
Mathematical Finance, Vol. 10, No. 3 (July 2000), 355–385

A MARTINGALE CHARACTERIZATION OF CONSUMPTION CHOICES AND
HEDGING COSTS WITH MARGIN REQUIREMENTS

Domenico Cuoco

The Wharton School, University of Pennsylvania

Hong Liu

John M. Olin School of Business, Washington University, St. Louis

This paper examines optimal consumption and investment choices and the cost of hedging contin-
gent claims in the presence of margin requirements or, more generally, of nonlinear wealth dynamics
and constraints on the portfolio policies. Existence of optimal policies is established using martingale
and duality techniques under general assumptions on the securities’ price process and the investor’s
preferences. As an illustration, explicit solutions are provided for an agent with “logarithmic” utility.
A PDE characterization of the cost of hedging a nonnegative path-independent European contingent
claim is also provided.
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1. INTRODUCTION

Margin requirements oblige investors who short securities or buy on margin (that is,
borrow to buy securities) to deposit and maintain a minimum amount of cash or securities
with their broker-dealer in order to reduce the potential losses in case of default. In
particular, initial margin requirements set the minimum margin deposit with which a
position can be opened, and maintenance requirements set a floor below which the margin
deposit is not allowed to fall as long as the position remains open. Regulation T of the
Federal Reserve Board determines the initial margin requirement for stock positions
undertaken through broker-dealers, and the NYSE determines the maintenance margin
requirement applicable to its members’ customers. The initial margin requirement for
long or short stock positions is currently 50 percent of the value of the stock position.
In the case of a long position, this means that the investor cannot borrow more than
50 percent of the market value of the stock. In the case of a short position, this means
that not only does the investor not have availability of the cash proceeds from the short
sale, but that an additional amount equal to 50 percent of the value of the stock must be
deposited with the broker-dealer. This additional deposit need not be in cash: securities
can be used at the broker-dealer’s discretion. The maintenance margin requirement is
currently 25 percent for long positions and 30 percent for short positions.1

We are grateful to Peter Carr, Jaksa Cvitanić, Vasant Naik, Krishna Ramaswamy, two anonymous referees,
and participants at the 1999 WFA Conference for helpful comments.

Manuscript received November 1998; final revision received July 1999.
Address correspondence to Domenico Cuoco, Finance Department, The Wharton School, University of

Pennsylvania, Philadelphia, PA 19104-6367; e-mail: cuoco@wharton.upenn.edu.
1 A more detailed overview of margin regulations can be found in Sofianos (1988).

© 2000 Blackwell Publishers, 350 Main St., Malden, MA 02148, USA, and 108 Cowley Road, Oxford,
OX4 1JF, UK.

355



356 d. cuoco and h. liu

This paper examines optimal consumption and investment choices and the cost of
hedging European contingent claims in the presence of margin requirements. Margin
requirements introduce two types of deviations from the standard frictionless setting
studied by Karatzas, Lehoczky, and Shreve (1987) and Cox and Huang (1989). First,
margin requirements limit the size of long or short positions that can be undertaken by an
investor, and hence introduce a constraint on the feasible portfolio policies. Second, the
loss of interest on the proceeds from short sales (and, typically, on the associated margin)
affect the usual dynamic budget constraint, making it nonlinear in the investor’s portfolio
policy. Models with constraints on the portfolio policies were studied by Cvitanić and
Karatzas (1992, 1993), building on previous work by Karatzas et al. (1991), He and
Pearson (1991), and Xu and Shreve (1992). Models with nonlinear wealth dynamics
similar to the one that arises in the presence of margin requirements (but no constraints
on the portfolio policies) were studied by El Karoui, Peng, and Quenez (1997) and Cuoco
and Cvitanić (1998).
We show that martingale techniques similar to those employed in the above-mentioned

papers can be employed to establish the existence of optimal policies in the presence of
margin requirements and to provide some characterization by duality. As an illustration,
an explicit solution is provided for an agent with “logarithmic” utility. More generally,
we show that the characterization and existence results obtained in this paper apply to
a class of consumption problems with nonlinear wealth dynamics and constraints on the
portfolio policies which generalizes those considered by Cvitanić and Karatzas (1992,
1993) and Cuoco and Cvitanić (1998).
Finally, under the assumption that the stock prices in the economy follow a Markov

process, we provide a PDE characterization of the cost of hedging a nonnegative path-
independent European contingent claim. This characterization builds on recent work by
Broadie, Cvitanić, and Soner (1998), who have shown that, in the presence of constraints
on the portfolio weights, the minimum cost of hedging (that is, superreplicating) a con-
tingent claim equals the unconstrained price of a related dominating claim, and thus
solves the Black–Scholes PDE, but with a different terminal condition. In the presence
of margin requirements, the minimum hedging cost of a European contingent claim is
shown to equal the price of a related dominating claim in an economy with no con-
straints on the portfolio policies, but with nonlinear wealth dynamics. As a consequence,
the minimum hedging cost is shown to be the solution of a quasi-linear PDE with an
appropriate terminal condition. Once again, this result is shown to generalize to a class
of problems with nonlinear wealth dynamics and constraints on the portfolio policies.
As far as we are aware, the only related work to examine the impact of margin require-

ments on consumption choices and/or the cost of hedging contingent claims is Heath and
Jarrow (1987). Heath and Jarrow show that margin requirements are sufficient to rule out
arbitrage opportunities such as the doubling strategy discussed by Harrison and Kreps
(1979). Moreover, they argue that, although margin requirements rule out the standard
replication strategy used to derive the Black–Scholes formula, this formula should still
correctly price a call option in equilibrium as long as some investor has sufficient excess
equity in his margin account at all times—that is, as long as the constraint imposed
by margin requirements is never binding. This argument would obviously not apply to
a put option once the loss of interest on the proceeds from a short sale is taken into
account. Differently from Heath and Jarrow (and in the spirit of Cvitanić and Karatzas
(1993)), we characterize the minimal cost of superreplicating a given contingent claim in
isolation of the investor’s residual portfolio. This cost can thus be interpreted as an upper
bound on the price that could be charged by a financial intermediary selling a nontraded
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contingent claim to a client. A lower bound could be similarly obtained (see Karatzas
and Kou 1996).
The rest of the paper is organized as follows. Section 2 describes the economic set-

ting. Section 3 derives a martingale characterization of the minimum cost of replicating
a contingent claim (consumption plan). Section 4 establishes the existence of an optimal
consumption/investment policy and provides a dual characterization of such a policy.
Section 5 provides explicit solutions for some special cases. Section 6 derives the PDE
characterization of the minimum hedging cost in a Markovian setting. Section 7 gener-
alizes the results of the paper to a related class of problems and Section 8 contains some
concluding remarks.

2. THE ECONOMIC SETTING

We consider a continuous-time economy on the finite time span [0, T ].

Information Structure. The uncertainty is represented by a filtered probability space
(�, F,F, P ), on which is defined an n-dimensional Brownian motion

w = {
(w1(t), . . . , wn(t))� : t ∈ [0, T ]

}
.

The filtration F = {Ft } is the augmentation under P of the filtration generated by w.
We assume that F = FT , or that the true state of nature is completely determined by
the sample paths of w on [0, T ]. We interpret the sigma-field Ft as representing the
information of the individual at time t and the probability measure P as representing his
beliefs. All the stochastic processes to appear in the sequel are progressively measurable
with respect to F and all the (in)equalities involving random variables (respectively,
random processes) are understood to hold P -a.s. (respectively, (λ × P)-a.e., where λ

denotes the Lebesgue measure on [0, T ]).

Securities Market. We assume that there are n long-lived risky securities (stocks)
traded. The investors in the economy are allowed to hold the numéraire (cash), as well as
to lend (respectively, borrow) at an instantaneous interest rate r (respectively, R), where
r and R are assumed to be bounded nonnegative processes with r ≤ R. Also, letting
S = (S1, . . . , Sn) denote the price process for the traded stocks and D = (D1, . . . , Dn)

their cumulative dividend process, we assume that S + D is an Itô process:

S(t) + D(t) = S(0) +
∫ t

0
IS(s)µ(s) ds +

∫ t

0
IS(s)σ (s) dw(s),(1)

where IS(t) denotes the n × n diagonal matrix with elements S(t), µ is a bounded
n-dimensional process, and σ is a bounded (n × n)-dimensional process.

Assumption 1. The diffusion matrix σ(t) satisfies the nondegeneracy condition

x�σ(t)σ (t)�x ≥ ε|x|2(2)

almost surely for all (x, t) ∈ R
n × [0, T ] and some ε > 0.

Condition (2) implies in particular that σ(t) has full rank almost surely for all t ∈
[0, T ], and that σ(t, ω)−1 has essentially bounded matrix norm, uniformly in (t, ω) ∈
[0, T ]×� (Karatzas and Shreve 1988, Prob. 5.8.1). Together with the boundedness of the
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price coefficients, this is sufficient to guarantee the existence of an equivalent martingale
measure and rule out arbitrage opportunities.

Consumption Space. There is a single consumption good (the numéraire). A con-
sumption plan is a pair (c, W), where c is a nonnegative consumption rate process with∫ T

0 c(t) dt < +∞ and W a nonnegative random variable representing terminal wealth.

Trading Strategies and Margin Requirements. Trading takes place continuously. A
trading strategy is an (n + 2)-dimensional process (αC, αB, θ)—where αC denotes the
amount held in cash, αB the amount loaned (if αB > 0) or borrowed (if αB < 0), and θ

the amount invested in each of the n stocks—satisfying

∫ T

0

∣∣αB(t)+r(t) − αB(t)−R(t) + θ(t)�µ(t)
∣∣ dt +

∫ T

0

∣∣θ(t)�σ(t)
∣∣2 dt < +∞,(3)

where x+ = max[0, x] denotes the positive part of the real number x and x− =
max[0, −x] the negative part. A trading strategy (αC, αB, θ) is said to finance a con-
sumption plan (c, W) ∈ C if there exists a nondecreasing process C with C(0) = 0 such
that the wealth process

W(t) = αC(t) + αB(t) +
n∑

i=1

θi(t)

satisfies the dynamic budget constraint

W(t) = W(0) +
∫ t

0

(
αB(s)+r(s) − αB(s)−R(s) + θ(s)�µ(s)

)
ds(4)

−
∫ t

0
c(s) ds − C(t) +

∫ t

0
θ(s)�σ(s) dw(s)

and

W(T ) ≥ W.

The process C in (4) captures the possibility of free disposal of wealth: in other words,
the agent is allowed not to reinvest some of his wealth if he chooses to do so. The total
amount of wealth “wasted” up to time t is given by C(t).
To model margin requirements, we assume that there is no difference between initial

and maintenance margins, and we denote by λ− ≥ 0 the proportional margin requirement
on short positions and by λ+ ∈ [0, 1] the proportional margin requirement on long
positions.2 Moreover, we assume that a fraction ι ∈ [0, 1] of the margin requirement on
short positions must be met with cash, and that the rest can be met with bonds.3 Margin

2 Different initial and maintenance margins would make the balance in the margin account a function of the
sample path of the trading strategy and thus considerably complicate the analysis.

3 As mentioned in the Introduction, the brokerage firm can accept interest-bearing securities in lieu of cash
to margin short-sales.
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requirements then impose the following constraints on an admissible trading strategy
(αC, αB, θ):

αC ≥ (1 + ιλ−)

n∑
i=1

θ−
i(5)

and

αB ≥ −
(

αC − (1 + λ−)

n∑
i=1

θ−
i + (1 − λ+)

n∑
i=1

θ+
i

)
.(6)

Equation (5) states that the investor must hold an amount of cash at least equal to the
value of his short stock positions plus a fraction ι of the required margin, and equation (6)
states that the investor can only borrow using as collateral cash or stocks in excess of
the required margin.
Clearly, since cash is a dominated asset, the constraint in (5) will always be satisfied

as an equality, so that the size of an investor’s cash position is completely determined
by the size of his short stock position. Moreover, (6) is equivalent to the constraint

W ≥ λ−
n∑

i=1

θ−
i + λ+

n∑
i=1

θ+
i ,

which implies in particular that the wealth process corresponding to any admissible
trading strategy under margin requirements is nonnegative. Since (5) and (6) also imply
that W = 0 only if αC = αB = 0 and θi = 0 for i = 1, . . . , n, we can then equivalently
represent a trading strategy in terms of the portfolio weights π = (θ/W)1{W>0} and
equations (3)–(5) are then equivalent to

∫ T

0

∣∣r(t) + π(t)�(µ(t) − r(t)1̄) + g(π(t), t)
∣∣ dt +

∫ T

0

∣∣π(t)�σ(t)
∣∣2 dt < +∞,(7)

W(t) = W(0) +
∫ t

0
W(s)

(
r(s) + π(s)�

(
µ(s) − r(s)1̄

) + g
(
π(s), s

))
ds(8)

+
∫ t

0
W(s)π(s)�σ(s) dw(s) −

∫ t

0
c(s) ds − C(t),

and

π(t, ω) ∈ K (λ × P)-a.e.,(9)

where 1̄ = (1, . . . , 1)�,

g(π, t, ω) = −r(t, ω)(1 + ιλ−)

n∑
i=1

π−
i − (

R(t, ω) − r(t, ω)
)

(10)

×
(
1 −

n∑
i=1

π+
i − ιλ−

n∑
i=1

π−
i

)−
,
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and

K =
{

π ∈ R
n : λ−

n∑
i=1

π−
i + λ+

n∑
i=1

π+
i ≤ 1

}
.

Note that because of the term involving g, the dynamic budget constraint in (8) is
nonlinear in the portfolio policy (although it is piecewise linear). We will denote by &

the set of portfolio weight processes satisfying (7) and (9).

3. COST OF HEDGING CONTINGENT CLAIMS

To be able to approach the investor’s consumption problem, we start by deriving a
static (martingale) characterization of the minimal cost of financing a consumption plan
(c, W) ∈ C, similar to the one obtained by Karatzas et al. (1987) and Cox and Huang
(1989) for the standard frictionless case. In our setting, such a characterization is com-
plicated by the presence of the constraint (9) on the admissible portfolio policies and by
the fact that the stochastic differential equation (8) is nonlinear in the portfolio policy
(because of the presence of the function g). Constraints on the admissible portfolio poli-
cies of the type in equation (9) were dealt with by Cvitanić and Karatzas (1992, 1993),
and nonlinear wealth dynamics of the type in equation (8) were dealt with by El Karoui
et al. (1997) and Cuoco and Cvitanić (1998). The new feature of the problem at hand is
that it includes both a constraint on the portfolio policies and nonlinear wealth dynamics.
As we show in Section 7, all the main results to be obtained below apply to a class of
problems with constraints and nonlinear wealth dynamics which include those considered
in the above-mentioned papers as special cases.
Let

δK(π) =
{
0 if π ∈ K

+∞ if π �∈ K

denote the indicator function (in the sense of convex analysis) of K , and let

gK(π, t, ω) = g(π, t, ω) − δK(π).

It is easily verified that gK(·, t, ω) is a nonpositive upper semicontinuous concave func-
tion with gK(0, t, ω) = 0 for all (t, ω) ∈ [0, T ] × �. We denote by

g̃K(ν, t, ω) = sup
π∈Rn

[
gK(−π, t, ω) + π�ν

] = sup
π∈K

[
g(π, t, ω) − π�ν

]

the convex conjugate of −gK(−π, t, ω). It is clear from its definition that g̃K is nonneg-
ative (since 0 ∈ K). Moreover, it follows from Theorem 12.2 in Rockafellar (1970) that
g̃K(·, t, ω) is a lower semicontinuous convex function on R

n and that

gK(π, t, ω) = inf
ν∈Rn

[
g̃K(ν, t, ω) + π�ν

]
.(11)

Letting
NK(t, ω) = {

ν ∈ R
n : g̃K(ν, t, ω) < +∞}

denote the effective domain of g̃K(·, t, ω), it can be easily verified that
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NK(t, ω) =



[−(R(t, ω) − r(t, ω)), r(t, ω)]n if λ− = 0, λ+ = 0

[−(R(t, ω) − r(t, ω)), +∞)n if λ− > 0, λ+ = 0

(−∞, r(t, ω)]n if λ− = 0, λ+ > 0

(−∞, +∞)n if λ− > 0, λ+ > 0.

(12)

Also, for p ∈ [0, +∞] let N p
K denote the set of n-dimensional processes ν such that

∫ T

0
|ν(t)|2 dt +

∫ T

0
g̃K(ν(t), t) dt < +∞

and
ν ∈ Lp(λ × P),

where L0(λ×P) denotes in particular the set of all (progressively measurable) processes.
Clearly, 0 ∈ N p

K for all p ∈ [0, +∞]. Moreover, if ν ∈ N p
K then

ν(t, ω) ∈ NK(t, ω) (λ × P)-a.e.

Proposition 1. For any π ∈ & there exists a ν ∈ N ∞
K such that

g(π(t), t) = gK(π(t), t) = g̃K(ν(t), t) + π(t)�ν(t) ∀t ∈ [0, T ].

Proof. This can be verified directly by considering the process ν with

ν(t) =




rt (1 + ιλ−)1{πt≤0}

if
n∑

i=1

πi(t)
+ + ιλ−

n∑
i=1

πi(t)
− ≤ 1

(rt + ιλ−Rt)1{πt≤0} − (Rt − rt )1{πt>0}

if
n∑

i=1

πi(t)
+ + ιλ−

n∑
i=1

πi(t)
− > 1,

where 1{π(t)≤0} = (1{π1(t)≤0}, . . . , 1{πn(t)≤0})�, and noticing that

g̃K

(
rt (1 + ιλ−)1{πt≤0}, t

) = 0

and

g̃K

(
(rt + ιλ−Rt)1{πt≤0} − (Rt − rt )1{πt>0}, t

) = Rt − rt . ✷

For ν ∈ N 0
K , define the processes

βν(t) = exp

(
−

∫ t

0
(rs + g̃K(νs, s)) ds

)

κν(t) = −σ−1
t (µt + νt − rt 1̄)

Zν(t) = exp

(∫ t

0
κν(s)�dw(s) − 1

2

∫ t

0
|κν(s)|2 ds

)
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and
ξν(t) = βν(t)Zν(t).

Finally, for ν ∈ N ∞
K let Qν denote the probability measure with

dQν

dP
= Zν(T ).

We remark that each ξν corresponds to the unique state-price density that would prevail
in a fictitious frictionless economy with interest rate rt + g̃K(νt , t) and stock drift µt +
νt + g̃K(νt , t).
Now consider an arbitrary consumption plan (c, W) ∈ C and let P(0) denote the

minimal cost at time 0 of financing (superreplicating) (c, W); that is,

P(0) = inf
{
x ≥ 0 : ∃ a nondecreasing process C with C(0) = 0 s.t. Wx, c, C, π (T ) ≥ W

}
,

where Wx, c, C, π denotes the solution to the stochastic differential equation (8) with
W(0) = x. The following result provides a martingale characterization of P(0).

Theorem 1. We have

P(0) = sup
ν∈N 0

K

E

[∫ T

0
ξν(s)c(s) ds + ξν(T )W

]

= sup
ν∈N ∞

K

EQν

[∫ T

0
βν(s)c(s) ds + βν(T )W

]
.

Proof. See the Appendix. ✷

4. OPTIMAL CONSUMPTION POLICIES

We now turn to a characterization of optimal consumption policies in the presence of
margin requirements. We consider an investor endowed with some initial wealth W0 > 0
and whose preferences are represented by a time-additive utility function for intertem-
poral consumption4

U(c) = E

[∫ T

0
u(c(t), t) dt

]
.(13)

Assumption 2. The function u(·, t) is increasing, strictly concave and continuously
differentiable on (0, +∞) for all t ∈ [0, T ]. Moreover, it satisfies the Inada conditions

lim
c↓0

uc(c, t) = +∞ and lim
c↑+∞

uc(c, t) = 0,(14)

and there exist constants δ ∈ (0, 1) and γ ∈ (0, +∞) such that

δuc(c, t) ≥ uc(γ c, t) ∀(c, t) ∈ (0, +∞) × [0, T ].(15)

Finally, u(c, ·) is continuous on [0, T ] for all c > 0.

4 The case in which preferences include a bequest function V (W) for final wealth is not substantially
different and the results in this paper apply, provided that V (·) satisfies the same conditions placed on u(·, t).
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remark 1. Condition (14) is well understood and it implies in particular that the
derivative function uc(·, t) has a continuous and strictly decreasing inverse f (·, t) map-
ping (0, +∞) onto itself. Condition (15) has the purpose of guaranteeing that certain
functionals to be introduced in the sequel can be differentiated under the integral sign. It
is easily verified that this condition holds for the utility functions u(c, t) = ρ(t) log c or
u(c, t) = ρ(t)c1−b/(1 − b), for some ρ : [0, T ] → (0, +∞), b > 0, b �= 1. Also, taking
c = f (y, t) in (15), applying f (·, t) to both sides, and iterating shows that the following
property holds:

∀δ ∈ (0, +∞), ∃γ ∈ (0, +∞) such that

f (δy, t) ≤ γf (y, t), ∀(y, t) ∈ (0, +∞) × [0, T ].
(16)

It follows immediately from Theorem 1 that the problem of choosing an optimal
consumption plan in the investor’s budget set can be written as the static problem

(P )

max
c∈C

U(c)

s.t. sup
ν∈N p

K

E

[∫ T

0
ξν(t)c(t) dt

]
>≤> W0

for some p ∈ [0, +∞]. Letting c∗ denote the optimal consumption policy this suggests
that there should exist a Lagrangian multiplier ψ∗ > 0 and a process ν∗ ∈ N p

K such that
(c∗, ψ∗, ν∗) is a saddle point of the map

Ł(c, ψ, ν) = U(c) − ψ

(
E

[∫ T

0
ξν(t)c(t) dt

]
− W0

)
,(17)

where we maximize with respect to c ∈ C∗ and minimize with respect to (ψ, ν) ∈
(0, +∞) × N p

K .
Let

ũ(y, t) ≡ max
c≥0

[
u(c, t) − yc

] = u(f (y, t), t) − yf (y, t)(18)

denote the convex conjugate of −u(−c, t). The following lemma collects some properties
of the function ũ that will be useful in the sequel.

Lemma 1. The function ũ(·, t) : (0, +∞) → R is strictly decreasing and strictly
convex for all t ∈ [0, T ], with

∂

∂y
ũ(y, t) = −f (y, t).(19)

Moreover

ũ(0+, t) = u(+∞, t), ũ(+∞, t) = u(0+, t).(20)

Proof. See, for example, Karatzas et al. (1991, p. 707). ✷
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Maximization of equation (17) with respect to c gives

J (ψ, ν) = E

[∫ T

0
ũ(ψξν(t), t) dt

]
+ ψW0,(21)

where we remark that the above expectation is well defined for all (ψ, ν) ∈ (0, +∞) ×
N 0

K , since from the inequality

u(1, t) − y ≤ max
c>0

[
u(c, t) − yc

] = u(f (y, t), t) − yf (y, t),(22)

the nonnegativity of r and g̃K and the fact that Zν is a supermartingale for all ν ∈ N 0
K ,

we have

E

[∫ T

0
ũ(ψξν(t), t)− dt

]
≤

∫ T

0
u(1, t)− dt + ψ E

[∫ T

0
ξν(t) dt

]

≤
∫ T

0
u(1, t)− dt + ψT < +∞.

Therefore J : (0, +∞) × N 0
K → R ∪ {+∞} and we are left with the shadow state-price

problem

(P ∗) min
(ψ,ν)∈(0,+∞)×N p

K

J (ψ, ν).

The following theorem establishes the duality between the individual’s optimization
problem and (P ∗).

Theorem 2. Assume that (ψ∗, ν∗) ∈ (0, +∞) × N p
K solves the dual state-price

problem (P ∗) for some p ∈ [0, +∞] and

E

[∫ T

0
ξν∗(t)f (ψ∗ξν∗(t), t) dt

]
< +∞.(23)

Then the policy

c∗(t) = f (ψ∗ξν∗(t), t)(24)

is optimal and the optimal wealth process is given by

W(t) = ξν∗(t)−1 E

[∫ T

t

ξν∗(s)c(s) ds

∣∣∣ Ft

]
.(25)

This wealth process satisfies the budget constraint (8) with C = 0. Moreover, the optimal
investment strategy π satisfies

g(π(t), t) = g̃K(ν∗(t), t) + π(t)�ν∗(t), (λ × P )-a.e.(26)

Proof. See the Appendix. ✷

The next theorem provides sufficient conditions for the existence of a solution (ψ∗, ν∗) ∈
(0, +∞) × N 2

K to the dual problem and of an optimal consumption/investment policy.
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Theorem 3. Assume that

(a) u(0+, t) > −∞, u(+∞, t) = +∞ and −cu′′(c, t)/u′(c, t) ≤ 1 on (0, +∞) ×
[0, T ];

(b) for all ψ ∈ (0, +∞), there exists a ν ∈ N 2
K such that J (ψ, ν) < +∞.

Then the minimum in (P ∗) is attained by some ν∗ ∈ N 2
K . If, additionally,

(c) cuc(c, t) ≤ a + (1 − b)u(c, t) on (0, +∞) × [0, T ] for some a ≥ 0, b > 0,

then condition (23) of Theorem 2 is also satisfied, and hence there exists an optimal
consumption/investment policy.

Proof. See the Appendix. ✷

remark 2. Conditions (a) and (c) of Theorem 3 are in particular satisfied if u(c, t) =
ρ(t) c1−b

1−b
for some bounded measurable function ρ : [0, T ] �→ (0, ρ̄] and some b ∈

(0, 1). In this case, condition (b) will also hold with ν = 0 (cf. Karatzas et al. 1991,
Remark 11.9).

remark 3. Proceeding as in Cuoco (1997), it would have also been possible to estab-
lish the existence of an optimal consumption policy for more general utility functions
and without resorting to duality. However, we will see in the next section that the dual
problem offers computational advantages.

5. EXPLICIT SOLUTIONS

5.1. Logarithmic Utility

Suppose that u(c, t) = e−ρt log(c) for some ρ ∈ R. Then we have

ũ(y, t) = max
c≥0

[e−ρt log(c) − yc] = −e−ρt
(
1 + ρt + log(y)

)
,

and the dual problem becomes

min
(ψ, ν)∈(0, +∞)×N 2

K

E

[
−

∫ T

0
e−ρt

(
1 + ρt + log(ψξν(t))

)
dt + ψW0

]

= T e−ρT − 2
1 − e−ρT

ρ
+ E

[∫ T

0
e−ρt

(∫ t

0
r(s) ds

)
dt

]

+ min
ψ>0

[
ψW0 − 1 − e−ρT

ρ
log(ψ)

]

+ min
ν∈N 2

K

E

[∫ T

0
e−ρt

(∫ t

0

(
g̃K(ν(s), s) + 1

2

∣∣κ0(s) − σ(s)−1ν(s)
∣∣2) ds

)
dt

]
.

The above implies

ψ∗ = 1 − e−ρT

ρW0
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and

ν∗(t, ω) = arg min
ν∈NK(t,ω)

[
g̃K(ν, t) + 1

2

∣∣κ0(t, ω) − σ(t, ω)−1ν
∣∣2] .(27)

The optimal consumption, investment, and wealth policies are then given by

cν∗(t) = W0
ρe−ρt

1 − e−ρT
ξν∗(t)−1 = ρ

1 − e−ρ(T −t)
W(t)

π(t) =
(
σ(t)σ (t)�

)−1(
µ(t) + ν∗(t) − r(t)1̄

)

W(t) = W0
e−ρt − e−ρT

1 − e−ρT
ξν∗(t)−1.

In particular, if n = 1, λ− > 0 and λ+ > 0, then it can be easily verified that

g̃K(ν, t) = (λ−1
+ − 1)(Rt − rt + ν)− + ν− + λ−1

− (ν − (1 + ιλ−)rt )
+

and

ν∗
t =




σt (κ0t + λ−1
+ σt ) if σtκ0t ≤ −(Rt − rt ) − λ−1

+ σ 2
t

−(Rt − rt ) if −(Rt − rt ) − λ−1
+ σ 2

t ≤ σtκ0t ≤ −(Rt − rt ) − σ 2
t

σt (κ0t + σt ) if −(Rt − rt ) − σ 2
t ≤ σtκ0t ≤ −σ 2

t

0 if −σ 2
t ≤ σtκ0t ≤ 0

σtκ0t if 0 ≤ σtκ0t ≤ (1 + ιλ−)rt

(1 + ιλ−)rt if (1 + ιλ−)rt ≤ σtκ0t ≤ (1 + ιλ−)rt + λ−1
− σ 2

t

σt (κ0t − λ−1
− σt ) if σtκ0t ≥ (1 + ιλ−)rt + λ−1

− σ 2
t ,

which implies

πt =



min[π̂t , λ−1

+ ] if µt ≥ rt

0 if −ιλ−rt ≤ µt ≤ rt

max
[
σ−2

t (µt + ιλ−rt ), −λ−1
−

]
if µt ≤ −ιλ−rt ,

where

π̂t =




σ−2
t (µt − Rt) if σ−2

t (µt − Rt) ≥ 1

1 if σ−2
t (µt − Rt) ≤ 1 ≤ σ−2

t (µt − rt )

σ−2
t (µt − rt ) if σ−2

t (µt − rt ) ≤ 1

denotes the optimal investment policy in the absence of margin requirements (see Cvi-
tanić and Karatzas 1992 or Cuoco and Cvitanić 1998).
As long as µt > rt (i.e., as long as π̂t > 0), the optimal policy at time t consists

in holding a long position in the stock (and lending if µt < rt + σ 2
t or borrowing

if µ > Rt + σ 2
t ). The fraction of wealth invested in the stock equals the one that

would prevail with different borrowing or lending rates but no margin requirements until
the latter reaches λ−1

+ (the maximum allowable percentage long position under margin
requirements).
When µt < −ιλ−rt , the optimal policy consists in holding a short position in the

stock (and lending). The proportional short position in the stock equals the one that
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would prevail with a lending rate equal to −ιλ−rt and no margin requirements until
the latter reaches −λ−1

− (the maximum allowable percentage short position under margin
requirements). The reason for using a “shadow” interest rate equal to −ιλ−rt is of course
that shorting $1 worth of stock involves not only no interest on the proceeds, but a loss
of $ιλ−rt in interest on the portion of the required margin that must be met with cash.
The induced disincentive to shorting can be significant. In particular, the above implies
that

π(t)− ≤
(

π̂(t) + (1 + ιλ−)
r(t)

σ (t)2

)−
.

For example, with r(t) = 0.06, σ(t) = 0.2, λ− = 0.3 and ι = 1, one would need to have

π̂(t) < −(1 + ιλ−)
r(t)

σ (t)2
= −195%

(or µ(t) < −1.8%) before any shorting at all is done in the presence of margin require-
ments.
Finally, when −ιλ−rt ≤ µt ≤ rt , the agent does not undertake any stock position and

invests all of his wealth in the bond.

5.2. CRRA Utility and Deterministic Price Coefficients

Next, suppose that u(c, t) = e−ρt c1−b/(1 − b) for some ρ ∈ R, b ∈ (0, 1), and that
the price coefficients r , µ, and σ are deterministic continuous functions of time. Then
the proof of Theorem 3 shows that the function

V (ψ) = min
ν∈N 2

K

J (ψ, ν) = min
ν∈N 2

K

E

[∫ T

0
ũ(ψξν(t), t) dt

]
+ ψW0

is well defined for all ψ ∈ (0, ∞), so that

min
(ψ, ν)∈(0, ∞)×N 2

K

J (ψ, ν) = min
ψ∈(0, ∞)

V (ψ).

Moreover, it follows from standard stochastic control theory that V (ψ) = v(ψ, 0)+ψW0,
where v solves the Hamilton–Jacobi–Bellman (HJB) equation

min
ν∈NK(t)

[
1

2
x2vxx(x, t)|κ0(t) − σ(t)−1ν|2 − xvx(x, t)g̃K(ν, t)

]

− xvx(x, t)r(t) + vt (x, t) + ũ(x, t) = 0

with terminal condition
v(x, T ) = 0

(where we write NK(t) instead of NK(t, ω) for the sets in (12), as they do not depend
on ω in this case). Since

ũ(y, t) = max
c≥0

[
e−ρt c1−b

1 − b
− yc

]
= e−ρt/b by−(1−b)/b

1 − b
,
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it can be easily verified that the solution of the above HJB equation is given by

v(x, t) = f (t)
bx−(1−b)/b

1 − b
,

where

f (t) =
∫ T

t

exp

(
−ρs

b
+

∫ s

t

h(u) du

)
ds

and

h(t) = 1 − b

b

(
r(t) + min

ν(t)∈NK(t)

[
g̃K(ν(t), t) + 1

2b

∣∣κ0(t) − σ(t)−1ν(t)
∣∣2])

.

The above implies

ψ∗ =
(

f (0)

W0

)b

and

ν∗(t) = arg min
ν∈NK(t)

[
g̃K(ν, t) + 1

2b

∣∣κ0(t, ω) − σ(t, ω)−1ν
∣∣2].

The optimal consumption, investment, and wealth policies are then given by

cν∗(t) = W0

f (0)

(
eρt ξν∗(t)

)−1/b = e−ρt/b

f (t)
W(t)

π(t) = 1

b

(
σ(t)σ (t)�

)−1(
µ(t) + ν∗(t) − r(t)1̄

)
W(t) = W0

f (t)

f (0)
ξν∗(t)−1/b.

Thus, with deterministic price coefficients, future investment opportunities affect the
investor’s propensity to consume cν∗(t)/W(t) through the “forward-looking” term f (t),
but not his investment policy. Moreover, unlike the logarithmic case, in which margin
requirements affect the investment policy but not the propensity to consume, in the power
case margin requirements also have an impact on the propensity to consume (again,
through the term f (t)).
In particular, if n = 1, λ− > 0 and λ+ > 0, then

ν∗
t =




σt (κ0t + bλ−1
+ σt ) if σtκ0t ≤ −(Rt − rt ) − bλ−1

+ σ 2
t

−(Rt − rt ) if −(Rt − rt ) − bλ−1
+ σ 2

t ≤ σtκ0t ≤ −(Rt − rt ) − bσ 2
t

σt (κ0t + bσt ) if −(Rt − rt ) − bσ 2
t ≤ σtκ0t ≤ −bσ 2

t

0 if −bσ 2
t ≤ σtκ0t ≤ 0

σtκ0t if 0 ≤ σtκ0t ≤ (1 + ιλ−)rt

(1 + ιλ−)rt if (1 + ιλ−)rt ≤ σtκ0t ≤ (1 + ιλ−)rt + bλ−1
− σ 2

t

σt (κ0t − bλ−1
− σt ) if σtκ0t ≥ (1 + ιλ−)rt + bλ−1

− σ 2
t ,
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which implies

πt =



min[π̂t , λ−1

+ ] if µt ≥ rt

0 if −ιλ−rt ≤ µt ≤ rt

max[b−1σ−2
t (µt + ιλ−rt ), −λ−1

− ] if µt ≤ −ιλ−rt ,

where

π̂t =




b−1σ−2
t (µt − Rt) if b−1σ−2

t (µt − Rt) ≥ 1

1 if b−1σ−2
t (µt − Rt) ≤ 1 ≤ b−1σ−2

t (µt − rt )

b−1σ−2
t (µt − rt ) if b−1σ−2

t (µt − rt ) ≤ 1

denotes the optimal investment policy in the absence of margin requirements.

6. MINIMAL HEDGING COST IN THE MARKOVIAN CASE

We now analyze in more detail the computation of the minimal cost of hedging (super-
replicating) a claim to a payoff b(ST ) at time T , where b : R

n �→ R+ is lower semi-
continuous.5 We focus on the Markovian case in which the price coefficients (r, R, µ, σ )

are deterministic functions of the vector S of contemporaneous stock prices and time and
denote by P(St , t) the minimal cost at time t of superreplicating the contingent claim.
It then follows from Theorem 1 and the fact that S is an Itô process with drift IS(r − ν)

and diffusion ISσ under any probability measure Qν with ν ∈ N ∞
K that

P(S, t) = sup
ν∈N ∞

K

E
[
b(Sν

T )e− ∫ T
t (rs+g̃K (νs ,s)) ds

∣∣∣ Sν
t = S

]
,(28)

where Sν denotes the solution to the stochastic differential equation

dSν(t) = IS(t)(r(t)1̄ − ν(t)) dt + IS(t)σ (t) dw(t).(29)

The difficulty with the characterization in (28) is that the sets NK(t, ω) are not uniformly
bounded, so that P is not necessarily a classical solution of the HJB equation correspond-
ing to the stochastic control problem in (28). One possible computational approach would
be to consider a sequence of approximate solutions obtained by constraining ν to satisfy
a bound of the form |ν(t, ω| ≤ n (λ × P)-a.e., each of which would be a solution to the
HJB equation, as in El Karoui and Quenez (1995) and Cvitanić et al. (1997). On the other
hand, Broadie et al. (1998) have shown that, in the case of constraints on the portfolio
policies and linear wealth dynamics, the solution to (28) satisfies the Black–Scholes (lin-
ear) partial differential equation, but with a different terminal condition. Unfortunately,
this result does not extend to the present case with nonlinear wealth dynamics. On the
other hand, we will show that it is possible to characterize the solution to (28) in terms
of a quasi-linear partial differential equation with a different terminal condition.

5 Naik and Uppal (1994) provide related results in a binomial setting assuming no loss of interest on the
proceeds from short sales.
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Let
g̃(ν, t, ω) = sup

π∈Rn

[
g(−π, t, ω) + π�ν

] = sup
π∈Rn

[
g(π, t, ω) − π�ν

]
denote the convex conjugate of −g(−π, t, ω) and let N (t, ω) denote its effective domain.
Similarly, let

δ̃K(ν) = sup
π∈Rn

[−δK(−π) + π�ν
] = sup

π∈K

[−π�ν](30)

denote the convex conjugate of δK(−π) and let K̃ denote its effective domain (the barrier
cone of −K). Clearly, δ̃K is a positively homogeneous function (of degree 1). Moreover,
it is easily verified that

N (t, ω) = [−(R(t, ω) − r(t, ω)), r(t, ω) + ιλ−R(t, ω)
]n

,(31)

a uniformly bounded set, and

K̃ =




{0} if λ− = 0, λ+ = 0

[0, +∞)n if λ− > 0, λ+ = 0

(−∞, 0]n if λ− = 0, λ+ > 0

(−∞, +∞)n if λ− > 0, λ+ > 0.

(32)

Let N denote the set of n-dimensional processes ν such that ν(t, ω) ∈ N (t, ω) (λ×P)-
a.e., and let K∞ denote the set of K̃-valued essentially bounded processes.

remark 4. Since gK(π, t) = g(π, t) − δK(π) ≤ min[g(π, t), −δK(π)], we have

g̃K(ν, t) ≤ min[g̃(ν, t), δ̃K(ν)].(33)

Moreover, it follows from Theorem 16.4 in Rockafellar (1970) that

g̃K(ν, t) = min
ν1+ν2=ν

[g̃(ν1, t) + δ̃K(ν2)].(34)

Equations (33)–(34) (or direct verification from (12), (31), and (32)) imply that

NK(t, ω) = N (t, ω) + K̃(35)

and hence that

N ∞
K = N + K∞.(36)

As in Broadie et al. (1998), define the dominating payoff b̂ by

b̂(S) = sup
ν∈K̃

[
b

(
Se−ν

)
e−δ̃K (ν)

]
,(37)

where Se−ν = (S1e
−ν1 , . . . , Sne−νn)�.
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Theorem 4. We have

P(S, t) = sup
ν∈N

E
[
b̂(Sν

T )e− ∫ T
t (rs+g̃(νs ,s)) ds

∣∣ Sν
t = S

]
.

Proof. We start by showing that in order to hedge b(ST ) it is necessary to hedge at
least b̂(ST ); that is, limt↑T P (S, t) ≥ b̂(S). For this, fix S > 0 and t ∈ [0, T ). Also,
let {µn} ⊂ K̃ be such that b(Se−µn

)e−δK(µn) → b̂(S) as n → +∞ and consider the
(deterministic) processes νn ∈ N ∞

K with νn(s) = µn/(T − t) for all s ∈ [0, T ). Then
(28), (33), the positive homogeneity of δ̃K , and the fact that (29) implies

Sν(T ) = S0(T )e− ∫ T
t νs ds(38)

give

P(S, t) ≥ E
[
b

(
S0

T e− ∫ T
t νn

s ds
)

e− ∫ T
t (rs+g̃K (νn

s ,s)) ds
∣∣ S0

t = S
]

≥ E
[
b

(
S0

T e− ∫ T
t νn

s ds
)

e− ∫ T
t (rs+δ̃K (νn

s ,s)) ds
∣∣ S0

t = S
]

= E
[
b

(
S0

T e−µn
)

e−δ̃K (µn)e− ∫ T
t rs ds

∣∣∣ S0
t = S

]

and hence

lim
t↑T

P (S, t) ≥ b
(
S0

T e−µn
)

e−δ̃K (µn).

Letting n → +∞ shows that limt↑T P (S, t) ≥ b̂(S). Since in order to hedge b(ST ) it is
necessary to hedge at least b̂(ST ), we have from (28), (33), and the fact that N ⊂ N ∞

K

(because of (36))

P(S, t) ≥ sup
ν∈N ∞

K

E
[
b̂(Sν

T )e− ∫ T
t (rs+g̃K (νs ,s)) ds

∣∣ Sν
t = S

]

≥ sup
ν∈N

E
[
b̂

(
Sν

T

)
e− ∫ T

t (rs+g̃K (νs ,s)) ds
∣∣ Sν

t = S
]

.

On the other hand, since

E
[
b̂(Sν

T )e− ∫ T
t (rs+g̃(νs ,s)) ds

∣∣∣ Sν
t = S

]

≥ E
[
b

(
Sν

T e− ∫ T
t µs ds

)
e−δ̃K (

∫ T
t µs ds)−∫ T

t (rs+g̃(νs ,s)) ds
∣∣∣ Sν

t = S
]

∀µ ∈ K∞
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(because K̃ is a convex cone and hence {∫ T

t
µ(s, ω) ds : µ ∈ K∞} ⊂ K̃), we also have

sup
ν∈N

E
[
b̂(Sν

T )e− ∫ T
t (rs+g̃(νs ,s)) ds

∣∣∣ Sν
t = S

]

≥ sup
ν∈N

µ∈K∞

E
[
b

(
S0

T e− ∫ T
t (µs+νs) ds

)
e−δ̃K (

∫ T
t µs ds)−∫ T

t (rs+g̃(νs ,s)) ds
∣∣ S0

t = S
]

≥ sup
ν∈N

µ∈K∞

E
[
b

(
S0

T e− ∫ T
t (µs+νs) ds

)
e− ∫ T

t (rs+g̃(νs ,s)+δ̃K (µs) ds) ds
∣∣ S0

t = S
]

= sup
ν∈N

µ∈K∞

E
[
b

(
S0

T e− ∫ T
t (µs+νs) ds

)
e− ∫ T

t (rs+g̃K (µs+νs ,s)) ds) ds
∣∣ S0

t = S
]

= sup
ν∈N ∞

K

E
[
b

(
S0

T e− ∫ T
t νs ds

)
e− ∫ T

t (rs+g̃K (νs ,s)) ds) ds
∣∣ S0

t = S
]

= P(S, t),

where the second (in)equality follows from the fact that δ̃K(
∫ T

t
µs ds) ≤ ∫ T

t
δ̃K(µs) ds

because δ is a positively homogeneous convex function, the third follows from (34), and
the last from (36). ✷

The above theorem allows us to obtain a PDE characterization of P .

Corollary 1. Suppose that the function b̂ in (37) satisfies the polynomial growth
condition

b̂(S) ≤ k1(1 + Sα1)

for some k1, α1 > 0. If P solves the HJB equation

0 = 1

2
tr
(
PSS(S, t)ISσ (S, t)σ (S, t)�IS

) + r(S, t)
(
PS(S, t)�S − P(S, t)

)
(39)

+ max
ν∈N (t)

(
−PS(S, t)�Sν − g̃(ν, t)P

)
+ Pt(S, t)

with terminal condition

P(S, T ) = b̂(S),

and

P(S, t) ≤ k2(1 + Sα2)

for some k2, α2 > 0, then P(St , t) is the minimal cost of hedging b at time t .

Proof. This is an immediate consequence of Theorem 4 and of Theorem IV.3.1 in
Fleming and Soner (1993). ✷
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In particular, with constant coefficients (r, R, σ ) and n = 1, it can be easily verified
that

g̃(ν, t) =
{

ν− + (ιλ−)−1(ν − (1 + ιλ−)r)+ if ιλ > 0;

ν− otherwise,

so that the HJB equation (39) reduces to

0 = 1

2
σ 2S2PSS(S, t) + h(SPS(S, t), P (S, t)) + Pt(S, t),(40)

where

h(x, y) =
{

R(x − y)+ − r(x − y)− if x ≥ 0

R(ιλ−x + y)− − r(ιλ−x + y)+ if x < 0.

Also, in this case
δ̃K(ν) = λ−1

− ν+ + λ−1
+ ν−.

As an illustration, for a call option, b(S) = (S − K)+ and equation (37) gives b̂(S) =
b(S) if λ+ = 0, b̂(S) = S if λ+ = 1, and

b̂(S) =




S − K if S ≥ K

1 − λ+
λ+K

1 − λ+

(
(1 − λ+)S

K

)λ−1
+

if S <
K

1 − λ+

if 0 < λ+ < 1. In this case, the margin requirement on short-sales is irrelevant. Figure 1
plots the hedging cost as a function of the proportional margin requirement for long
positions (λ+), under the assumption that S = K = 50, R = 0.08, σ = 0.40, and
T = 0.75. The hedging cost equals the Black–Scholes price for the call option when
λ+ = 0 and converges to the underlying stock price as λ+ converges to 1.

Figure 1. The cost of hedging a call option as a function of the proportional margin
requirement on long positions (λ+), assuming S = K = 50, R = 0.08, σ = 0.40, and
T = 0.75. The dotted line corresponds to the Black–Scholes price computed using the
borrowing rate.
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Figure 2. The cost of hedging a put option as a function of the proportional margin
requirement on short positions (λ−), assuming S = K = 50, r = 0.06, σ = 0.40, and
T = 0.75. The dotted line corresponds to the Black–Scholes price computed using the
lending rate; the dashed line corresponds to the Black–Scholes price computed using a
zero interest rate.

For a put option, b(S) = (K − S)+. Moreover b̂(S) = b(S) if λ− = 0 and

b̂(S) =




K − S if S ≤ K

1 + λ−
λ−K

1 + λ−

(
K

(1 + λ−)S

)λ−1
−

if S >
K

1 + λ−

if λ− > 0. In this case, the margin requirement on long stock positions is irrelevant.
Figure 2 plots the hedging cost as a function of the proportional margin requirement on
short positions (λ−), under the assumption that S = K = 50, r = 0.06, σ = 0.40, and
T = 0.75. In this case, even with no margin requirements (λ− = 0), the hedging cost is
higher than the Black–Scholes price for the put option computed using the lending rate,
because of the loss of interest on the proceeds from short-sales. Moreover, the hedging
cost converges to Ke−rT as λ− becomes unboundedly large.

7. EXTENSIONS AND GENERALIZATIONS

The results in the paper can be easily extended to cover the case in which the investor
is allowed to earn interest on the cash proceeds from short-sales at a rate rC with 0 ≤
rC ≤ r . Theorems 1–4 and Corollary 1 still hold, provided that r and R are replaced
with r − rC and R − rC , respectively, in the definition of the function g and of the
sets NK(t, ω) and N (t, ω). Moreover, the PDE (40) still characterizes the hedging cost
of contingent claims in the case of constant price coefficients (rC, r, R, σ ) and n = 1
provided that the function h in (40) is redefined as

h(x, y) =
{

R(x − y)+ − r(x − y)− if x ≥ 0

R(ιλ−x + y)− − r(ιλ−x + y)+ + rC(1 + ιλ−) if x < 0.
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More generally, all the main results of this paper extend to a class of problems with
nonlinear wealth dynamics and constraints on the portfolio policies which includes as
special cases those considered in Cvitanić and Karatzas (1992, 1993), El Karoui et al.
(1997), and Cuoco and Cvitanić (1998).
Indeed, suppose that the admissible portfolio policies are subject to the constraint

(9) for some set K ⊂ R
n containing the origin and that the investor’s wealth evolves

according to the stochastic differential equation (8) for some given function g : R
n ×

[0, T ] × � → R. We assume as in Cvitanić and Karatzas (1992, 1993) that K is closed
and convex. Moreover, we assume as in El Karoui et al. (1997) and Cuoco and Cvitanić
(1998) that g(·, t, ω) is concave and upper semicontinuous on R

n with g(0, t, ω) = 0
for all (t, ω) ∈ [0, T ] × � and that the sets N (t, ω) are uniformly bounded (a sufficient
condition is that g(·, t, ω) is uniformly Lipschitz continuous).
Defining the functions gK and g̃K as in Section 3, the result in Proposition 1 still

holds—that is, the minimum in (11) is attained. To see this, notice that, for any π ∈ K ,
we have from (11), (34), and (35)

g(π, t, ω) = inf
ν∈NK(t,ω)

[
g̃K(ν, t, ω) + π�ν

]
(41)

= inf
ν∈NK(t,ω)

[
min

ν1+ν2=ν
[g̃(ν1, t, ω) + δ̃K(ν2)] + π�ν

]

≡ inf
ν1∈N (t,ω)

ν2∈K̃

[
g̃(ν1, t, ω) + δ̃K(ν2) + π�(ν1 + ν2)

]

= inf
ν1∈N (t,ω)

[
g̃(ν1, t, ω) + π�ν1

]
+ inf

ν2∈K̃

[
δ̃K(ν2) + π�ν2

]
.

Since each set N (t, ω) is compact, for any π ∈ & there is a ν∗ ∈ N ∞
K such that

ν∗(t, ω) ∈ arg min
ν1∈N (t,ω)

[
g̃(ν1, t, ω) + π(t, ω)�ν1

]
.

Moreover, it follows from (30) that

0 ∈ arg min
ν2∈K̃

[
δ̃K(ν2) + π(t, ω)�ν2

]
.

Equation (41) then shows that

g(π(t, ω), t, ω) = g̃K(ν∗(t, ω), t, ω) + π(t, ω)�ν∗(t, ω).

Thus, Proposition 1 still holds. In turn, it can be easily checked that this result, together
with the assumed properties of g and K , is all that is needed to derive Theorems 1–4.

8. CONCLUDING REMARKS

This paper has examined optimal consumption and investment choices and the cost of
hedging contingent claims in the presence of margin requirements. The main results
are related to the existence and characterization of optimal policies under fairly general
assumptions on the security price coefficients and on the income process and to a simple
PDE characterization of the hedging cost in the Markovian case. These results generalize
to a class of problems with nonlinear wealth dynamics and constraints on the portfolio
policies.
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APPENDIX

This Appendix contains the proofs of Theorems 1–3. The techniques used are largely
adapted from those in Cvitanić and Karatzas (1992, 1993) and Cuoco and Cvitanić
(1998).

Proof of Theorem 1. We start by showing that

P(0) ≥ sup
ν∈N 0

K

E

[∫ T

0
ξν(s)c(s) ds + ξν(T )W

]
.

Let π ∈ & be any trading strategy financing (c, W) with initial wealth x and let W(t) =
Wx,c,C,π (t) denote the corresponding wealth process. For any ν ∈ N 0

K , we then have by
Itô’s lemma

ξν(t)W(t) +
∫ t

0
ξν(s)c(s) ds +

∫ t

0
ξν(s) dC(s)(42)

+
∫ t

0
ξν(s)W(s)

(
g̃K(ν(s), s) + π(s)�ν(s) − g(π(s), s)

)
ds

= x +
∫ t

0
ξν(s)W(s)

(
π(s)�σ(s) + κν(s)�

)
dw(s).

Since
g(π(t), t) = gK(π(t), t) ≤ g̃K(ν(t), t) + π(t)�ν(t)

(because of (11)), the process on the left-hand side of (42) is a nonnegative local mar-
tingale, and hence a supermartingale. Thus,

x ≥ E

[
ξν(T )W(T ) +

∫ T

0
ξν(t)c(t) dt +

∫ T

0
ξν(t) dC(t)

+
∫ T

0
ξν(t)

(
g̃K(ν(t), s) + π(t)�ν(t) − g(π(t), t)

)
dt

]

≥ E

[
ξν(T )W(T ) +

∫ T

0
ξν(t)c(t) dt

]
.

This shows that

P(0) ≥ sup
ν∈N 0

K

E

[∫ T

0
ξν(t)c(t) dt + ξν(T )W

]
.

Next, we show that

P(0) ≤ sup
ν∈N ∞

K

E

[∫ T

0
ξν(t)c(t) dt + ξν(T )W

]
.

Clearly, we may assume that the above supremum is finite. Let

W(t) = ess supν∈N ∞
K

βν(t)−1 EQν

[∫ T

t

βν(s)c(s) ds + βν(T )W

∣∣∣ Ft

]
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and

Vν(t) =
∫ t

0
βν(s)c(s) ds + βν(t)W(t).

It then follows from the principle of dynamic programming that Vν is a Qν-supermartin-
gale for all ν ∈ N ∞

K (see Prop. 6.3 in Cvitanić and Karatzas (1993) for details). By
the Doob–Meyer decomposition and the martingale representation theorems, this implies
that for all ν ∈ N ∞

K there exists an n-dimensional process ϕν with
∫ T

0 |ϕ(t)|2 dt < +∞
a.s. and an increasing process Cν with Cν(0) = 0 such that

Vν(t) = W(0) +
∫ t

0
ϕν(s)�dwν(s) − Cν(t).(43)

Since

βν(t)−1
[
Vν(t) −

∫ t

0
βν(s)c(s) ds

]
(44)

= W(t) = β0(t)
−1

[
V0(t) −

∫ t

0
β0(s)c(s) ds

]

for all ν ∈ N ∞
K , we have (applying Itô’s lemma to the above equality)

βν(t)−1ϕν(t) = β0(t)
−1ϕ0(t)

and ∫ t

0
βν(s)−1 dCν(s) −

∫ t

0

(
W(s)g̃K(ν(s), s) + βν(s)−1ϕν(s)�σ(s)−1ν(s)

)
ds

=
∫ t

0
β0(s)

−1 dC0(s).

Thus, there exists a process π such that

βν(t)−1ϕν(t)� = W(t)π(t)�σ(t)(45)

and ∫ T

0
W(t)

(
g̃K(ν(t), t) + π(t)�ν(t)

)
dt +

∫ T

0
β0(t)

−1 dC0(t)(46)

=
∫ T

0
βν(t)−1 dCν(t) ≥ 0

for all ν ∈ N ∞
K . Since W > 0 a.e., equation (46) implies that π ∈ &, as otherwise it

would follow from (11) that

inf
ν∈N ∞

K

∫ t

0
W(s)

(
g̃K(ν(s), s) + π(s)�ν(s)

)
ds = −∞

and the above inequality would be violated.
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Next, taking ν ∈ N ∞
K to be the process of Proposition 1, an application of Itô’s lemma

to (44) (using (43) and (45)) gives

W(t) = W(0) +
∫ t

0
W(s)

(
r(s) + π(s)�(µ(s) − r(s)1̄) + g̃K(ν(s), s) + π(s)�ν(s)

)
ds

−
∫ t

0
c(s) ds −

∫ t

0
βν(s)−1 dCν(s) +

∫ t

0
W(s)π(s)�σ(s) dw(s)

= W(0) +
∫ t

0
W(s)

(
r(s) + π(s)�(µ(s) − r(s)1̄) + g(π(s), s)

)
ds

−
∫ t

0
c(s) ds − C(t) +

∫ t

0
W(s)π(s)�σ(s) dw(s),

where

C(t) =
∫ t

0
βν(s)−1 dCν(s).

Thus π finances (c, W) with initial cost W(0), and hence

P(0) ≤ W(0) = sup
ν∈N ∞

K

EQν

[∫ T

0
βν(t)c(t) dt + βν(T )W

]
.

Since

sup
ν∈N ∞

K

EQν

[∫ T

0
βν(t)c(t) dt + βν(T )W

]

= sup
ν∈N ∞

K

E

[∫ T

0
ξν(t)c(t) dt + ξν(T )W

]

≤ sup
ν∈N 0

K

E

[∫ T

0
ξν(t)c(t) dt + ξν(T )W

]
,

the above shows that

P(0) = sup
ν∈N 0

K

E

[∫ T

0
ξν(s)c(s) ds + ξν(T )W

]

= sup
ν∈N ∞

K

EQν

[∫ T

0
βν(s)c(s) ds + βν(T )W

]
. ✷

Proof of Theorem 2. Define the consumption policy c∗ and the wealth process W as
in equations (24) and (25), respectively (the latter is finite because of (23)). In order to
prove that c∗ is optimal we will proceed in two steps: first we will show that U(c∗) ≥
U(c) holds for all feasible consumption processes c ∈ C, and then that c∗ is feasible.
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Step 1: By (16), equation (23) implies that

E

[∫ T

0
ξν∗(t)f (ψξν∗(t), t) dt

]
< +∞ ∀ψ ∈ (0, +∞).(47)

By the optimality of ψ∗, we then have

0 = lim
ε→0

J (ψ∗ + ε, ν∗) − J (ψ∗, ν∗)
ε

= E

[∫ T

0
lim
ε→0

ũ((ψ∗ + ε)ξν∗(t), t) − ũ(ψ∗ξν∗(t), t)

ε
dt + W0

]

= W0 − E

[∫ T

0
ξν∗(t)c∗(t) dt

]
,

where the second equality follows from Lebesgue’s dominated convergence theorem and
(47), using the fact that

∣∣∣∣ ũ
(
(ψ∗ + ε)ξν∗(t), t

) − ũ
(
ψ∗ξν∗(t), t

)
ε

∣∣∣∣
≤ ũ

(
(ψ∗ − |ε|)ξν∗(t), t

) − ũ
(
ψ∗ξν∗(t), t

)
|ε|

≤ ξν∗(t)f
(
(ψ∗ − |ε|)ξν∗(t), t

) ≤ ξν∗(t)f
(
(ψ∗/2)ξν∗(t), t

)

for |ε| < ψ∗/2, because ũ(·, t) is decreasing and convex, (∂/∂y)ũ(y, t) = −f (y, t), and
f (·, t) is decreasing. Therefore,

E

[∫ T

0
ξν∗(t)c∗(t) dt

]
= W0.(48)

Next, let c ∈ C be any feasible consumption process in (P ). Since by concavity

u(f (y, t), t) − u(c, t) ≥ y[f (y, t) − c] ∀c > 0, y > 0,(49)

we have

U(c∗) − U(c) = E

[∫ T

0

(
u(c∗(t), t) − u(c(t), t)

)
dt

]

≥ ψ∗ E
[∫ T

0
ξν∗(t)(c∗(t) − c(t)) dt

]
≥ 0.

Hence, c∗ must be optimal provided it is feasible.
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Step 2: Since the process

M(t) = ξν∗(t)W(t) +
∫ t

0
ξν∗(τ )c(τ ) dτ

is a P -martingale with M(0) = W0, it follows from the martingale representation theorem
that there exists an adapted process ϕ with

∫ T

0 |ϕ(t)|2 dt < +∞ a.s. such that

ξν∗(t)W(t) +
∫ t

0
ξν∗(s)c(s) ds = M(t) = W0 +

∫ t

0
ϕ(s)�dw(s).(50)

Define a process π by

ξν∗(t)W(t)
(
σ(t)�π(t) + κν∗(t)

)
= ϕ(t).

An application of Itô’s lemma to (50) then shows that

W(t) = W0 +
∫ t

0
W(s)

(
r(s) + π(s)�(µ(s) + ν∗(s) − r(s)1̄) + g̃K(ν∗(s), s)

)
ds

−
∫ t

0
c(s) ds +

∫ t

0
W(s)π(s)�σ(s) dw(s),

so that in order to prove that c is feasible we only need to show that π ∈ & and

g(π(t), t) = g̃K(ν∗(t), t) + π(t)�ν∗(t), (λ × P )-a.e.(51)

Let ν ∈ N p
K be arbitrary and define the processes

Nν(t) =
∫ T

t

(
σ(s)−1(ν(s) − ν∗(s))

)�(
dw(s) − κν∗(s) ds

)
and

Gν(t) =
∫ t

0

(
g̃K(ν(s), s) − g̃K(ν∗(s), s)

)
ds

as well as the stopping times

τn = T ∧ inf

{
t ∈ [0, T ] : |Nν(t)| ≥ n, or |Gν(t)| ≥ n,

or
∫ t

0
|σ(s)�(ν(s) − ν∗(s)) ds ≥ n,

or
∫ t

0
ξν∗(s)2W(s)2|σ(s)−1(ν(s) − ν∗(s))|2 ds ≥ n,

or
∫ t

0
ξν∗(s)2W(s)2|σ(s)�π(s) + κν∗(s)|2 ds ≥ n

}
.

Then τn ↑ T almost surely. Moreover, letting

νε,n(t) = ν∗(t) + ε[ν(t) − ν∗(t)]1{t≤τn},
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we have νε,n ∈ N p
K for all ε ∈ (0, 1) (because of the convexity of the sets NK(t, ω))

and

ξνε,n(t) = ξν∗(t) exp

(
−εNν(t ∧ τn) − ε2

2

∫ t∧τn

0
|σ(s)−1(ν(s) − ν∗(s))|2 ds(52)

−
∫ t∧τn

0

(
g̃K(ν∗(s) + ε(ν(s) − ν∗(s)), s)

− g̃K(ν∗(s), s)
)

ds

)

≥ ξν∗(t)e−3n,

where the inequality follows from the definition of τn and the fact that

g̃K(ν∗(t) + ε(ν(t) − ν∗(t)), t) − g̃K(ν∗(t), t) ≤ ε(g̃K(ν(t), t) − g̃K(ν∗(t), t))(53)

(because of the convexity of g̃K(·, t)). This implies

ũ(ψ∗ξνε,n(t), t) − ũ(ψ∗ξν∗(t), t)

ε
≤ ψ∗Knξν∗(t)f (ψ∗e−3nξν∗(t), t),(54)

where Kn = supε∈(0,1)(e
3εn − 1)/ε

We then have

0 ≤ lim
ε↓0

J (ψ∗, νε,n) − J (ψ∗, ν∗)
ε

(55)

≤ E

[∫ T

0
lim
ε↓0

ũ(ψ∗ξνε,n(t), t) − ũ(ψ∗ξν∗(t), t)

ε
dt

]

= ψ∗ E
[∫ T

0
ξν∗(t)c∗(t)

×
(

Nν(t ∧ τn) + lim
ε↓0

×
∫ t∧τn

0

g̃K(ν∗(s) + ε(ν(s) − ν∗(s)), s) − g̃K(ν∗(s), s)

ε
ds

)
dt

]

≤ ψ∗ E
[∫ T

0
ξν∗(t)c∗(t)(Nν(t ∧ τn) + Gν(t ∧ τn)) dt

]

= ψ∗ E
[∫ τn

0
ξν∗(t)c∗(t)(Nν(t) + Gν(t)) dt

+ ξν∗(τn)W(τn)(Nν(τn) + Gν(τn))

]
,

where the first (in)equality follows from the optimality of ν∗, the second from Fatou’s
lemma (using (54) and (47)), the third from (19) and (52), the fourth from (53), and the
last from (25), and the law of iterated expectations.
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On the other hand, by Itô’s lemma

ξν∗(τn)W(τn)
(
Nν(τn) + Gν(τn)

)
=

∫ τn

0
ξν∗(t)W(t)

(
σ(t)−1(ν(t) − ν∗(t))

)�(
dw(t) − κν∗(t) dt

)

+
∫ τn

0
ξν∗(t)W(t)

(
g̃K(ν(s), s) − g̃K(ν∗(s), s)

)
ds

−
∫ τn

0
ξν∗(t)c∗(t)

(
Nν(t) + Gν(t)

)
dt

+
∫ τn

0
ξν∗(t)W(t)

(
Nν(t) + Gν(t)

)(
σ(t)�π(t) + κν∗(t)

)�
dw(t)

+
∫ τn

0
ξν∗(t)W(t)

(
σ(t)�π(t) + κν∗(t)

)�
σ(t)−1(ν(t) − ν∗(t)) dt.

Since the stochastic integrals in the previous expression are martingales, taking expecta-
tions gives

E

[∫ τn

0
ξν∗(t)c∗(t)

(
Nν(t) + Gν(t)

)
dt + ξν∗(τn)W(τn)

(
Nν(τn) + Gν(τn)

)]
(56)

= E

[∫ τn

0
ξν∗(t)W(t)

(
π(t)�(ν(t) − ν∗(t)) + g̃K(ν(t), t) − g̃K(ν∗(t), t)

)
dt

]
.

Substituting the last equality in (55) gives

E

[∫ τn

0
ξν∗(t)W(t)

(
g̃K(ν(t), t) + π(t)�ν(t)

)
dt

]
(57)

≥ E

[∫ τn

0
ξν∗(t)W(t)

(
g̃K(ν∗(t), t) + π(t)�ν∗(t)

)
dt

]
> −∞

for all ν ∈ N p
K and all n (where the second inequality follows from taking ν = 0 in

(56)).
Since

inf
ν∈NK(t,ω)

[g̃K(ν, t, ω) + π(t, ω)�ν] = gK(π(t, ω), t, ω)

and the right-hand side of the above equation equals −∞ if π(t, ω) �∈ K , equation (57)
implies that π ∈ &. Then, taking ν to be the process in Proposition 1, (57) gives

E

[∫ τn

0
ξν∗(t)W(t)

(
gK(π(t), t) − g̃K(ν∗(s), s) − π(t)�ν∗(t)

)
ds

]
≥ 0.

Since equation (11) implies that gK(π(t), t)− g̃K(ν∗(s), s)−π(t)�ν∗(t) ≤ 0, this shows
that (51) holds and hence that π finances c∗. ✷
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Proof of Theorem 3. It is easy to see that, under the assumptions of Theorem 3, a
sufficient condition for the minimum in (P ∗) to be attained is that for all ψ ∈ (0, +∞)

there exists a solution to the problem

min
ν∈N 2

K

J (ψ, ν).(58)

In fact, letting V (ψ) denote the value function in (58), it is easily verified that V is
strictly convex and continuous on (0, +∞). Moreover, condition (a) and the definition
of ũ imply that

ũ(y, t) > u(0+, t) > −∞.(59)

It then follows from Jensen’s inequality, the fact that E[ξν(t)] ≤ 1 for all ν ∈ N 0
K and

all t ∈ [0, T ] (because βν ≤ 1 and Zν is a supermartingale), and equation (20) that V

satisfies the coercivity conditions

lim
ψ↑+∞

V (ψ) ≥
∫ T

0
ũ(ψ, t) dt + ψW0 ≥

∫ T

0
u(0+, t) dt + ψW0 = +∞

and

lim
ψ↓0

V (ψ) ≥
∫ T

0
ũ(ψ, t) dt + ψW0 = +∞.

Therefore, given condition (b), V must attain a (unique) minimum on (0, +∞), and
hence (P ∗) has a solution.
By Proposition 2.1.2 in Ekeland and Temam (1976), in order to prove that the problem

in (58) has a solution it is sufficient to show that (i) N 2
K is convex and closed in L2(λ ×

P), and (ii) J (ψ, ·) is convex, coercive, and lower semicontinuous on N 2
K .

The convexity and closedness of N 2
K follow from the fact that each of the sets

NK(t, ω) is convex and closed in R
n and the fact that convergence in L2(λ×P) implies

convergence (λ × P)-a.e. along a subsequence.
The convexity of J (ψ, ·) follows from the fact that the map ν �→ log ξν(t) is convex

and the map x �→ ũ(ex, t) is decreasing (by Lemma 1) and convex (by condition (a)).
Coercivity follows from the fact that

J (ψ, ν) ≥ E

[∫ T

0
ũ(ψZν(t), t) dt

]

≥
∫ T

0
ũ
(
ψ exp

(
E[logZν(t)]

)
, t

)
dt

=
∫ T

0
ũ

(
ψ exp

(
− 1

2
E

∫ T

0
|κ0(t) + σ(t)−1ν(t)|2 dt

)
, t

)
dt

(because of Jensen’s inequality and the convexity of the map x �→ ũ(ex, t)), together with
(20) and condition (a). Lower semicontinuity follows from Fatou’s lemma, using (59).
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Thus, under conditions (a) and (b), (P ∗) has a solution. Moreover, we have from
condition (c) that

yf (y, t) ≤ a + (1 − b)u(f (y, t), t),

and hence

byf (y, t) ≤ a + (1 − b)[u(f (y, t), t) − yf (y, t)] = a + (1 − b)ũ(y, t),

so that

E

[∫ T

0
ξν∗(t)f (ψ∗ξν∗(t), t) dt

]
≤ a

bψ∗ + 1 − b

bψ∗ E

[∫ T

0
ũ(ψ∗ξν∗(t), t) dt

]

= a

bψ∗ + 1 − b

bψ∗ (J (ψ∗, ν∗) − ψ∗W0)

< +∞.

Therefore, condition (23) of Theorem 2 is also satisfied, and hence there exists an optimal
consumption/investment policy. ✷
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