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1. Introduction
Market closures during nights, weekends, and holi-
days are implemented in almost all financial markets.
An extensive literature on stock return dynam-
ics across trading and nontrading periodsfinds that
although expected returns do not vary significantly
across these periods, return volatility is much higher
during trading periods (e.g., French and Roll 1986,
Stoll and Whaley 1990, Tsiakas 2008; see Figure 2
in §5). For example, French and Roll (1986) and
Stoll and Whaley (1990) find that return volatility
during trading periods is more than four times the
volatility during nontrading periods on a per-hour
basis.1 However, most of the existing portfolio selec-
tion models assume that the market is continuously
open, and return volatilities are the same across trad-
ing and nontrading periods.2 Therefore, the practical
relevance of the optimal trading strategies obtained

1 French and Roll (1986) conclude that the principle factor behind
high trading-time variances is the private information revealed by
informed trades during trading hours, although mispricing also
contributes to it.
2 See, for example, Merton (1971), Constantinides (1986), and
Vayanos (1998).

in these models can be limited. In addition, one of
the important implications of this assumption is that
the effect of transaction costs on the liquidity pre-
mium is too small to match empirical evidence (e.g.,
Constantinides 1986, Jang et al. 2007).

In this paper, we consider a continuous-time opti-
mal portfolio choice problem of a small investor who
can trade a risk-free asset and a risky stock that is sub-
ject to proportional transaction costs. Different from
the standard literature, we assume the market closes
periodically and stock return dynamics may differ
across trading and nontrading periods. We show the
existence, uniqueness, and smoothness of the optimal
trading strategy. We derive a closed-form solution in
the absence of transaction costs. In the presence of
transaction costs, we explicitly characterize the solu-
tion to the investor’s problem, and derive certain
helpful comparative statics on the optimal trading
strategies. We find that in the absence of transaction
costs, the investor almost always trades at market
close and market open if Sharpe ratios vary across
trading and nontrading periods. In the presence of
even small transaction costs, however, he trades only
infrequently.
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This paper also contributes to the literature on
the effect of transaction costs on liquidity premia.
As explained by Constantinides (1986), consider two
assets with perfectly correlated rates of return and
equal variance, where the first asset is subject to pro-
portional transaction cost but the second is not. Then
if both assets are held in equilibrium, the expected
return on the first asset must exceed that of the liq-
uid counterpart by some liquidity premium. Follow-
ing Constantinides (1986), we define liquidity premium
as the maximum expected return an investor is will-
ing to exchange for zero transaction cost. Liquidity
premia found by most theoretical portfolio selection
models using this measure are well below empiri-
cal findings. For example, Constantinides (1986) finds
that the liquidity premium to (round-trip) transac-
tion cost (LPTC) ratio is only about 0007 for a pro-
portional (round-trip) transaction cost of 1%, whereas
Amihud and Mendelson (1986) find that the LPTC
ratio is about 109 for New York Stock Exchange
(NYSE) stocks in their empirical study. Using a
regime-switching model, Jang et al. (2007) show that
the LPTC ratio given reasonable calibration is about
0025. Lynch and Tan (2011) show that incorporat-
ing return predictability, state-dependent transaction
costs and wealth shock can generate greater liquid-
ity premia than those found by Constantinides (1986).
However, the liquidity premia found by Lynch and
Tan (2011) with reasonable parameter values are still
significantly smaller than those in the correspond-
ing empirical evidence. We demonstrate numerically
that if one incorporates the well-established fact that
market volatility is significantly higher during trad-
ing periods, then transaction costs can have a first-
order effect that is comparable to empirical evidence.
For example, when the volatility during trading peri-
ods is three (resp., four) times that during nontrad-
ing periods, the LPTC ratio in our model is about
1076 (resp., 2022) for a proportional round-trip transac-
tion cost of 1%, more than 20 times higher than what
Constantinides (1986) finds. This result is not sensitive
to a three-period extension with an after-hour trading
period in addition to a daytime trading period and
overnight market closure period. The main intuition
for why the liquidity premium is much higher in our
model is simple: The opportunity cost of not being
able to rebalance costlessly to take advantage of the
time-varying return dynamics is much greater when
return dynamics change significantly and frequently.

Transaction costs decrease an investor’s utility
through two channels: First, the wealth is reduced by
transaction cost payment; second, the investor cannot
always trade to maintain the optimal risk exposure.
Liquidity premia found in the existing literature (e.g.,
Constantinides 1986, Jang et al. 2007) mainly come

from the transaction cost payment channel. Surpris-
ingly, we find that the significantly higher liquidity
premium in our model mainly comes from the sub-
stantially “suboptimal” risk exposure chosen to con-
trol transaction costs.

Although it is beyond the scope of this paper to
provide an equilibrium model that can generate time-
varying Sharpe ratios across day and night as what is
observed in data, such an equilibrium can be consis-
tent with an economy with heterogeneous investors;
e.g., some investors may be more risk averse toward
carrying overnight inventories than others, may have
different time discount rates, or may have heteroge-
neous beliefs on the time-varying return dynamics.3

As we have mentioned above, because of the pres-
ence of transaction costs, investors trade infrequently
even when the overnight Sharpe ratio is much greater.
This suggests that small heterogeneity may be suffi-
cient to sustain an equilibrium with different Sharpe
ratios across trading and nontrading periods. In this
paper, we take the salient and robust volatility and
Sharpe ratio patterns across trading and nontrading
periods that are found by a large literature as a given
equilibrium outcome and consider what the impact of
illiquidity is on a small investor who does not have
any price impact.

Our model suggests that, conditional on the same
increase in the transaction costs (e.g., from 0 to 1%),
stocks with greater volatility variation across trading
periods and nontrading periods require higher addi-
tional liquidity premia. Indeed, our empirical anal-
ysis using the methodology of Eleswarapu (1997)
finds that liquidity premia are higher for stocks with
greater volatility differences across trading and non-
trading periods. More specifically, we examine the
cross-sectional relationship between excess return and
spread using the Fama and MacBeth (1973) type
regressions on equally weighted portfolios from triple
sorting by average volatility difference �d −�n across
trading and nontrading periods in the previous year,
average relative bid–ask spreads in the previous year,
and their estimated betas in the last three years. We
find that spreads significantly affect excess returns.
Indeed, consistent with the findings of the exist-
ing literature (e.g., Amihud and Mendelson 1986,
Eleswarapu 1997), the highly significant coefficient of
Spread implies a 1% increase in the spread is asso-
ciated with a 0.22% increase in the monthly risk-
adjusted excess return. However, we find that this

3 We solved a four-period discrete-time equilibrium model with
market closure and transaction costs, the results of which are not
reported in this paper to save space. This simple model illustrates
that with heterogeneous agents in an economy, without transaction
cost, a market closure can cause large trades at market closure and
opening times, as in the no-transaction-cost case of our paper. In
addition, the presence of transaction costs can significantly reduce
trading sizes, as in the case with transaction costs in our paper.
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significant impact of transaction costs mainly comes
from stocks with high volatility differences across
trading and nontrading periods. For example, for a
1% increase in the spread, stocks with high volatil-
ity differences require 0.36% higher monthly risk-
adjusted excess return than those with low volatility
differences. We further demonstrate that volatility
variation across trading and nontrading periods is
still an important determinant of liquidity premium
after controlling for firm size, book-to-market ratio,
trading volume, and portfolio loadings on Fama and
French (1993) three factors and Carhart (1997) four
factors. As far as we know, this is the first empirical
analysis that indicates that volatility difference across
trading and nontrading periods significantly affects
liquidity premia.

With regard to the findings on liquidity premia, the
closest work to this model is that by Jang et al. (2007).
There are several important differences, however.
First, this model can generate liquidity premium that
is comparable to empirical findings. Since Jang et al.
(2007) rely on regime switching between bear and
bull markets and the historical switching frequency
is low, for a reasonable calibration of their model
they can only generate an LPTC ratio of 0025, which
is significantly lower than those found by empirical
studies. Second, we also conduct empirical analysis
to test whether, as suggested by our model, volatil-
ity variation across trading and nontrading periods
is an important determinant of liquidity premium.
Third, this is the first paper to numerically demon-
strate that a significantly suboptimal trading strategy
caused by transaction cost can be the main driving
force behind a greater liquidity premium. For exam-
ple, in Jang et al. (2007), a greater liquidity premium
mainly comes from the higher transaction cost pay-
ment caused by greater trading frequency. Finally,
since in Jang et al. (2007) regimes switch at random
times, one needs a good estimation of the switching
frequency, and estimation error may affect the accu-
racy of the liquidity premium estimation. In contrast,
in this model, the market closes and opens at mostly
known deterministic times, and therefore there is no
estimation error of the switching times.

This paper is also related to equilibrium models
with market closure or with transaction costs. Hong
and Wang (2000) consider an equilibrium model
with periodic market closures and constant absolute
risk aversion (CARA) investors.4 They find that the
equilibrium volatility during trading periods can be

4 For CARA utility, it is still feasible to solve the investor’s problem
for our model. The main difference from the optimal trading strat-
egy for the CRRA case without transaction cost is that it is optimal
to invest a constant dollar amount (instead of a constant fraction
of wealth) in stock. With transaction costs, there is a time-varying
no-transaction interval for the dollar amount invested in stock, out

higher. They also show that closures can make prices
more informative about future payoffs. Different from
our model, they do not consider the presence of trans-
action costs. In an equilibrium model with a one-shot
market closure, Longstaff (2009) examines the effect
of one nontrading period on asset prices. Consistent
with empirical evidence and our model, he finds that
the value of liquidity can represent a large portion of
the equilibrium price of an asset. Assuming the mar-
ket is continuously open, Vayanos (1998) finds that
transaction costs have small impact on asset returns.
Assuming quadratic transaction costs, which implies
a small cost for small trades, Heaton and Lucas (1996)
find significant liquidity premia only in the pres-
ence of large transaction costs. Both of these mod-
els assume independent and identically distributed
(i.i.d.) returns over time.

The rest of this paper is organized as follows. Sec-
tion 2 presents the model with transaction costs, mar-
ket closures, and different return dynamics across
trading and nontrading periods. Section 3 solves the
case without transaction costs as a benchmark for
later comparison. Section 4 provides characterizations
of the solution and some comparative statics for the
optimal trading strategy. Numerical and graphical
analysis is presented in §5. In §6, we extend to a three-
period model: a period with no trade at all, a period
with trade but high transaction costs, and a period
with regular trading. In §7, we empirically examine
whether the volatility difference across trading and
no-trading periods is important in affecting liquidity
premia. Section 8 closes this paper. All proofs are pre-
sented in the appendix.

2. The Model
We consider an investor who maximizes his con-
stant relative risk averse (CRRA) utility from ter-
minal liquidation wealth at T ∈ 401�5. The investor
can invest in two financial assets. The first asset
(“bond”) is riskless, growing at a continuously com-
pounded, constant rate r . The second one is risky
(“stock”). Different from the standard literature, we
assume that the stock market closes and opens peri-
odically. Specifically, the investment horizon T is par-
titioned into 0 = t0 < · · · < · · · < t2N+1 = T . The market
is open in time intervals 6t2i1 t2i+17 (“day”); whereas
the market is closed and thus no trading takes place
in 4t2i+11 t2i+251 ∀ i = 0111 0 0 0 1N (“night”).5 When the
market is open, the investor can buy the stock at the

of which it is optimal to buy or sell to the closest boundary. Like
most of the existing literature, we do not consider the CARA case
as the main case because there is no wealth effect on the dollar
amount invested in the stock.
5 These intervals can be of different length, and thus can deal with
closure on weekends and holidays.
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ask price SA
t = 41 + �5St and sell the stock at the bid

price SB
t = 41 − �5St1 where � ≥ 0 and 0 ≤ � < 1 rep-

resent the proportional transaction cost rates and St
evolves continuously across day and night as

dSt
St

=�4t5dt +�4t5dBt1 (1)

with

�4t5=

{

�d day1
�n night1

and �4t5=

{

�d day1
�n night1

where �d > r , �n > r , �d > 0, and �n > 0 are
assumed to be constants, and 8Bt3 t ≥ 09 is a one-
dimensional Brownian motion on a filtered probabil-
ity space 4ì1F1 8Ft9t≥01P5 with B0 = 0 almost surely.
We assume that F=F�, the filtration 8Ft9t≥0 is right
continuous, and each Ft contains all null sets of F�.

When �+� > 0, the above model gives rise to equa-
tions governing the evolution of the dollar amount
invested in the bond, xt , and the dollar amount
invested in the stock, yt ,

dxt = rxtdt − 41 + �5dIt + 41 −�5dDt1 (2)

dyt =�4t5ytdt +�4t5ytdBt + dIt − dDt1 (3)

where the cumulative stock sales process D and pur-
chases process I are adapted, nondecreasing, and
right continuous with D405 = I405 = 0, and both dIt
and dDt are restricted to be 0 during night.

Let x0 and y0 be the given initial positions in the
bond and the stock, respectively. We let A4x01y05
denote the set of admissible trading strategies 4D1 I5
such that (2) and (3) hold, and the investor is always
solvent, i.e.,

Wt ≥ 01 ∀ t ≥ 01 (4)

where
Wt = xt + 41 −�5y+

t − 41 + �5y−

t (5)

is the time t wealth after closing the stock position.
Because the investor cannot trade when the market is
closed and the stock price can get arbitrarily close to 0
and is unbounded above, the solvency constraint (4)
implies that the investor cannot borrow or short sell
at market close.

The investor’s problem is then

sup
4D1 I5∈A4x01y05

E6u4WT 571 (6)

where the utility function is given by

u4W5=
W 1−�

1 −�
1

and � > 0 is the constant relative risk-aversion
coefficient.6

6 Most results for the log utility case can be obtained by letting �
approach 1.

3. Optimal Trading Without
Transaction Costs

For purpose of comparison, we first consider the case
without transaction costs (i.e., �= � = 0). In this case,
when the market is open, the standard Hamilton–
Jacobi–Bellman (HJB) equation holds, and it is opti-
mal to continuously trade. The basic idea for solving
the investor’s problem is to solve it backward itera-
tively for the last day, then the last night, and then
the next-to-last day, so on and so forth.

Let �t = yt/4xt + yt5 be the fraction of wealth
invested in the stock at time t, and let �M (“Merton
line”) be the optimal fraction of wealth invested in the
stock in the absence of market closure and transaction
costs. Then it can be shown that

�M 4t5=
�4t5− r

��4t52
1 ∀ t ∈ 601T 70 (7)

Let

J 4x1y1 t5≡ sup
4D1 I5∈A4x1y5

Et6u4WT 5 � xt = x1yt = y7 (8)

be the value function at time t. We summarize the
main result for the no-transaction-cost case in the fol-
lowing theorem, with the notation convention that
t−1 = 0.

Theorem 1. Suppose that �= � = 0. Then, for i =N1
N − 11 0 0 0 10, the value function at time t is given by

J 4x1y1 t5=































































4x+ y51−�

1 −�
e41−�5�4t5

( N
∏

k=i+1

G∗

k

)

t ∈ 6t2i1 t2i+171

4x+ y51−�

1 −�
e41−�5�4t5

( N
∏

k=i+1

G∗

k

)

·Gi

(

y

x+ y
1 t

)

t ∈ 4t2i−11 t2i51

(9)

and it is attained by the optimal trading policy of

�∗

t =

{

�M 4t5 t ∈ 6t2i1 t2i+151

�∗
i t = t2i−11

when market is open, where

Gi4�1 t5= Et861 +�4R4t2i − t5− 1571−�91 (10)

R4h5= exp64�n − r −�2
n/25h+�nB4h571 (11)

�∗

i = arg max
�∈60117

Gi4�1 t2i−15

1 −�
1 G∗

i =Gi4�
∗

i 1 t2i−151 (12)

and

�4t5= r4T − t5+
4�d − r52

2��2
d

N
∑

i=0

4t2i+1 − t2i ∨ t5+0 (13)
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Without market closure, the optimal trading strat-
egy is to invest a constant fraction of wealth in stock
during the daytime and a different fraction overnight
because of the different return dynamics across day
and night. With periodic market closures, Theorem 1
suggests that when the market is open, the investor
invests the same fraction of wealth in stocks as in
the case without market closures, but, facing a market
closure, the investor can no longer keep a constant
fraction in stocks during night. Instead, he adjusts his
position at market close to a different fraction that
is optimal, on average, loosely speaking. In addition,
since the investor cannot trade overnight, the stock
position is stochastic overnight, and can be subopti-
mal just before market open, and therefore another
discrete adjustment is also likely necessary at market
open. These adjustments at market close and market
open suggest that the trading volumes at these times
are higher than during the rest of the trading hours,
predicting a U-shaped trading volume pattern across
trading hours, consistent with Hong and Wang (2000)
and empirical evidence. Note that the optimal trading
strategy during the day is independent of parameter
values during the night. We show later that this is no
longer true in the presence of transaction costs.

4. The Transaction-Cost Case
In the case where � + � > 0, the problem is consid-
erably more complicated. In this case, the investor’s
problem at time t becomes

V 4x1y1 t5≡ sup
4D1 I5∈A4x1y5

Et6u4WT 5 � xt = x1yt = y70 (14)

Under regularity conditions on the value function, for
i =N1N − 11 0 0 0 10, we have the following HJB equa-
tions: for daytime,

max8Vt +¬V 1 41 −�5Vx −Vy1−41 + �5Vx +Vy9= 01

∀ t ∈ 6t2i1 t2i+151 (15)

for nighttime,

Vt +¬V = 01 ∀ t ∈ 4t2i−11 t2i51 (16)

and at market close before T (i.e., i ≤N − 1),

V 4x1y1 t2i+15 = max
ã∈C4x1y5

V 4x− 41 + �5ã+

+ 41 −�5ã−1y+ã1 t+2i+151 (17)

with the terminal condition

V 4x1y1T 5=
4x+ 41 −�5y+ − 41 + �5y−51−�

1 −�
1 (18)

where

¬V = 1
2�4t5

2y2Vyy +�4t5yVy + rxVx1

and

C4x1y5 = 8ã ∈ IR2 x− 41 + �5ã+

+ 41 −�5ã−
≥ 01y+ã≥ 091 (19)

where the restriction set C imposes no borrowing or
shorting overnight to ensure solvency.

As we show later, (15) implies that the solvency
region for the stock

S= 84x1y52 x+ 41 −�5y+
− 41 + �5y− > 09

at each point in time during a day splits into a “buy”
region (BR), a “no-transaction” region (NTR), and a
“sell” region (SR), as in Davis and Norman (1990), Liu
(2004), and Liu and Loewenstein (2002).

The following verification theorem shows the exis-
tence and the uniqueness of the optimal trading strat-
egy. It also ensures the smoothness of the value
function except in a set of measure zero.

Theorem 2. (i) The value function is the unique vis-
cosity solution of the HJB Equations (15)–(18).

(ii) The value function is C21211 in 4x1y5 ∈

S\48y = 09∪ 8x = 095, t ∈ 4t2i1 t2i+15 and in x > 0, y > 0,
t ∈ 4t2i−11 t2i5, for i =N1N − 11 0 0 0 100

The homogeneity of the utility function u and the
fact that A4�x1�y5 = �A4x1y5 for all � > 0 imply
that V is concave in 4x1y5 and homogeneous of
degree 1 − � in 4x1y5 (cf. Fleming and Soner 1993,
Lemma VIII.3.2). This homogeneity implies that

V 4x1y1 t5= y1−��

(

x

y
1 t

)

1 (20)

for some function �2 4�− 11�5× 601T 7→ IR.7

Let
z=

x

y
(21)

denote the ratio of the dollar amount invested in the
bond to that in the stock. The homogeneity prop-
erty then implies that buy, no-transaction, and sell
regions can be described by two functions of time
z∗

b4t5 and z∗
s 4t5. The BR corresponds to zt ≥ z∗

b4t5, the
SR to zt ≤ z∗

s 4t5, and the NTR to z∗
s 4t5 < zt < z∗

b4t5.
A time snapshot of these regions is depicted in Fig-
ure 1. As we show later, the optimal trading strategy
in the stock when market is open is to transact a min-
imum amount to keep the ratio zt in the optimal no-
transaction region. Therefore the determination of the
optimal trading strategy in the stock reduces to the
determination of the optimal no-transaction region.
At market close, because of the imminent market clo-
sure, the investor generally chooses a different no-
transaction region, and the change in the boundaries

7 Since the risk premium is positive, short sale is never optimal and
thus y > 0.
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Figure 1 The Solvency Region
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implies possible lump-sum trades at market close. For
example, if the investor had a levered position just
before market close, then a lump-sum sale would be
necessary to ensure overnight solvency. During mar-
ket closure, the investor cannot trade, and the ratio zt
fluctuates stochastically. Therefore, a lump-sum trade
may also be optimal at market open, because the
risk exposure might have drifted away from the opti-
mal one during the market closure period. In contrast
to the no-transaction-cost case, the optimal fraction
of the wealth invested in the stock during daytime
changes stochastically, since zt varies stochastically
due to no transaction in the NTR.

The nonlinearity of the HJB equation and the time-
varying nature of the free boundaries make it diffi-
cult to solve directly. Instead, we transform the above
problem into a double obstacle problem, which is
much easier to analyze.8 All the analytical results in
this paper are obtained through this approach.

Let

zM =
��2

d

�d − r
− 1 (22)

be the daytime Merton ratio (i.e., the optimal ratio in
the absence of transaction costs). We then have the
following comparative statics.

Proposition 1. For any t ∈ 6t2i1 t2i+15, i = N1N − 11
0 0 0 10, we have

(i) z∗

b4t5≥ 41 + �5zM3
(ii) z∗

s 4t5≤ 41 −�5zM .

Proposition 1 implies that if it is suboptimal to bor-
row or short sell in the absence of transaction costs
(i.e., zM > 0), then the no-transaction region always
brackets the Merton ratio.

8 See Dai and Yi (2009) and the references therein for a description
of this class of problems and solution methodology.

Because the market closure time is determinis-
tic and the investor can adjust his trading strategy
accordingly, one might conjecture that the optimal
buy and sell boundaries are always continuous in
time from open to close (inclusive) so that transaction
costs can be saved from discrete trades. The following
proposition shows that this conjecture is incorrect.

Proposition 2. The sell and buy boundaries have the
following properties at t2i+1, i =N − 11N − 21 0 0 0 10:

z∗

s 4t
−

2i+15 = min8z∗

s 4t2i+151 41 −�5zM 93 (23)

z∗

b4t
−

2i+15 = max8z∗

b4t2i+151 41 + �5zM 90 (24)

As discussed above, when market closes, an
investor adjusts his portfolio to be within the interval
6z∗

s 4t2i+151 z
∗

b4t2i+157. As confirmed by results in the next
section, Proposition 2 suggests that an investor may
optimally wait until the market closing time to dis-
cretely adjust his portfolio. For example, in the case
z∗

b4t
−
2i+15 = 41 + �5zM > z∗

b4t2i+15, if the investor’s posi-
tion is above the overnight buy boundary z∗

b4t2i+15
right before market closes, he will perform a dis-
crete purchase to adjust his portfolio to z∗

b4t2i+15. Sim-
ilarly, an investor may make a discrete sale to adjust
his portfolio to z∗

s 4t2i+15 if the position is below the
overnight sale boundary z∗

s 4t2i+15 just before market
close. Intuitively, given the much greater volatility
during trading periods, eliminating all possible dis-
crete trades at market close (i.e., choosing continu-
ous trading boundaries) would likely require that the
investor make small but more frequent trades during
trading hours, and thus possibly incur even greater
transaction costs than with occasional discrete trades.
Consistent with this intuition, as we show in the next
section, the investor chooses no-transaction regions
such that lump-sum trades at market close and mar-
ket open occur only infrequently to avoid paying
large transaction costs frequently.

By providing bounds on the boundaries, Proposi-
tions 1 and 2 also facilitate numerical computation of
the boundaries.

5. Numerical Analysis
In this section, we provide numerical analysis of the
impact of market closure and time-varying return
dynamics on optimal trading strategy and liquid-
ity premia, with the numerical procedure briefly
described in §A.5 of the appendix.

Figure 2 plots the realized returns for the S&P
500 index from January 1962 to October 2008. This
figure illustrates the much higher volatility during
trading periods than that during nontrading peri-
ods, as shown in the literature.9 Consistent with

9 Returns in this figure are not adjusted for the duration difference
between trading and nontrading periods. Such adjustment would
make the volatility difference even more dramatic.
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Figure 2 S&P 500 Index Returns
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Note. This figure plots the realized returns for the S&P 500 index from Jan-
uary 1962 to October 2008, where the red path represents the simple return
from market open to market close (“daytime” return) and the blue path repre-
sents the return from market close to next market open (“overnight” return).

Figure 2, the existing literature on intraday price
dynamics finds that the average per-hour ratio of
daytime to overnight volatility is around 400 (e.g.,
Stoll and Whaley 1990, Lockwood and Linn 1990,
Tsiakas 2008). It is also found in the existing literature
that expected returns are not significantly different
across day and night. For example, on the comparison
between the expected returns across day and night
for six stock indices (including the S&P 500, DJIA,
NASDAQ 100), Tsiakas (2008, p. 257) concludes that
“among the six indexes, only for Paris are daytime
and overnight expected returns statistically different
with 95% confidence.”

Based on these findings, in the default case we set
expected returns to be equal across day and night
and use a lower volatility ratio value of k = 3, which
biases against us in finding significant effects of mar-
ket closure. To make the closest possible comparison
with Constantinides (1986), we set default parame-
ter values at �d = �n = � = 0015, r = 0010, � = 0020,
� = 005%, � = 005%, � = 2, and T = 10.10 For simplic-
ity, we assume that every day market opens for ãtd =

605 hours (from 9:30 a.m. to 4 p.m.) and closes for
ãtn = 24 − 605 = 1705 hours.

Let the average (annualized) volatility be � , and let
the ratio of the day volatility to night volatility be
k ≡ �d/�n. Then we have �n = �d/k, where

�d = k�

√

ãtd +ãtn
k2ãtd +ãtn

0 (25)

10 Although both � and r may be high relative to realizations in
recent years, our numerical results demonstrate that, keeping the
risk premium constant, varying � or r does not have significant
impact for stockholding, and so what matters is mainly the risk pre-
mium, as suggested by (7). In addition, our results are not sensitive
to the choice of the investment horizon, as shown in Figure 6.

Then the volatility ratio of 3 implies that the volatil-
ity difference across day and night is equal to
�d −�n = 00225, with �d = 00337 and �n = 00112.

5.1. Optimal Trading Strategy
In Figure 3, we plot the initial optimal trading bound-
aries in terms of the fraction of wealth invested in
the stock in the daytime and at the market close.
Without transaction costs, the investor invests about
21.99% (Merton line) in the stock in the daytime and
100% at market close because of the higher overnight
Sharpe ratio. Thus the investor buys at market close
and sells at market open. Because of market clo-
sure, to avoid insolvency, the investor cannot borrow
or short at market close and invests between 56%
(the red asterisk) and 100% (the blue circle) of his
wealth in the stock at market close. In the daytime the
buy boundary is almost flat at 21.67%, very close to
the daytime Merton line. In the presence of transac-
tion costs, however, the investor chooses a wide no-
transaction region to reduce trading frequency. In par-
ticular, the sell boundary is well above the Merton line
and increases to the sell boundary at market close (the
blue circle). If just before market close the position
is below the buy boundary at market close (the red
dash), then the investor buys to reach 56%. Because
of no trading during market closure, the position just
before the next open may be outside the next daytime
no-transaction region, and thus may trigger another
discrete trade at market open. The benefit of a large
no-transaction region is the reduction in transaction
costs. The cost of this strategy is that in the day-
time (resp., at market close) the investor holds signif-
icantly more (resp., less) in the stock than the optimal
position for the no-transaction-cost case. This suggests

Figure 3 No-Transaction Regions Across Time

0

0.2

0.4

0.6

0.8

1.0

1.2

�
 =

 y
/(

x
+

y)

t

Buy boundary

Sell boundary

Sell

Buy

Market open t0 Market close t1

No-transaction

Note. Parameter default values are as follows: T = 10, � = 2, �d = �n =

0015, r = 0010, ãd = 605 hours, ãn = 1705 hours, �= � = 00005, �d = 00337,
and �n = 00112.
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that, on average, the investor tries to smooth out mar-
ket exposure across trading and nontrading periods
due to transaction costs.

5.2. Liquidity Premia
Consider two perfectly correlated stocks with the
same volatility, but one is subject to transaction cost
and the other is not. For both stocks to be held in
equilibrium, the expected return on the stock that
is subject to transaction costs must exceed that of
the liquid counterpart by some liquidity premium.
Liquidity premia (defined by Constantinides 1986 as
the maximum expected return an investor is will-
ing to exchange for zero transaction cost) found by
most theoretical portfolio selection models are well
below empirical findings. For example, the seminal
work of Constantinides (1986) finds that the LPTC
ratio is only about 0007 for a proportional (round-
trip) transaction cost of 1%, whereas Amihud and
Mendelson (1986) find that the LPTC ratio is about
109 for NYSE stocks. Using a regime-switching model,
Jang et al. (2007) show that the LPTC ratio given rea-
sonable calibration is about 0025. Lynch and Tan (2011)
show that incorporating return predictability, state-
dependent transaction costs, and wealth shock can
generate greater liquidity premia than those found
by Constantinides (1986). However, the liquidity pre-
mia found by Lynch and Tan (2011) with reasonable
parameter values are still significantly smaller than
those in the corresponding empirical evidence. In this
section, we demonstrate numerically that if one takes
into account periodic market closure and the result-
ing significant difference of volatilities across day and
night, then transaction cost not only has a first-order
effect on liquidity premium, but the implied LPTC
ratio can match empirical findings.

Let market A be the actual market with positive
transaction costs, different volatilities across day and
night, and market closure at night. Let market N
be exactly the same as market A except that there
is no transaction cost during daytime in market N.
Let VA4x1y1 t3�5 and VN 4x1y1 t3�5 be the time t
value functions in these two markets respectively,
given the expected returns �d = �n = �. Following
Constantinides (1986), we solve

VN 4zM11103�− �5= VA4zM11103�5

for the liquidity premium �, which measures how
much an investor is willing to give up in the expected
return to avoid transaction cost, when he starts at the
daytime Merton ratio zM . The liquidity premium � is
affected by the time-varying volatility and the inabil-
ity to trade overnight in markets A and N. To sepa-
rate out the effect of time-varying volatility, we also
compute the liquidity premium when an investor can
trade with the same transaction costs day and night

(i.e., no market closure), and thus leverage is allowed
overnight. Specifically, let market B be exactly the
same as market A except that the investor can trade
overnight subject to the same daytime transaction
costs, and let market M be exactly the same as mar-
ket B except that there are no transaction costs in
market M. We solve

VM 4zM11103�− �̃5= VB4zM11103�5

for the liquidity premium �̃.11

In general, the effect of transaction cost on liquid-
ity premium comes from two sources. One is the
direct transaction cost payment incurred by trading.
The other is the adoption of a trading strategy that
would be suboptimal if there were no transaction cost.
To understand which one is the main driving force
behind the large increase in the liquidity premium,
we also compute the liquidity premium caused by
the suboptimal trading strategy alone. Specifically, let
4I1D5 be the optimal purchase and sale strategy in
market A, and let V 4I1D5

N 4x1y103�5 be the time 0 value
function from following the strategy 4I1D5 in mar-
ket N (without transaction costs). We solve

VN 4zM11103�− �05= V
4I1D5
N 4zM11103�5

for the liquidity premium �0 that is due to the adop-
tion of a suboptimal trading strategy. For compari-
son, we compute the same measure for the model of
Constantinides (1986).

In Table 1 we compare the liquidity premia,
the LPTC ratios, and the optimal no-transaction
boundaries in this model with those reported by
Constantinides (1986). This table suggests that liquid-
ity premia significantly increase with transaction costs
and are much higher in this model.12 In fact, for a
transaction cost rate of <1% each way (e.g., for a
trading stock index such as the S&P 500), transac-
tion costs can have a first-order effect. For example,
at �= � = 005%, the LPTC ratio is as high as 1076,
more than 20 times higher than what is found by
Constantinides (1986). This magnitude of LPTC ratio

11 We have also computed the liquidity premia from comparing
market A to market M. This alternative approach yields greater liq-
uidity premia. For example, at �= � = 005%, the LPTC ratio is 1084,
and at �= � = 1%, it is 0095.
12 As the transaction costs increase, the difference between the two
models decreases. This is because the investor optimally trades less
often when transaction costs increase. Indeed, in the extreme case
with �= 1, in both models the investor never invests in stock, and
thus in both models the liquidity premia are equal to the risk pre-
mium of the stock (i.e., � = �− r = 0005), which implies that there
are no differences across these two models in terms of LPTC.
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Table 1 Optimal Policy and Liquidity Premia Against Transaction Cost Rates

�= � =: 0.005 0.01 0.02 0.03 0.04 0.05 0.10 0.15

This model with market closure

z∗

b 405 30590 30608 30644 30680 30718 30753 30932 40189
z∗

s 405 00462 00430 00402 00390 00383 00379 00359 00340
z∗

b 4t−

1 5 30567 30585 30621 30656 30692 30727 30905 40089
z∗

s 4t−

1 5 00000 00000 00000 00000 00000 00000 00000 00000
z∗

b 4t15 00759 00813 00909 10009 10120 10242 20132 40061
z∗

s 4t15 00000 00000 00000 00000 00000 00000 00000 00000

Liquidity premium � (%) 1076 1084 1096 2010 2024 2030 2080 3000
�/4�+ �5 1076 0092 0049 0035 0028 0023 0014 0010
�/�C 22001 13009 7087 5065 4051 3080 2013 1043
�0/�× 100 95080 92037 86084 82069 79060 77038 74063 79055

This model without market closure

�̃/4�+ �5 1084 0095 0050 0036 0028 0023 0014 0011
�̃/�C 23001 13056 8005 5073 4054 3082 2014 1044

Constantinides (1986)

z∗

b1C 00690 00726 00783 00832 00877 00920 10122 10326
z∗

s1 C 00566 00561 00555 00550 00546 00542 00525 00509
Liquidity premium �C (%) 0008 0014 0028 0036 0048 0060 1040 2010
�C/4�+ �5 0008 0007 0007 0006 0006 0006 0007 0007
�0
C/�C × 100 9050 13079 20044 24038 27049 30008 35079 36010

This model, but with at most two trades a day

�̃/4�+ �5 1084 0095 0050 0036 0028 0023 0014 0011
�̃/�C 23001 13056 8005 5073 4054 3082 2014 1044

Notes. The buy and sell boundaries are denoted by z∗

b and z∗

s , respectively; t−

1 is just before the first closing, and t1 is at the first closing; �, �̃, and �C are
the time 0 liquidity premia; and �0 measures the loss in risk premium from using the corresponding no-trading region in the absence of transaction costs,
all starting from the daytime Merton line. Other parameters are as follows: � = 2, T = 10, �d = �n = 0015, r = 0010, ãtd = 605 hours, ãtn = 1705 hours,
�d = 00337, and �n = 00112.

is consistent with empirical findings such as those by
Amihud and Mendelson (1986), who find an LPTC
ratio of 109. The second panel in Table 1 shows the
results when the investor can trade overnight with
the same transaction cost rate as in the daytime. It
suggests that if investors can also trade overnight, the
LPTC ratio becomes only slightly higher. Therefore,
neither market closure per se nor the implied forced
liquidation for levered daytime position is important
for our results; what is important is the large volatility
variation caused by market closure.13

One might suspect that the greater liquidity premia
may come from our assumption that an investor can
trade continuously in the absence of transaction costs,
and thus the presence of transaction costs can signif-
icantly reduce the utility of the investor. To numeri-
cally demonstrate that our results are not driven by
the “literal” continuous-time setting, we also compute
the liquidity premium when we allow an investor to
only trade at most twice a day, with and without

13 The typical LPTC ratio found by Jang et al. (2007) is around 0025.
They report the ratio of liquidity premium to the one-sided trans-
action costs (�/�).

transaction costs. We find the results are almost iden-
tical, as reported in the last panel of Table 1.14

One typical explanation for a higher liquidity pre-
mium when the investment opportunity set changes
is the increase in transaction cost payment result-
ing from higher trading frequency (e.g., Jang et al.
2007). To help us understand whether higher trans-
action cost payment is also the main driving force
behind the high LPTC ratio in our model, we also
report the liquidity premium �0 that is solely due to
the “suboptimal” trading strategy. In contrast to con-
ventional wisdom, Table 1 shows that only a small
percentage of the liquidity premium is from trans-
action cost payment. The vast majority of the liq-
uidity premium comes from the “suboptimal” stock
position. This finding suggests that with the large

14 In the default case, we assume the market opens every day, ignor-
ing the fact that the market is closed during weekends and holi-
days. To see if this significantly biases our results, we also conduct
the same analysis when we take into account the weekends and
holiday closures. In addition, we also compute LPTC ratios for var-
ious risk-aversion levels. We find the results are very similar, with
LPTC ratios of 105 or higher. These results are not reported here to
save space, but available upon request.
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Table 2 Simulation Results

Constantinides
This model (1986)

�= � = 0.005 0.01 0.005 0.01

Average daily $ trading 308 302 103 102
volume ×104

PVTC (%) 005 009 002 004
Average time from buy 208 405 108 206

to sell (years)

Notes. PVTC is the discounted transaction cost paid as a percentage of
the initial wealth. Other parameters are as follows: � = 2, T = 10, �d =

�n = 0015, r = 0010, ãtd = 605 hours, ãtn = 1705 hours, �d = 00337, and
�n = 00112.

volatility difference, the investor chooses a wide no-
transaction region to reduce transaction cost pay-
ment at the cost of keeping significantly suboptimal
average positions. Indeed, as Table 1 shows, the no-
transaction region in this model is much wider than
that in Constantinides (1986). For example, if �= � =

0001, the time 0 NTR in this model is 4004301306085,
which is significantly wider than 4005611007265, which
is optimal in Constantinides (1986).

However, wider no-transaction regions do not nec-
essarily imply the trading frequency in this model is
lower than that in Constantinides (1986), because fre-
quent market closure may increase rebalancing needs
and thus also trading frequency. To compare the trad-
ing frequency and transaction cost payment across
these two models, we conduct Monte Carlo simula-
tions of 10,000 sample paths on these two models and
report related results in Table 2.

Table 2 shows that the average time from a pur-
chase to the next sale is about 208 years in our model,
in contrast to 108 years in Constantinides (1986). This
suggests that the trading frequency in our model is
lower than that in Constantinides (1986), consistent
with the fact that very few investors day trade even
with significant Sharpe ratio variations across day
and night. This confirms the intuition that to avoid
large transaction cost payments, the investor chooses
a trading strategy to significantly reduce trading fre-
quency. On the other hand, Table 2 also shows that
even though the trading frequency is lower, the trans-
action costs paid in this model are still greater than
those in Constantinides (1986). For example, with a
005% transaction cost rate, the present value of trans-
action costs paid is 005% of the initial wealth, whereas
it is only 002% in Constantinides (1986). This is mainly
because trading in this model can involve large dis-
crete trades at market close and market open, whereas
in Constantinides (1986), only infinitesimal trading
at the boundaries can happen after time 0. In other
words the average per-trade trading size is greater in
this model, which is also corroborated by the trading
volume reported in Table 2.

Figure 4 LPTC Ratios Against Day–Night Volatility Difference
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Note. Parameter default values are as follows: �d = �n = 0015, r = 0010,
� = 0020, ãtd = 605 hours, and ãtn = 1705 hours.

In Figure 4, we plot the LPTC ratios against the
day–night volatility difference, �d − �n, holding the
average volatility � constant, for three different trans-
action cost levels of � = � = 005%, 0075%, 1%. This
figure shows that, controlling for the same transaction
cost, the LPTC ratio is sensitive to and increasing in
the volatility difference across daytime and overnight.
For example, at �d − �n = 0015, the LPTC ratio is
about 0090, and it increases to 2010 when �d − �n

increases to 0025. It is worth noting that at �d −�n = 0,
the LPTC ratio is close to that of Constantinides
(1986). This suggests that the effect of the presence
of intertemporal consumption on liquidity premium
is small. In addition, Figure 4 also suggests that, con-
trolling for the same volatility difference, the LPTC
ratio decreases with transaction costs, consistent with
Table 1. These results motivate some of our subse-
quent empirical analysis.

One concern about our results may be that we have
assumed that the expected returns across day and
night are the same. This assumption is motivated by
the empirical findings that either the expected returns
do not vary significantly across trading and nontrad-
ing periods or the returns over the nontrading peri-
ods are significantly higher than those over the trading
periods (e.g., Tsiakas 2008). Although it is beyond
the scope of this paper to provide an equilibrium
model that can generate different Sharpe ratios across
day and night, such an equilibrium can be consis-
tent with an economy with heterogeneous investors;
e.g., some investors may be more risk averse toward
carrying overnight inventories than others, or they
may have heterogeneous beliefs on the time-varying
return dynamics. As we have shown above, because
of the presence of transaction costs, investors trade
infrequently even when the overnight Sharpe ratio
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Figure 5 LPTC Ratios Against Overnight Risk Premium �n − r
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Note. Parameter default values are as follows: �d = 0015, r = 0010, �= � =

00005, ãtd = 605 hours, ãtn = 1705 hours, �d = 00337, and �n = 00112.

is much greater. This suggests that with transaction
costs, small heterogeneity may be sufficient to sus-
tain an equilibrium with different Sharpe ratios across
trading and nontrading periods.

However, as a robustness check, we present Fig-
ure 5 to show how the LPTC ratio varies as a function
of the overnight risk premium. Figure 5 shows that
the LPTC ratio increases with the overnight expected
return, and even if the nighttime expected return is
significantly lower than that in the daytime, the LPTC
ratio can still be greater than 1. For example, sup-
pose the overnight risk premium is only 305%, 30%
lower than that in the daytime (5%). Figure 5 indi-
cates that for a volatility difference of 00225, the LPTC
ratio is still as high as 1005, whereas for a volatility
difference of 00267 (corresponding to a volatility ratio
of 4), the LPTC ratio becomes 1.52. This is because the
overnight volatility is much smaller than the daytime
volatility.

Another concern about the high LPTC ratio may
be that in the main model there is only one stock
the investor can trade. If a less illiquid and correlated
stock were available, then the investor would be able
to trade more in the less illiquid stock to achieve a
similar risk exposure at a lower cost, and thus the
LPTC ratio for the illiquid stock would be lowered. To
examine this possibility, in Figure 6 we plot the LPTC
ratio against the day–night volatility difference for the
illiquid stock from solving a two-stock model.15 Fig-
ure 6 shows that our results are robust to the avail-
ability of a liquid (zero transaction cost) and highly
correlated stock (� = 007), and the LPTC ratio still

15 This two-stock model is presented in an earlier version of this
paper. To save space, we omit it in this version. The subscripts L
and I for default parameter values denote the liquid and illiquid
stocks, respectively.

Figure 6 LPTC Ratios Against the Day–Night Volatility Difference:
The Two-Stock Case
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Note. Parameter default values are as follows: �L = 0003, �I = 0008, �L =

0015, �I = 0025, � = 007, kL = 1, ãtd = 605 hours, ãtn = 1705 hours, and
�= � = 00005.

monotonically increases with the volatility difference.
In addition, Figure 6 suggests that the LPTC ratio
can be quite insensitive to a change in the investment
horizon. For example, shortening the investment hori-
zon by five years only slightly increases the ratio.

6. A Three-Period Extension
In our main model, we assume that either the market
is open and an investor can trade subject to relatively
small transaction costs or the market is closed and
the investor cannot trade at all. However, in practice,
some investors can trade in the after-hour market,
although at higher transaction costs. We next consider
a three-period extension of our main model to exam-
ine the impact of this additional trading opportunity
on our main results.

More specifically, the investment horizon T is parti-
tioned into 0 = t0 < · · ·< · · ·< t3N+1 = T . Time intervals
6t3i1 t3i+17 denote regular-hour trading periods within
which an investor can trade as in the day period in
the main model, time intervals 4t3i+11 t3i+27 represent
after-hour trading periods within which the investor
can also trade the stock but at higher transaction cost
rates �a and �a, and the market is closed and thus
no trading takes place in 4t3i+21 t3i+351 ∀ i = 0111 0 0 0 1N .
The stock price evolves as in (1) with

�4t5=











�d regular-hour1
�a after-hour1
�n night1

and

�4t5=











�d regular-hour1
�a after-hour1
�n night1
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where �d > r , �a > r , �n > r , �d > 0, �a > 0, and �n > 0
are assumed to be constants. The dynamics for the
dollar amount xt in the risk-free asset and the dollar
amount yt in the stock are the same as in (2) and (3),
except in the after-hour period, � and � are replaced
by �a and �a, respectively.

Let V 4x1y1 t5 be the value function in this three-
period model similarly defined as in (14). Similar to
the main model, we have the HJB equations for the
trading periods: for regular-hour trading period,

max8Vt +¬V 1 41 −�5Vx −Vy1−41 + �5Vx +Vy9= 01

t ∈ 6t3i1 t3i+171

for the after-hour trading period,

max8Vt +¬V 1 41 −�a5Vx −Vy1−41 + �a5Vx +Vy9= 01

t ∈ 4t3i+11 t3i+271

and for the no-trading period,

Vt +¬V = 01 t ∈ 4t3i+21 t3i+351

where ¬V is as defined in (19). For connecting con-
ditions between periods, we have, at the regular-hour
ending time t = t3i+1,

V 4x1y1 t3i+15 = max
ã∈C4x1y5

V 4x− 41 + �5ã+
+ 41 −�5ã−1

y+ã1 t+3i+151 (26)

and at the market closing time t = t3i+2,

V 4x1y1 t3i+25 = max
ã∈Ca4x1y5

V 4x− 41 + �a5ã
+

+ 41 −�a5ã
−1

y+ã1 t+3i+251 (27)

where C4x1y5 is as in (19) and

Ca4x1y5 = 8ã ∈ IR2 x− 41 + �a5ã
+

+ 41 −�a5ã
−

≥ 01y+ã≥ 090 (28)

The terminal condition at T is the same as in (18).
A verification theorem can be proven using similar
arguments to that for Theorem 2. As before, using
homogeneity, we can write the value function in the
form as in (20).

To facilitate numerical computation of the bound-
aries, we also derive results similar to those of Propo-
sitions 1 and 2.16 Let zM be as defined in (22), and
similarly we define

zaM =
��2

a

�a − r
− 10 (29)

16 The proofs of Propositions 3 and 4 are similar to those for Propo-
sitions 1 and 2 and thus omitted to save space.

Proposition 3. For i =N1N−11 0 0 0 101 we have
(i) z∗

b4t5 ≥ 41 + �d5zM1 z∗
s 4t5 ≤ 41 − �d5zM1 for any

t ∈ 4t3i1 t3i+153
(ii) z∗

b4t5≥ 41 + �n5z
a
M1 z∗

s 4t5≤ 41 −�a5z
a
M1 for any t ∈

4t3i+11 t3i+250

Proposition 4. The sell and buy boundaries have the
following properties for i =N1N − 11 0 0 0 10:

(i) at t3i+11

z∗

s 4t
−

3i+15 = min8z∗

s 4t3i+151 41 −�5zM 91

z∗

b4t
−

3i+15 = max8z∗

b4t3i+151 41 + �5zM 93

(ii) at t3i+21

z∗

s 4t
−

3i+25 = min8z∗

s 4t3i+251 41 −�a5z
a
M 91

z∗

b4t
−

3i+25 = max8z∗

b4t3i+251 41 + �a5z
a
M 90

We use a numerical procedure similar to that for
the main model to solve for the optimal trading strat-
egy and liquidity premium. We report the results in
Table 3. In the base case, we set the after-hour trad-
ing period ãta

to be three hours, with the rest of
the parameter values remaining the same as those in
Table 1. Table 3 shows that not only are the results
qualitatively the same as in the main model, the mag-
nitudes are also similar. For example, the buy bound-
aries just before and at the end of the regular-trading
period are close to those in Table 1, from 3.567 to 3.575
and from 0.759 to 0.824, respectively. In addition,
the liquidity premium magnitudes are only slightly
lower than those in the two-period model: 1.75 versus
1.76. We find that changing the length of the after-
hour trading period or the transaction costs in the
after-hour trading period does not have significant
impact on these results. Overall, the effect of after-
hour trading seems relatively small. As shown before,
the main driving force behind the higher liquidity
premia in our model is the high opportunity cost of
not being able to rebalance costlessly to take advan-
tage of the time-varying volatility. Although adding

Table 3 Optimal Policy and Liquidity Premia Against Transaction
Cost Rates

z∗

b 4t
−

1 5 z∗

b 4t15 z∗

b 4t
−

2 5 z∗

b 4t25 �/4�+ �5 �/�C �0/�

Base case 30575 00824 00820 00799 1075 23020 96098
�a = �a = 0005 30575 00846 00840 00799 1075 23020 96009
�a = �a = 0010 30575 00885 00804 00799 1075 23020 94067
�a = �a = 0015 30575 00925 00920 00799 1075 23020 92073
ãta

= 5 30575 00931 00926 00902 1075 23008 97000
ãta

= 10 30575 10459 10445 10407 1075 23096 97041
k = 4 40097 00837 00837 00814 2021 31018 98038

Note. For the base case, � = 2, �d = �a = �n = 0015, r = 0010, � = � =

00005, �a = �a = 00025, ãtd
= 605, ãta

= 3, ãtn
= 24−ãtd

−ãta
, �d = 00337,

�a = �n = 00112, and T = 10.
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the extended trading hours helps investor better man-
age the after-hour portfolio, it does not significantly
reduce the rebalancing cost from the optimal regular-
hour position to the optimal after-hour position in the
absence of transaction costs. In addition, because with
even a very small transaction cost an investor would
trade already very infrequently, the reduction of the
after-hour transaction cost from infinity (i.e., the two-
period model, no after-hour trading) to a small pos-
itive level (e.g., 2.5%, very infrequent trading) does
not significantly change the value function. There-
fore, adding the extended trading hours changes the
numerical results only slightly.

7. Empirical Analysis of the Impact
of the Volatility Difference on
Liquidity Premia

There are three main conclusions from the above
analysis: (1) market closure and the volatility dif-
ference between the trading and nontrading periods
may change the optimal trading strategy significantly;
(2) the transaction costs can have a large impact
on liquidity premia comparable to empirical find-
ings; and (3) conditional on the same increase in the
transaction costs (e.g., from 0 to 1%), stocks with
greater volatility variation across trading and non-
trading periods require higher additional liquidity
premia, as shown in Figures 4 and 5.

There is a vast literature on the determinants of
liquidity premia (e.g., Amihud and Mendelson 1986,
Eleswarapu 1997). However, as far as we know, our
model is the only one that suggests that volatility
variation across trading and nontrading periods can
be an additional determinant of liquidity premia. In
addition, no empirical studies have investigated such
a possibility. Therefore, in this section, we empiri-
cally investigate this third main result (i.e., whether
indeed the volatility variation significantly affects liq-
uidity premia) by closely following the methodology
of Eleswarapu (1997).

7.1. Data and Portfolio Formation
As argued by Eleswarapu (1997), bid–ask spreads for
NASDAQ stocks better represent the cost of trans-
acting than those for NYSE stocks. Accordingly, we
perform our analysis on NASDAQ stocks and use rel-
ative bid–ask spreads to measure transaction costs as
Eleswarapu (1997). Because of the limited availabil-
ity of daily open and closing prices, we use the sam-
ple period of 1991–2012.17 The primary data consist

17 In an earlier version, we did our analysis using the sample period
of 1991–2007 to address the possible concerns over the abnormal
effects of the financial crisis. The qualitative results are not affected
by the choice of the sample period.

of daily open and closing prices and closing bid and
ask prices of NASDAQ stocks provided by the Cen-
ter for Research in Security Prices (CRSP). Since there
are 6.5 trading hours in a normal trading day and
the hours between close and next open may vary, the
continuously compounded daily returns for the trad-
ing period (rdt) and for the nontrading period (rnt) for
stock i are computed as

r idt =
24
605

log
(

closing price
open price

)

1 (30)

r int =
24

hours between open and previous close

· log
(

open price
previous closing price

)

0 (31)

This takes into account weekends and holidays mar-
ket closures. For stocks with cash dividends, stock
splits, and stock dividends events, we use the CRSP
daily events distribution database to make corre-
sponding adjustments in return calculations.

For each stock, the spread in a month is calcu-
lated by averaging the daily relative bid–ask spread
in the month, where the relative spread is equal to the
dollar closing bid–ask spread divided by the closing
midquote price, i.e.,

Spreadit =
1
Nit

Nit
∑

1

closing ask− closing bid
4closing ask+ closing bid5/2

1 (32)

where Nit is the number of trading days in month t
for stock i.

For our test, we form 245 equally weighted port-
folios from triple sorting by average volatility differ-
ence across trading and nontrading periods in the
previous year (five groups), average relative bid–ask
spreads in the previous year (seven groups), and
their estimated betas in the last three years (seven
groups). The volatility difference across trading and
nontrading periods for a month is computed using
the daily returns rdt and rnt in the month. We assume
that the continuously compounded returns in the
trading and nontrading periods are normally dis-
tributed with constant means and variances. Because
the observed nontrading periods returns r int may be
unevenly spaced across time, we use the weighted (by
the square root of time between observations) least
square regression method to estimate the volatilities
to address the potential heteroskedasticity problem.

Betas of individual stocks are estimated using mar-
ket model regressions with data over the three-year
portfolio formation period prior to the test year:

rit = �i +�irmt + �it1 t = 1121 0 0 0 1361 (33)

where rit and rmt are the month t excess returns (over
the corresponding one-month Treasury bill return) on
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Table 4 Average Volatility Difference for NASDAQ Stocks During the Period 1993–2012

By volatility difference annual average quintilea

All stocks Smallest 2 3 4 Largest

Average volatility difference 000445 000076 000257 000387 000548 000956
Standard errorb ( × 10−2) 000525 000438 000084 000088 000112 00033
Average number of firms 3,664 732 733 733 733 733

Notes. Average volatility difference is calculated as follows: (1) the difference between open-to-close return volatility and previous close-to-open return volatility
is calculated for each stock for each month, and then averaged for each year; (2) the annual average is then averaged across all stocks in the sample and all
stocks in each quintile; (3) the resulting average is then averaged across 20 years.

aStocks are ranked by the volatility difference annual average and divided into quintiles each year.
bThe standard error is based on the distribution of the 20-year average of volatility difference annual average.

Table 5 Average Ratios of Open-to-Close Return (rdt ) Volatility to Previous Close-to-Open Return (rnt ) Volatility for NASDAQ Stocks During the
Sample Period 1993–2012

By daily dollar volume quintilea

All stocks Smallest 2 3 4 Largest

Average ratio 3024 2010 2073 3044 3086 4007
Standard errorb 00025 00011 00025 00036 00033 00028
Average number of firms 3,664 732 733 733 733 733
Sample size 240 240 240 240 240 240
Average dollar volume ( × 11000) 11,361.67 24.72 125.32 511.87 2,134.17 54,028.33

Notes. Volatility ratios are calculated for each stock in each month and are then averaged across all stocks in the sample and all stocks within each dollar
trading volume quintile. Finally, the average monthly ratios are averaged across the 240 months in the 20-year sample period.

aStocks are ranked within each month by the average daily dollar trading volume in the month and divided into quintiles each month during the sample
period. The dollar trading volume of a stock is calculated using the closing price times the total number of shares of a stock sold on each day.

bThe standard error is based on the distribution of the 240 monthly average ratios.

stock i and on the market index, respectively. We use
the value-weighted portfolio of all NASDAQ stocks
as the market index.

For each test year, stocks are ranked and divided
into five groups as evenly as possible based on the
average volatility difference in the previous year. Each
of these five groups is then divided into seven equal
subgroups according to their average bid–ask spread
in the previous year. Finally, each of the subgroups
is ranked and divided into seven equal subsub-
groups according to their estimated beta coefficients
for the previous three-year period. Therefore, there
are 245 test portfolios with approximately equal num-
ber of stocks. The monthly portfolio returns in a test
year are computed by averaging the excess returns of
the stocks in each of the 245 portfolios each month.
This portfolio formation procedure is performed for
each of the 19 test years (1994–2012).

7.2. Descriptive Statistics

7.2.1. Trading vs. Nontrading Return Volatility.
Table 4 shows that the average annualized volatility
difference is 0.70 for all NASDAQ stocks during the
period 1993–2012, ranging from 0.12 for the lowest
quintile to 1.51 for the highest quintile.18

18 The annualization is done to be consistent with what we used in
previous sections.

To compare our volatility variation results with
those in the existing literature, we also compute the
per-hour ratios of return volatilities in trading ver-
sus nontrading periods and report them in Table 5.
Table 5 shows that the average per-hour volatility
ratio of trading versus nontrading periods is 3.24,
ranging from 2.10 for the lowest trading volume quin-
tile to 4.07 for the highest quintile.19 Consistent with
our model’s implication and the results in Stoll and
Whaley (1990), Table 5 also suggests that as volatility
ratio increases, the daily dollar trading volume of a
stock increases.

7.2.2. Average Spread, Beta, and Market Value
of Equity for the Portfolios. In Table 6, we report
average spread, beta, and market value of equity
for the 49 spread/beta sorted portfolios (formed
from the 245 test portfolios by pooling the portfo-
lios with the same ranks according to spread and
beta) over the 19 test-year periods. Table 6 shows
that portfolio spreads range from 0.780% to 11.136%
for the time period 1993–2012. In contrast, the portfo-
lio spreads range from 1.87% to 32.53% for the time
period 1976–1990 as reported in Eleswarapu (1997).

19 The dollar trading volume of a stock is calculated as the closing
price multiplied by the total number of shares of a stock sold on
each day.
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Table 6 Average Relative Bid–Ask Spread, Betas, and Size (Market Value of Equity) for the 49 Spread/Beta Portfolios of NASDAQ Firms, 1994–2012

Spread (in percentage), beta, size (in millions)

Beta group

Spread group Lowest 2 3 4 5 6 Highest Mean

Lowest 00780 00752 00723 00706 00693 00696 00705 00722
10032 10065 10194 10252 10276 10401 10657 10268
2,561 2,358 3,172 3,490 4,531 6,032 5,665 3,973

2 10355 10348 10338 10330 10323 10332 10326 10336
10069 10111 10146 10203 10295 10438 10582 10263
628 556 630 558 610 853 910 678

3 10918 10901 10884 10908 10883 10894 10885 10896
10020 10053 10150 10177 10314 10366 10578 10237
286 285 295 288 330 355 584 346

4 20593 20588 20583 20570 20583 20587 20565 20581
10038 10059 10144 10168 10239 10375 10563 10227
175 167 168 182 170 201 273 191

5 30552 30547 30576 30530 30549 30531 30510 30542
10053 10072 10073 10210 10215 10250 10488 10194
102 129 107 98 104 93 143 111

6 50135 50109 50108 50099 50045 50062 50051 50087
00938 00973 10026 10041 10204 10222 10469 10125
55 54 53 59 58 56 57 56

Highest 100155 110136 90615 90780 90605 90618 100281 100027
00847 00893 00930 00934 00989 10144 10306 10006
30 27 26 26 25 27 30 28

Mean 30785 30629 30566 30540 30523 30531 30617 30599
10009 10030 10088 10141 10218 10314 10521 10189
549 507 639 672 832 1,088 1,095 769

Notes. Assignment of a stock to a particular spread/beta portfolio in a given test year depends on two criteria: (1) the average spread in the previous year (seven
groups) and (2) a stock’s beta estimated with 36 months of preceding returns (seven groups). In this table, we report the average spread, betas, and market
value of equity for the 49 portfolios. Each cell contains three entries. The top number is the relative bid–ask spread of the portfolio. The portfolio spread is the
average spread of the stocks in the portfolio in the year preceding the test year. The second number is the estimated portfolio beta computed with 228 months
of portfolio return data (1994–2012). The third number is the market value of equity (size), where the equity value of the firm is computed in December in the
year preceding the test year. Portfolio spreads and market value of equity are averaged over the 19 years, 1994–2012.

Thus, the spreads have become significantly smaller
in recent years. The portfolio betas range from 0.847
to 1.657. The portfolio market value is computed by
averaging the market value of equity (size) of the firms
in the portfolio in the December preceding a test year.
The average equity values range from $25 million to
$6.03 billion. Consistent with Eleswarapu (1997), we
find that stocks with a higher market equity value tend
to have smaller spreads, as illustrated in Table 6.

7.3. Empirical Results
We examine the cross-sectional relationship between
excess return and spread for the 98 portfolios in
the lowest and the highest quintiles of the volatility-
difference groups using the Fama–Macbeth type
regressions as in Eleswarapu and Reinganum (1993),
and Eleswarapu (1997). The excess returns of the
98 portfolios are regressed on their unconditional
betas, spreads, and log(size) each month.20 To test the

20 The average spreads and sizes in the previous year are used in
the regressions. Similar to Fama and French (1992), we use the
unconditional portfolio betas estimated using the monthly portfolio
returns from all of the test-year periods.

impact of volatility difference across trading and non-
trading periods on the relationship between excess
return and spread, we interact spread with a dummy
variable (Dummy) that is set to 1 for the highest
quintile and 0 for the lowest one and include this
interaction term as an additional variable in the
regression. The time-series average of the monthly
regression coefficients and the corresponding stan-
dard errors are reported in Table 7. Similar to results
in Amihud and Mendelson (1986) and Eleswarapu
(1997), columns (A) and (B) of Table 7 show that trans-
action costs significantly affect excess returns. Indeed,
the highly significant coefficient of spread implies that
a 1% increase in the spread is associated with a 0.22%
increase in the monthly risk-adjusted excess return.
However, column (C) of Table 7 implies that this
significant impact of transaction costs mainly comes
from stocks with high volatility differences across
trading and nontrading periods. More specifically, the
coefficient of the interaction term Spread ×Dummy is
large, positive, and statistically significant at the 0.1%
level, whereas the coefficient of spread is no longer
significantly different from 0. These results imply that,
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Table 7 Fama–MacBeth Type Regressions for the 98 Portfolios of the
Lowest Quintile and Highest Quintile, Based on Volatility
Difference of NASDAQ Firms, 1994–2012

Regression

Variable (A) (B) (C) (D)

�eta −000011 −000006 000088 000071
40000475 40000475 40000565 40000555

Spread 002156∗∗∗ 002331∗∗∗ −000235 000991
40005335 40004255 40003935 40018035

Log(Size) 000002 −000008 −000009
40000095 40000095 40000105

Dummy −000264∗∗∗ −000237∗∗∗

40000615 40000615
Spread×Dummy 003610∗∗∗ 003089∗∗∗

40006265 40007945
Spread× Log(Size) −000362

40005115

Notes. N = 228. (A) Returnpt = a0 + a1�etapt + a2Spread pt + ept ;
(B) Returnpt = b0 + b1�etapt + b2Spread pt + b3Log4Size pt 5 + ept ;
(C) Returnpt = c0 + c1�etapt + c2Spread pt + c3Log4Size pt 5+ c4Dummy pt +

c5Spread pt ×Dummy pt +ept ; (D) Returnpt = d0 +d1�etapt +d2Spread pt +

d3Log4Size pt 5 + d4Dummy pt + d5Spread pt × Dummy pt + d6Spread pt ×

Log4Size pt 5 + ept . Assignment of a stock to a particular variance-
difference/spread/beta portfolio in a given test year depends on three criteria:
(1) the average difference between the trading and nontrading return volatili-
ties in the previous year, (2) the average spread in the previous year, and (3) a
stock’s beta estimated with 36 months of preceding returns. In the cross-
sectional regression, the portfolio spread (Spread pt ) is computed from the
average of the firm’s spread in the preceding year. The Sizept (equity value) is
the value in December in the year preceding each test year. The portfolio beta
(�etapt ) is the unconditional beta which is computed using the monthly port-
folio returns from all the test-period years. The dummy variable (Dummypt )
is 1 for portfolios in the highest quintile and 0 for portfolios in the lowest
quintile, based on the difference between the trading and nontrading period
return volatilities. The cross-sectional regression is fit in each month, t , of the
test-period years. The coefficients are the time-series (228 months) means
with corresponding standard errors in parentheses.

∗∗∗Statistically significant at the 0.1% level.

as our model suggests, stocks with greater volatility
differences require a higher additional liquidity pre-
mium for the same increase in the transaction costs.
For example, for a 1% increase in the spread, stocks
with high volatility differences require a 0.36% higher
monthly risk-adjusted excess return than those with
low volatility differences.

An alternative explanation for the above result may
be as follows. Small firms are typically less frequently
traded, and so liquidity premia per unit of transaction
costs might be higher for small firms than large firms.
In the meantime, small firm returns are also typically
more volatile, which might drive the volatility dif-
ference across trading and nontrading periods higher
than that for other stocks. Therefore, that liquid-
ity premia per unit of transaction costs are higher
for stocks with large volatility differences might be
because both liquidity premia per unit of transaction
costs and volatility differences are typically higher

for small firms than large firms. To address this con-
cern, we include this interaction term of Spread with
Log4Size5 in the regression and report the result in
column (D). Column (D) shows that the coefficient for
the interaction term Spread × Dummy is still positive
and significant after controlling for this size effect.
Consistent with this finding, column (B) indicates that
after controlling for spread, firm size is not statisti-
cally significant in affecting liquidity premia.

We also performed robustness checks such as con-
trolling for book-to-market effect, trading volume
effect, Fama–French three factors, and Carhart (1997)
four factors, the results remain essentially the same.21

Overall, our results strongly support our prediction
that the volatility difference across trading and non-
trading periods is an important determinant of liquid-
ity premia, as suggested by our analysis.

8. Concluding Remarks
The existing portfolio choice literature ignores peri-
odic market closure and the significantly different
volatilities across trading and nontrading periods.
Therefore, the optimal trading strategy that is relevant
for practice is still largely unknown. In this paper, we
show that incorporating periodic market closure and
the return dynamics across trading and nontrading
periods leads to significantly different trading strat-
egy. In addition, we demonstrate numerically that
transaction costs can have a first-order effect on liq-
uidity premia that is largely comparable to empirical
findings. Furthermore, we provide empirical support
for the importance of the volatility difference across
trading and nontrading periods in affecting liquidity
premia. As far as we know, this is the first paper that
finds that volatility variation across trading and non-
trading periods is an important determinant of liquid-
ity premia.
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Appendix

A.1. Proof of Theorem 1
To begin with, we point out that

N
∑

k=0

4t2k+1 − t2k ∨ t5+

=



























N
∑

k=i+1

4t2k+1 − t2k5+ t2i+1 − t if t ∈ 6t2i1 t2i+151

N
∑

k=i

4t2k+1 − t2k5 if t ∈ 6t2i−11 t2i51

(34)

which means the cumulative time during the day.
When t ∈ 6t2N 1 t2N+15, the theorem is the well-known Mer-

ton result, where we follow Merton’s strategy �M .
When t ∈ 4t2N−11 t2N 5, no trading is allowed, and

J 4x1y1 t5 = E
x1y
t 6J 4x2N 1y2N 1 t2N 57

=
1

1 −�
E
x1y
t 64xt2N + yt2N 5

1−�7e41−�5�4t2N 50 (35)

It is easy to verify that

E
x1y
t 64xt2N + yt2N 5

1−�7= 4x+ y51−�e41−�5r4t2N −t5GN

(

y

x+ y
1 t

)

0

Substituting into (35), we then get

J 4x1y1 t5=
1

1 −�
4x+ y51−�e41−�5�4t5GN

(

y

x+ y
1 t

)

1 (36)

where we have used �4t2N 5+r4t2N − t5= �4t5 because of (13)
and (34).

When t = t2N−1, at which trading is allowed, we need to
determine the optimal strategy � ∈ 60117. Because of (36),
we get

J 4x1y1t2N−15 = sup
�∈60117

1
1−�

4x+y51−�e41−�5�4t2N−15GN 4�1t2N−15

=
1

1−�
4x+y51−�e41−�5�4t2N−15G∗

N 1

where we have chosen the optimal strategy

�4t2N−15
∗
=�∗

N 0

In terms of induction method, it is easy to see that the
value function always takes the form of

1
1 −�

4x+ y51−�A4t51 t ∈ 6t2i1 t2i+171

where A4t5 only depends on t. This allows us to use
Merton’s strategy in the daytime and to repeat the above
derivation during 6t2i−11 t2i+15 for any i. The desired result
then follows.

A.2. Proof of Theorem 2
Part (i) can be proved using an argument similar to that
in Shreve and Soner (1994). To show part (ii), we can fol-
low Dai and Yi (2009) to reduce the HJB equation to a
double obstacle problem in the daytime 4t2i1 t2i+15. Then
we can obtain C21211 smoothness of the value function for
t ∈ 4t2i1 t2i+150 The smoothness of the value function in the
nighttime is apparent.

A.3. Proof of Proposition 1
First, let us introduce a lemma that provides connection
conditions at t2i+1 implied by (17).

Lemma 1. Let z∗
s 4t2i+15 ∈ 601�5 and z∗

b4t2i+15 ∈ 401�7 be the
sell and buy boundaries at t2i+1, respectively. Then



































































V 4x1y1 t2i+15= V 4x1y1 t+2i+151

z∗
s 4t2i+15 < x/y < z∗

b4t2i+153

−41 −�5Vx4x1y1 t2i+15+Vy4x1y1 t2i+15= 01

x/y ≤ z∗
s 4t2i+153

41 + �5Vx4x1y1 t2i+15−Vy4x1y1 t2i+15= 01

x/y ≥ z∗
b4t2i+150

(37)

Proof of Lemma 1. By definition, the value function V
is concave in x and y. We then deduce that

Eb
4
= 84x1y52 41 + �5Vx −Vy�t=t+2i+1

> 01x > 01y > 09 and

Es
4
= 84x1y52 − 41 −�5Vx +Vy�t=t+2i+1

> 01x > 01y > 09

must be connected. Here we confine ourselves to x > 0 and
y > 0 to ensure solvency. Because of the homogeneity of the
value function, we can express z∗

b4t2i+15 and z∗
s 4t2i+15 as

z∗

b4t2i+15
4
= sup

{

x

y
2 4x1y5 ∈ Eb

}

and

z∗

s 4t2i+15
4
= inf

{

x

y
2 4x1y5 ∈ Es

}

0

Note that for ã> 01

d

dã
V 4x− 41 + �5ã1y+ã1 t+2i+15= −41 + �5Vx +Vy1

d

dã
V 4x+ 41 −�5ã1y−ã1 t+2i+15= 41 −�5Vx −Vy0

Combining with (17), we get the desired result. �

By transformation (20), Equations (15), (16), and (18)
reduce to










































max8�t +L1�14z+1−�5�z−41−�5�1−4z+1+�5�z

+41−�5�9=01 t∈ 6t2i1t2i+153

�t +L1�=01 t∈ 4t2i−11t2i53

�4z1T 5=
1

1−�
4z+1−�51−�1

(38)

where

L1� =
1
2�4t5

2z2�zz +�24t5z�z +�14t5�1

with �14t5 = 41 − �54�4t5 − 1
2��4t5

25 and �24t5 = −4�4t5 −

r −��4t5250 The solvency region in trading periods becomes
4−41 − �51�5 × 601T 5 ≡ Sz in the space for the ratio z.
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Thanks to Lemma 1, the connection conditions at t2i+1
become



































































�4z1 t2i+15= �4z1 t+2i+151

z∗
s 4t2i+15 < z< z∗

b4t2i+153

−4z+ 1 −�5�z4z1 t2i+15+ 41 −�5�4z1 t2i+15= 01

z≤ z∗
s 4t2i+153

4z+ 1 + �5�z4z1 t2i+15− 41 −�5�4z1 t2i+15= 01

z≥ z∗
b4t2i+150

(39)

We further make a transformation

w4z1 t5=
1
�

log4��50

It follows that










































min
{

−wt −L2w1
1

z+1−�
−wz1wz−

1
z+1+�

}

=01

t∈ 6t2i1t2i+153

−wt −L2w=01 t∈ 4t2i−11t2i53

w4z1T 5= log4z+1−�51

(40)

with the connection condition






























w4z1 t2i+15=w4z1 t+2i+151 z∗
s 4t2i+15 < z< z∗

b4t2i+153

wz4z1 t2i+15=
1

z+ 1 −�
1 z≤ z∗

s 4t2i+153

wz4z1 t2i+15=
1

z+ 1 + �
1 z≥ z∗

b4t2i+150

(41)

Let v =wz0 Note that

¡

¡z
4L2w5

4
= Lv

=
1
2�

24t5z2vzz−4�4t5−r−41+�5�24t55zvz

−4�4t5−r−��24t55v+41−�5�24t54z2vvz+zv250

Following Dai and Yi (2009), we are able to show that v
satisfies the following parabolic double obstacle problem:














































max
{

min
{

−vt −Lv1v−
1

z+1+�

}

1
1

z+1−�
−v

}

=01

t∈ 6t2i1t2i+153

−vt −Lv=01 t∈ 4t2i−11t2i53

v4z1T 5=
1

z+1−�

(42)

subject to the connection condition






























v4z1 t2i+15= v4z1 t+2i+151 z∗
s 4t2i+15 < z< z∗

b4t2i+153

v4z1 t2i+15=
1

z+ 1 −�
1 z≤ z∗

s 4t2i+153

v4z1 t2i+15=
1

z+ 1 + �
1 z≥ z∗

b4t2i+150

(43)

We then infer that for any t ∈ 4t2i1 t2i+151

4SR5t
4
=

{

z2 v4z1 t5=
1

z+ 1 −�

}

= 8z≤ z∗

s 4t591

4BR5t
4
=

{

z2 v4z1 t5=
1

z+ 1 + �

}

= 8z≥ z∗

b4t590

Thanks to (42), we have
(

−
¡

¡t
−L

)(

1
z+ 1 −�

)

≤ 0

for z ∈ 4SR5t 4i0e01 z≤ z∗

s 4t551 (44)
(

−
¡

¡t
−L

)(

1
z+ 1 + �

)

≥ 0

for z ∈ 4BR5t 4i0e01 z≥ z∗

b4t550 (45)

Note that
(

−
¡

¡t
−L

)(

1
z+ 1 −�

)

= −L

(

1
z+ 1 −�

)

=
41 −�54�d − r5

4z+ 1 −�53

[

z+ 41 −�5
�d − r −��2

d

�d − r

]

=
41 −�54�d − r5

4z+ 1 −�53
6z− 41 −�5zM 71 (46)

and similarly
(

−
¡

¡t
−L

)(

1
z+1−�

)

=
41+�54�d−r5

4z+1+�53
6z−41+�5zM 70 (47)

Combination of (44)–(47) yields the desired results.

A.4. Proof of Proposition 2
We only prove (23) as an example. First, let us show that

z∗

s 4t
−

2i+15≤ z∗

s 4t2i+150

Suppose z∗
s 4t

−
2i+15 > z∗

s 4t2i+15. Let w4z1 t5 be the solution
to the problem (40). Since 4z∗

s 4t
−
2i+151 t2i+15 is in the no-

transaction region, w4z1 t5 is continuous at 4z∗
s 4t

−
2i+151 t2i+15,

namely, w4z∗
s 4t

−
2i+151 t

−
2i+15 = w4z∗

s 4t
−
2i+151 t2i+15; then, for z ∈

4z∗
s 4t2i+151 z

∗
s 4t

−
2i+155

w4z1 t−2i+15 = w4z∗

s 4t
−

2i+151 t
−

2i+15−
∫ z∗

s 4t
−
2i+15

z

1
� + 1 −�

d�

< w4z∗

s 4t
−

2i+151 t2i+15−
∫ z∗

s 4t
−
2i+15

z
wz4�1 t2i+15 d�

= w4z1 t2i+151

which contradicts the connection condition (41).
Clearly, z∗

s 4t
−
2i+15≤ 41 −�5zM 0 So we deduce that

z∗

s 4t
−

2i+15≤ min8z∗

s 4t2i+151 41 −�5zM 90

If z∗
s 4t

−
2i5 < min8z∗

s 4t2i+151 41 −�5zM 9, then for

z ∈ 4z∗

s 4t
−

2i+151min8z∗

s 4t2i+151 41 −�5zM 951

we have v4z1 t2i+15= 1/4z+ 1 −�5 and

−vt −Lv�4z1 t2i+15
= 00
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It follows that

vt�4z1 t2i+15
= −L

(

1
z+ 1 −�

)

=
41 −�54�d − r5

4z+ 1 −�53
6z− 41 −�5zM 7 < 01

which conflicts with the fact vt�4z1 t2i+15
≥ 00 The proof is

complete.

A.5. Numerical Procedure
The combination of (38) and (39) provides the exact model
for portfolio choice with market closure. To implement the
numerical procedure, we use an alternative approximation
of (38) and (39), which adjusts the model during nighttime
by allowing transaction but with huge transaction costs.

Thus the model for implementation of the numerical pro-
cedure is










































































max8�t +L1�14z+1−�5�z−41−�5�1−4z+1+�5�z

+41−�5�9=01 t∈ 6t2i1t2i+153

max8�t +L1�14z+1−�N 5�z−41−�5�1−4z+1+�N 5�z

+41−�5�9=01 t∈ 4t2i−11t2i53

�4z1t2i+15=�4z1t+2i+153

�4z1T 5=
1

1−�
4z+1−�51−�1

(48)

where �N ∈ 60115 and �N ∈ 601�5 are the nighttime propor-
tional transaction costs. In the numerical procedure, we take
�N → 1− and �N � 1, which makes the trading boundaries
occur very close to the borders of solvency region. In other
words, the sell boundary z∗

s 4t5 ≈ 0, and the buy boundary
z∗
b4t5 ≈ � for t ∈ 4t2i−11 t2i5. In this way, trading will hardly

happen during nighttime such that (48) is equivalent to (38)
and (39) in the limit sense.

Equation (48) can be numerically solved by using the
penalty method with finite difference discretization devel-
oped in Dai and Zhong (2010).
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