its investors’ redemption flows, or build up new large positions with its

investors’ inflows? How should a CEO liquidate her granted stocks when they vest?

The remainder of the paper proceeds as follows. We briefly review the studies related

to ours in the next section. We present our general theoretical framework in Section 3. In

Section 4, we apply our framework to an optimal portfolio-rebalancing problem and an

optimal liquidation/acquisition problem faced by a fund, and provide a comprehensive

analysis of the solutions. We conclude in Section 5. All proofs and technical details are

in the Appendix.

2 Related Literature

Our paper contributes to the large body of literature on optimal portfolio choice with

transaction costs (e.g., Constantinides (1986); Davis and Norman (1990); Shreve and

Soner (1994); Vayanos (1998); Liu and Loewenstein (2002); Liu (2004); Lo, Mamaysky,

and Wang (2004); Lynch and Tan (2010, 2011); Dai, Jin, and Liu (2011); Chen and Dai

(2013); Garleanu and Pedersen (2013); Dai et al. (2016); Chen et al. (2020)). These

studies usually assume the investor’s trading incurs transaction costs at a constant rate.

As a result, the optimal strategies only involve trading at an infinite speed or zero speed

(i.e., not trade at all).12 One implication of these models is that a large order is executed

in an all or nothing manner, which is inconsistent with the wide-spread order shredding

practice. Our paper generalizes existing models by allowing the transaction cost rates to

be dependent on trading speeds. As a result, our model predicts that a large order may

be divided into smaller orders and executed gradually over time. In addition, the model

is able to capture a more flexible transaction cost structure observed in the trading data.

12 Lynch and Tan (2011) allow the transaction cost to be state-dependent, but not trading speed–
dependent.
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Price impact can be an important source of trading costs. Although we do not at-

tempt to directly model the dynamics of price impact, our model can represent the case of

temporary price impact in an illiquid market. This is because (1) the magnitude of price

impact usually increases in the size of trade, and (2) if price reverts quickly after a trade,

then the realized cost due to price impact is similar to transaction costs. Therefore, our

paper is also related to the rich literature on optimal trade execution with price impact,

including Cuoco and Cvitanić (1998), Almgren and Chriss (2000), Ting, Warachka, and

Zhao (2007), Gatheral, Schied, and Slynko (2012), Obizhaeva and Wang (2013), Lokka

(2014), Gueant and Lehalle (2015), Kratz and Schoneborn (2015, 2018), Curato, Gather-

al, and Lillo (2017), and Tsoukalas, Wang, and Giesecke (2019). These studies typically

assume some parametric forms of the price impact function. By contrast, the transaction

cost rate function in our model is largely nonparametric and flexible. It allows for a

concave impact function for one range of trading speeds but a convex one for another

range. This makes our model more easily calibrated to data, where the realized cost

due to price impact typically displays this concave–convex shape (see, e.g., Niemeyer and

Sandas (1994), Keim and Madhavan (1997), and Weber and Rosenow (2005)). Unlike

some models with permanent or transient (but decaying at a finite rate) price impact

(e.g., Huberman and Stanzl (2004)), no price manipulation exists in our model, because

in our model trades only affect the transaction price for the large trader but do not affect

the market price.

The optimal liquidation/acquisition speed derived from our model is a U-shaped func-

tion of time. Obizhaeva and Wang (2013) examine optimal trading execution in a limit

order book with time-varying supply and demand. The optimal trade size implied by

their model is also a U-shaped function of time. However, the mechanism of their model

is fundamentally different from ours. In their model, the purpose of making a large trade

at the initial time is to push the order distribution away from its steady state so that

liquidity providers can be induced to trade. By comparison, in our model, the purpose
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of conducting a large initial trade is to achieve a certain desirable risk exposure to the

risky asset as soon as possible. In addition, in Obizhaeva and Wang’s (2013) model, after

the initial large trade, an investor makes another large trade only at the terminal time to

reach the target. In contrast, in our model, it can be optimal to increase trading speed

before the terminal date, as this allows the fund to reduce transaction costs that would

potentially be incurred by a final lump sum trade.

3 The General Framework

In this section, we describe our general framework.

3.1 Assets and Transaction Cost Structure

Throughout this paper we assume a complete probability space (Ω,F , P ) on which a

filtration {Ft} is defined. We consider a financial institution (fund) that can invest in

two assets. The first asset (“the bond” hereinafter) is a money market account growing at

a continuously compounded, constant rate of r. The second asset (“the stock” hereinafter)

is risky. The stock price St follows

dSt = µStdt+ σStdwt, (1)

where constants µ is the expected return and σ > 0 is the volatility, and wt is a standard

Brownian motion process adapted to the filtration {Ft}.

We assume that the fund does not have private information about the stock and the

stock market liquidity is limited. Unlike the existing literature, we allow the transaction

cost rate to be increasing in the fund’s trading speed, measured by the number of shares

traded per unit of time. However, because the fund does not have private information

about the fundamentals of the stock, its trades do not have any permanent price impact.
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In the presence of transaction cost to be modeled below, the fund’s trading strategy

can be characterized by two nondecreasing, right continuous adapted processes Dt and It,

with D0= = I0− = 0, representing the cumulative number of shares sold and purchased

up to time t, respectively. We assume that to purchase dIt shares of the stock, the fund

has to pay a total dollar amount of

(
1 +

n1∑
i=0

(
θi1{dIt>ηidt}

))
StdIt, (2)

where n1 ≥ 0 is a nonnegative integer; 0 = η0 < η1 < ... < ηn1 < ∞ represents

the sequence of the “threshold” purchasing speeds, beyond which purchasing shares will

incur transaction costs at greater rates; the vector (θ1, ..., θn1), with θj ≥ 0 and θ ≡∑n1

j=0 θj < ∞, measures the magnitude of transaction cost incurred by purchasing; and∑i
j=0 θj represents the transaction cost rate when the fund’s purchasing speed satisfies

ηidt < dIt ≤ ηi+1dt. Similarly, we assume that to sell dDt shares of the stock, the fund

receives a net proceed of

(
1−

n2∑
i=0

(
αi1{dDt>ξidt}

))
StdDt, (3)

where n2 ≥ 0 is a nonnegative integer; 0 = ξ0 < ξ1 < ... < ξn2 < ∞ represents the

sequence of the “threshold” selling speeds, beyond which selling will incur transaction cost

at greater rates; the vector (α1, ..., αn2), with αj ≥ 0 and α ≡
∑n2

j=0 αj < 1, measures the

magnitude of transaction cost incurred by selling; and
∑i

j=0 αj represents the transaction

cost rate when the fund’s selling speed satisfies ξidt < dDt ≤ ξi+1dt.
13

Discussion of the Model. The piecewise linear transaction cost structure with pos-

itive cost coefficients stated above implies positive monotonicity of the transaction cost

13 (1 − α0)St and (1 + θ0)St represent the bid and ask, respectively. We show later that, although
the fund can trade at all nonnegative speeds, the optimal strategy will only involve trading at these
“threshold” speeds.

9



rate in the trading speed, which is consistent with all the empirical findings on trading

cost patterns.14 In addition, the transaction cost function is largely nonparametric, and

thus can be calibrated to approximate any monotonic transaction cost structure. With

this generality, we do not need to assume a constant or concave or convex cost structure,

as the existing literature does. In particular, our model can be applied to cases where

transaction cost is convex in a range but concave in a different range, as shown by the

empirical literature.15

Our model generalizes the existing portfolio choice models with proportional transac-

tion costs, such as Davis and Norman (1990) and Liu and Loewenstein (2002), because

effectively, these papers only allow either an infinite speed or a zero speed. If we set

n1 = n2 = 0 and α0 + θ0 > 0, then our model reduces to the standard proportional

transaction cost model. If n1 = n2 = 0 and α0 = θ0 = 0, then our model further reduces

to the standard Merton model with no friction (e.g., Merton (1971)). Our model also

generalizes portfolio choice models with a finite trading speed, such as Longstaff (2001),

to include multiple trading speeds and corresponding transaction costs.

3.2 The Trading Problem and Solution Approach

Let xt be the dollar amount invested in the bond, and yt be the number of stock shares

held by the fund, both at time t. When θ + α > 0, the above model gives rise to the

following equations that govern the evolution of xt and yt:

dxt = rxt−dt−

(
1 +

n1∑
i=0

θi1{dIt>ηidt}

)
StdIt +

(
1−

n2∑
i=0

αi1{dDt>ξidt}

)
StdDt, (4)

dyt = dIt − dDt. (5)

14 It can be easily shown that if transaction cost decreases in the trading speed, the fund will always
trade at the speed that corresponds to the lowest transaction cost, and therefore one can ignore the
speeds at which the transaction cost is decreasing without loss of generality.

15 In the baseline calibration that we adopt from Keim and Madhavan (1997), the transaction cost
rates are concave for low speeds and convex for high speeds. See the analyses in Section 4.
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Given the initial positions and stock price (x0−, y0−, S0), the fund’s problem is to choose

the optimal trading strategies (I∗, D∗) ≡ {(I∗t , D∗t ) : 0 ≤ t ≤ T}, among all admissible

trading strategies,16 to maximize the expected utility derived from the wealth level at

time T , that is,

E [u(φ(xT , yT , ST ))] , (6)

subject to budget constraints (4), (5), and stock price evolution (1), where u(·) is an

increasing and concave utility function, and φ(xT , yT , ST ) is the fund’s terminal wealth

level.17

We denote the fund’s value function as V (x, y, S, t). Then, the associated Hamilton-

Jacobi-Bellman (HJB) equation can be characterized as follows. When it is optimal to

buy the stock at an infinite speed (i.e., buy a lump sum of shares at once), using an

argument similar to Shreve and Soner (1994), we have

Vy − (1 + θ)SVx = 0. (7)

Similarly, when it is optimal to sell the stock at an infinite speed (i.e., sell a lump sum

of shares at once), we have

(1− α)SVx − Vy = 0. (8)

When it is optimal to trade at a finite speed (including the zero speed), we let dIt = itdt

and dDt = dtdt, with 0 ≤ it ≤ ηn1 and 0 ≤ dt ≤ ξn2 . In this case, we have

MV + sup
0≤i≤ηn1

[Vy−(1+

n1−1∑
j=0

θj1{i>ηj})SVx]i+ sup
0≤d≤ξn2

[(1−
n2−1∑
j=0

αj1{d>ξj})SVx−Vy]d = 0, (9)

16 Here, admissible trading strategies refer to those that preclude arbitrage opportunity.
17 We do not specify the functional form of φ(x, y, S) at this moment. It will be specified in concrete

applications later. Moreover, our model can be extended to the case with intertemporal consumption.
The inclusion of intertemporal consumption may decrease the transaction costs paid at the terminal
date, but would not change our qualitative results. Therefore, we focus our analyses on the simpler case
without consumption to reveal the fundamental trade-off between speedy trading and trading cost.
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where the supremum over i and d indicates that the fund can optimally choose any buying

speed in [0, ηn1 ] and any selling speed in [0, ξn2 ] (not necessarily the threshold speeds),

and

MV = rxVx + µSVS +
1

2
σ2S2VSS + Vt. (10)

Equations (7), (8), and (9) form a linear complementarity problem (LCP). It is con-

venient for later analysis to rewrite this LCP in the following compact form

max

{
MV + sup

0≤i≤ηn1

[Vy − (1 +

n1−1∑
j=0

θj1{i>ηj})SVx]i

+ sup
0≤d≤ξn2

[(1−
n2−1∑
j=0

αj1{d>ξj})SVx − Vy]d,

Vy − (1 + θ)SVx, (1− α)SVx − Vy
}

= 0. (11)

Lastly, the value function also satisfies the following terminal condition

V (x, y, S, T ) = u(φ(x, y, S)). (12)

Identify the Optimal Trading Speed. Now, we discuss how to identify the optimal

trading speed, given the solution to the HJB equations (11)–(12). Intuitively, conditional

on trading, the fund should choose the trading speed that maximizes the marginal utility

gains. Therefore, the procedure of finding the optimal selling or buying strategy (D∗, I∗)

involves a linear search that can be formally described as follows: First, if Vy−(1+θ)SVx =

0, then it is optimal to buy at infinite speed. On the other hand, if there exists an integer

k1 such that 1 ≤ k1 ≤ n1 and

(1 +

k1−1∑
j=0

θj)SVx ≤ Vy < (1 +

k1∑
j=0

θj)SVx, (13)
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then i∗t = ηk∗ , where

k∗ = arg max
1≤k≤k1

{[
Vy − (1 +

k−1∑
j=0

θj)SVx

]
ηk

}
. (14)

This is because inequality (13) implies that the fund should not buy stock shares at any

speed higher than ηk1 , and thus it should choose a speed between 0 and ηk1 that generates

maximal utility gains, as indicated by equation (14). Finally, the fund should not buy at

all, if Vy − (1 + θ0)SVx < 0.

Similarly, it is optimal to sell at infinite speed if −Vy + (1 − α)SVx = 0. Otherwise,

if there exists an integer k2 such that 1 ≤ k2 ≤ n2 and

(1−
k2∑
j=0

αj)SVx < Vy ≤ (1−
k2−1∑
j=0

αj)SVx, (15)

then d∗t = ξk∗ , where

k∗ = arg max
1≤k≤k2

{[
−Vy + (1−

k−1∑
j=0

αj)SVx

]
ξk

}
. (16)

The fund should not sell, if −Vy + (1− α0)SVx < 0.

Next, we provide a verification theorem that formally characterizes the optimal strat-

egy and verifies its optimality.

Proposition 1. (Verification theorem.) Let v(x, y, S, t) be a sufficiently smooth solution

to equation (11) with the terminal condition (12). Define the following regions:

URS = {(x, y, S, t) : (1− α)Svx − vy = 0}, (17)

RSk = {(x, y, S, t) :Mv + [(1−
k−1∑
j=0

αj)Svx − vy]ξk = 0}, (18)

URB = {(x, y, S, t) : vy − (1 + θ)Svx = 0}, (19)

RSk = {(x, y, S, t) :Mv + [vy − (1 +
k−1∑
j=0

θj)Svx]ηk = 0}, (20)
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where the operator M is defined in (10).

Given the initial bond position x0, the initial number of stock shares y0, and the

initial stock price S0, let d̂ = inf{d ≥ 0 : (x0 + (1 − α)d, y0 − d, S0, 0) /∈ int(URS)} and

î = inf{i ≥ 0 : (x0−(1+θ)i, y0 +i, S0, 0) /∈ int(UBS)}, where int(A) refers to the interior

of set A. Then, the optimal trading strategy is

D∗t = D∞t +Df
t , I∗t = I∞t + Ift , (21)

where

D∞t = d̂+

∫ t

0

1{(xu,yu,Su,u)∈∂URS}dD
∞
t , (22)

Df
t =

∫ t

0

n2∑
j=1

1{(xu,yu,Su,u)∈RSj}ξjdt, (23)

I∞t = î+

∫ t

0

1{(xu,yu,Su,u)∈∂URB}dI
∞
t , (24)

Ift =

∫ t

0

n1∑
j=1

1{(xu,yu,Su,u)∈RBj}ηjdt. (25)

Moreover, v(x, y, S, t) coincides with the value function V (x, y, S, t).

In Proposition 1, d̂ (̂i, resp.) is the initial lump sum sale (purchase, resp.). It is

worth noting that the optimal trading policy implied by our model involves two distinct

components: the singular control component (I∞t , D
∞
t ), which characterizes trading at

infinite speed, and the regular control component (Ift , D
f
t ), which characterizes trading at

a finite speed. This is in contrast to the portfolio choice model with constant proportional

transaction cost rates, in which the optimal trading policy only consists of the singular

control component. Moreover, Proposition 1 suggests that multiple free boundaries can

arise endogenously to separate trading regions with different trading speeds.

So far, we have proposed a general framework for studying optimal portfolio choice

problems with speed-dependent transaction cost rates. Our setting is mostly relevant for
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financial institutions, which tend to trade in large quantities, making the variations in

the transaction cost rates important. In the next section, we examine two applications

of our framework.

4 Applications

We consider optimal trading of a small cap stock with 25 million shares outstanding.

We adopt the estimates of trading cost for small cap stocks, at NYSE and AMEX, in

Keim and Madhavan (1997). To reasonably reflect the decline in stock trading costs in

the recent years, we reduce Keim and Madhavan (1997)’s estimate by half.18 Specifically,

there are four levels of transaction cost rates for purchase, with n1 = 3, (θ0, θ1, θ2, θ3) =

(18, 6, 10, 41) bps (basis points), and (η1, η2, η3, η4) = (0, 5.93, 32.24, 209.75) (annual vol-

ume, in millions). For sale, there are three levels of transaction cost rates, with n2 = 2,

(α0, α1, α2) = (33, 2, 49) bps, and (ξ1, ξ2, ξ3) = (0, 62.63, 287.21).19 This implies that, for

example, in order to purchase stock shares at a speed of 24,000 (resp. 128,000) shares per

day, the fund needs to pay a transaction cost of 18 (resp. 24) bps, and so on. Note that

the transaction cost rate is concave for low trading speeds and convex for high trading

speeds, which cannot be captured by the power law commonly assumed in prior studies.

Consistent with the existing empirical evidence for a typical small cap stock, we

assume that the stock has an expected return of µ = 0.1 and a return volatility of

18 We will show that a higher level of trading cost will yield stronger results.
19 Keim and Madhavan (1997) estimate trading costs for trade with different sizes, which are calculated

as dividing the number of shares traded by the number of outstanding shares. They also report that the
average time period it takes to finish a trade is 1.7 days, which allows us to convert the size measure
into the speed measure. Also note that according to the estimates in Keim and Madhavan (1997), selling
shares at a speed below 11.86 million shares per annum incurs a higher transaction cost rate than selling
shares at a speed of 62.63 million shares per annum does. Hence, it is never optimal to sell at the lower
speed.
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Table 1: Default Parameter Values

This table summarizes our baseline parameter values for asset returns, admissible trading speeds,
and transaction costs.

Parameter Symbol Baseline value

Risk-free rate r 0.02
Expected return of the stock µ 0.1
Volatility of stock returns σ 0.2
Speed for buying (million shares per annum) (η0, η1, η2, η3, η4) (0, 5.93, 32.24, 209.75, ∞)
Speed for selling (million shares per annum) (ξ0, ξ1, ξ2, ξ3) (0, 62.63, 287.21, ∞)
Marginal transaction cost for buying (bps) (θ0, θ1, θ2, θ3) (18, 6, 10, 41)
Marginal transaction cost for selling (bps) (α0, α1, α2) (33, 2, 49)

σ = 0.2. We set the risk-free rate at r = 0.02.20 We summarize these parameter values

in Table 1.21

Due to the presence of transaction cost, our model cannot be solved in closed-form.

As a result, we solve both of the following applications numerically.

4.1 Application 1: Optimal Portfolio Rebalancing

In this subsection, we consider a case in which a fund aims to maximize its expected

utility from before-transaction-cost wealth (i.e., asset under management) at time T .

This is motivated by the common practice of paying a fund manager in an amount that

is linear in the mark-to-market value of the AUM before transaction cost. Let the wealth

function be φ(x, y, S) = x+yS. We assume the fund has a constant relative risk aversion

(CRRA) utility function with a relative risk aversion (RRA) coefficient γ > 0, that is,

u(W ) =


W 1−γ

1−γ , if γ 6= 1,

lnW, if γ = 1.

(26)

We also impose the solvency condition that the φ(xt, yt, St) ≥ 0 for all t ≥ 0.

20 Since µ > r, it is never optimal to sell short the stock.
21 We demonstrate our main results with these parameter values. However, our results hold for a wide

range of parameter values.
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In this application, we assume the fund maximizes the expected continuously com-

pounded return, which is equivalent to assuming an RRA coefficient of γ = 1. Moreover,

we assume the fund has an investment horizon of 5 years. The detailed description of the

solution method is presented in Appendix B.

4.1.1 Optimal Rebalancing Strategy

The Case without Transaction Cost. We begin our analysis with the case in which

the market is perfectly liquid. In other words, there is no transaction cost for any trading

speed (i.e., α = θ = 0). This analysis reveals the optimal exposure to the risky asset

that allows the fund to extract the excess return of the asset while controlling for price

risk. In this case, it is well known that the optimal strategy is to continuously rebalance

the portfolio to maintain a constant stock–wealth ratio of π∗ = µ−r
γσ2 (see, e.g., Merton

(1971)), which we term the “Merton line” for the fund. In this case, the fund only trades

off expected return and market price risk in deciding how many shares to hold before the

terminal time.

The Case with Speed-Dependent Transaction Cost Rates. When transaction

cost is present, it is optimal to rebalance the portfolio only when the portfolio composition

deviates sufficiently away from the Merton line such that the benefit from rebalancing

exceeds the incurred transaction cost. Thus, the optimal trading speed in our model is

a function of the fund’s stock allocation (i.e., π ≡ yS/(x + yS)) and the stock price–

gross wealth ratio (i.e., b ≡ S/(x+ yS)). The variable π measures the fraction of wealth

allocated to the stock, and the variable b measures each share’s contribution to the fund’s

wealth, which is relevant because the transaction cost depends on the number of shares

traded per unit of time.

In the presence of transaction costs, when choosing its trading speed, the fund opti-

mally trades off the risk exposure effect (i.e., achieving optimal exposure to the market
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price risk), the risk premium effect (i.e., earning higher returns by holding stocks rather

than holding cash), and the transaction cost effect (i.e., reducing transaction costs). The

risk exposure effect makes the fund trade fast when the exposure is different from the

target position (i.e., the Merton line); the risk premium effect increases the purchasing

speed but reduces the selling speed, while the transaction cost effect reduces the trading

speed. These effects jointly determine the optimal speed at which the fund should move

its portfolio towards the target position.

When the fund’s exposure to the stock is too high, it would like to sell stock shares

to reduce risk exposure as soon as possible, but transaction cost rates increase with

the trading speed, and therefore the fund’s optimal selling speed is determined by the

trade-offs between the costs and the benefits. In particular, the optimal trading speed

depends on the degree of excess exposure and the number of shares required to sell in

order to reach an optimal exposure. The greater the excess exposure, the stronger the

exposure effect, and hence the faster the fund should sell. Similarly, when the fund’s risk

exposure is too low, it would like to increase risk exposure as soon as possible for a greater

risk premium, but needs to trade off the greater transaction cost from trading too fast.

Following this intuition, we postulate and later verify that, at each point in time, the

domain S =
{

(b, π) : b > 0, π ≥ 0
}

splits into at most n1+n2+3 regions: an unrestrained

Buy region in which the fund purchases shares at an infinite speed, n1 restrained Buy

regions in which the fund purchases shares at a finite speed, a No-Transaction region in

which the fund does not trade, n2 restrained Sell regions in which the fund sells shares at

a finite speed, and an unrestrained Sell region in which the fund sells shares at an infinite

speed.22 These regions are separated by at most n1 +n2 +2 free boundaries endogenously

determined by the solution to Equation (A-5).

22 Note that some of these regions can be empty sets. In this case, trading at the corresponding speeds
is not optimal.
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Figure 1: Optimal Trading Boundaries

This figure shows the optimal trading boundaries of the fund, at time t = 0 (left panel) and
t = 4.9 (right panel). Baseline parameter values: r = 0.02, µ = 0.1, σ = 0.2, γ = 1, T = 5,
n1 = 3, n2 = 2, (θ0, θ1, θ2, θ3) = (18, 6, 10, 41) bps, (α0, α1, α2) = (33, 2, 49) bps, (η1, η2, η3, η4) =
(0, 5.93, 32.24, 209.75) millions, and (ξ1, ξ2, ξ3) = (0, 62.63, 287.21) millions.

In Figure 1, we plot the free boundaries that separate regions with different optimal

trading speeds. The left panel shows the case at the initial time t = 0. When the

stock allocation is sufficiently higher than the Merton line (e.g., lies in the region labeled

“URS”), it is optimal for the fund to sell stock shares at an infinite speed, which instantly

brings the fund’s stock allocation to the upper boundary of the region labeled “RS2,”

signified by the arrow from A to B. After such a lump sum trade, it is optimal for the

fund to sell stock shares at the highest finite speed until its stock allocation reaches the

upper boundary of the first restrained Sell region labeled “RS1” (i.e., the solid yellow

line), in which the fund should further reduce its selling speed to the second highest finite

speed to reduce the transaction cost. Finally, the fund should stop selling when its stock

allocation reaches the upper boundary of the No-Transaction region labeled “NTR” (i.e.,

the solid purple line). The NTR arises because maintaining the stock allocation within a

tolerable range enables the fund to extract the positive excess return offered by the stock
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and avoid transaction costs while keeping the exposure to stock price risk in a certain

range.

Similarly, the fund needs to purchase stock shares when its stock allocation is suffi-

ciently lower than the Merton line. This is driven by the fund’s incentive to extract risk

premium from the stock. In the region labeled “URB”, it is optimal to purchase shares

at an infinite speed, as labeled by the arrow from C to D. Afterwards, it is optimal to

purchase shares at the highest finite speed, then the second highest finite speed, and so

on, until the stock allocation reaches the lower boundary of the No-Transaction region

(i.e., the dashed purple line).

It can be observed from Figure 1 that the free boundaries are functions of the price–

fund wealth ratio. The smaller the ratio is, the wider the unconstrained trading regions

are. This is intuitive: a smaller price–fund wealth ratio implies a larger amount of shares

to be traded to rebalance the fund’s portfolio; hence, the fund has a stronger need to

trade quickly.

In Figure 1, we also show the optimal trading boundaries in a setting similar to Liu and

Loewenstein (2002), in which the transaction cost rates are constant (i.e., independent

of the fund’s trading speed). In this case, there is only one unrestrained sell region

inside which it is optimal to sell stock shares at an infinite speed, one unrestrained

buy region inside which it is optimal to buy stock shares at an infinite speed, and a

no-transaction region inside which it is optimal not to trade. Because the boundaries

between these regions are independent of the share price–wealth ratio, we show these

boundaries with two black lines in Figure 1. We find that, compared with the model

with constant transaction cost rates, our model implies smaller unrestrained buy and sell

regions; however, the no transaction region is smaller. This is intuitive: the presence of

speed-dependent transaction costs makes it optimal for the fund to break large lump sum

trades into smaller ones so that fewer transaction costs will be incurred; meanwhile, lower
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transaction costs incurred by smaller trades allow the fund to tilt its portfolio composition

closer to the Merton line.

The optimal trading boundaries exhibit little time-variation, except when the terminal

time is approached. In the right panel of Figure 1, we show the optimal trading regions

at time t = 4.9 years, which is close to the 5-year horizon. As time approaches the final

horizon, the No-Transaction region (NTR) expands, and the trading regions shrink. The

reason is that prior to the terminal time, the risk premium and risk exposure effect tend

to vanish, and the fund should make less transactions to save transaction costs.

4.1.2 Utility Loss from Assuming Constant Transaction Cost Rates

If the fund mistakenly assumes the transaction cost rates are constant, then it will only

trade at an infinite speed when it rebalances its portfolio, as described in Liu and Loewen-

stein (2002). Because such a rebalancing strategy is suboptimal in our model, adopting

it will be costly. In Figure 2, we report results for the certainty equivalent wealth loss

(CEWL) from wrongly assuming constant transaction cost rates of α =
∑n2

i=1 αi = 84 bps

and θ =
∑n1

i=1 θi = 75 bps. The CEWL ∆ is calculated through the following equation

V (x0 −∆(x0 + y0S0), y0, S0, 0) = V0(x0, y0, S0, 0), (27)

where V0(x, y, S, t) is the fund’s value function if it only trades at the infinite speed. ∆

can be interpreted as the fraction of portfolio value that the fund is willing to give up to

have access to the optimal trading strategy.23

In Figure 2, we plot the CEWL against the fund’s investment horizon, ranging from

1 to 5 years, for two levels of the transaction cost rates and two types of initial stock

allocation. Figure 2 suggests that ignoring the variations in transaction cost rates can

be costly to the fund, even when these rates are small. For instance, Panel B suggests

23 When calculating CEWL using equation (27), we assume a share price–fund wealth ratio of b0 =
S0

x0+y0S0
= 10−6. Using other initial values of b0 yields similar results.
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Figure 2: Certainty Equivalent Wealth Loss

This figure shows the fund’s certainty equivalent wealth loss if it mistakenly assumes constant
transaction cost rates. Baseline parameter values: r = 0.02, µ = 0.1, σ = 0.2, γ = 1, T = 5,
n1 = 3, n2 = 2, (θ0, θ1, θ2, θ3) = (18, 6, 10, 41) bps, (α0, α1, α2) = (33, 2, 49) bps, (η1, η2, η3, η4) =
(0, 5.93, 32.24, 209.75) millions, and (ξ1, ξ2, ξ3) = (0, 62.63, 287.21) millions.

that in our base case, mistakenly assuming constant transaction cost rates will result in

a loss of about 104 bps in terms of the fund’s initial wealth if the initial stock allocation

is zero. This finding explains why breaking a larger order into multiple smaller orders

(“shredding”) is important, as we commonly observe in practice.

In general, the CEWL increases in the investment horizon. This is intuitive because a

longer horizon implies more chances of rebalancing; thus, the fund will incur more losses

from adopting a suboptimal rebalancing strategy. Figure 2 also suggests that the utility

losses can be much greater with higher transaction cost rates. Therefore, adopting the

optimal rebalancing strategy can be particularly important for funds that invest in more

illiquid assets.
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4.2 Application 2: Optimal Liquidation and Acquisition

In this subsection, we consider a case in which a fund needs to liquidate or acquire a

certain number of stock shares by some fixed finite time T > 0. In order to treat the

optimal liquidation and optimal acquisition problems in a unified framework, we use the

following functional form for the terminal wealth level

φ(x, y, S) = x+ yS − α(y∗T − y)−S − θ(y∗T − y)+S. (28)

In equation (28), y∗T is the fund’s target asset position at time T , with y∗T = 0 and y0 = N

for the case where the fund needs to liquidate N shares by time T , and y∗T = N and y0 = 0

for the case where the fund needs to acquire N shares by time T . If yT is less (greater)

than the target y∗T , then the fund must buy (sell) the difference at an infinite speed to

reach y∗T , and pay the corresponding transaction cost.24

For preferences that have infinite marginal utility at zero wealth (e.g., CRRA pref-

erence), given a feasible but finite amount of initial capital, the only feasible acquisition

strategy is to purchase all the shares immediately if the stock price is unbounded above

(e.g., the geometric Brownian motion stock price process (1). Therefore, to make the

problem nontrivial, we assume that the fund has a CARA preference, namely,

u(W ) = −e−βW , (29)

where β > 0 is the fund’s constant absolute risk aversion coefficient. Using the CARA

preference still reflects the trade-off among price risk, expected return, and transaction

cost. It also captures the idea that the fund may care about not only the expected revenue

24 Note that our model allows the fund to trade against the intended target when market conditions
are favorable. On the other hand, in our model we can also forbid trading against the intended target
by imposing the no-purchase constraint It = 0 for the liquidation case (resp. no-sale constraint Dt = 0
for the acquisition case) for any t. See later analysis.
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from the liquidation or the expected cost from the purchase, but also the risk of having

low revenue or high cost in some states of the world.25

We focus on the optimal liquidation case because this case is more commonly stud-

ied in the literature, which makes it more meaningful for comparisons. The optimal

acquisition case is examined later in Section 4.2.4 to show the qualitative similarity.

We assume the fund aims at liquidating 1 million shares of the stock in five trading

days, that is, y0 = 1 million shares and T = 5/252 years. We set the initial stock price

at S0 = 10 dollars. We assume the fund has an absolute risk aversion coefficient of

β = 5× 10−7.26

Note that the fund can choose to approach its intended target at a constant interme-

diate speed of 0.2 million shares per day. Thus, liquidating at a speed faster than this

intermediate speed reveals the fund’s incentive to control price risk, while liquidating

at a speed slower than this intermediate speed indicates the fund’s incentive to reduce

transaction cost.

We discretize time into hours, that is, ∆t = 1 hour. With CARA utility, we choose yt

and St as the effective state variables. The details of the solution method are presented

in Appendix C.

4.2.1 Optimal Trading Policies

The No-Transaction Cost Case. Using a dynamic programming approach similar

to that of Merton (1971), it can be shown that the optimal trading strategy of the fund

is to invest a constant dollar amount (with risk-free discounting) in the stock until time

T , when the entire stock position is liquidated. Using the notation of our model, the

25 CARA preferences with an unbounded stock price, as in our model, provide qualitatively the same
optimal acquisition strategy as other preferences with infinite marginal utility at zero wealth (e.g., CRRA
preferences) and a bounded stock price. In Appendix D, we present the results obtained from an optimal
liquidation model with a CRRA utility function to show the robustness of our results.

26 This seemingly small absolute risk aversion can translate into a large relative risk aversion when
the value of the stock that needs to be liquidated or purchased is large. For example, at a value level of
10 million dollars, the corresponding relative risk aversion coefficient becomes 5.
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optimal number of shares invested in the stock at time t, that is, y∗t , before liquidation

time T is equal to

y∗t =
µ− r
βσ2St

e−r(T−t). (30)

The optimal trading strategy can be described as follows: the fund first sells a lump

sum of the stock shares to reach the initial optimal position y∗0 = 399, 800 shares, and

then trades continuously (at an infinite speed) to maintain the above optimal number

of shares invested in the stock at each time t < T . At time T , the fund liquidates the

remaining shares.27 In what follows, we refer to the position specified by (30) as the

“Merton line” for CARA preference.

The Case with Transaction Cost. In the presence of transaction cost, similar to the

first application, we postulate that, at each point in time, the domain S =
{

(y, S) : y ≥

0, S > 0
}

splits into at most n1+n2+3 regions: an unrestrained Buy region, n1 restrained

Buy regions, a No-Transaction region, n2 restrained Sell regions, and an unrestrained Sell

region.

In Figure 3, we plot these optimal trading regions at three points in time: t = 0,

t = T/2, and t = T − ∆t. The Merton line in the absence of any transaction cost is

shown in the middle panel by the dotted black line. The meaning of these regions is

similar to that in our previous application. Figure 3 suggests that the trading boundaries

decrease over time, implying that, for a given number of remaining shares, the speed of

liquidation increases as time approaches the liquidation horizon. Interestingly, we find

that the NT region converges to zero when the liquidation date approaches (see, e.g.,

Panel C of Figure 3). This pattern does not show up in classic portfolio choice models

with transaction costs, such as Liu and Loewenstein (2002). This convergence suggests

27 Given the short liquidation horizon of 5 trading days, this optimal liquidation strategy can be
approximated by a 60% lump sum sale at the beginning and another 40% lump sum sale in the end.
We will shortly show that the optimal liquidation strategy is qualitatively different in the presence of
speed-dependent transaction cost.
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Figure 3: Optimal Trading Boundaries

This figure shows the optimal trading boundaries of the fund at three points in time: t = 0,
t = T/2, and t = T −∆t. Baseline parameter values: r = 0.02, µ = 0.1, σ = 0.2, β = 5× 10−7,
n1 = 3, n2 = 2, (θ0, θ1, θ2, θ3) = (18, 6, 10, 41) bps, (α0, α1, α2) = (33, 2, 49) bps, (η1, η2, η3, η4) =
(0, 5.93, 32.24, 209.75) millions, (ξ1, ξ2, ξ3) = (0, 62.63, 287.21) millions, and T = 5/252 years.

that, as the liquidation date approaches, the fund should liquidate as many shares as

possible at finite speed. This can reduce the amount of lump sum liquidation at terminal

date T , which would involve significantly greater transaction costs.

4.2.2 Expected Time to Reach a Target

In our model, the optimal trading speed depends on the fund’s remaining position to

liquidate, the fund’s risk preference, the stock’s risk-return profile, and the structure of

the transaction costs. In this section, we measure the fund’s average trading speed by

calculating the expected time it takes to liquidate a certain number of shares.28

28 We use this measure because the fund in our model can make lump sum trades at an infinite speed,
and the expected time measure can incorporate this situation. Specifically, if the fund trades at an
infinite speed so that its position jumps from one level to another, then the expected time to reach these
two levels is the same.
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Figure 4: Expected Time for Liquidation

This figure shows the expected time to liquidate a certain proportion of shares. Baseline pa-
rameter values: r = 0.02, µ = 0.1, σ = 0.2, β = 5 × 10−7, n1 = 3, n2 = 2, (θ0, θ1, θ2, θ3) =
(18, 6, 10, 41) bps, (α0, α1, α2) = (33, 2, 49) bps, (η1, η2, η3, η4) = (0, 5.93, 32.24, 209.75) millions,
(ξ1, ξ2, ξ3) = (0, 62.63, 287.21) millions, and T = 5/252 years.

Formally, for 0 ≤ κ ≤ 1, we define the following stopping time

τ lκ = min{t ≥ 0 : yt ≤ (1− κ)y0}, (31)

which is the first time the fund has already liquidated a fraction κ of its initial stock

position. We can then measure the fund’s average trading speed by calculating the

expected value E[τ lκ].
29

In Figure 4, we show the expected time to liquidate a certain fraction of the initial

position. Compared with the naive strategy of liquidating at a constant speed (depicted

by the red dashed line), the optimal liquidation strategy (depicted by the blue line) sells

shares at time-varying speeds to optimally trade off the market risk exposure and the

transaction costs. Note that the steeper the slope of the curve, the more slowly the fund

liquidates its position. Hence, Figure 4 indicates that the optimal liquidation strategy

is to first liquidate shares at a higher speed, then reduce the liquidation speed; as time

29 The approach to compute E[τ lκ] is presented in Appendix C.
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approaches the final horizon, the fund increases its liquidation speed again. In other

words, the fund’s optimal liquidation speed is a U-shaped function of time.

Obizhaeva and Wang (2013) examine optimal trading execution in a limit order book

with time-varying supply and demand. The optimal trade size implied by their model

also displays a similar U-shaped pattern. However, the mechanism of their model is

fundamentally different from ours. In their model, the purpose of making a large trade

at the initial time is to push the order distribution away from its steady state. This

could attract liquidity providers to trade against later. By comparison, in our model, the

purpose of trading quickly during early hours is to reduce the market price risk exposure

of the position. In Obizhaeva and Wang’s (2013) model, the purpose of making a large

trade at the terminal time is just to (mechanically) reach the target. In our model, a

lump-sum trade at the terminal date is not always optimal, because it can be optimal

to increase trading speed to reach the target before the terminal date, as this allows the

fund to reduce transaction costs potentially incurred by a final lump sum trade.30

In Figure 5, we show how the fund’s average trading speed changes with various model

parameters, including the stock’s expected return, the stock’s return volatility, the fund’s

risk aversion coefficient, and the magnitude of transaction cost rates. When the expected

return of the stock decreases or its volatility increases or the risk aversion level of the

fund increases, the fund is willing to invest less in the stock. As a result, the fund should

liquidate the stock at a higher speed. When the transaction cost rates faced by the fund

increase, it is optimal to liquidate at a lower speed at the beginning to save transaction

costs; however, it is not optimal to further reduce the trading speed (e.g., by stopping

trading) half way, because the fund needs to reach its target before the final time to avoid

a much costlier lump-sum trade. This explains why the optimal trading speed plotted in

Panel D exhibits less time-variation when the transaction cost rates increase.

30 The necessity of a lump-sum trade at the terminal date depends on model parameters. Generally,
the higher the Merton line or the slower the trading speeds, the more likely that a final lump-sum trade
is necessary.
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Figure 5: Expected Time for Liquidation: Comparative Statics

This figure shows the comparative statics results on the expected time to liquidate a certain
proportion of shares. Baseline parameter values: r = 0.02, µ = 0.1, σ = 0.2, β = 5 × 10−7,
n1 = 3, n2 = 2, (θ0, θ1, θ2, θ3) = (18, 6, 10, 41) bps, (α0, α1, α2) = (33, 2, 49) bps, (η1, η2, η3, η4) =
(0, 5.93, 32.24, 209.75) millions, (ξ1, ξ2, ξ3) = (0, 62.63, 287.21) millions, and T = 5/252 years.

4.2.3 Utility Loss from Adopting Naive Strategies

As noted by Bertsimas and Lo (1998), some naive liquidation strategies, such as liquidat-

ing at a constant speed over the execution horizon or liquidating all position instantly to

avoid any market price risk, are not uncommon in practice. In this section we examine

the welfare implication of adopting these naive liquidation strategies.

The constant speed strategy can be characterized by the following conditions

dIt = 0, dDt =
y0

T
dt, (32)

and the immediate complete liquidation strategy can be characterized by

dIt = 0, dD0 = y0 = N, dDt = 0,∀t > 0. (33)
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Figure 6: Certainty Equivalent Share Loss from Adopting Naive Strategies

This figure shows the certainty equivalent shares loss from adopting the naive liquidation s-
trategies. Baseline parameter values: r = 0.02, µ = 0.1, σ = 0.2, β = 5 × 10−7, n1 = 3,
n2 = 2, (θ0, θ1, θ2, θ3) = (18, 6, 10, 41) bps, (α0, α1, α2) = (33, 2, 49) bps, (η1, η2, η3, η4) =
(0, 5.93, 32.24, 209.75) millions, (ξ1, ξ2, ξ3) = (0, 62.63, 287.21) millions, and T = 5/252 years.

Therefore, both strategies are feasible but suboptimal in our model. We measure the

utility loss from adopting a particular naive liquidation strategy through the certainty

equivalent share loss (CESL) ∆1, which solves the following equation

V N(x0, y0, S0, 0) = V (x0, y0 −∆1, S0, 0), (34)

where V N(x, y, S, t) is the indirect utility function associated with a naive liquidation

strategy.

In Figure 6, we show the CESLs from adopting the naive strategies and how they

change with respect to the fund’s risk aversion coefficient. Intuitively, the constant speed

liquidation strategy exposes the fund to greater market price risk, while the instant com-

plete liquidation strategy incurs larger transaction costs. When the fund’s risk aversion

level is low, transaction costs tends to dominate market price risk. Thus, the constant

speed strategy is likely to be less costly to adopt than the instant liquidation strate-
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gy. The reverse is true when the fund is highly risk averse. Figure 6 confirms such an

intuition.

Figure 6 also suggests that the losses from adopting the naive strategies can be eco-

nomically large. For example, with a risk aversion coefficient of 5 × 10−6, the constant

liquidation speed strategy can result in a loss that accounts for 5,000 shares, while the

immediate complete liquidation can result in a loss that accounts for 4,000 shares. These

certainty equivalent cost calculations clearly show the economic importance of adopting

the optimal liquidation strategy.31

4.2.4 The Acquisition Case

In this subsection, we briefly analyze an optimal acquisition problem that can be impor-

tant in practice (e.g., acquiring toeholds for merger and acquisition purposes). In this

case, we assume the fund’s objective is to acquire y∗T = 1 million shares in one week.

In Figure 7, we show the optimal acquisition strategy of the fund. Panel A (B, C,

resp.) shows the optimal trading regions at t = 0 (T/2, T − ∆t, resp.). At t = 0,

the solution domain is split into four regions: a No-Transaction region (NTR), the first

restrained Buy region (RB1), the second restrained Buy region (RB2), and the third

restrained Buy region (RB3). Similar to the liquidation case, the Merton line represents

the optimal stock exposure absent any transaction costs. Panel A shows that the fund

does not purchase a lump sum at time 0.32 Instead, the fund buys at a speed of 0.83

million shares per day toward its target and starts to earn the risk premium. As the

fund acquires more shares, it decreases the purchasing speed to reduce transaction costs.

After the fund’s position enters the No-Transaction region, the fund does not acquire

more shares, even if its current position has not reached the target position yet. This is

31 The results are even stronger when the liquidation horizon is longer or when the transaction cost
effect is larger.

32 With a higher Merton line, however, the optimal acquisition strategy may require an initial lump
sum purchase.

31



5 10 15 20

Share Price

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
um

be
r 

of
 S

ha
re

s 
(M

ill
io

ns
)

Panel A: t=0

5 10 15 20

Share Price

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
um

be
r 

of
 S

ha
re

s 
(M

ill
io

ns
)

Panel B: t=T/2

5 10 15 20

Share Price

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
um

be
r 

of
 S

ha
re

s 
(M

ill
io

ns
)

Panel C: t=T- t

RB3

RB2

RB1

NTR

NTR

RB2

RB1

RB3

URB

RB3

Initial Position

Merton Line

Figure 7: Optimal Trading Boundaries: Acquisition Case

This figure shows the optimal trading boundaries of the fund when the fund’s objective is to
acquire y∗T = 1 million shares by time T . Baseline parameter values: r = 0.02, µ = 0.1, σ = 0.2,
β = 5 × 10−7, n1 = 3, n2 = 2, (θ0, θ1, θ2, θ3) = (18, 6, 10, 41) bps, (α0, α1, α2) = (33, 2, 49)
bps, (η1, η2, η3, η4) = (0, 5.93, 32.24, 209.75) millions, (ξ1, ξ2, ξ3) = (0, 62.63, 287.21) millions,
and T = 5/252 years.
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Figure 8: Expected Time for Acquisition

This figure shows the expected time required to acquire a certain proportion of the target
share. Baseline parameter values: r = 0.02, µ = 0.1, σ = 0.2, β = 5 × 10−7, n1 = 3,
n2 = 2, (θ0, θ1, θ2, θ3) = (18, 6, 10, 41) bps, (α0, α1, α2) = (33, 2, 49) bps, (η1, η2, η3, η4) =
(0, 5.93, 32.24, 209.75) millions, (ξ1, ξ2, ξ3) = (0, 62.63, 287.21) millions, and T = 5/252 years.

because the fund needs to control market price risk by avoiding too much exposure to

the asset during early periods.

Right before the terminal date t = T −∆t, an unrestrained Buy region (UBR) shows

up for sufficiently low stock exposures. This is because it is possible that the fund needs to

conduct a lump sum acquisition at the final date T , and doing part of such an acquisition

at T −∆t enables the fund to extract the expected return of the stock longer at the same

transaction costs. In addition, at t = T − ∆t, the third restrained Buy region becomes

much wider than at t = 0. This is because the fund needs to reach its target position

at the shorter remaining horizon. Thus, to save the transaction costs, it is better to

purchase as much as possible with a finite speed to reduce the amount that has to be

purchased at an infinite speed at T .

In Figure 8, we show the expected time required to acquire a certain fraction of the

target share. It demonstrates that the optimal acquisition strategy is to first acquire

shares at a higher speed, then reduce the acquisition speed; as time approaches the
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final horizon, the fund increases its acquisition speed again. This implies that, like the

liquidation case, the optimal acquisition speed is also a U-shaped function of time.

4.2.5 Revenue Maximization and Informed Trading

In this section, we examine two other cases related to this application. Specifically,

we examine a case in which the fund’s objective is to maximize expected revenue from

liquidation without controlling revenue risk and a case in which the fund has private

information regarding the final true value of the stock, as in Kyle (1985).

The Revenue Maximization Case. One alternative objective of the fund might be

to maximize its expected revenue from the liquidation without taking into account the

revenue risk (e.g., Ting et al. (2007) and Bertsimas and Lo (1998) for the acquisition

case). In this case, the fund’s objective can be represented by

max
Dt

E

[∫ T

0

e−rt

(
1−

n2∑
i=0

αi1{dDt>ξidt}

)
StdDt + e−rT (1− α)yTST

]
, (35)

subject to dyt = −dDt.
33 Note that this is the present value of total revenue at the initial

time 0. It can be shown that the optimal liquidation strategy can be obtained from our

main model for the CARA fund by setting the risk-aversion coefficient to β = 0 with the

additional constraints.34 Therefore, in what follows we refer to this fund as a risk-neutral

fund.

The optimal liquidation strategy of the risk-neutral fund has some distinct features.

Different from the risk-averse fund case, the optimal liquidation speed of a risk-neutral

fund only depends on time-to-maturity and the number of remaining shares, and is inde-

33 Restricting the fund from purchasing is a sufficient condition to ensure that the risk-neutral fund’s
optimization problem (35) is well-defined. This assumption also facilitates a fair comparison between
the risk-neutral case and our baseline case where there is no purchasing.

34 This can be shown by deriving the HJB equation in this case and comparing it with the HJB
equation in our baseline model.
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Figure 9: Optimal Trading Speed of Risk-Neutral and Risk-Averse Fund

This figure shows the average trading speed of a fund that aims at maximizing its expected
revenue over the liquidation horizon. Parameter values: r = 0.02, µ = 0.1, σ = 0.2, β = 0,
n1 = 3, n2 = 2, (θ0, θ1, θ2, θ3) = (18, 6, 10, 41) bps, (α0, α1, α2) = (33, 2, 49) bps, (η1, η2, η3, η4) =
(0, 5.93, 32.24, 209.75) millions, (ξ1, ξ2, ξ3) = (0, 62.63, 287.21) millions, and T = 5/252 years.

Table 2: Statistics of Total Revenue

This table shows the average value and standard deviation of the total revenue after liqui-
dation. Baseline parameter values: r = 0.02, µ = 0.1, σ = 0.2, β = 5 × 10−7, n1 = 3,
n2 = 2, (θ0, θ1, θ2, θ3) = (18, 6, 10, 41) bps, (α0, α1, α2) = (33, 2, 49) bps, (η1, η2, η3, η4) =
(0, 5.93, 32.24, 209.75) millions, (ξ1, ξ2, ξ3) = (0, 62.63, 287.21) millions, and T = 5/252 years.

Risk-Averse Fund Risk-Neutral Fund
Average Revenue (Millions) 9.975 9.981
Standard Deviation (Millions) 0.105 0.234
Sharpe Ratio 0.526 0.263

pendent of the stock price.35 This is because the risk-neutral fund is not concerned about

market price risk.

In Figure 9, we show the average liquidation speed when the fund is risk-neutral

(vs. risk-averse). Because the risk-neutral fund does not care about price risk, to reduce

transaction costs and earn stock risk premium, the fund tends to liquidate shares faster

only when the final horizon is approaching. This is different from the risk-averse fund

which tends to liquidate faster at the beginning of the liquidation horizon.

35 In other words, the optimal trading boundaries are similar to those in Figure 3, except that they
are flat. We do not show them to save space. They are available from authors upon request.
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In the risk-averse fund case, the fund needs to control the price risk to avoid excessive

stock exposure. In the risk-neutral fund case, the fund tends to maintain a high level of

stock exposure to extract the risk premium. As a result, the total revenue should have

a riskier distribution in the risk-neutral fund case. In Table 2, we report the average

value and the standard deviation of the total revenue after liquidation. The results are

obtained by performing 10,000 Monte-Carlo simulations of the model. We find that the

average revenue is only slightly decreased in the risk-averse fund case, while the standard

deviation in this case is much smaller. As a result, the risk-averse fund can achieve a

higher Sharpe ratio.36 These results suggest that the optimal liquidation strategy derived

from our model can substantially reduce revenue risk while maintaining a similar expected

revenue.

The Informed Trading Case. In this part, we examine a case of informed trading

that is similar to Kyle (1985) but in the presence of speed-dependent transaction cost.

In particular, we assume that the fund has private information regarding the true value

of the asset at time T , which is denoted by VT . For simplicity, we assume that VT is a

constant. As such, the fund’s terminal gross wealth function becomes φ(x, y, S) = x+yVT .

We assume the fund’s objective is still to maximize (6).37

In Figure 10, we show the optimal trading boundaries of the fund at initial time t = 0.

If the stock’s spot price is sufficiently high, then the fund’s optimal strategy is to liquidate

shares in a way that is similar to our baseline model. This allows the fund to obtain more

proceeds before the stock’s true value is revealed. Specifically, the optimal liquidation

36 The Sharpe ratio is calculated as follows. We first calculate the total revenue obtained by imple-
menting the instant liquidation strategy, and use this as the risk-free benchmark. In the baseline case,
it is equal to 10× (1− 0.0084)× e0.02×5/252 = 9.920. We then calculate the average revenue in excess of
the risk-free benchmark. Finally, we divide this excess revenue by the standard deviation.

37 In order to prevent arbitrage opportunities, we restrict the fund from purchasing the stock shares
at an infinite speed. Otherwise, when the spot price is well below the true value VT , the fund can borrow
to purchase an unlimited number of shares and sell them at time T to earn unlimited profit. One could
endogenize such an effect by assuming that a large block purchase order of the fund will reveal its private
information and cause a large increase in the market price of the stock, which eliminates the fund’s
incentive to conduct such a purchase. We impose this restriction on trading exogenously to simplify our
analysis without altering the main mechanism of the model.
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Figure 10: Optimal Trading Boundaries in a Kyle-Type Model

This figure shows the optimal trading boundaries at initial time t = 0 in a Kyle-type mod-
el. Baseline parameter values: r = 0.02, µ = 0.1, σ = 0.2, β = 5 × 10−7, n1 = 3,
n2 = 2, (θ0, θ1, θ2, θ3) = (18, 6, 10, 41) bps, (α0, α1, α2) = (33, 2, 49) bps, (η1, η2, η3, η4) =
(0, 5.93, 32.24, 209.75) millions, (ξ1, ξ2, ξ3) = (0, 62.63, 287.21) millions, and T = 5/252 years.
The stock’s true terminal value is VT = 11 dollars.

speed decreases in the number of shares held by the fund. For example, within the region

signified by “RS1” in Figure 10, it is optimal to sell shares at the speed of 0.25 million

shares per day; within the region signified by “NTR,” it is optimal to stop selling. If the

stock’s spot price is low, then the fund’s optimal strategy is to acquire shares. This allows

the fund to accumulate more wealth on paper when the stock’s true value is revealed. In

the case shown in Figure 10, it is optimal to purchase shares at the speed of 0.83 million

shares per day when the stock is undervalued.

Interestingly, we find that it can be optimal to purchase shares even when the spot

price is slightly above its true value VT = 11 (e.g., when S0 = 11.1). The intuition is

that the private information on VT provides the fund with an insurance that limits its

potential loss on the stock at time T . As a result, the fund has a stronger incentive

to purchase the stock to extract its risk premium, and hopes to sell it before the true

terminal value is revealed.
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To summarize, this case suggests that the main intuition developed in our baseline

model also applies to the optimal trading of informed traders.

5 Conclusion

The effective transaction cost rates faced by large investors, such as financial institutions,

can be significant and typically depend on their trading speeds. The existing literature

on optimal portfolio choice with transaction costs does not incorporate such empirically

documented speed-dependency. In this study, we propose a framework to study how

speed-dependent transaction costs affect optimal trading strategies. The transaction cost

rate, as a function of the trading speed, can have flexible shapes. Thus, our framework

generalizes the existing literature on optimal rebalancing with transaction costs and com-

plements the existing literature on optimal liquidation/acquisition for a large institution

in a unified setting. In addition, the flexible transaction cost rate structure facilitates

calibration of our model to empirical data.

We then apply our framework to the optimal rebalancing problem and an optimal

liquidation and acquisition problem for an institution in the presence of speed-dependent

transaction costs. We characterize and numerically solve the optimal trading strategies.

Unlike the existing literature on the optimal rebalancing strategy in the presence of

constant transaction costs, we find that the optimal rebalancing startegy in our model

is to break up a large order into multiple small orders and trade at a decreasing speed

across time toward the Merton line, which is largely consistent with empirical evidence.

For the optimal liquidation or acquisition strategy, our model shows that it is optimal

to transact at a decreasing speed when the time-to-horizon is long, and to transact at

an increasing speed when the time-to-horizon is short. In other words, the optimal

liquidation or acquisition speed is a U-shaped function of time. Moreover, our insights

apply to informed trading when transaction cost is dependent on trading speed.
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Appendix

The content of this appendix is as follows. In Appendix A, we sketch the proof of

Proposition 1. In Appendix B, we present the detailed solution method to the optimal

portfolio rebalancing problem. In Appendix C, we present the details of the optimal

liquidation/acquisition problem. In Appendix D, we present the solution to an optimal

liquidation problem with a CRRA utility function.

A Proof of Proposition 1

Proof. Because the proof is similar to those in the literature on portfolio choice with

transaction costs (see, e.g., Shreve and Soner (1994), and Liu (2004)), we only provide

the main steps and skip some technical details.

(i) For any t ∈ [0, T ], without loss of generality, let us assume that (xt, yt, St, t) /∈

int(URS)
⋃
int(UBS). Let (I,D) = {(Iu, Du) : t ≤ u ≤ T} be an arbitrary admissible

strategy, and (xu, yu, Su) be the state process associated with this admissible strategy for

u ∈ [t, T ]. Under some regularity conditions, we can apply the generalized Itô’s lemma

to the process v(xu, yu, Su, u) and use equation (11) to conclude

v(xt, yt, St, t) ≥ E[v(xT , yT , ST , T )|Ft] = E[u(φ(xT , yT , ST ))|Ft]. (A-1)

Due to the arbitrariness of (xt, yt, St, t) and (I,D), we must have v(x, y, S, t) ≥ V (x, y, S, t).

(ii) For the strategy (I∗, D∗) as specified in the theorem, denote by (x∗u, y
∗
u, Su) the

state process associated with this strategy for u ∈ [t, T ]. In this case, we have

v(xt, yt, St, t) = E[v(xT , yT , ST , T )|Ft] = E[u(φ(xT , yT , ST ))|Ft]. (A-2)

Due to the definition of the value function, we must also have V (x, y, S, t) ≥ v(x, y, S, t).
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As a result of (i) and (ii), we must have v(x, y, S, t) = V (x, y, S, t), and the optimality

of the stated strategy is established.

B Details of the Optimal Rebalancing Problem

In this case, the value function has the following homogeneity property

V (ax, y, aS, t) =

 a1−γV (x, y, S, t) if γ 6= 1

ln a+ V (x, y, S, t) if γ = 1

(A-3)

for any a > 0. This motivates us to use the following transformation to reduce the

dimensionality of the problem

V (x, y, S, t) =


(x+yS)1−γ

1−γ e(1−γ)ϕ(b,π,t) if γ 6= 1

ln(x+ yS) + ϕ(b, π, t) if γ = 1,

(A-4)

where b = S
x+yS

denotes the share price–fund wealth ratio, and π = yS
x+yS

denotes the

fund’s stock allocation. Then, it can be verfied that the function ϕ(b, π, t) satisfies

max
{
M1ϕ+ ϕt, Sϕ, Bϕ

}
= 0, (A-5)

ϕ(b, π, T ) = 0, (A-6)

where

M1ϕ = A0 + Abϕb + Aπϕπ + Abb(ϕbb + (1− γ)ϕ2
b)

+Aππ(ϕππ + (1− γ)ϕ2
π) + Abπ(ϕbπ + (1− γ)ϕbϕπ)

+ sup
0≤i≤ηn1

[B0 +Bbϕb +Bπϕπ]i+ sup
0≤d≤ξn2

[C0 + Cbϕb + Cπϕπ]d, (A-7)

Sϕ = −αb+ αb2ϕb − b(1− απ)ϕπ, (A-8)

Bϕ = −θb+ θb2ϕb + b(1 + θπ)ϕπ, (A-9)
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with the following coefficients

A0 = r + (µ− r)π − 1

2
γσ2π2, (A-10)

Ab = b(1− π)(µ− r − γσ2π), (A-11)

Aπ = π(1− π)(µ− r − γσ2π), (A-12)

Abb =
1

2
σ2b2(1− π)2, (A-13)

Aππ =
1

2
σ2π2(1− π)2, (A-14)

Abπ = σ2bπ(1− π)2, (A-15)

B0 = b(−
n1∑
j=1

θj1i>ηj), (A-16)

Bb = b2(

n1∑
j=1

θj1i>ηj), (A-17)

Bπ = b(1 +

n1∑
j=1

θj1i>ηjπ), (A-18)

C0 = b(−
n2∑
j=1

αj1d>ξj), (A-19)

Cb = b2(

n2∑
j=1

αj1d>ξj), (A-20)

Cπ = −b(1−
n2∑
j=1

αj1d>ξjπ). (A-21)

We numerically solve equation (A-5) using the penalty method (see, for example, Dai

and Zhong (2010)) combined with a finite differences scheme.

C Details of the Optimal Liquidation/Acquisition Prob-

lem

In this case, we have the following proposition that helps us simplify the HJB equation.
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Proposition 2. (Separability of the value function.) The value function V (x, y, S, t) has

the following property:

V (x, y, S, t) = e−βxe
r(T−t)

V (0, y, S, t). (A-22)

Proof. For any state (0, yt, St, t), let Θ = {(Is, Ds) : t ≤ s ≤ T} be an admissible trading

strategy that generates a terminal state of (xΘ
T , y

Θ
T , ST ). Then, for the state (xt, yt, St, t), it

is easy to see that the same strategy Θ will generate terminal state (xΘ
T +xte

r(T−t), yΘ
T , ST ).

Therefore, we have

V (xt, yt, St, t) ≥ Et

[
−e−β(φ(xΘ

T+xer(T−t),yΘ
T ,ST ))

]
= e−βxte

r(T−t)
Et

[
−e−β(φ(xΘ

T ,y
Θ
T ,ST ))

]
. (A-23)

Due to the arbitrariness of Θ, we have V (xt, yt, St, t) ≥ e−βxe
r(T−t)

V (0, yt, St, t).

Similarly, for any state (xt, yt, St, t), let Θ̃ = {(Ĩs, D̃s) : t ≤ s ≤ T} be an admis-

sible trading strategy that generates terminal state (xΘ̃
T , y

Θ̃
T , ST ). Then, for the state

(0, yt, St, t), consider the following strategy: borrow xt dollars at time t, follow the strat-

egy Θ̃ afterwards, and repay the borrowed position at time T . It is easy to see that this

strategy will generate a terminal state of (xΘ̃
T − xter(T−t), yΘ̃

T , ST ). Therefore, we have

V (0, yt, St, t) ≥ Et

[
−e−β(φ(xΘ̃

T−xte
r(T−t),yΘ̃

T ,ST ))
]

= eβxte
r(T−t)

Et

[
−e−β(φ(xΘ̃

T ,y
Θ̃
T ,ST ))

]
. (A-24)

Due to the arbitrariness of Θ̃, we have V (0, yt, St, t) ≥ eβxte
r(T−t)

V (xt, yt, St, t). The result

then follows.
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Proposition 2 suggests that if we define a new function

f(y, S, t) = − 1

β
ln(−V (0, y, S, t)) (A-25)

in the domain {y ∈ R, S > 0, t ∈ [0, T ]}, then the solution function V (x, y, S, t) takes the

following functional form

V (x, y, S, t) = −e−β(xer(T−t)+f(y,S,t)). (A-26)

Direct substitution shows that the function f(y, S, t) satisfies the following equation

max

{
Lf + sup

0≤i≤ηn1

[fy − (1 +

n1−1∑
j=0

θj1{i>ηj})Se
r(T−t)]i

+ sup
0≤d≤ξn2

[(1−
n2−1∑
j=0

αj1{d>ξj})Se
r(T−t) − fy]d,

fy − Ser(T−t)(1 + θ), Ser(T−t)(1− α)− fy
}

= 0, (A-27)

with terminal condition

f(y, S, T ) = yS − α(y∗T − y)−S − θ(y∗T − y)+S, (A-28)

where the differential operator in (A-27) is given by

Lf = µSfS +
1

2
σ2S2

(
fSS − βf 2

S

)
+ ft. (A-29)

Calculating the Expected Time to Reach a Target. In order to compute the

expected time E[τ lκ], where τ lκ is defined by (31), we consider the following auxiliary

function defined on {(y, S, t) : (1− κ)y0 ≤ y ≤ y0, S > 0, 0 ≤ t ≤ T}

g(y, S, t) = E[τ lκ|yt = y, St = S]. (A-30)
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Then the Feynman-Kac theorem implies that g(y, S, t) satisfies the following equation in

the restrained Sell/Buy regions

gt + (i∗ − d∗)gy + µSgS +
1

2
σ2S2gSS = 0, (A-31)

where i∗ = i∗(y, S, t) and d∗ = d∗(y, S, t) are the optimal buying and selling speed,

respectively. In the unrestrained selling region or the unrestrained buying region, g(y, S, t)

satisfies the following Neumann condition

gy(y, S, t) = 0. (A-32)

This is because in these regions the stock shares are sold/purchased at infinite speed.

The boundary condition on y = (1− κ)y0 is clearly given by

g((1− κ)y0, S, t) = t, (A-33)

and the boundary condition on t = T is given by

g(y, S, T ) = T (A-34)

because all remaining shares are liquidated at T .

After we solve for the function g(y, S, t), we can then calculate E[τ lκ] by the equation

E[τ lκ] = g(y0, S0, 0). (A-35)

For the acquisition case, we define

τaκ = min{t ≥ 0 : yt ≥ κy∗T}. (A-36)
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Figure 11: Optimal Liquidation Boundaries with CRRA Preference

This figure shows the optimal trading boundaries of the fund, at the beginning of the first day
(left panel) and at the beginning of the last day (right panel). Baseline parameter values: r =
0.02, µ = 0.1, σ = 0.2, γ = 3, n1 = 3, n2 = 2, (θ0, θ1, θ2, θ3) = (18, 6, 10, 41) bps, (α0, α1, α2) =
(33, 2, 49) bps, (η1, η2, η3, η4) = (0, 5.93, 32.24, 209.75) millions, (ξ1, ξ2, ξ3) = (0, 62.63, 287.21)
millions, and T = 5/252 years.

In order to compute E[τaκ ], we can similarly consider the following auxiliary function

defined on {(y, S, t) : 0 ≤ y ≤ κy∗T , S > 0, 0 ≤ t ≤ T}

h(y, S, t) = E[τκ|yt = y, St = S]. (A-37)

It can be shown that h(y, S, t) satisfies the same Feynmann-Kac equation, with the fol-

lowing boundary condition on κy∗T : h(κy∗T , S, t) = t.

D Optimal Liquidation with CRRA Preference

In this Appendix, we present the solution to an optimal liquidation problem with a CRRA

utility function. We assume the fund has a relative risk aversion coefficient of γ = 3, and

its objective is to liquidate a large number of shares within 5 trading days.
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In Figure 11, we plot the optimal liquidation boundaries of the fund at two time

points: the beginning of the first day and the beginning of the last day. It suggests that

the main insights we derive from the model with CARA preference still carry over to the

model with CRRA preference. For instance, it is optimal for the fund to liquidate shares

at a state-dependent speed to trade off risk exposure, risk premium and trading cost, and

the optimal liquidation speed is a decreasing function of the fund’s stock allocation.
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