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Abstract

We examine how price impact in the underlying asset market affects the replication of a

European contingent claim. We obtain a generalized Black–Scholes pricing PDE and establish

the existence and uniqueness of a classical solution to this PDE. Unlike the case with

transaction costs, we prove that replication with price impact is always cheaper than

superreplication. Compared to the Black–Scholes case, a trader generally buys more stock and

borrows more (shorts and lends more) to replicate a call (put). Furthermore, price impact

implies endogenous stochastic volatility and an out-of-money option has lower implied

volatility than an in-the-money option. This finding has important implications for empirical

analysis on volatility smile.
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1. Introduction

Most of the option pricing models assume that an option trader cannot affect the
underlying asset price in trading the underlying asset to replicate the option payoff,
regardless of her trading size. This is reasonable only in a perfectly liquid market. In
a market with imperfect liquidity, however, trading does affect the underlying asset
price. Indeed, the presence of price impact of investors’ trading has been widely
documented and extensively analyzed in the literature (see, for example, Chan and
Lakonishok, 1995; Keim and Madhavan, 1996; Sharpe et al., 1999; Jorion, 2000).
Even for a very liquid market, trading beyond the quoted depth usually results in a
worse price for at least part of the trade.
Consistent with the above discussion, in this paper we take this imperfect liquidity

as given and examine how it affects the replication of a European option by a typical
option trader. In particular, we assume that as the trader buys the underlying asset
(stock) to hedge her position in the option, the stock price goes up and as she sells,
the price goes down.
Several issues are critical for understanding how this price impact affects the

replication of a European option. First, because in the presence of this adverse price
impact trading in the stock to replicate the option affects the stock price, it is not
clear whether the option is still perfectly replicable or not. Second, the presence of
adverse price impact increases the replicating costs. It is well known that in the
presence of transaction cost, superreplication of an option (e.g., buying a share to
superreplicate a call) costs less than exact replication. Therefore a natural question is
whether it is also cheaper to superreplicate than to exactly replicate in the presence of
price impact. Third, if it is cheaper to exactly replicate, what is the extra replication
cost over the Black–Scholes price that a trader has to incur? In addition, how should
the trader trade the underlying asset to replicate? Finally, what are the implications
of the price impact on the well-known volatility smile?
To answer these questions, we use the idea of a four-step scheme for forward–

backward stochastic differential equations (FBSDEs) (see Ma et al., 1994; Yong,
1999; Yong and Zhou, 1999) to derive a generalized, nonlinear Black–Scholes partial
differential equation (PDE) for computing the replicating cost of a European option.
We provide sufficient conditions under which the option is perfectly replicable. This
pricing PDE shows that the effect of the price impact on the replicating cost is only
through the impact of the trader’s trading on the stock return volatility. We then
show that, unlike the transaction cost case, superreplication is more costly than exact
replication. Furthermore, like the Black–Scholes case, the replicating strategy
involves an initial block trade followed by continuous trading. In addition, we show
that the excess replicating cost over the Black–Scholes price is significant, even with a
small price impact in the underlying asset market.
We find that a trader generally buys more stock and borrows more (shorts and

lends more) to replicate a call (put). In the special case in which contingent claim
payoffs are linear in the stock price (e.g., forwards, futures, or shares), the trader
adopts the same strategy as in the case without price impact. However, the cost is
higher due to the adverse price impact.
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The presence of price impact implies that although a special form of put–call parity
still holds, the implied volatility for a put is different from the implied volatility for the
otherwise identical call. We find that out-of-money options have lower implied volatility
than in-the-money options. This pattern is consistent with the well-known volatility
smile found for calls, but is different from the volatility smile observed for puts (see
Dumas et al., 1998, for example). Intuitively, as a trader trades the price moves against
her, so she incurs higher replicating costs. When an option is in the money, she needs to
trade more in the stock. So the extra replicating cost over the Black–Scholes price is
greater. However, option price is not sensitive to volatility in the Black–Scholes world
for an in-the-money option. This implies that a large implied volatility is required to
generate the higher replicating costs that resulted from the price impact. When an option
is out of the money, however, she needs to trade less in the stock to replicate the option.
So the extra cost is smaller and thus the implied volatility is also smaller. The implied
volatility patterns we found have important empirical implications for explaining the
volatility smile. In particular, it suggests that the negative correlation between the stock
price and the volatility (as assumed in Heston, 1993 and Bates, 1996, for example) that
was required to generate the smile would have to be weaker for calls, but stronger for
puts, if the underlying asset market were illiquid.
A number of option valuation models in the literature attempt to explain the

volatility smile. The stochastic volatility models of Heston (1993) and Hull and
White (1987), for example, can potentially explain the smile to some extent when the
asset price and the volatility are negatively correlated. Similarly, the jump model of
Bates (1996) is also consistent with the smile when the mean jump is negative. The
deterministic volatility model examined by Dumas et al. (1998) can also generate a
similar smile pattern. However, all these models assume an exogenous volatility
process. In contrast, in our model the volatility process is endogenous and is affected
by the trading of the trader.
In the presence of price impact, the no-arbitrage price of an option for a trader is

no longer unique. Rather, it consists of a continuum of prices within an interval. We
find that this no-arbitrage interval expands as the price impact increases. In addition,
the price impact also introduces nonlinearity into the dynamics of the replicating
portfolio value. We show that the excess replicating cost is approximately quadratic
in the number of units of an option.
There is an extensive literature on the effect of price impact. In the presence of

asymmetric information, Kyle (1985) and Back (1993) use an equilibrium approach
to investigate how informed traders reveal information and affect the market price
through trading. As shown by Kyle (1985) and Back (1993), equilibrium asset prices
are directly affected by the informed trader’s trades. Vayanos (2001) studies a
dynamic model of a financial market with a large trader who does not have any
private information on the asset value but trades only to share risk. He shows that
the equilibrium stock price is linear in the investor’s order size. These models provide
theoretic justifications for the existence, the form, and the direction of the price
impact a trader can have on stock prices. In particular, the price impact form used in
this paper, which is linear in the trading size, is consistent with the equilibrium price
impact forms derived in these models.
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Cvitanić and Ma (1996) and Ma and Yong (1999) examine the hedging costs of
options for a trader in the presence of price impact. Cuoco and Cvitanić (1998)
consider the effect of the price impact on the optimal consumption and investment
policy. In these papers, it was assumed that price impact depends only on the total
wealth and the position of a trader but not on how she trades.
Our model is closely related to Frey (2000), Frey and Patie (2002), and Bank and

Baum (2004). All these papers consider the replicating or superreplicating cost of a
European contingent claim in the presence of price impact. However, all of them
ignore the initial block trade (and thus the initial extra cost) that is necessary for any
replication. We show that ignoring the initial block trade would significantly
understate the replicating costs and produce qualitatively misleading conclusions. In
addition, Frey (2000) and Frey and Patie (2002) do not show the existence and
uniqueness of a solution to the pricing PDE they derived and thus do not show the
replicability of an option. Bank and Baum (2004) only provide a martingale
characterization of the superreplicating cost under the assumption that the price
impact disappears instantaneously and economic analysis is limited. Sircar and
Papanicolaou (1998) assume an exogenous demand function for the reference traders
and derive a different nonlinear pricing PDE that depends on the exogenous income
process of the reference traders and the relative size of the program traders.
To focus on our main objective of understanding the replicating strategy and the

replicating cost for an option written on an illiquid asset, we use a partial equilibrium
approach in this paper. In particular, we take the price impact function as given. As
will be shown, this model provides an economically sensible characterization of the
replicating strategy and a reasonable estimate of the replicating cost for a typical
trader in a European option market. In addition, it can be justified by many
equilibrium models such as the following example, which is similar to the model in
Back (1993). Consider an economy in which there are risk-neutral and competitive
stock market makers, risk-averse and competitive option market makers, a risk-
neutral informed trader, and liquidity investors. The stock market makers trade only
in the stock whereas the option market makers trade only in the options. The insider
and liquidity traders can trade both the stock and the options. At a future time T ;
there is to be a public information release on the stock value that will fix the stock
price at an exogenous level ŜðTÞ; which is known in advance only by the informed
trader. All options expire immediately after the release of the public information at
T : Due to competition and risk aversion, the option market makers trade options at
the replicating costs and perfectly hedge in the stock market. In equilibrium, the
insider will trade in such a way that the stock price at T will be exactly equal to ŜðTÞ

given the option market makers’ hedging trades and liquidity traders’ liquidity
trades. The price impact function assumed in the model can be interpreted as the
equilibrium price response function to the option market maker’s hedging trades,
given the liquidity traders’ and the insider’s equilibrium trades. In this framework, of
price manipulation in the stock market, such as that suggested by Jarrow (1992),
Allen and Gale (1992), Vila (1989), Bagnoli and Lipman (1990), and Schönbucher
and Wilmott (2000), to affect the payoff of an option is impossible because the
payoff only depends on ŜðTÞ and the option’s strike price.



ARTICLE IN PRESS

H. Liu, J. Yong / Journal of Economic Dynamics & Control 29 (2005) 2125–2156 2129
The rest of the paper is organized as follows. In Section 2, we introduce our model.
In Section 3, we derive the generalized Black–Scholes pricing PDE in the presence of
price impact and provide sufficient conditions under which a European option can
be replicated. We also show that superreplication is more expensive than exact
replication. In Section 4, we provide a numerical analysis of the model for European
calls and puts. Section 5 contains the concluding remarks. In the Appendix, we
provide proofs of the theorems.
2. The model

Throughout this paper we fix a complete filtered probability space (O;F;
fFtgtX0;P) on which a standard one-dimensional Brownian motion BðtÞ is defined
with fFtgtX0 being its natural filtration augmented by all the P-null sets. All the
stochastic processes in this paper are assumed to be fFtgtX0-adapted.
There are two assets being continuously traded in the primary market. The first

asset is a money market account. The second is a risky asset, which we will call a
stock. Let SðtÞ be the ex-dividend stock price and dðt;SðtÞÞ be the dividend yield of
the stock. We assume that the risk-free asset price S0ðtÞ satisfies

dS0ðtÞ

S0ðtÞ
¼ rðt;SðtÞÞdt; tX0, (1)

where rðt;SðtÞÞ is the interest rate and we allow it to depend on the current stock
price directly. In addition, there is a derivative market in which a trader can also
trade options on the stock. In contrast to the standard framework and consistent
with a market with imperfect liquidity, we assume that the option trader’s trading in
the stock market has a direct impact on the stock price. In particular, when the
trader buys, the stock price goes up and when she sells, the stock price goes down.
Specifically, let NðtÞ be the number of shares that the trader has in the stock at time t:
Then the stock price SðtÞ is assumed to evolve as follows:

dSðtÞ

SðtÞ
¼ mðt;SðtÞÞdt þ sðt;SðtÞÞdBðtÞ þ lðt;SðtÞÞdNðtÞ; tX0, (2)

where lðt;SðtÞÞX0 is the price impact function of the trader, and mðt;SðtÞÞ and
sðt;SðtÞÞ are the expected return and the volatility respectively in the absence of any
trading by the trader. The term lðt;SðtÞÞdNðtÞ represents the price impact of the
investor’s trading. We note that the classical Black–Scholes model is a special case of
this model where lðt;SðtÞÞ � 0:
The wealth process W ð�Þ for the trader then satisfies the following budget equation:

dW ðtÞ ¼ rðt;SðtÞÞW ðtÞdt þ NðtÞSðtÞ½mðt;SðtÞÞ þ dðt;SðtÞÞ 
 rðt;SðtÞÞ�dt

þ NðtÞSðtÞsðt;SðtÞÞdBðtÞ þ NðtÞSðtÞlðt;SðtÞÞdNðtÞ; tX0. ð3Þ

The price impact term in (2) leads to the last quadratic term in the budget equation.
This quadratic term is the only difference from the wealth equation for a small trader
who has no price impact. The presence of this term implies that unlike the standard
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case, the wealth dynamics for a trader is no longer linear in her trading strategy N:
Implications of this nonlinearity will be explored in later parts of this paper. In the
absence of price impact (i.e., the Black–Scholes case), the replicating strategy involves
trading a discrete number of shares at time 0 and then trading continuously according
to an Itô process. Accordingly, throughout this paper we only consider trading
strategies that are Itô processes except possibly a discrete jump at time 0; that is, we
assume that Nð�Þ satisfies

dNðtÞ ¼ ZðtÞdt þ zðtÞdBðtÞ; tX0,

Nð0Þ ¼ N0, ð4Þ

for some processes Zð�Þ and zð�Þ (to be endogenously determined), where N0 is the
number of shares in the stock after possibly an initial jump from Nð0_Þ: Thus, by (4)
and (2), we have

dSðtÞ

SðtÞ
¼ ½mðt;SðtÞÞ þ lðt;SðtÞÞZðtÞ�dt þ ½sðt;SðtÞÞ þ lðt;SðtÞÞzðtÞ�dBðtÞ,

tX0. ð5Þ

Consequently, the wealth process W ð�Þ satisfies the following stochastic differential
equation (SDE):

dW ðtÞ ¼ frðt;SðtÞÞW ðtÞ þ ½mðt;SðtÞÞ þ dðt;SðtÞÞ 
 rðt;SðtÞÞ þ lðt;SðtÞÞZðtÞ�

�NðtÞSðtÞgdt þ ½sðt;SðtÞÞ þ lðt;SðtÞÞzðtÞ�NðtÞSðtÞdBðtÞ; tX0. ð6Þ
3. Replication of a European option

Let hðSðTÞÞ be the payoff of a European contingent claim maturing at time T ;
where h : Rþ ! R is a piecewise linear function and SðTÞ is the price of the stock at
time T : Hereafter, for convenience, we simply call hðSðTÞÞ an option. We assume
that the option trader’s objective is to replicate the option for a perfect hedge.2 Then
replicating such an option amounts to solving (4)–(6) subject to the terminal
condition W ðTÞ ¼ hðSðTÞÞ:3 For clarity, we collect these SDEs together to form the
2Implicitly, we assume that the option trader cannot manipulate the stock price to reduce her hedging

cost, which is consistent with the equilibrium setup discussed in the Introduction. This assumption may

also be consistent with the presence of portfolio constraints (e.g., short sale constraint; see Cuoco and Liu,

2000 for example), capital shortage, or position limits.
3We assume that the European contingent claim is settled by the physical delivery of the underlying asset

at maturity. Therefore we do not include the liquidation cost at maturity of the replicating portfolio in

these replicating conditions. This assumption is consistent with the common contract specification for

most exchange-traded European options on stocks.
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following system:

dNðtÞ ¼ ZðtÞdt þ zðtÞdBðtÞ,

dSðtÞ

SðtÞ
¼ ½mðt;SðtÞÞ þ lðt;SðtÞÞZðtÞ�dt þ ½sðt;SðtÞÞ þ lðt;SðtÞÞzðtÞ�dBðtÞ,

dW ðtÞ ¼ frðt;SðtÞÞW ðtÞ þ ½mðt;SðtÞÞ þ dðt;SðtÞÞ 
 rðt;SðtÞÞ þ lðt;SðtÞÞZðtÞ�

NðtÞSðtÞgdt þ ½sðt;SðtÞÞ þ lðt;SðtÞÞzðtÞ�NðtÞSðtÞdBðtÞ,

Nð0Þ ¼ N0; Sð0Þ ¼ S040; W ðTÞ ¼ hðSðTÞÞ. ð7Þ

This system of SDEs is called a FBSDE system, because it involves solving
forward for NðtÞ and SðtÞ and solving backward for W ðtÞ:
In the presence of price impact, as an option trader trades the underlying to hedge,

the stock price is directly affected and the potential payoff of the option may also be
changed. Therefore, one of the interesting questions is whether the trader can still
replicate the option in the presence of this price impact. We show next that under
some regularity conditions the answer is positive and we provide a generalized
nonlinear Black–Scholes pricing PDE required to compute the replicating cost.
First, we introduce some additional notations. Let x ¼ lnS be the log stock

price. Let

~mðt; xÞ ¼ mðt; exÞ; ~sðt;xÞ ¼ sðt; exÞ; ~rðt;xÞ ¼ rðt; exÞ; ~dðt;xÞ ¼ dðt; exÞ,

~hðxÞ ¼ hðexÞ; ~lðt; xÞ ¼ lðt; exÞe
x; ~f ðt; xÞ ¼ f ðt; exÞ. ð8Þ

For any set G in a Euclidean space, let CðGÞ be the set of all continuous functions
j : G ! R: Now, for any a 2 ð0; 1Þ; and u 2 Cð½0;T � � RÞ; let

kuk0 � juj09 sup
ðt;xÞ2½0;T ��R

juðt;xÞj,

juja9 sup
ðt;xÞaðs;yÞ;jx
yjp1

jyðt;xÞ 
 uðs; yÞj

jt 
 sja=2 þ jx 
 yja
,

kuk2mþa9
X

2iþjp2m

jqi
tq

j
xuj0 þ

X
2iþj¼2m

jqi
tq

j
xuja. ð9Þ

Similarly, for any j 2 CðRÞ

jjj09supx2R jjðxÞj,

jjja9 sup
0ojx
yjp1

jjðxÞ 
 jðyÞj
jx 
 yja

,

kjkmþa9
X
ipm

jqi
xjj0 þ jqm

x jja. ð10Þ

Let

CðmþaÞ=2;2mþað½0;T � � RÞ9fu 2 Cð½0;T � � RÞj kuk2mþao1g,

CmþaðRÞ9fj 2 CðRÞj kjkmþao1g. ð11Þ
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In what follows, we adopt the following assumptions.
(A1) Functions ~r; ~m; ~s; ~d : ½0;T � � R ! R are in C1þa=2; 2það½0;T � � RÞ for some
a 2 ð0; 1Þ; and there exists a constant d040; such that

~sðt; xÞ2Xd040; 8ðt;xÞ 2 ½0;T � � R. (12)

(A2) Function ~h : R ! R is Lipschitz continuous and e
bh�i ~hð�Þ is bounded for some
bX0; where hxi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
:

The following theorem shows that under certain conditions an option is still
replicable even in the presence of price impact and provides a generalized
Black–Scholes pricing PDE for computing the replicating costs.

Theorem 1. Suppose (A1) and (A2) hold for some a 2 ð0; 1Þ and bX0: Then there

exists a constant e040 such that for any ~l 2 Ca=2;að½0;T � � RÞ with

k~lð�; �Þebh�ikape0, (13)

there exists a unique classical solution f ð�; �Þ of the following generalized Black– Scholes

pricing PDE:

f t þ
sðt;SÞ2S2f SS

2½1
 lðt;SÞSf SS�
2
þ ðrðt;SÞ 
 dðt;SÞÞSf S 
 rðt;SÞf ¼ 0,

ðt;SÞ 2 ½0;TÞ � ð0;1Þ,

f ðT ;SÞ ¼ hðSÞ. ð14Þ

Moreover, for any ~l 2 Cð1þaÞ=2;2það½0;T � � RÞ with

k~lð�; �Þ ebh�ik2þape0, (15)

FBSDE (7) admits a unique adapted solution ðSð�Þ;W ð�Þ;Nð�ÞÞ such that

W ðtÞ ¼ f ðt;SÞ,

NðtÞ ¼ f Sðt;SÞ, ð16Þ

and Sð�Þ satisfies

dSðtÞ

SðtÞ
¼ m̂ðt;SðtÞÞdt þ ŝðt;SðtÞÞdBðtÞ; tX0, (17)

where

m̂ðt;SÞ �
mðt;SÞ þ lðt;SÞf St

1
 lðt;SÞSf SS

þ
lðt;SÞsðt;SÞ2S2f SSS

2ð1
 lðt;SÞSf SSÞ
3
,

ŝðt;SÞ �
sðt;SÞ

1
 lðt;SÞSf SS

. ð18Þ

Proof. Here we provide a heuristic derivation of the generalized Black–Scholes PDE
(14) and we leave the rest of the proof to the Appendix.
Suppose (Sð�Þ; W ð�Þ; Nð�Þ) is an adapted solution of FBSDE (7) and

W ðtÞ ¼ f ðt;SðtÞÞ; t 2 ½0;T �; a:s:; (19)
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for some smooth function f ð�; �Þ: Applying Itô’s formula to (19) and using (7), we
obtain (suppressing the arguments ðS; tÞ for simplicity)

½rW þ ðmþ d
 r þ lZÞNS�dt þ ½sþ lz�NS dB

¼ dW ¼ ff t þ Sf Sðmþ lZÞ þ 1
2

S2f SSðsþ lzÞ2gdt þ Sf Sðsþ lzÞdB. ð20Þ

Comparing the diffusion terms in the above equation, we see that one should choose

NðtÞ ¼ f SðSðtÞ; tÞ; t 2 ½0;T � a:s. (21)

Then comparing the drift terms in (20) and using (19) and (21), one has

0 ¼ f t þ Sf Sðmþ lZÞ þ 1
2

S2f SSðsþ lzÞ2 
 ½rf þ ðmþ d
 r þ lZÞSf S�

¼ f t þ
1
2

S2f SSðsþ lzÞ2 þ ðr 
 dÞSf S 
 rf . ð22Þ

We hope to obtain an equation in f ð�; �Þ: Thus, we need to eliminate z in the above
equation. To this end, let us first note that

Zdt þ z dB ¼ dN ¼ d½f S� ¼ ½f St þ Sf SSðmþ lZÞ þ 1
2

S2f SSSðsþ lzÞ2�dt

þ Sf SSðsþ lzÞdB. ð23Þ

Hence, comparing the diffusion terms, we obtain

z ¼ ðsþ lzÞSf SS, (24)

which implies (assuming that lSf SSa1)

z ¼
sSf SS

1
 lSf SS

. (25)

Thus, the volatility of the stock (noting (7)) is given by

ŝ � sþ lz ¼
s

1
 lSf SS

. (26)

Combining (22) and (26), we see that one should choose f ð�; �Þ to be a solution of the
PDE (14) in Theorem 1.
In addition, comparing the drift terms in (23) we have (suppressing arguments

(t;S))

Z ¼ f St þ Sf SSðmþ lZÞ þ 1
2

S2f SSSðsþ lzÞ2, (27)

which implies

Z ¼
1

1
 lSf SS

f St þ mSf SS þ
s2S2f SSS

2ð1
 lSf SSÞ
2

( )
. (28)

Hence, the instantaneous expected return of the stock is given by (noting (7) and (28))

m̂ � mþ lZ ¼
mþ lf St

1
 lSf SS

þ
ls2S2f SSS

2ð1
 lSf SSÞ
3
: & (29)

This theorem suggests that, to replicate an option, one has to first trade a discrete
f Sð0;Sð0ÞÞ shares of the stock and then follow a continuous trading strategy
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prescribed by NðtÞ: Given the stock price Sð0_Þ before this discrete trade and (2),
the stock price Sð0Þ the initial trade will drive to can be calculated as follows. Let
Nð0_Þ ¼ 0 and Nð0Þ ¼ f Sð0;Sð0ÞÞ: Assuming the trader can still work the initial order
even when she trades a discrete amount,4 by (2), we have

dSðtÞ ¼ lðt;SðtÞÞSðtÞdNðtÞ, (30)

for a discrete trade. Dividing both sides of (30) by lðt;SðtÞÞSðtÞ and integrating from
time 0_ to time 0 implies that Sð0Þ solvesZ Sð0Þ

Sð0_Þ

dSðtÞ

lð0;SðtÞÞSðtÞ
¼

Z Nð0Þ

Nð0_Þ

dNðtÞ ¼ f Sð0;Sð0ÞÞ. (31)

By (30), the initial cost of acquiring Nð0Þ ¼ f Sð0;Sð0ÞÞ shares is

c ¼

Z Nð0Þ

Nð0_Þ

SðtÞdNðtÞ ¼

Z Sð0Þ

Sð0_Þ

dSðtÞ

lð0;SðtÞÞ
. (32)

Because f ð0;Sð0ÞÞ 
 Sð0Þf Sð0;Sð0ÞÞ is the amount borrowed or lent in the risk-free
asset to replicate the option, the initial cost of replicating the option hðSðTÞÞ is
therefore

f h
ðSð0_ÞÞ ¼ f ð0;Sð0ÞÞ 
 Sð0Þf Sð0;Sð0ÞÞ þ c. (33)

The pricing PDE (14) implies that the effect of the price impact on the replication
after the initial trade is only through a trade’s impact on the stock volatility. This
suggests, in particular, that if a trader can only affect the expected return of a stock but
not the volatility or the interest rate, then the replicating cost for the trader will be the
same as that for the case without price impact.
In the presence of price impact, a special form of put–call parity still holds. To see

this, suppose the stock does not pay any dividend (i.e., dðt;SÞ ¼ 0) for simplicity. Let
f pðSÞ solve the pricing PDE (14) for a European put with strike price K and f cðSÞ

solve (14) for the otherwise identical call. Then it is straightforward to verify that
f pðSÞ þ S 
 Ke
rðT
tÞ also solves (14) for the otherwise identical call. Therefore, by
the uniqueness of the solution, we must have

f cðSÞ ¼ f pðSÞ þ S 
 Ke
rðT
tÞ. (34)

Because in addition we also have that the delta of a call minus the delta of a put is
equal to one, the put–call parity still holds even after taking into consideration the
initial block trade price impact. This is because the number of shares a trader needs
to buy to replicate a position consisting of a share and a put (i.e., a protective put
position) is the same as the number of shares she needs to buy for replicating a call.
In other words, using the notation in (33) let f c be the replicating cost of a call and
f pþS be the replicating cost of a position consisting of a put and a share after
incorporating the initial extra cost. Then we have the following special form of the
4Alternatively, one can assume that all f Sð0;Sð0ÞÞ shares are traded at Sð0Þ: This would only increase the
replicating cost, magnify the effect of price impact, and thus strengthen the main results in this paper.
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put–call parity:

f c
ðSð0_ÞÞ ¼ f pþS

ðSð0_ÞÞ 
 Ke
rðT
tÞ. (35)

Since f pþS
ðSð0_ÞÞaf p

ðSð0_ÞÞ þ Sð0_Þ because of the price impact of the initial trades,
we have that in the presence of price impact,

f c
ðSð0_ÞÞaf p

ðSð0_ÞÞ þ Sð0_Þ 
 Ke
rðT
tÞ,

that is, at time t ¼ 0_;

Call priceaPut price þ Stock price 
 Ke
rðT
tÞ.

Therefore the implied volatility (using Black–Scholes formula) from the call price
f c
ðSð0_ÞÞ is different from the implied volatility from the put price f p

ðSð0_ÞÞ (see
Figs. 9 and 10).5

As is well known, in the presence of transaction costs, superreplicating an option
(buying a share and never trading again to superreplicate a call, for example) is
cheaper than replicating. This is because exact replication involves continuous
trading and thus incurs infinite costs (Liu and Loewenstein, 2002; Liu, 2004). Similar
to the transaction cost case, with price impact for every round-trip trade an option
trader also incurs additional costs. This may suggest that superreplicating might also
be less expensive than exact replicating in the presence of price impact. However, the
following theorem shows that this is not the case.

Theorem 2. Let hð�Þ and h̄ð�Þ be such that

hðSÞoh̄ðSÞ; S 2 ð0;1Þ. (36)

Suppose f ð�; �Þ and f̄ ð�; �Þ satisfy the following:

f t þ
sðt;SÞ2S2f SS

2½1
 lðt;SÞSf SS�
2
þ ðrðt;SÞ 
 dðt;SÞÞSf S 
 rðt;SÞf ¼ 0;

ðt;SÞ 2 ½0;TÞ � ð0;1Þ;

f ðT ;SÞ ¼ hðSÞ

8>>>><
>>>>:

(37)

and

f̄ t þ
sðt;SÞ2S2 f̄ SS

2½1
 lðt;SÞSf̄ SS�
2
þ ðrðt;SÞ 
 dðt;SÞÞSf̄ S 
 rðt;SÞf̄ ¼ 0;

ðt;SÞ 2 ½0;TÞ � ð0;1Þ;

f̄ ðT ;SÞ ¼ h̄ðSÞ:

8>>>><
>>>>:

(38)

Then under the same conditions as in Theorem 1, the cost of the superreplicating

strategy f̄ ðt;SÞ is greater than the cost of the replicating strategy f ðt;SÞ: In addition,
ignoring the cost from the initial trading necessary for replication would understate the

replication cost.
5The reason we call Eq. (35) a put–call parity is that, as the usual put–call parity in the absence of price

impact, Eq. (35) states that Call price ¼ Protective Put price 
Ke
rðT
tÞ:
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Proof. See Appendix. &

This theorem shows that the replicating strategy described above is indeed the cheapest
way to hedge a European option for the trader. This result suggests that the excess cost
incurred from the adverse price impact is of a lower order than that from transaction cost.
Furthermore, the existing literature (e.g., Frey, 2000) ignores the extra cost from the
initial trading for acquiring the initial position N0 that is necessary for replication. By
Theorem 2, one would then understate the replication cost from this omission.
4. Analysis of the replication of a European option

In this section, we provide a numerical analysis of the effect of the illiquidity in the
underlying asset market on the replication of a European option.
In all the subsequent analysis, we focus on the Black–Scholes economy; that is, all

the price coefficients are constant. Unless otherwise stated, we assume the default
parameter values to be as follows: the current stock price S ¼ $50; the strike price
K ¼ $50; the interest rate r ¼ 6%; the dividend yield d ¼ 0; the volatility s ¼ 40%;
and the time to maturity T ¼ 0:25 (3 months). Consistent with the price impact form
obtained in Kyle (1985), Back (1993), and Vayanos (2001), and the one used in
Bertsimas and Lo (1998), we assume

lðt;SÞ ¼

g
S
ð1
 e
bðT
tÞÞ if S pSpS;

0; otherwise;

8<
:

where the constant price impact coefficient g40 measures the price impact per
traded share, and S and S represent respectively, the lower and upper limit of the
stock price within which there is a price impact. This form assumes that as a trader
buys, the stock price goes up and as she sells, the stock price goes down. In addition,
the magnitude of the impact is proportional to the number of shares traded within a
certain range. Outside this range, the price impact is zero. The linearity is required by
the absence of arbitrage as shown by Huberman and Stanzl (2001). Moreover, we
assume that as time passes, the private information about the asset value is gradually
revealed so that the price impact gradually decreases to zero at maturity, which also
prevents any stock price manipulation at maturity. It can be easily shown that one
can find a smooth function that approximates this price impact function arbitrarily
well, also satisfies the regularity conditions in Theorem 1, and thus guarantees the
existence of a unique solution of the pricing PDE (14). According to Sharpe et al.
(1999), a trade size of 2000 shares (the smallest block trade size listed in the book)
results in $0:04 price impact per share for a stock with an average price of $48: We
thus set the default value of g to be 0.04 accordingly. In addition, we set S ¼ 20 and
S ¼ 80; and b ¼ 100 for the subsequent numerical analysis.6
6Choosing a different value for g;b;S; or S will change the magnitude of the subsequent results (as

suggested by Figs. 5 and 6). However, the main qualitative results remain valid.
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4.1. Replicating strategy

It is easily verified that if hðSÞ ¼ S then f ðt;SÞ ¼ S: Therefore, in the presence of
price impact, to replicate the payoff of a share at a future time, one also has to
purchase a share at time 0 and hold it, the same way as in the case of no price impact.
However, the cost will be higher. Specifically, the cost is c as defined in (31) and (32)
instead of Sð0_Þ: A similar result applies to other contingent claims whose payoffs
are linear in the stock price, for example, forward and futures contracts. From now
on we will focus on the exchange traded European options.
The first question we would like to address is how an option trader trades the

underlying asset to replicate an option in the presence of price impact. To this end,
we plot the time 0 difference (after taking into account the initial price impact)
between the delta of her call replicating portfolio and the corresponding Black–-
Scholes delta against the stock price Sð0_Þ in Fig. 1 and show the corresponding put
case in Fig. 2. These figures show that the trader generally buys (or shorts) more
stock compared to the Black–Scholes strategy. In addition, the difference in the
deltas peaks when an option is close to the money and gradually decreases as the
option becomes more away from the money. Intuitively, if an option ends in the
money at maturity, to replicate the option one needs to long or short one share of the
stock at maturity. If the option ends out of the money at maturity, then one should
not have any stock when the option matures. Thus, when an option is in the money,
an increase in the volatility would decrease the absolute value of the delta because
this increases the chance of the option ending out of the money. When an option is
out of the money, an increase in the volatility would instead increase the absolute
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Fig. 1. The difference in call delta from Black–Scholes as a function of stock price at time 0. The graph

plots the difference in the delta of the call-replicating portfolio from Black–Scholes against S for

parameters g ¼ 0:04; K ¼ 50; r ¼ 6%; d ¼ 0; and s ¼ 40%: The thickest line is for T ¼ 1; the thick one is
for T ¼ 0:0833; and the thin one is for T ¼ 0:01:
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Fig. 2. The difference in put delta from Black–Scholes as a function of stock price at time 0. The graph

plots the difference in the delta of the put-replicating portfolio from Black–Scholes against S for

parameters g ¼ 0:04; K ¼ 50; r ¼ 6%; d ¼ 0; and s ¼ 40%: The thickest line is for T ¼ 1; the thick one is
for T ¼ 0:0833; and the thin one is for T ¼ 0:01:
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value of the delta because this increases the chance of the option maturing in the
money. This is called the volatility effect on delta. As suggested by Theorem 1, one of
the main effects of the price impact is to increase the volatility of the stock return.
Therefore the large investor effectively faces a larger volatility than in the
Black–Scholes world. The volatility effect then implies that she trades more to
replicate an out-of-the-money option and trades less to replicate an in-the-money
option. As the time to horizon decreases, it becomes more and more certain how
much she needs to have in the stock in order to replicate the option. Therefore for
away-from-the-money options, her trading strategy is less and less different from the
case without price impact. However, as stock price increases, the call delta increases
and as stock price decreases, the absolute value of the put delta increases. This is
called the price effect on delta. As the trader buys, the stock price increases and as
she sells, the stock price decreases. Therefore, the price effect always makes the
trader buy or short more compared to the Black–Scholes strategy. This implies that
for out-of-the-money options both the volatility effect and the price effect increase
the absolute value of the delta. For in-the-money options, however, these two effects
act in opposite directions. The net effect depends on which one dominates. Figs. 1
and 2 show that the price effect always dominates the volatility effect. This makes
her always buy or short more. A more detailed analysis shows that the price effect is
mainly from the price impact of the initial block trade. Ignoring this initial block
trade, one would conclude that a large trader trades less for the in-the-money
options; that is, the volatility effect dominates the price effect. When an option is
very deep in the money or very deep out of the money, the delta is relatively
insensitive to the change in the volatility and the change in the stock price. So both
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the volatility effect and the price effect are small for these options, which implies that
she will trade about the same way as in the case without any price impact.
Fig. 3 plots the difference between the amount borrowed by the trader to replicate

a call and the corresponding amount in the Black–Scholes strategy at time 0. Fig. 4
plots the difference in the amount lent for replicating a put. Consistent with Fig. 1,
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Fig. 3. The difference in amount borrowed from Black–Scholes as a function of stock price at time 0. The

graph plots the difference in the borrowed amount in the call-replicating portfolio from Black–Scholes

against S for parameters g ¼ 0:04; K ¼ 50; r ¼ 6%; d ¼ 0; and s ¼ 40%: The thickest line is for T ¼ 1; the
thick one is for T ¼ 0:0833; and the thin one is for T ¼ 0:01:
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Fig. 4. The difference in amount lent from Black–Scholes as a function of stock price at time 0. The graph

plots the difference in the amount lent in the put-replicating portfolio from Black–Scholes against S for

parameters g ¼ 0:04; K ¼ 50; r ¼ 6%; d ¼ 0; and s ¼ 40%: The thickest line is for T ¼ 1; the thick one is
for T ¼ 0:0833 and the thin one is for T ¼ 0:01:
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these figures show that the trader generally also borrows more (for a call) or lends
more (for a put) due to the adverse price impact.

4.2. Replicating costs

Fig. 5 plots the replicating costs against the price impact coefficient g: The middle
thin line is the Black–Scholes price. As the price impact coefficient increases, the
replicating cost of a long call increases almost linearly and the replicating revenue of
a short call decreases almost linearly. Therefore, there is a spread around the
Black–Scholes price and the spread increases as the price impact coefficient increases.
The linearity of the replicating cost in the price impact coefficient reflects the linear
price impact form assumed. The effect of the price impact on the replicating cost
(revenue) is significant even when the price impact is very small. For example, with
g ¼ 0:04; the trader has about 0.08% price impact on the stock price. In contrast, the
replicating cost is about $0:014 higher than the Black–Scholes price, which amounts
to about 0.32% of the Black–Scholes price, almost four times the impact on the
stock price in the percentage term.
Fig. 6 plots the replicating cost of a put against the price impact coefficient g: The

effect is similar to that for a call except that the wedge is now narrower. This is due
to the fact that the payoff of a put is bounded above by the strike price.
Without the price impact, there is a unique no-arbitrage price for an option.7 In

contrast, in the presence of the adverse price impact, there is a continuum of no-
7Here an arbitrage means that one can make a positive profit without any risk or initial investment. The

profit made is not required to be infinite.
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arbitrage prices. In particular, we have the following straightforward implication of
the replicability of an option and the adverse price impact. Let f ah

X0 be the
replicating cost of aX0 units of an option hðSðTÞÞX0 and 
f 
ah

X0 be the revenue
from replicating a units of the option 
hðSðTÞÞp0: Then there is no arbitrage for
trading a units of the option hðSðTÞÞ if and only if the bid price for a units of the
option is smaller than f ah and the ask price for a units is greater than 
f 
ah: In
particular, in the absence of bid-ask spread, this implies that a price between f ah and

f 
ah is arbitrage free for trading a units of the option. The wedges depicted in Figs.
5 and 6 represent the case with a ¼ 1: For example, with g ¼ 0:04; the bid price for
one call must be below $4:350 and the ask price for one call must be above $4:324:
This implies any price between $4:324 and $4:350 prevents arbitrage from trading
one call in the presence of price impact. In contrast, in the absence of price impact
and bid-ask spread, the call price has to be exactly $4:336:
Because of the nonlinearity in the dynamics of the replicating portfolio value as

shown in (3), the cost of replicating a units of an option is not equal to a times the
cost of replicating one unit of the option. To help us understand this nonlinearity, we
plot the average replicating cost of a long position and the average revenue from
replicating a short position as functions of the units of options traded (a) in Fig. 7 for
calls.8 This figure shows that the average replicating cost and revenue are almost
linear in the number of units to be replicated, which implies that the excess
replicating cost is approximately quadratic in the number of units a: In addition, as
the number of units decreases, the average replicating cost and revenue decrease and
converge to the Black–Scholes price of the option. This suggests that in the presence
8The corresponding results of Figs. 7 and 8 for puts are very similar and thus omitted.
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of the nonlinearity, the absence of arbitrage for trading a certain number of units of
an option does not imply the absence of arbitrage for trading a smaller number of
units of the option. Therefore, in the presence of price impact, to prevent arbitrage
when trading any number of units is allowed, the option price must be set at the
Black–Scholes price in the absence of the bid-ask spread.

4.3. Excess cost and the smile

Fig. 8 plots the excess replicating costs above the corresponding Black–Scholes
price for a call as a function of the strike price. As the option becomes more and
more out of the money, the excess cost decreases and converges monotonically to
zero. As the option becomes more and more in the money, the excess cost converges
to the excess cost of buying one share. Intuitively, as the option gets more and more
in the money, the investor needs to buy more and more of the underlying asset and
eventually, when the option is far in the money, the trader has to buy one share
almost surely to replicate the call. However, as the option gets more and more out of
the money, the trader needs to buy less and less stock and eventually, when the
option is far out of the money, the investor does not need to buy any share almost
surely.
Next, similar to Grossman and Zhou (1996) and Platen and Schweizer (1998), we

consider the relationship between illiquidity and the volatility smile. The excess cost
pattern shown in the above figures implies indicates that the implied volatility would
not be constant across options with different moneyness (K=S). To this end, we
assume that an option trader sells an option at the replicating cost of a long position
in the option. We can then plug the replicating cost of one unit of the long option
computed from our model with price impact into the Black–Scholes formula to back
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out the implied volatility of the option. Fig. 9 plots the implied volatility for calls
against moneyness K=S: It shows that even though the volatility of the stock return
without price impact is constant, the implied volatility for a call is no longer constant
and changes with moneyness in the presence of price impact. In particular, the
implied volatility increases as the option gets more and more in the money. This is
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Fig. 8. Replicating cost of a call above Black–Scholes price as a function of the strike price. The graph

plots the replicating cost above Black–Scholes price for a call against the strike price K for parameters

g ¼ 0:04; S ¼ 50; r ¼ 6%; d ¼ 0 s ¼ 40% and T ¼ 0:25:
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Fig. 9. Implied volatility for a call as a function of moneyness. The graph plots the implied volatility

against K=S for parameters g ¼ 0:04; S ¼ 50; r ¼ 6%; d ¼ 0; s ¼ 40% and T ¼ 0:25:
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consistent with the volatility smile for calls widely documented in the literature (see
Dumas et al., 1998, for example). Intuitively, as shown in Fig. 8, as the call gets more
and more in the money, the excess cost increases and therefore the implied volatility
also increases. Similarly, as shown in Fig. 10, the implied volatility increases as the
put becomes more and more in the money. However, compared to the implied
volatility for a call, the implied volatility for the otherwise identical put is much
smaller for the same range of the moneyness. This is in contrast to the implied
volatility pattern documented for puts (see Dumas et al., 1998, for example).9 These
findings have important empirical implications for explaining the volatility smile. In
particular, it suggests that the negative correlation between the stock price and the
volatility (as assumed in Heston, 1993; Bates, 1996, for example) that was required to
generate the smile would have to be weaker for calls, but stronger for puts, if the
price impact were taken into account.
5. Concluding remarks

In this paper, we investigate how the imperfect liquidity in the underlying asset
market affects the replication of a European option. In a market with imperfect
liquidity, trading affects stock price. We obtain a generalized nonlinear Black–
Scholes pricing partial differential equation. We derive sufficient conditions for the
existence and uniqueness of a classical solution. These are also sufficient conditions
for the replicability of the option. We also show that in contrast to the case with
9The different implied volatility for a call and the otherwise identical put is due to the presence of price

impact for the initial block trade. See Eq. (35) and the discussions therein.
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transaction costs, superreplication in the presence of adverse price impact is more
costly than exact replication.
We find that compared to the Black–Scholes strategy, a trader in an illiquid

underlying asset market generally needs to buy (short) more stock and to borrow
(lend) more to replicate a call (put). The excess replicating cost is approximately
quadratic in the number of units of options to be replicated. The excess cost a trader
incurs is found to be significant even with small price impact. We also show that
although a special form of put–call parity (Eq. (35)) still holds, the implied volatility
for a put is different from the implied volatility for the otherwise identical call.
In contrast to most of the existing literature on large traders, this model allows a

direct price impact. This provides a reasonable model also for the pricing of a block
order. An interesting problem would be to estimate the price impact functions for
illiquid assets. This way one can then empirically test the implications of this model,
such as comparing the model’s implied excess costs over the Black–Scholes prices to
the observed excess costs. An equilibrium model with informed traders trading in
both options and stocks would shed light on the form and magnitude of the price
impact. Another interesting issue is to analyze the optimal liquidation strategy for a
fund that has significant adverse price impact.
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Appendix

In this appendix, we present detailed proofs of Theorems 1 and 2.

Proof of Theorem 1. Suppose f ð�; �Þ is a classical solution of (14) satisfying the
following regularity condition:

Condition 1. f ðt;SÞ is C1;4 in ðt;SÞ and S 7!Sm̂ðt;SÞ and S 7!Sŝðt;SÞ are Lipschitz
continuous in S; uniform in t 2 ½0;T �; and

1
 lðt;SÞSf SSðt;SÞXd040; 8ðt;SÞ 2 ½0;T � � ½0;1Þ. (39)

Let Sð�Þ be the (unique) strong solution of (17), and let ðW ð�Þ;Nð�Þ; Zð�Þ; zð�ÞÞ be
defined by (16), (27) and (25). Applying Itô’s formula to W ð�Þ and Nð�Þ; using
(20)–(29), we see that ðW ð�Þ;Sð�Þ;Nð�ÞÞ is an adapted solution to (7).
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Next we want to show that under some regularity conditions, Condition 1 is
satisfied. The proof of this part of Theorem 1 is much more technical. Given (A2),
one can find a sequence of smooth functions hkð�Þ that converge to hð�Þ in H1;1

loc ðRÞ

(i.e., the set of all locally Lipschitz continuous functions). Now, for each hkð�Þ the
corresponding PDE (14) admits a unique classical solution f kð�Þ: By a priori estimate,
one can prove that f kð�Þ is equicontinuous. Thus, one can assume that f kð�Þ is
convergent to f ð�Þ (in H

1;p
locðRÞ for any p 2 ½1;1Þ), which satisfies Eq. (14) in ½0;TÞ �

ð0;1Þ and the terminal condition in the sense that

lim
t!T

f ðt;SÞ ¼ hðSÞ.

Therefore without loss of generality, we can assume hð�Þ satisfies

e
bh�i ~hð�Þ 2 C4þaðRÞ, (40)

for some bX0; and the same a 2 ð0; 1Þ as in (A1), where hxi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
:

By (8), (14) can be written as

~f t þ
~s2½ ~f xx 


~f x�

2½1
 ~lð ~f xx 

~f xÞ�

2
þ ð~r 
 ~dÞ ~f x 
 ~r ~f ¼ 0; ðt; xÞ 2 ½0;TÞ � R,

~ujt¼T ¼ ~h. ð41Þ

It is clear that the solvability of (14) is equivalent to that of (41).
We will now show the following lemma.

Lemma A.1. Suppose (A1) and (A2) hold for some a 2 ð0; 1Þ and bX0: Then there

exists a constant e040 such that for any ~l 2 C
a
2;að½0;T � � RÞ with

k~lð�; �Þebh�ikape0, (42)

the generalized Black– Scholes pricing PDE (41) admits a unique classical solution
~f ðt;xÞ satisfying

e
bh�i ~f ð�; �Þ 2 C1þa
2;2það½0;T � � RÞ. (43)

Moreover, for any ~l 2 C
1þa
2 ;2það½0;T � � RÞ with

k~lð�; �Þebh�ik2þape0, (44)

the solution ~f ð�; �Þ has all the properties required in Theorem 1.

First, we recall some classical results for linear second-order parabolic PDEs. For
later convenience, we modify the statements to fit our framework. Consider the
following terminal value problem:

vt þ aðt;xÞvxx þ bðt;xÞvx þ cðt;xÞv ¼ jðt;xÞ,

vjt¼T ¼ cðxÞ. ð45Þ
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We introduce the following assumptions.
(P) Functions að�; �Þ; bð�; �Þ; and cð�; �Þ are all in C

a
2;að½0;T � � RÞ for some a 2 ð0; 1Þ:

There exists a constant d040 such that

aðt;xÞXd0; 8ðt; sÞ 2 ½0;T � � R. (46)

According to Ladyženskaja et al. (1968), we have the following result.

Proposition A.1. Let (P) hold. Then for any j 2 C
a
2;að½0;T � � RÞ and c 2 C2þaðRÞ;

Cauchy problem (4.4) admits a unique solution v 2 C1;a2;2það½0;T � � RÞ: Moreover, there

exists a constant K40 only depending on d0; kaka; kbka; and kcka such that

kvk2þapKðkjka þ kck2þaÞ. (47)

If we write K � Kðkaka þ kbka þ kcka; d

1
0 Þ; then we can assume that Kð�; �Þ is

nondecreasing in both arguments. Now, we will apply the above result to our
equation.
Suppose ~f ð�; �Þ is a solution of the following:

~f tðt;xÞ þ
~sðt; xÞ2½ ~f xxðt;xÞ 


~f xðt; xÞ�

2f1
 ~lðt;xÞ½ ~f xxðt; xÞ 

~f xðt; xÞ�g

2

þ ½~rðt;xÞ 
 ~dðt; xÞ�f xðt;xÞ 
 ~rðt;xÞ ~f ðt; xÞ ¼ 0.

~f ðT ;xÞ ¼ ~hðxÞ. ð48Þ

Define

vðt;xÞ ¼ e
bhxi ~f ðt;xÞ; ðt; xÞ 2 ½0;T � � R. (49)

Then

~f tðt;xÞ ¼ ebhxivtðt;xÞ,

~f xðt;xÞ ¼ ebhxi
bx

hxi
vðt;xÞ þ vxðt;xÞ


 �
� ebhxi½Bvðt; xÞ þ vxðt; xÞ�,

~f xxðt;xÞ ¼ ebhxi
b2x2

hxi2
þ

b
hxi3

� 

vðt;xÞ þ

2bx

hxi
vxðt;xÞ þ vxxðt;xÞ


 �
¼ ebhxi½Avðt; xÞ þ 2Bvxðt;xÞ þ vxxðt;xÞ�, ð50Þ

where

A9
b2x2

hxi2
þ

b
hxi3

; B9
bx

hxi
. (51)

Let

F ðx; v; vx; vxxÞ9ðA 
 BÞv þ ð2B 
 1Þvx þ vxx. (52)

Then by (48)–(52), we see that vð�; �Þ satisfies the following equation (for notational
simplicity, we suppress ðt; xÞ in ~rðt;xÞ; ~sðt;xÞ; ~lðt;xÞ; vðt;xÞ; vxðt; xÞ; and vxxðt;xÞ and



ARTICLE IN PRESS

H. Liu, J. Yong / Journal of Economic Dynamics & Control 29 (2005) 2125–21562148
suppress ðx; v; vx; vxxÞ in F ðx; v; vx; vxxÞ):

vt þ
~s2

2ð1
 ~lebhxiF Þ
2

vxx þ
ð2B 
 1Þ ~s2

2ð1
 ~lebhxiF Þ
2
þ ~r 
 ~d


 �
vx

þ
ðA 
 BÞ ~s2

2ð1
 ~lebhxiF Þ
2
þ Bð~r 
 ~dÞ 
 ~r


 �
v ¼ 0,

vðT ;xÞ ¼ e
bhxi ~hðxÞ. ð53Þ

We now want to establish the existence and uniqueness of a classical solution to
(53). To this end, let us present some simple lemmas first.

Lemma A.2. Let j and c be proper functions of ðt;xÞ 2 ½0;T � � R: Then the following

hold provided the involved expressions makes sense:

kjþ ckapkjka þ kcka,

kjckapkjkakcka,

1

j

����
����
a
p

kjka
minðt;xÞ2½0;T ��R jjðxÞj2

. ð54Þ

By Lemma A.2 and (52), we have (provided all the terms involved are meaningful)

kFkapkðA 
 BÞvka þ kð2B 
 1Þvxka þ kvxxkapC0kvk2þa. (55)

Here, C0 is a constant only depending on b: Consequently, we have

~s2

2ð1
 ~lebhxiF Þ
2

����
����
a

p
k ~sk2a
2

1þ k~lebhxik2akFk2a

½1
 k~lebhxik2akFk2a�
2

p
k ~sk2a
2

1þ C2
0k
~lebhxik2akvk22þa

½1
 C2
0k
~lebhxik2akvk22þa�

2
, ð56Þ

ð2B 
 1Þ ~s2

2ð1
 ~lebhxiF Þ
2
þ ~r 
 ~d

����
����
a

pC
~s2

2ð1
 ~lebhxiF Þ
2

����
����
a

þ k~rka þ k~dka

pCk ~sk2a
1þ C2

0k
~lebhxik2akvk22þa

½1
 C2
0k
~lebhxik2akvk22þa�

2
þ k~rka þ k~dka,

ð57Þ

ðA 
 BÞ ~s2

2ð1
 ~lebhxiF Þ
2
þ Bð~r 
 ~dÞ 
 ~r

����
����
a

pC k ~sk2a
1þ C2

0k
~lebhxik2akvk22þa

½1
 C2
0k
~lebhxik2akvk22þa�

2
þ k~rka þ k~dka

( )
. ð58Þ
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Hereafter, C represents a generic constant that can be different at different places.
Also, we have

~s2

2ð1
 ~lebhxiF Þ
2
X

d20
2ð1
 j~lebhxiF jÞ

2

X
d20

2ð1
 C0k
~lebhxikakvk2þaÞ

2
. ð59Þ

Now, we fix any v 2 C
2þa
2 ;2það½0;T � � RÞ with

C0k
~lebhxikakvk2þap1

2
. (60)

With this v in F � F ðt;x; v; vx; vxxÞ; it follows from (59) that

~s2

2ð1
 ~lebhxiF Þ
2
X

d20
2ð1
 C0k

~lebhxikakvk2þaÞ
2
X2d209d140, (61)

and it follows from (56)–(58) and (60) that

~s2

2ð1
 ~lebhxiF Þ
2

����
����
a

þ
ð2B 
 1Þ ~s2

2ð1
 ~lebhxiF Þ
2
þ ~r 
 ~d

����
����
a

þ
ðA 
 BÞ ~s2

2ð1
 ~lebhxiF Þ
2
þ Bð~r 
 ~dÞ 
 ~r

����
����
a

pC k ~sk2a
1þ C2

0k
~lebhxik2akvk22þa

½1
 C2
0k
~lebhxik2akvk22þa�

2
þ k~rka þ k~dka

( )

pCðk ~sk2a þ k~rka þ k~dkaÞ9A0. ð62Þ

We see that A0 and d1 are independent of v satisfying (60).
Next, by Proposition A.1, for such a v; there exists a unique classical solution,

denoted by v̄; to the following linear PDE:

v̄t þ
~s2

2ð1
 ~lebhxiF Þ
2

v̄xx þ
ð2B 
 1Þ ~s2

2ð1
 ~lebhxiF Þ
2
þ ~r 
 ~d


 �
v̄x

þ
ðA 
 BÞ ~s2

2ð1
 ~lebhxiF Þ
2
þ Bð~r 
 ~dÞ 
 ~r


 �
v̄ ¼ 0,

v̄ðT ;xÞ ¼ e
bhxi ~hðxÞ, ð63Þ

where F ¼ F ðt;x; v; vx; vxxÞ is given by (52) with the fixed v: Moreover, the following
estimate holds:

kv̄k2þapKðA0; d

1
1 Þke
bhxi ~hk2þa. (64)

Thus, we obtain a map v 7!v9SðvÞ from Cð2þaÞ=2;2það½0;T � � RÞ to itself. Next, we
would like to show that for a suitable ~l; map S admits a unique fixed point. To
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this end, we take any v;w 2 Cð2þaÞ=2;2það½0;T � � RÞ satisfying (60). Let v ¼ SðvÞ and
w ¼ SðwÞ: Denote x̄ ¼ v 
 w; x ¼ v 
 w; and G9F ðt;x;w;wx;wxxÞ: Then x satisfies
the following PDE:

x̄t þ
~s2

2ð1
 ~lebhxiF Þ
2
x̄xx þ

ð2B 
 1Þ ~s2

2ð1
 ~lebhxiF Þ
2
þ ~r 
 ~d


 �
x̄x þ

ðA 
 BÞ ~s2

2ð1
 ~lebhxiF Þ
2




þBð~r 
 ~dÞ 
 ~r
�
x̄þ

~s2

2ð1
 ~lebhxiF Þ
2



~s2

2ð1
 ~lebhxiGÞ
2


 �
�½w̄xx þ ð2B 
 1Þw̄x þ ðA 
 BÞw̄� ¼ 0,

x̄ðT ;xÞ ¼ 0. ð65Þ

By Lemma A.2, we have

1

ð1
 ~lebhxiF Þ
2



1

ð1
 ~lebhxiGÞ
2

����
����
a

¼
ð1
 ~lebhxiGÞ

2

 ð1
 ~lebhxiF Þ

2

ð1
 ~lebhxiF Þ
2
ð1
 ~lebhxiGÞ

2

�����
�����
a

p
k2
 ~lebhxiðF þ GÞkak

~lebhxiðF 
 GÞkakð1

~lebhxiF Þ

2
ð1
 ~lebhxiGÞ

2
ka

ð1
 k~lebhxiFkaÞ
4
ð1
 k~lebhxiGkaÞ

4
. ð66Þ

Note that

k2
 ~lebhxiðF þ GÞkakð

~lebhxiF Þ

2
ð1
 ~lebhxiGÞ

2
ka

p½2þ k~lebhxikaC0ðkvk2þa þ kwk2þaÞ�

�ð1þ k~lebhxikaC0kvk2þaÞ
2
ð1þ k~lebhxikaC0kwk2þaÞ

2pC. ð67Þ

However,

ð1
 k~lebhxiFkaÞ
4
ð1
 k~lebhxiGkaÞ

4
X

1

256
.

Hence (comparing (55)),

1

ð1
 ~lebhxiF Þ
2



1

ð1
 ~lebhxiGÞ
2

����
����
a

pCk~lebhxikakF 
 Gka

pCk~lebhxikakxk2þa. ð68Þ

Now, applying (47) to the solution x of (65), we obtain

kx̄k2þapKðA0; d

1
1 Þ

~s2

2ð1
 ~lebhxiF Þ
2



~s2

2ð1
 ~lebhxiGÞ
2


 �����
�½w̄xx þ ð2B 
 1Þw̄x þ ðA 
 BÞw̄�

����
2þa

pCkw̄k2þak
~lebhxikakxk2þa

pCke
bhxi ~hk2þak
~lebhxik2þakxk2þapCk~lebhxik2þakxk2þa. ð69Þ



ARTICLE IN PRESS

H. Liu, J. Yong / Journal of Economic Dynamics & Control 29 (2005) 2125–2156 2151
Here, C40 is an absolute constant. By choosing, say, e0 ¼ 1=ð2ðC þ 1ÞÞ; we see that
when (13) is satisfied, we have from (69) that

kSðvÞ 
 SðwÞk2þap1
2
kv 
 wk2þa. (70)

Therefore, S admits a unique fixed point in the set of all functions vð�; �Þ satisfying
(60). This means that (53) admits a classical solution v: Also, by Eq. (53), one
sees that

kvtkao1. (71)

Next, we would like to establish some further regularity of solution v to (53). To
this end, for notational simplicity, we define

G9
~s2

2ð1
 ~lebhxiF Þ
2
: ð72Þ

Then (53) can be written as (recall (51) for definitions of A and B)

vt þ Gvxx þ ½ð2B 
 1ÞGþ ~r 
 ~d�vx þ ½ðA 
 BÞGþ Bð~r 
 ~dÞ 
 ~r�v ¼ 0,

vðT ;xÞ ¼ e
bhxi ~hðxÞ. ð73Þ

Differentiating the above in x once, we have

ðvxÞt þ GðvxÞxx þ fGx þ ð2B 
 1ÞGþ ~r 
 ~dÞgðvxÞx

þ fð2B 
 1ÞGx þ ð2Bx þ A 
 BÞGþ ~rx 

~dx þ Bð~r 
 ~dÞ 
 ~rgvx

þ fðA 
 BÞGx þ ðAx 
 BxÞGþ ½Bð~r 
 ~dÞ 
 ~r�xgv ¼ 0,

vxðT ;xÞ ¼ ½e
bhxi ~hðxÞ�x. ð74Þ

We note that

Gx ¼
~s ~sx

ð1
 ~lebhxiF Þ
2
þ

~s2½ð~lebhxiÞxF þ ~lebhxiFx�

ð1
 ~lebhxiF Þ
3

, (75)

Fx ¼ vxxx þ ð2B 
 1Þvxx þ ð2Bx þ A 
 BÞvx þ ðAx 
 BxÞv. (76)

Thus, only the following in (74) contains the term vxxx:

Gvxxx þ Gx½vxx þ ð2B 
 1Þvx þ ðA 
 BÞv� ¼ Gvxxx þ GxF

¼
~s2

2ð1
 ~lebhxiF Þ
2
þ

~s2 ~lebhxiF

ð1
 ~lebhxiF Þ
3

( )
vxxx þ Rðv; vx; vxxÞ

¼
~s2½1þ ~lebhxiF �

2ð1
 ~lebhxiF Þ
3

vxxx þ Rðv; vx; vxxÞ. ð77Þ

Then similar to the above proof, with a more careful analysis, we obtain that when e0
is small enough, (74) admits a unique classical solution that is nothing but vx in the
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space C1þa=2;2það½0;T � � RÞ; such that

ðkvxtka þ kvxk2þaÞo1. (78)

Further, by differentiating (74) once more, we obtain

ðvxxÞt þ GðvxxÞxx þ f2Gx þ ð2B 
 1ÞGþ ~r 
 ~dgðvxxÞx

þ fGxx þ 2½ð2B 
 1ÞGþ ~r 
 ~d�x þ ðA 
 BÞGþ Bð~r 
 ~dÞ 
 ~rgvxx

þ f½ð2B 
 1ÞGþ ~r 
 ~d�xx þ 2½ðA 
 BÞGþ Bð~r 
 ~dÞ 
 ~r�xgvx

þ ½ðA 
 BÞGþ Bð~r 
 ~dÞ 
 ~r�xxv ¼ 0,

vxxðT ;xÞ ¼ ½e
bhxi ~hðxÞ�xx. ð79Þ

By a similar argument as above (with much longer computation and much careful
analysis), we are able to prove that the above has a classical solution, provided e0 in
the statement of Theorem 2 is small enough, and the solution coincides with
vxx: Therefore, we have

kvxxtka þ kvxxk2þao1. (80)

The above, in turn, implies that (41) admits a classical solution ~f ð�; �Þ such that the
following estimate holds (with some simple computation):

ke
bh�ifj ~f j þ j ~f xj þ j ~f tj þ j ~f xxj þ j ~f xtj þ j ~f xxxj þ j ~f xxtj þ j ~f xxxxjgkapC. (81)

Moreover, by (15), we have

kð~lþ j~lxjÞfj
~f xxj þ j ~f xtj þ j ~f xxxj þ j ~f xxtj þ j ~f xxxxjgkapC. (82)

Now, if we define m̂ðt;SÞ and ŝðt; tÞ by (18), then with S ¼ ex; we have

m̂ðt;SÞ ¼
~mðt;xÞ þ ~lðt;xÞ ~f xtðt;xÞ

1
 ~lðt;xÞ½ ~f xxðt; xÞ 
 ~f xðt;xÞ�

þ
~lðt; xÞ ~sðt;xÞ2½ ~f xxxðt; xÞ 
 3 ~f xxðt;xÞ þ 2 ~f xðt;xÞ�

f1
 ~lðt; xÞ½ ~f xxðt;xÞ 

~f xðt;xÞ�g

3
,

ŝðt;SÞ ¼
~sðt;xÞ

1
 ~lðt;xÞ½ ~f xxðt; xÞ 

~f xðt;xÞ�

. ð83Þ

Hence, noting

½Sm̂ðt;SÞ�S ¼ m̂ðt;SÞ þ Sm̂Sðt;SÞ ¼ m̂ðt; exÞ þ ½m̂ðt; exÞ�x,

½Sŝðt;SÞ�S ¼ ŝðt;SÞ þ SŝSðt;SÞ ¼ ŝðt; exÞ þ ½ŝðt; exÞ�x, ð84Þ

and (82), together with the conditions for ~mð�Þ and ~sð�Þ; we see that the maps
S 7!Sm̂ðt;SÞ and S 7!Sŝðt;SÞ are Lipschitz continuous. This completes the proof of
Theorem 1. &
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We now present a proof of a more general version of Theorem 2.

Proof of Theorem 2. According to the proof of Theorem 1, we see under the
regularity condition that if
1.
 (A1) and (15) hold,

2.
 hð�Þ and h̄ð�Þ satisfy (A2),
we have unique solutions v and v̄ of (53) corresponding to hð�Þ and h̄ð�Þ; respectively.
Moreover, if we let

F ¼ vxx þ ð2B 
 1Þvx þ ðA 
 BÞv,

F̄ ¼ vxx þ ð2B 
 1Þv̄x þ ðA 
 BÞv̄, ð85Þ

then

k~lebh�iFka; k~lebh�iF̄kao1. (86)

Now, x9v 
 v̄ satisfies the following equation:

xt þ
~s2

2ð1
 ~lebhxiF Þ
2
xxx þ

ð2B 
 1Þ ~s2

2ð1
 ~lebhxiF Þ
2
þ ~r 
 ~d


 �
xx

þ
ðA 
 BÞ ~s2

2ð1
 ~lebhxiF Þ
2
þ Bð~r 
 ~dÞ 
 ~r


 �
xþ

~s2

2ð1
 ~lebhxiF Þ
2



~s2

2ð1
 ~lebhxiF̄ Þ
2


 �
� ½v̄xx þ ð2B 
 1Þv̄x þ ðA 
 BÞv̄�X0,

xðT ;xÞ ¼ ½ ~hðxÞ 
 ~̄hðxÞ�e
bhxip0. ð87Þ

Note that

ð1
 ~lebhxiF̄ Þ
2

 ð1
 ~lebhxiF Þ

2

¼ ½2
 ~lebhxiðF þ F̄ Þ�~lebhxiðF 
 F̄ Þ

¼ ½2
 ~lebhxiðF þ F̄ Þ�~lebhxi½xxx þ ð2B 
 1Þxx þ ðA 
 BÞx�. ð88Þ

Hence, we can write (87) as follows:

xt þ
~s2fð1
 ~lebhxiF̄ Þ

2
þ ~lebhxi½2
 ~lebhxiðF þ F̄ Þ�g

2ð1
 ~lebhxiF Þ
2
ð1
 ~lebhxiF̄ Þ

2
xxx

þ
ð2B 
 1Þ ~s2

2ð1
 ~lebhxiF Þ
2
þ ~r 
 ~dþ

~s2B~lebhxi½2
 ~lebhxiðF 
 F̄ Þ�

ð1
 ~lebhxiF Þ
2
ð1
 ~lebhxiF̄ Þ

2
F̄

( )
xx

þ
ðA 
 BÞ ~s2

2ð1
 ~lebhxiF Þ
2
þ Bð~r 
 ~dÞ 
 ~r þ

~s2A~lebhxi½2
 ~lebhxiðF þ F̄ Þ�

2ð1
 ~lebhxiF Þ
2
ð1
 ~lebhxiF̄ Þ

2
F̄

( )
xX0,

xðT ;xÞ ¼ ½ ~hðxÞ 
 ~̄hðxÞ�e
bhxip0. ð89Þ
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Clearly, the coefficient of xxx is positive. Thus, by the maximum principle for
parabolic partial differential equations, we obtain

f ðt;SÞpf̄ ðt; sÞ; ðt;SÞ 2 ½0;T � � ð0;1Þ. (90)

If a strict equality holds in (36), it also holds in (90). The above is the case if, in
particular, f and f̄ are solutions to (14) corresponding to h and h̄:
Let Sð0_Þ be the stock price before the initial trade to replicate or superreplicate.

Now motivated by (33) we define

C̄ðzÞ ¼ f̄ ð0; zÞ 
 z

Z z

Sð0_Þ

dS

lð0;SÞS
þ

Z z

Sð0_Þ

dS

lð0;SÞ

and let S̄ð0Þ be the stock price after buying (shorting) the initial number of shares as
required by the superreplicating strategy; that is, S̄ð0Þ solvesZ S̄ð0Þ

Sð0_Þ

dS

lð0;SÞS
¼ f̄ Sð0; S̄ð0ÞÞ.

Then C̄ðS̄ð0ÞÞ is the time 0 cost function for the superreplicating strategy f̄ ðt;SÞ: It is
easy to verify that C̄

0
ðS̄ð0ÞÞ ¼ 0 and Cð�Þ is strictly concave by (39), which we have

already proven before. Therefore

C̄ðS̄ð0ÞÞ ¼ max
z

C̄ðzÞ. (91)

Next for the replicating strategy define

CðzÞ ¼ f ð0; zÞ 
 z

Z z

Sð0_Þ

dS

lð0;SÞS
þ

Z z

Sð0_Þ

dS

lð0;SÞ

and let Sð0Þ be the stock price after buying (shorting) the initial number of shares as
required by the replicating strategy; that is, Sð0Þ solves (31). Then CðSð0ÞÞ is the time
0 cost function for the replicating strategy f ðt;SÞ: By a similar argument to the one
for the superreplicating strategy, we have that

CðSð0ÞÞ ¼ max
z

CðzÞ,

which in particular implies that CðSð0ÞÞ4CðSð0_ÞÞ; that is, if one ignores the extra
cost that resulted from the initial trade necessary for replication, then one would
understate the replicating cost of an option.
Finally, by (90) and (91), we have that

CðSð0ÞÞpC̄ðSð0ÞÞoC̄ðS̄ð0ÞÞ,

i.e., the cost of the superreplicating strategy f̄ ðt;SÞ is greater than the cost of the
replicating strategy f ðt;SÞ: &
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