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Optimal Consumption and Investment with
Transaction Costs and Multiple Risky Assets

HONG LIU∗

ABSTRACT

We consider the optimal intertemporal consumption and investment policy of a
constant absolute risk aversion (CARA) investor who faces fixed and proportional
transaction costs when trading multiple risky assets. We show that when asset re-
turns are uncorrelated, the optimal investment policy is to keep the dollar amount
invested in each risky asset between two constant levels and upon reaching either of
these thresholds, to trade to the corresponding optimal targets. An extensive analy-
sis suggests that transaction cost is an important factor in affecting trading volume
and that it can significantly diminish the importance of stock return predictability as
reported in the literature.

THIS PAPER STUDIES THE OPTIMAL INTERTEMPORAL CONSUMPTION and investment policy
of an investor with a constant absolute risk aversion (CARA) preference and an
infinite horizon. The investor can trade in one risk-free asset and n ≥ 1 risky
assets. In contrast to the standard setting, the investor faces both fixed and pro-
portional transaction costs in trading any of these risky assets. In the absence
of transaction costs and when risky asset prices follow geometric Brownian mo-
tions, the optimal investment policy is to keep a constant dollar amount in each
risky asset, as shown by Merton (1971). This trading strategy requires contin-
uous trading in all the risky assets. In addition, the optimal consumption is
affine in the total wealth. In the presence of transaction costs, however, trading
continuously in a risky asset would incur infinite transaction costs. Therefore,
risky assets are traded only infrequently in this case.

The literature on optimal consumption and investment with multiple risky
assets subject to transaction costs is limited. Leland (2000) examines a mul-
tiasset investment fund that is subject to transaction costs and capital gains
taxes. Under the assumption that the fund has an exogenous target for each
risky asset, he develops a relatively simple numerical procedure to compute the
no-transaction region. Akian, Menaldi, and Sulem (1996) consider an optimal
consumption and investment problem with proportional transaction costs for
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a constant relative risk aversion (CRRA) investor when asset returns are un-
correlated. They also use numerical simulations to compute the no-transaction
region. Lynch and Tan (2002) numerically solve a similar problem when stock
returns are predictable in a discrete time setting. Deelstra, Pham, and Touzi
(2001) use the dual approach to obtain the sufficient conditions for the existence
of a solution to the optimal investment problem for an investor who maxi-
mizes expected utility from her terminal wealth. Eastham and Hastings (1988)
address the optimal consumption and portfolio choice problem with transac-
tion costs and multiple stocks; however, they assume consumption can only
be changed at the same time that stock holdings are changed. Bielecki and
Pliska (2000) analyze a similar problem with a general transaction cost struc-
ture and risk-sensitive criteria but exclude intertemporal consumption. None
of these models obtain any analytically explicit shape for the no-transaction
region.

Our first contribution in this paper is to derive the optimal transaction policy
in an explicit form when the risky asset returns are uncorrelated, up to some
constants that can be solved numerically. In particular, it is shown that the op-
timal investment policy in each risky asset is for the investor to keep the dollar
amount invested in the asset between two constant levels. Once the amount
reaches one of these two thresholds, the investor trades to the corresponding
optimal targets. To the best of our knowledge, this is the first paper to present
such an explicit form of trading strategy in the case of multiple risky assets
subject to fixed transaction costs.1 The optimal trading strategy implies that
the no-transaction and target boundaries have corners and only on reaching a
corner does the investor trade in more than one risky asset. Since the corner
is of measure zero relative to the no-transaction boundary, with probability 1,
the investor only trades in at most one risky asset at any point in time.

When there are only proportional transaction costs for a risky asset, we show
that the optimal trading policy involves possibly an initial discrete change
(jump) in the dollar amount invested in the asset, followed by trades in the
minimal amount necessary to maintain the dollar amount within a constant
interval.

The presence of fixed transaction costs implies that any optimal transaction
involves a lump-sum trade. In the absence of proportional transaction costs,
the optimal trading policy for each risky asset is to trade to the same target
dollar amount as soon as the amount in a risky asset goes beyond a constant
range. If there are also proportional transaction costs, the optimal investment
policy then involves buying to a target amount as soon as the amount in the
risky asset falls below a lower bound and selling to a different target amount
as soon as the amount in the risky asset rises above an upper bound. Thus, the
target amounts depend on the direction of a trade. These results generalize the
no-transaction-cost case (the Merton case) where the optimal policy for a CARA
investor is to maintain a constant dollar amount in a risky asset.

1 In contrast to Leland (2000), the form and the magnitude of the targets in this paper are
endogenously derived.
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In the presence of transaction costs, the dependence of the optimal consump-
tion on total wealth is also different from the standard results derived by Merton
(1971). In particular, the optimal consumption is no longer affine in total wealth.
Instead, it is affine only in the dollar amount invested in the risk-free asset but
nonlinear in the dollar amounts in risky assets.

Our second contribution is that we conduct an extensive analysis of the op-
timal policy in the literature. We provide a simple way to compute the no-
transaction and target boundaries. We analyze the impact of risk aversion, risk
premium, and volatility on the no-transaction region, the target amounts and
the trading frequency. We also derive in closed-form the steady-state distri-
bution of the amount invested in a risky asset and examine the steady-state
average amount invested in the asset. With no explicit form of trading strat-
egy derived, the existing literature provides only a very limited analysis of the
trading strategy, rarely going beyond the computation of the no-transaction re-
gion and the target amounts. The explicit form of the boundaries (up to some
numerically computed constants) allows us to conduct this extensive analysis,
which enhances our understanding of the relationship between fundamental
parameters and optimal investment policy in the presence of transaction costs,
and also yields some interesting results.

First, we find that small transaction costs can induce large deviations from
the no-transaction-cost case. For example, with $5 fixed cost and 1 percent pro-
portional cost (which includes the bid–ask spread), the investor would purchase
additional units of a risky asset to reach the buy target of $104,300 only when
the actual amount fell below $93,500. On the other hand, only when the actual
amount rose above $152,600, would the investor sell the risky asset to reach
the sell target of $138,300. In contrast, in the absence of transaction costs, the
investor would trade continuously to keep a constant amount of $121,900 in
the risky asset. This large deviation implies a very low frequency of trading.
For example, with $5 fixed cost and 1 percent proportional cost, the average
time between sales would be about 1.2 years and the average time between
purchases would be about 2.5 years. We show that trading more frequently
than the optimal strategy would result in significant utility loss. This suggests
that the gain from incorporating stock return predictability (see, e.g., Kandel
and Stambaugh (1996)) would be significantly decreased if transaction costs
were considered. Also, since transaction costs have dramatic effects on both
trading frequency and trading size, to explain the observed trading volume,
it seems that one must also consider transaction costs along with other stan-
dard factors considered in the literature such as information asymmetries and
heterogeneous beliefs (e.g., Admati and Pfleiderer (1988) and Wang (1994)).2

Second, we show that conditional on positive investment in a risky asset, the
steady-state average amount invested in the asset increases as the transac-
tion cost increases. This result suggests that the presence of transaction costs
makes the investor less risk averse overall. Intuitively, to compensate for the

2 I thank the referee for pointing out the relevance of transaction costs to the predictability and
trading volume literature.
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transaction costs, the investor overshoots by investing more than otherwise
optimal in the risky asset. This finding, in particular, implies that after an
increase in transaction costs, to induce an investor to hold the same average
amount as before, one needs to lower the expected return of the risky asset
ceteris paribus.

In addition, we find that as the return volatility of a risky asset rises, the no-
transaction region narrows, the expected time to the next purchase after a trade
decreases, but the expected time to the next sale after a trade increases. This
finding seems counterintuitive because as the volatility increases the investor
could be expected to widen the no-transaction region to decrease the trading
frequency in order to save on transaction costs. However, saving transaction
costs is not the investor’s only concern. As volatility increases, so does risk, and
hence, on average, the investor holds less in the risky asset. Over time then,
the investor needs to sell the risky asset less frequently to increase current
consumption, and actually buys more often to finance future consumption.

A large body of literature addresses the optimal transaction policy for an
agent facing a proportional transaction cost in trading a single risky asset (see,
e.g., Constantinides (1986), Davis and Norman (1990), Dumas and Luciano
(1991), Shreve and Soner (1994), Cuoco and Liu (2000), and Liu and
Loewenstein (2002)). In contrast, this paper considers multiple risky assets
with both proportional costs and fixed costs. Closely related models of opti-
mal consumption and investment with fixed costs and one risky asset have
been previously analyzed by Schroder (1995), Øksendal and Sulem (1999), and
Korn (1998). These papers do not provide explicit forms for the no-transaction
or target boundaries and they use numerical procedures to directly solve the
Hamilton–Jacobi–Bellman partial differential equations (HJB PDE) with free
boundaries. Lo, Mamaysky, and Wang (2001) study the effect of fixed transac-
tion costs on asset prices and find that even small fixed costs can give rise to a
significant illiquidity discount on asset prices. This finding is in sharp contrast
to the proportional transaction cost case considered by Constantinides (1986)
and shows the importance of fixed transaction costs in a financial market.

Also related are papers that assume quasi-fixed transaction costs (see, e.g.,
Duffie and Sun (1990), Morton and Pliska (1995), and Grossman and Laroque
(1990)). While the assumption of quasi-fixed costs simplifies analysis (e.g., with
power utility function, the homogeneity of the value function is preserved and
hence the HJB PDE can be simplified into an ordinary differential equation
(ODE)), the solution is at best an approximation for investors who face fixed
costs such as those charged by brokers.

In a different context, Constantinides (1976) and Constantinides and Richard
(1978) study the optimal cash management policy in the presence of fixed and
proportional transaction costs. Cadenillas and Zapatero (1999) examine the op-
timal intervention of a central bank in the foreign exchange market where the
bank directly controls the exchange rate but incurs fixed and proportional in-
tervention costs. Korn (1997) investigates a one-dimensional optimal impulse
control for a cost minimization problem when there are both fixed and propor-
tional control costs.
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The three main aspects of the model we present here make it more tractable
and thus better able to yield an extensive analysis than other models in the
literature. First, CARA preferences and the absence of borrowing constraints3

imply the separability of optimal policies for the risk-free asset, risky assets,
and consumption. Second, the assumption of uncorrelated risky asset returns
enables us to further break down the analysis of multiple risky assets into an
analysis of individual assets. Third, the standard assumption of no transaction
cost in liquidating the risk-free asset to buy the consumption good is also impor-
tant. Without this feature, consumption would only occur at optimal stopping
times, which would in turn require a more complicated analysis.

The case of uncorrelated asset returns is of practical interest. Uncorrelated
assets are commonly recommended to achieve efficient diversification, and
there exist asset classes with nearly zero correlations. Indeed, some investors
(e.g., funds of funds) view themselves as facing a menu of uncorrelated assets.
In addition, other investors may also find it beneficial to limit their trading to
uncorrelated portfolios.

The remainder of the paper is organized as follows. Section I describes the
model. Section II solves the investor’s optimal consumption and investment
problem in the absence of transaction costs, providing a benchmark for the
subsequent analysis. Section III contains a heuristic derivation of the optimal
policies in the presence of only proportional transaction costs. It also provides
sufficient conditions under which the conjectured policies are indeed optimal.
Section IV derives the optimal policy in the presence of only fixed transaction
costs. Section V obtains the optimal policy in the presence of both fixed and
proportional transaction costs. Section VI addresses the correlated asset case.
Section VII contains an extensive analysis of the optimal policy. Section VIII
concludes the paper and discusses some possible extensions. In Appendix A,
we provide the proofs for the main results and in Appendix B, we provide the
solution algorithms.

I. The Model

A. The Asset Market

Throughout this paper we assume a probability space (�, F , P ) and a filtra-
tion {Ft}. Uncertainty in the model is generated by a standard n-dimensional
Brownian motion w (a n × 1 column vector).

There are n + 1 assets our investor can trade. The first asset (“the bond”)
is a money market account growing at a constant, continuously compounded
rate of r > 0. The other n assets are risky (hereafter we will use “stocks” and
“risky assets” interchangeably). The investor can buy stock i at the ask price of
Si(t) and sell it at the bid price of (1 − αi)Si(t), where 0 ≤ αi < 1 represents the
proportional transaction cost rate.4 In addition, the investor has to pay a fixed

3 We do impose portfolio constraints to rule out any arbitrage opportunities.
4 It should also be noted that it is without loss of generality to represent the proportional trans-

action cost this way instead of having proportional costs for both sales and purchases because one
can always normalize the latter representation to obtain the former.
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brokerage fee Fi ≥ 0 for each transaction in either direction when trading stock
i.5 Let α = (α1, α2, . . . , αn) and F = (F1, F2, . . . , Fn). For simplicity, we assume no
dividend is paid by any stock. For i = 1, 2, . . . , n, the ask price Si(t) is assumed
to follow a geometric Brownian motion

dSit

Sit
= µi dt + σi dwit , (1)

where wi is the ith element of the n-dimensional standard Brownian motion w,
µi > r, and σi > 0.6

B. The Investor’s Problem

There is a single perishable consumption good (the numeraire). Following
Merton (1971), we assume that the investor derives her utility from intertem-
poral consumption c of this good. We use C to denote the investor’s admissible
consumption space, which consists of progressively measurable consumption
processes ct such that

∫ t
0 |cs| ds < ∞ for any t ∈ [0, ∞). In addition, similar to

Merton (1971), Vayanos (1998), and Lo et al. (2001), we assume that the in-
vestor has a CARA preference with time discounting, that is, u(c, t) = e−δt(−e−βc)
for some absolute risk aversion coefficient β > 0 and time discount parameter
δ > 0. We further assume that consumption withdrawals, stock trades, and
transaction cost payments are all made through the money market account.

Let x be the amount invested in the money market account, yi be the amount
in the ith stock, and y = (y1, y2, . . . , yn). We then have the following dynamics
for xt and yt:

dxt = rxt dt − ct dt −
n∑

i=1

(
dIit − (1 − αi) dDit + Fi1{dIit+dDit>0}

)
, (2)

d yit = µi yit dt + σi yit dwit + dIit − dDit , i = 1, 2, . . . , n, (3)

where the processes Di and Ii represent the cumulative dollar amount of sales
and purchases of the ith stock, respectively. These processes are nondecreasing,
right-continuous, and adapted, with D(0) = I(0) = 0, where D = (D1, D2, . . . ,
Dn) and I = (I1, I2, . . . , In). In addition, let

Wt = xt +
n∑

i=1

[
(1 − αi) y+

it − y−
it − Fi1{ yit �=0}

]
(4)

denote the liquidated wealth at time t.

5 It is straightforward to extend this analysis to the case where the fixed cost for a purchase is
different from the one for a sale.

6 When µi < r, the investor shorts the stock. This analysis is symmetric to the case analyzed in
this paper. The fact that only one element of the Brownian motion appears in each stock return
equation implies that the stock returns are assumed to be uncorrelated. Some discussion of the
correlated return case will be provided later.
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To rule out any arbitrage opportunity such as doubling strategies or “Ponzi
schemes,” similar to Lo et al. (2001), we restrict the set of trading policies to be
such that7

lim
t→∞ E

[
e−δt−rβWt

] = 0 and E
∫ T

0

∣∣ yte−δt−rβWt
∣∣2 dt < ∞, ∀ T ∈ [0, ∞). (5)

This set of trading policies is also the set within which the Merton solution (see
next section) in the no-transaction-cost case is optimal.

We use �(x, y) to denote the set of admissible trading strategies (I, D, c) such
that the implied xt and yt from equations (2) and (3) satisfy condition (5) starting
from x0 = x and y0 = y. The investor’s problem is then to choose admissible
trading strategies I, D, and c to maximize E[

∫ ∞
0 u(ct , t) dt]. We define the value

function at time t to be

v(x, y) = sup
(I ,D,c)∈�(x, y)

E
[∫ ∞

t
e−δ(s−t)(−e−βcs

)
ds

∣∣Ft , xt = x, yt = y
]

. (6)

II. Optimal Policies with No Transaction Costs

For the purpose of comparison we present in this section the main results for
the no-transaction-cost case (i.e., α = 0 and F = 0) without proof (see Merton
(1971)). In the absence of transaction costs, the cumulative purchase and sale
processes of the stocks can be of infinite variation and in this case the liqui-
dated wealth Wt = xt + yt 1̄, where 1̄ is an n-element column vector of 1’s. The
investor’s problem can then be rewritten as

v(w) = sup
( y ,c)

E
[∫ ∞

0
e−δt(−e−βct

)
dt

∣∣ W0 = w
]

subject to

dWt = rWt dt +
n∑

i=1

((µi − r) yit dt + σi yit dwit) − ct dt.

THEOREM 1: Suppose α = F = 0. Let

y M
i = µi − r

rβσ 2
i

, i = 1, 2, . . . , n. (7)

7 Mathematically speaking, the second part of condition (5) is to ensure that
∫ T

0 yt e−δt−rβWt dwt
is a martingale, which is necessary for the Merton solution to be optimal in the no-transaction-
cost case. As shown by Cox and Huang (1989), the optimal policies with nonnegative wealth and
consumption constraints converge to the policies without these constraints as the initial wealth of
the investor increases. We thus do not impose these constraints to simplify the analysis but focus
accordingly on investors with large initial wealth such as mutual funds and hedge funds.



296 The Journal of Finance

The optimal consumption and investment policies are

c∗
t = rW ∗

t + γ , y∗
it = y M

i , i = 1, 2, . . . , n,

for all t > 0, respectively, where W∗
t is the optimal wealth process derived from

following the above policies and

γ = δ − r
rβ

+
n∑

i=1

(µi − r)2

2rβσ 2
i

.

Moreover, the value function is

v(w) = −1
r

e−rβw−βγ .

Thus, without transaction costs, the optimal policy involves investing a constant
dollar amount in each stock, and the optimal consumption is an affine function
of total wealth. This investment policy requires continuous trading in every
stock. We will show later that none of these results hold in the presence of
transaction costs.

III. The Proportional Transaction Cost Case

We begin by addressing the case with only proportional transaction costs (i.e.,
α > 0 and F = 0). In contrast to the no-transaction-cost case, stock trading will
now become infrequent. We provide a heuristic derivation of the optimal policy
in this section. In the single-stock case, Davis and Norman (1990), Shreve and
Soner (1994), and Liu and Loewenstein (2002) show that in the presence of
proportional costs there exist a no-transaction region and a transaction region.
Similarly, in the multiple stock case, we conjecture that there exists a transac-
tion region wherein the investor trades at least one stock and a no-transaction
region (NT) where she does not trade any stock. Inside NT, the value function
must satisfy the HJB equation,

max
c

(
n∑

i=1

(
1
2

σ 2
i y2

i vyi yi + µi yivyi

)
+ rxvx − cvx − δv − e−βc

)
= 0. (8)

The optimal consumption is thus

c∗ = − 1
β

log
(

vx

β

)
,

which implies that (8) becomes

n∑
i=1

(
1
2

σ 2
i y2

i vyi yi + µi yivyi

)
+ rxvx + vx

β
log

(
vx

β

)
− δv − vx

β
= 0. (9)
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We conjecture that

v(x, y1, y2, . . . , yn) = −1
r

e−rβx−∑n
i=1 ϕi (rβ yi ), (10)

for some functions ϕi : IR → IR.
For expositional convenience, we let zi = rβyi be the scaled amount in the

ith stock and ψ i be the restriction of ϕi in the no-transaction region. Then
equation (9) becomes

n∑
i=1

(
1
2

σ 2
i z2

i ψ
′′
i − 1

2
σ 2

i z2
i ψ

′
i
2 + µiziψ

′
i − rψi

)
+ (δ − r) = 0. (11)

For equation (11) to hold, it is clear that the following n ODEs must be sat-
isfied:

1
2

σ 2
i z2

i ψ
′′
i − 1

2
σ 2

i z2
i ψ

′
i
2 + µiziψ

′
i − rψi + δ − r

n
− λi = 0, (12)

for some constants λi such that
∑n

i=1 λi = 0 and i = 1, 2, . . . , n.
We note that the above ODE system is not only independent of the amount

x in the money market account but also completely separable in zi’s. This ob-
servation suggests that if the boundary conditions are also separable in zi’s,
then the optimal stock transaction policy in stock i would depend only on the
amount in the stock, but not on the amount in the money market account or
the amounts in other stocks. We will show later that this is indeed the case.
We thus further conjecture that there exist two critical numbers, y

¯ i
and ȳi

with y
¯ i

< ȳi, which characterize the optimal trading strategy for this stock. To
be specific, we conjecture that the optimal policy is to buy enough to reach the
buy boundary y

¯ i
if yit ≤ y

¯ i
and sell enough to reach the sell boundary ȳi if yit ≥

ȳi. According to the proposed transaction policy, in a stock’s transaction re-
gion the marginal (indirect) utility from the bond holding must be always equal
to the marginal utility from the stock holding, net of transaction costs. There-
fore, the differential equation in a transaction region where stock i is purchased
can be written as

vyi (x, y1, y2, . . . , yi, . . . , yn) = vx(x, y1, y2, . . . , yi, . . . , yn) (13)

and similarly, in a transaction region where stock i is sold the differential equa-
tion must be

vyi (x, y1, y2, . . . , yi, . . . , yn) = (1 − αi)vx(x, y1, y2, . . . , yi, . . . , yn). (14)

In addition, the optimality of y
¯ i

and ȳi implies that v is C2 in all its arguments
and in all regions (cf. Dumas (1991)).
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Using equations (10), (13), and (14) and letting z
¯ i = rβy

¯ i
and z̄i = rβ ȳi, we

then obtain the following forms for ϕi in the transaction regions:
(i) if zi < z

¯ i,

ϕi(zi) = Ci1 + zi

and
(ii) if zi > z̄i,

ϕi(zi) = Ci2 + (1 − αi)zi,

where Ci1 and Ci2 are two constants to be determined. The proposed transaction
policy and the C2 property of the value function then imply the following six
boundary conditions in terms of ψ i:

ψi(z¯ i) = Ci1 + z
¯ i, (15)

ψ ′
i (z¯ i) = 1, (16)

ψ ′′
i (z

¯ i) = 0, (17)

ψi(z̄i) = Ci2 + (1 − αi)z̄i, (18)

ψ ′
i (z̄i) = 1 − αi, (19)

and

ψ ′′
i (z̄i) = 0. (20)

Therefore, the boundary conditions (15)–(20) are indeed all independent of the
holdings in the bond and separable in zi’s. Thus, the above conjectures about
the form of the no-transaction region and the related optimal transaction policy
are justified.

Next, consider a variation of the ODE (12) for stock i:

1
2

σ 2
i z2

i ψ
′′
i − 1

2
σ 2

i z2
i ψ

′
i
2 + µiziψ

′
i − rψi + δ − r

n
− λi − ηi = 0, (21)

where ηi is a constant. Suppose ψ i, z
¯ i, and z̄i are the solution to (12) subject to the

boundary conditions (15)–(20), then fi(zi) = ψi(zi) − ηi/r and the same bound-
aries z

¯ i and z̄i are the solution to equation (21) subject to the corresponding six
boundary conditions derived from replacing ψ i with fi in conditions (15)–(20).
This result holds because z

¯ i and z̄i are independent of any constant term in
ψ i. This observation also applies to the cases considered in subsequent sections
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and implies in particular that the boundaries are independent of δ in all the
cases considered in this paper. This shows that the undetermined λi in equation
(12) does not affect the optimal boundaries z

¯ i or z̄i. In addition, because of the
condition

∑n
i=1 λi = 0 and the property of the solution, v is also independent of

λi. Therefore, without loss of generality, we can set λi = 0 for all i = 1, 2, . . . , n.
Consequently, we have

1
2

σ 2
i z2

i ψ
′′
i − 1

2
σ 2

i z2
i ψ

′
i
2 + µiziψ

′
i − rψi + δ − r

n
= 0, (22)

for i = 1, 2, . . . , n.
The above discussion suggests that when there are multiple risky assets sub-

ject to proportional costs and their returns are uncorrelated, we can compute
the optimal boundaries separately for each stock. This greatly reduces the di-
mensionality of the computation problem, making it feasible to compute the
optimal trading strategy for a large number of risky assets.

Define

ϕi(zi) =




Ci2 + (1 − αi)zi if zi ≥ z̄i

ψi(zi) if z
¯ i < zi < z̄i

Ci1 + zi if zi ≤ z
¯ i.

(23)

We next provide a verification theorem which shows the validity of the above-
conjectured optimal policies and the form of the value function.

THEOREM 2: Assume α > 0 and F = 0, and ∀i ∈ {1, 2, . . . , n}, let ϕi be as defined
in (23). Consider any stock i. Suppose there exist constants Ci1, Ci2, z

¯ i, and z̄i
such that ψi is a solution of ODE (22) subject to conditions (15)–(20) and in
addition,

1 − αi < ψ ′
i (zi) < 1, ∀ zi ∈ (z

¯ i, z̄i). (24)

Then ψi is the unique solution to ODE (22) subject to conditions (15)–(20) and
(24), from which the corresponding optimal consumption policy is

c∗
t = rx∗

t + 1
β

n∑
i=1

ϕi
(
rβ y∗

it

)
,

and the corresponding optimal risky asset trading policy is to transact the min-
imal amount necessary to maintain y∗

it between y
¯ i

and ȳi, where x∗
t and y∗

it are
the bond holding and risky asset holding processes derived from following the
above policies. Moreover, the value function is

v(x, y) = −1
r

e−rβx−∑n
i=1 ϕi (rβ yi ).



300 The Journal of Finance

Proof: The proof of this theorem is only a slight variation of the proof of
Theorem 4 (see below) and is thus omitted.8 Q.E.D.

If equation (22) has a closed form solution, then we would have a solution
for ψ i with two integration constants Ai and Bi. Using the above six bound-
ary conditions, we would then solve for the six unknowns, Ci1, Ci2, z

¯ i, z̄i, Ai,
and Bi. Unfortunately, equation (22) belongs to a special class of Abel dif-
ferential equations whose closed form solution, if any, has not yet been ob-
tained (see, e.g., Cheb-Terrab and Roche (1999)) except for the special case
where µi = 1

2σ 2
i . However, the above free-boundary problem can be numeri-

cally solved quite easily using a simple algorithm (Algorithm 1) as explained in
Appendix B.9

To facilitate understanding of the optimal policy, we provide numerical illus-
trations below. Since the optimal stock trading strategy is separable in indi-
vidual stocks, most of the following numerical analysis will focus on the single
stock case and for clarity, we will suppress all subscripts when there is only
one stock considered in a figure. For all numerical illustrations, we use the fol-
lowing default values for the parameters unless otherwise stated. According to
Ibbotson and Sinquefeld (1982), we set the excess return µ − r and the volatility
σ at 5.9 percent and 22 percent, respectively; in addition, following Grossman
and Laroque (1990), we set the real risk-free rate r at 1 percent and the time
discount rate δ at 0.01; finally, Lo et al. (2001) examine cases in which β lies
between 0.001 and 5.000, and we set it to the low end, 0.001, to emphasize the
effect of transaction costs. Of course, this is by no means an attempt to calibrate
our model for empirical analysis.

Figure 1 displays the optimal no-transaction boundaries z
¯

and z̄ as functions
of the proportional transaction cost rate. Without transaction costs (α = 0), the
investor would always keep $121,900 in the stock, as represented by the thin
middle line. Note that this is the actual amount that is equal to the scaled
amount in the figure divided by rβ. In the presence of transaction costs, it is
no longer optimal to always maintain a fixed amount in the stock. Instead, the
investor allows the amount in the stock to fluctuate within a certain range.
When α = 0.01, for example, the investor will not adjust the amount she in-
vests in the stock until it reaches the bounds of $99,400 or $144,700. Thus, the
presence of transaction costs has a significant impact on the optimal trading
strategy. It should also be noted that as the transaction cost rate increases, the
buy boundary decreases and the sell boundary increases, making the investor
trade less frequently.

8 Interested readers may also see Shreve and Soner (1994) and Theorem VIII.4.1 in Fleming and
Soner (1993) for similar proofs for the CRRA case with one stock. Although we have not been able to
prove that condition (24) in this theorem and similar conditions in Theorems 3–4 are automatically
satisfied by the corresponding ϕi, we strongly suspect that this is indeed the case from checking
these conditions in all the cases we examined.

9 Although we cannot show the existence of a solution of the corresponding conjectured forms
in Theorems 2–4, the numerical algorithms in Appendix B have always successfully found one in
every numerical case considered in this paper.
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Figure 1. Boundaries as functions of the proportional cost. The graph plots the no-
transaction boundaries z

¯
and z̄ against proportional cost α for the following parameters: time dis-

count rate δ = 0.01, risk-free rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22,
fixed cost F = 0, and absolution risk aversion coefficient β = 0.001. The thin middle line is the
Merton line.

IV. The Fixed Transaction Cost Case

When there are fixed transaction costs, the infinitesimal transaction policy
proposed in the previous section is no longer optimal. In this case, all trans-
actions involve lump-sum trades, because cost is independent of the size of a
trade. In this section, we consider the case when the investor pays only fixed
costs but not proportional transaction costs (i.e., F > 0 and α = 0).

In the presence of only fixed costs, we conjecture that the optimal policy for
any stock i is characterized by three (instead of two, as in the previous section)
critical numbers: y

¯ i
, y∗

i , and ȳi. When the amount in the stock reaches the buy
boundary, y

¯ i
, or the sell boundary, ȳi, it is optimal to trade to y∗

i . For the form
of the value function, we conjecture that (10) is still valid.

In the no-transaction region, the HJB ODE system (22) in the previous section
still holds. However, the conditions in the transaction regions (i.e., where yi ≤ y

¯ i
or yi ≥ ȳi) need to be changed.

According to the proposed transaction policy, we have

v(x, y1, y2, . . . , yi, . . . , yn) = v
(
x − Fi − (

y∗
i − yi

)
, y1, y2, . . . , y∗

i , . . . , yn
)

(25)

for any yi ≤ y
¯ i

and

v(x, y1, y2, . . . , yi, . . . , yn) = v
(
x − Fi + (

yi − y∗
i

)
, y1, y2, . . . , y∗

i , . . . , yn
)

(26)

for any yi ≥ ȳi. In addition, the optimality of y∗
i implies that

vyi

(
x, y1, y2, . . . , y∗

i , . . . , yn
) = vx

(
x, y1, y2, . . . , y∗

i , . . . , yn
)
. (27)
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Let ψ i be the restriction of ϕi in the no-transaction region, z
¯ i = rβy

¯ i
, z∗

i = rβy∗
i ,

and z̄i = rβ ȳi. To provide sufficient conditions for optimality, we focus on the
case where the value function is C1. Using equations (10), (25)–(27) and the C1

property, we obtain the following seven boundary conditions:

ψi(z¯ i) = Ci1 + z
¯ i, (28)

ψ ′
i (z¯ i) = 1, (29)

ψ ′
i

(
z∗

i

) = 1, (30)

ψi(z̄i) = Ci2 + z̄i, (31)

ψ ′
i (z̄i) = 1, (32)

ψi
(
z∗

i

) = Ci1 + rβFi + z∗
i , (33)

and

ψi
(
z∗

i

) = Ci2 + rβFi + z∗
i , (34)

where Ci1 and Ci2 are two constants to be determined. Comparing equations
(33) and (34), we have Ci1 = Ci2. This result implies that for any stock i, we
only need to solve six equations (as in the previous section) for six unknowns:
Ci1, z

¯ i, z∗
i , z̄i, and two integration constants.

We note that, in contrast to the case with only proportional costs, in the
presence of fixed costs the above free boundary problem is no longer β free.
In particular, β enters the boundary conditions (33) and (34). However, given
values of r, Fi, and β that are of economically meaningful magnitudes, z

¯ i, z∗
i ,

and z̄i are generally not sensitive to changes in β.
The following theorem records results for the value function and the optimal

trading strategy in this case.

THEOREM 3: Assume F > 0 and α = 0, and ∀ i ∈ {1, 2, . . . , n}, let ϕi be as defined
in (23). Consider any stock i. Suppose there exist constants Ci1, Ci2, z

¯ i, z∗
i , and

z̄i such that ψi is a solution of ODE (22) subject to conditions (28)–(34) and in
addition,

ψ ′
i (zi) > 1, ∀ zi ∈ (

z
¯ i, z∗

i

)
, (35)

and

0 < ψ ′
i (zi) < 1, ∀ zi ∈ (

z∗
i , z̄i

)
. (36)
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Figure 2. Boundaries as functions of the fixed cost. The graph plots the optimal boundaries
z
¯
, z∗, and z̄ against fixed cost F for the following parameters: time discount rate δ = 0.01, risk-free

rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22, proportional cost α = 0, and
absolution risk aversion coefficient β = 0.001.

Then ψi is the unique solution to ODE (22) subject to conditions (28)–(36), from
which the corresponding optimal consumption policy is

c∗
t = rx∗

t + 1
β

n∑
i=1

ϕi
(
rβ y∗

it

)
,

and the corresponding optimal risky asset trading policy is to transact to y∗
i only

when y∗
it ≤ y

¯ i
or y∗

it ≥ ȳi, where x∗
t and y∗

it are the bond holding and risky asset
holding processes derived from following the above policies. Moreover, the value
function is

v(x, y) = −1
r

e−rβx−∑n
i=1 ϕi (rβ yi ).

Proof: This theorem is a special case of Theorem 4 (see below). Q.E.D.

Figure 2 displays the optimal no-transaction boundaries z
¯

and z̄ and the
optimal target z∗ as functions of the fixed cost. In the presence of fixed trans-
action costs, it is no longer optimal for the investor to transact an infinitesimal
amount to keep the amount in the stock within a specified range. When F = $5,
for example, the investor will allow the actual amount in the stock to fluctuate
between $105,200 and $139,800. If the actual amount reaches $105,200, the
investor will buy $16,600 worth of the stock. On the other hand, if the actual
amount reaches $139,800, the investor will sell $18,000 worth of the stock.
Thus, the presence of fixed transaction costs also has a significant impact on
trading. The large size of the no-transaction region derives mainly from the
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Figure 3. Equivalent fixed costs as functions of the proportional cost. The graph plots
the equivalent fixed cost F against proportional cost α for absolute risk aversion coefficients β =
0.01, β = 0.1, β = 1, and other parameters: time discount rate δ = 0.01, risk-free rate r = 0.01,
expected return µ = 0.069, and return volatility σ = 0.22.

low risk aversion we used in the numerical illustration. As the risk aversion β

increases, the size of the no-transaction region shrinks, as will be shown later.
In addition, it should be noted that as in the previous case, as transaction costs
increase the buy boundary decreases and the sell boundary increases. However,
the sensitivity of the optimal target y∗ to changes in transaction costs is very
small. It only decreases from $121,900 to $121,500 as the fixed cost increases
from $0 to $30, making z∗ indistinguishable from the Merton line in the figure.
This finding is consistent with the intuition that roughly speaking, the investor
is better off being around the Merton line, on average, even in the presence of
transaction costs.

Based on the insensitivity of the target amount to fixed costs, to obtain the
optimal boundaries, one can first fix z∗

i to be the Merton line, and then choose
Ci1 to satisfy all the conditions except (34). This one-dimensional search is
straightforward.

To measure the relative effect of the proportional and fixed costs on the wel-
fare of the investor, we define the equivalent fixed cost F for a given proportional
cost α to be the fixed cost such that the investor is indifferent between facing
only the fixed cost and facing only the proportional cost, that is, F such that
v(x, y; F) = v(x, y; α). For a given α, if the fixed cost exceeds the equivalent F,
then the investor prefers to face the proportional transaction cost. Otherwise,
the investor prefers to face the fixed transaction cost. Figure 3 plots the equiva-
lent fixed cost F against the proportional cost α for several risk aversion levels.
For β = 1, the investor is indifferent between facing a proportional cost of 5
percent and facing a fixed cost of $2. As the proportional cost increases, the
equivalent fixed cost increases at an increasing rate. In addition, as the risk
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aversion decreases, the equivalent fixed cost increases significantly. For exam-
ple, if β = 0.1, the equivalent fixed cost for a 5 percent proportional cost becomes
as high as $18. Intuitively, as the investor’s risk aversion decreases, the amount
the investor holds in a stock increases. Therefore, the relative impact of a given
fixed cost becomes smaller.

V. The Fixed and Proportional Cost Case

When the investor is subject to both fixed and proportional costs for each
transaction, the problem becomes even more complicated. We conjecture that
in this case, there exist four (instead of three, as in the previous section) critical
numbers, y

¯ i
, y
¯

∗
i
, ȳ∗

i , and ȳi ( y
¯ i

< y
¯

∗
i

< ȳ∗
i < ȳi), characterizing the optimal trad-

ing strategy. Specifically, we conjecture that the optimal policy is to transact
immediately to the buy-target y

¯
∗
i

if yit ≤ y
¯ i

and to jump to the sell-target ȳ∗
i

if yit ≥ ȳi. In addition, the value function still satisfies the HJB ODE system
(22) in the no-transaction region.

According to the proposed transaction policy, we must have

v(x, y1, y2, . . . , yi, . . . , yn) = v
(
x − Fi − (

y
¯

∗
i
− yi

)
, y1, y2, . . . , y

¯
∗
i
, . . . , yn

)
for any yi ≤ y

¯ i
, and

v(x, y1, y2, . . . , yi, . . . , yn) = v
(
x − Fi + (1 − αi)

(
yi − ȳ∗

i

)
, y1, y2, . . . , ȳ∗

i , . . . , yn
)

for any yi ≥ ȳi, where i = 1, 2, . . . , n.
The optimality of y

¯
∗
i

and ȳ∗
i implies that

vyi

(
x, y1, y2, . . . , y

¯
∗
i
, . . . , yn

) = vx
(
x, y1, y2, . . . , y

¯
∗
i
, . . . , yn

)
and

vyi

(
x, y1, y2, . . . , ȳ∗

i , . . . , yn
) = (1 − αi)vx

(
x, y1, y2, . . . , ȳ∗

i , . . . , yn
)
,

for any i = 1, 2, . . . , n.
Plugging equation (10) into the boundary conditions and using the C1 prop-

erty of v, we obtain the following eight boundary conditions:

ψi(z¯ i) = Ci1 + z
¯ i, (37)

ψ ′
i (z¯ i) = 1, (38)

ψ ′
i

(
z
¯
∗
i

) = 1, (39)

ψ ′
i (z̄i) = 1 − αi, (40)

ψ ′
i

(
z̄∗

i

) = 1 − αi, (41)
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ψi(z̄i) = Ci2 + (1 − αi)z̄i, (42)

ψi
(
z
¯
∗
i

) = Ci1 + rβFi + z
¯
∗
i , (43)

and

ψi
(
z̄∗

i

) = Ci2 + rβFi + (1 − αi)z̄∗
i , (44)

for i = 1, 2, . . . , n, where z
¯ i = rβy

¯ i
, z

¯
∗
i = rβy

¯
∗
i
, z̄∗

i = rβ ȳ∗
i , and z̄i = rβ ȳi.

We then have the following result for the value function and the optimal
trading strategy.

THEOREM 4: Assume F > 0 and α > 0, and ∀i ∈ {1, 2, . . . , n}, let ϕi be as defined
in (23). Consider any stock i. Suppose there exist constants Ci1, Ci2, z

¯ i, z
¯
∗
i , z̄∗

i , and
z̄i such that ψi is a solution of ODE (22) subject to conditions (37)–(44), and in
addition,

ψ ′
i (zi) > 1, ∀zi ∈ (

z
¯ i, z

¯
∗
i

)
, (45)

1 − αi < ψ ′
i (zi) < 1, ∀zi ∈ (

z
¯
∗
i , z̄∗

i

)
, (46)

and

0 < ψ ′
i (zi) < 1 − αi, ∀zi ∈ (

z̄∗, z̄i
)
. (47)

Then ψi is the unique solution to ODE (22) subject to conditions (37)–(47), from
which the corresponding optimal consumption policy is

c∗
t = rx∗

t + 1
β

n∑
i=1

ϕi
(
rβ y∗

it

)
, (48)

and the corresponding optimal risky asset trading policy is to transact to y
¯

∗
i

only
when y∗

it ≤ y
¯ i

, and transact to ȳ∗
i only when y∗

it ≥ ȳi, where x∗
t and y∗

it are the
bond holding and risky asset holding processes derived from following the above
policies. Moreover, the value function is

v(x, y) = −1
r

e−rβx−∑n
i=1 ϕi (rβ yi ).

Proof: See Appendix A. Q.E.D.

To help us compute the optimal boundaries and understand the boundary
behavior, we present the following proposition that provides some bounds on
the optimal boundaries.

PROPOSITION 1: For any i = 1, 2, . . . , n, if y
¯ i

(αi, Fi) and ȳi(αi, Fi) are, respectively,
the optimal buy and sell boundaries as specified in Theorem 4 for given αi and
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Figure 4. First derivative of ϕ. The graph plots ϕ′(z) against z for the following parameters: time
discount rate δ = 0.01, risk-free rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22,
proportional cost α = 0.01, fixed cost F = 5, and absolute risk aversion coefficient β = 0.001.

Fi, with αi + Fi > 0, then

y
¯ i

(αi, Fi) < y M
i and ȳi(αi, Fi) >

y M
i

1 − αi
, (49)

where yM
i is the Merton line for stock i as defined in (7). In addition, for Fi > 0,

we have

y
¯ i

(αi, Fi) < y
¯ i

(αi, 0) and ȳi(αi, Fi) > ȳi(αi, 0). (50)

Proof: See Appendix A. Q.E.D.

Proposition 1 shows that the buy and sell boundaries always bracket the
Merton line. In addition, as αi ↑ 1, the sell boundary goes to infinity and thus
cannot be bounded from above. Moreover, the boundaries with fixed costs al-
ways bracket the corresponding boundaries with no fixed costs. This proposition
makes the computation of the optimal boundaries more efficient by providing
better initial values for the boundaries and the direction of changes as trans-
action costs change.

According to Theorem 4, we need to find z
¯ i, z

¯
∗
i , z̄∗

i , z̄i, Ci1, and Ci2 such that
ψ i solves ODE (22) and satisfies conditions (37)–(44).10 Appendix B presents
an algorithm that effectively reduces the problem to a two-dimensional search
procedure.

Figure 4 shows the typical shape of ϕ′(z) within the no-transaction region.
Clearly, it satisfies conditions (45)–(47) in the above theorem. This figure also
shows that the value function is C2 almost everywhere except at z

¯
and z̄, where

it is only C1. In addition, ϕ(z) is first convex, then turns into a concave function,

10 Both Ci1 and Ci2 can be easily eliminated to reduce the number of equations to six. We choose
not to do so to preserve clarity.
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Figure 5. No-transaction and transaction regions for two stocks. The graph shows the
no-transaction and transaction regions when there are two stocks subject to both fixed and pro-
portional costs for the following parameters: time discount rate δ = 0.01, risk-free rate r = 0.01,
stock 1 expected return µ1 = 0.069, stock 2 expected return µ2 = 0.10, stock return volatilities
σ1 = σ2 = 0.22, proportional costs α1 = α2 = 0.01, fixed costs F1 = F2 = 5, and absolute risk aver-
sion coefficient β = 0.001.

then changes back into a convex function. This implies that the value function
v is not globally concave. This is because a convex combination of two policies
does not always outperform these two policies due to the presence of fixed
costs.

Figure 5 shows the no-transaction and transaction regions when there are
two stocks subject to both fixed and proportional costs. The interior of “ABCD”
represents the no-transaction region; “abcd” and its extensions inside “ABCD”
are the target boundaries. There are eight transaction regions. The arrow lines
represent the transaction directions in these transaction regions. For example,
in the “Sell 1 Buy 2” region (the quadrant starting at point “C”), the investor
sells stock 1 and buys stock 2 to reach the target point “c.” Similarly, in the “NT
1 Sell 2” region, the investor sells stock 2 but does not trade in stock 1 to reach
the target point on the segment “ad.” After the initial trade, the investor always
stays in “ABCD.” In addition, only when she reaches one of the four corners, “A,”
“B,” “C,” or “D,” does she trade simultaneously in more than one stock. This event
is obviously of probability zero because the set of these corners is of measure
zero relative to the no-transaction boundary, and z1t and z2t follow geometric
Brownian motions inside “ABCD.” In general, when there are n stocks, the
investor trades in more than one stock only when these stocks simultaneously
reach their respective transaction boundaries. This implies that when there are
multiple risky assets, with probability 1, the investor only trades in at most one
stock at any point in time.

This figure is in contrast to that of Morton and Pliska (1995) whose numeri-
cal computation shows that the no-transaction region approximates an ellipse.
It is generally suspected that the no-transaction region boundary should be an
ellipse and thus differentiable everywhere. We show, however, that this is not
true in our case. In particular, the boundary of the no-transaction region in our
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Figure 6. Boundaries as functions of the fixed cost. The graph plots the boundaries z
¯
, z

¯
∗,

z̄∗, and z̄ against fixed cost F for the following parameters: time discount rate δ = 0.01, risk-free
rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22, proportional cost α = 0, and
absolution risk aversion coefficient β = 0.001. The thin middle line is the Merton line.

model is not an ellipse, but rather does have “corners” (in general, a set with
dimension n − 2), and thus is not differentiable at these points. The assumption
of uncorrelated returns is not the reason for this difference. In the presence of
correlations among the stock returns, we conjecture the no-transaction bound-
aries would also have corners as long as the correlations were not perfect. The
only difference would be that the no-transaction boundaries would be skewed
one way or the other depending on the signs of the correlations (see next sec-
tion for an example).11 Moreover, the assumption of a CARA preference is not
critical either. For other utility functions such as a CRRA preference, the no-
transaction and target boundaries would also have these nonsmooth points.
Intuitively, these “corners” arise because, to the investor, one stock is not a
perfect substitute for another.

Figure 6 plots the optimal boundaries z
¯
, z
¯
∗, z̄∗, and z̄ as functions of the fixed

cost for α = 0.01. In the presence of both fixed and proportional transaction
costs, it is no longer optimal to trade to the same boundary as was suggested
in the previous section. If F = $5, for example, the investor would buy $10,800
worth of the stock to reach the buy target of $104,300 when the actual amount
of the investment decreases to $93,500. If, on the other hand, the market goes
up and the actual amount of the investment increases to $152,600, the investor
would sell $14,300 worth of the stock to reach the sell target of $138,300. In
addition, as the fixed cost decreases toward zero, z

¯
and z

¯
∗ (z̄ and z̄∗) approaches

the z
¯

(z̄) for the case with only proportional costs. Furthermore, as the fixed cost
F increases, z

¯
∗ and z̄∗ converge to z∗ in the fixed cost case. This convergence

11 In other words, the optimal dollar amount range for a stock would not be constant but rather
would depend on the amounts in other stocks.
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Figure 7. Boundaries as functions of the proportional cost. The graph plots the boundaries
z
¯
, z
¯
∗, z̄∗, and z̄ against proportional cost α for the following parameters: time discount rate δ = 0.01,

risk-free rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22, fixed cost F = 5, and
absolution risk aversion coefficient β = 0.001. The thin middle line is the Merton line.

occurs because as F becomes much larger than the proportional cost, α, the
impact of transaction costs originates more and more from the fixed costs.

Figure 7 shows the optimal boundaries z
¯
, z

¯
∗, z̄∗, and z̄ as functions of the

proportional cost rate for F = $5. If α = 0.05, for example, the investor will
buy $8,200 worth of stock when the actual amount of the investment reaches
$79,600. If the market goes up and the actual amount increases to $171,900,
the investor will sell $13,500 worth of stock. As the proportional transaction
cost increases, both the size of a purchase after reaching the buy boundary z

¯and the size of a sale after reaching the sell boundary z̄ decrease. In addition,
as the proportional cost approaches zero, z

¯
∗ and z̄∗ approach z∗ for the case with

only fixed costs.

VI. Fixed and Proportional Costs with Correlated Asset Returns

In this section, we extend the analysis in the previous sections to the case
with correlated asset returns. We assume that the asset prices still evolve
as in (1). However, we allow the correlations among the asset returns to be
nonzero, that is, wi(t) and wj(t) may have nonzero correlation. We denote the
correlation between asset i return and asset j return as ρij, with ρii = 1, ∀ i =
1, 2, . . . , n. While we extend the logic of the previous section to conjecture the
optimal policies in this case, we cannot make the formal statement analogous to
Theorem 4.

Inside NT, the value function must satisfy the HJB equation:

1
2

n∑
i=1

n∑
j=1

(
ρi j σiσ j yi y j vyi y j

) +
n∑

i=1

(
µi yivyi

) + rxvx + vx

β
log

(
vx

β

)
− δv − vx

β
= 0.

(51)
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We conjecture that

v(x, y1, y2, . . . , yn) = −1
r

e−rβx−ϕ(rβ y1,...,rβ yn), (52)

for some function ϕ : IRn → IR.
Let ψ be the restriction of ϕ in the no-transaction region. Then equation (51)

becomes

1
2

n∑
i=1

n∑
j=1

[
ρi j σiσ j ziz j

(
ψzi z j − ψzi ψz j

)] +
n∑

i=1

(
µiziψzi

) − rψ + (δ − r) = 0. (53)

We conjecture that in this case, there exist four critical functions (instead
of numbers, as in the previous section), y

¯ i
( y−i), y

¯
∗
i
( y−i), ȳ∗

i ( y−i), and ȳi( y−i),
where y−i = (y1, . . . , yi−1, yi+1, . . . , yn), defining the no-transaction region and
the optimal target boundaries. Accordingly, we must have ∀i = 1, 2, . . . , n,

v(x, y1, y2, . . . , yi, . . . , yn) = v
(
x − Fi − (

y
¯

∗
i
( y−i) − yi

)
,

y1, y2, . . . , y
¯

∗
i
( y−i), . . . , yn

)
,

for any yi ≤ y
¯ i

( y−i), and

v(x, y1, y2, . . . , yi, . . . , yn) = v
(
x − Fi + (1 − αi)

(
yi − ȳ∗

i ( y−i)
)
,

y1, y2, . . . , ȳ∗
i ( y−i), . . . , yn

)
,

for any yi ≥ ȳi( y−i).
The optimality of y

¯
∗
i
( y−i) and ȳ∗

i ( y−i) implies that

vyi

(
x, y1, y2, . . . , y

¯
∗
i
( y−i), . . . , yn

) = vx
(
x, y1, y2, . . . , y

¯
∗
i
( y−i), . . . , yn

)
and

vyi

(
x, y1, y2, . . . , ȳ∗

i ( y−i), . . . , yn
) = (1 − αi)vx

(
x, y1, y2, . . . , ȳ∗

i ( y−i), . . . , yn
)
,

for any i = 1, 2, . . . , n.
Plugging equation (52) into the boundary conditions and using the C1 prop-

erty of v, we obtain the following eight boundary conditions:

ψ(z1, . . . , z
¯ i(z−i), . . . , zn) = Ci1(z−i) + z

¯ i(z−i), (54)

ψzi (z1, . . . , z
¯ i(z−i), . . . , zn) = 1, (55)

ψzi

(
z1, . . . , z

¯
∗
i (z−i), . . . , zn

) = 1, (56)
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ψzi (z1, . . . , z̄i(z−i), . . . , zn) = 1 − αi, (57)

ψzi

(
z1, . . . , z̄∗

i (z−i), . . . , zn
) = 1 − αi, (58)

ψ(z1, . . . , z̄i(z−i), . . . , zn) = Ci2(z−i) + (1 − αi)z̄i(z−i), (59)

ψ
(
z1, . . . , z

¯
∗
i (z−i), . . . , zn

) = Ci1(z−i) + rβFi + z
¯
∗
i (z−i), (60)

and

ψ
(
z1, . . . , z̄∗

i (z−i), . . . , zn
) = Ci2(z−i) + rβFi + (1 − αi)z̄∗

i (z−i), (61)

for i = 1, 2, . . . , n, where z−i = (z1, . . . , zi−1, zi+1, . . . , zn), z
¯ i = rβy

¯ i
, z

¯
∗
i = rβy

¯
∗
i
,

z̄∗
i = rβ ȳ∗

i , and z̄i = rβ ȳi. We then need to solve for z
¯ i, z

¯
∗
i , z̄∗

i , z̄i, Ci1, and Ci2
for all i, which are all functions of z−i. This n-dimensional nonlinear PDE with
4n free boundaries is difficult to solve even numerically, especially when n is
large. To get some idea of how correlation affects the no-transaction region and
to see if the uncorrelated return case provides some useful insights into the
correlated case, we use Algorithm 3 described in Appendix B, which is essen-
tially the projection method introduced by Judd (1999), to numerically solve
the two-asset case with a correlation of ρ12 = 0.1. Similar to Leland (2000), we
assume that the four no-transaction boundaries and the four target bound-
aries (see Figure 5) are all straight lines.12 Although this linearity has al-
ready significantly simplified the computation, we still need to optimally choose
16 + (m + 1)(m + 2)/2 constants to minimize a test function, where m is the or-
der of the series solution in the projection method. When the correlation is
small, an order of two is generally sufficient (m = 2), which means we need
to minimize over 22 constants. As n and m grow, the number of constants we
need to minimize over grows quickly. In general, one needs to minimize over
n2n+1 + ∑m

j=0
(n+ j − 1)!

j !(n− 1)! (which is equal to 796 when n = 6, m = 2) constants. This
illustrates the extreme difficulty of computing the optimal boundaries in the
correlated return case when n is large. Fortunately, when the correlation is
small, as Figure 8 suggests, the solution to the uncorrelated return case pro-
vides a reasonable estimate of the optimal boundaries.

In Figure 8, we present the no-transaction region and the target boundaries
for a two-stock example with 10 percent correlation.13 The dashed lines show the
boundaries when the correlation is zero. This figure suggests that the bound-
aries for the uncorrelated return case are close to those of the correlated case. In
addition, all the boundaries are negatively sloped. This is because in the pres-
ence of positive correlation, the two stocks have substitution effects for each
other. Furthermore, compared to the boundaries in the uncorrelated return

12 We find that relaxing this assumption to allow all the boundaries to be piecewise linear does
not yield any noticeable changes in the optimal boundaries.

13 Other numerical examples we investigated yield similar qualitative results.
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Figure 8. No-transaction and target boundaries for two correlated stocks. The graph shows
the no-transaction and target boundaries when there are two correlated stocks subject to both
fixed and proportional costs for the following parameters: time discount rate δ = 0.01, risk-free
rate r = 0.01, stock expected returns µ1 = µ2 = 0.069, stock return volatilities σ1 = σ2 = 0.22, pro-
portional costs α1 = α2 = 0.01, fixed costs F1 = F2 = 5, absolute risk aversion coefficient β = 0.001,
and return correlation ρ12 = 0.1. The dashed lines are corresponding boundaries for the uncorre-
lated return case.

case, all the boundaries in the correlated return case move southwest, respec-
tively. This suggests that in the presence of positive correlation, one tends to
invest less in each stock. This is because the diversification benefit of a stock
is smaller when its return is correlated with another stock.

VII. Analysis of the Optimal Policy

One of the main reasons for investing in multiple risky assets is to reduce
portfolio risk through diversification. There are asset classes that have nearly
zero correlations and for diversification purposes investors may find it efficient
to limit their trading to these uncorrelated asset classes. This suggests that from
an economic point of view the uncorrelated return case is an important case to
study. Therefore, in this section, we provide some further analysis of the optimal
trading strategy in the uncorrelated return case. As shown in Sections III–
V, analysis of the optimal policy for multiple stocks can be decomposed into
analysis for individual stocks in this case. We thus (without loss of generality)
pick one of the stocks and conduct the analysis on this stock. The location of
free boundaries, the sensitivity of these boundaries to changes in risk aversion
and volatility, the frequency of transaction, and the optimal size of a purchase
and a sale are all examples of questions we will address in this section.
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Figure 9. Boundaries as functions of the absolute risk aversion coefficient. The graph plots
the optimal boundaries y

¯
, y
¯
∗, ȳ∗, and ȳ against absolute risk aversion coefficient β for the following

parameters: time discount rate δ = 0.01, risk-free rate r = 0.01, expected return µ = 0.069, return
volatility σ = 0.22, proportional cost α = 0.01, and fixed cost F = 5.

A. Optimal Boundaries

A.1. Changes in Risk Aversion

Figure 9 plots the optimal boundaries y
¯
, y

¯
∗, ȳ∗, and ȳ (the actual amount,

instead of the scaled amount) against the absolute risk aversion coefficient
β. As risk aversion increases, y

¯
, y

¯
∗, ȳ∗, and ȳ all decrease. The amount of

each purchase and sale also decreases. The target amounts y
¯

∗ and ȳ∗ quickly
converge to the Merton line. The pattern of the boundaries also suggests that,
on average, the amount invested in the stock decreases as the investor becomes
more risk averse.

A.2. Changes in Volatility

Figure 10 plots the optimal boundaries z
¯
, z
¯
∗, z̄∗, and z̄ against the stock return

volatility, σ . As the volatility increases, z
¯
, z
¯
∗, z̄∗, and z̄ all decrease. In contrast to

the intuition that as volatility increases, to save transaction costs, the investor
would widen the no-transaction region, the NT region actually shrinks (see
subsection B for the implication on the frequency of trading). Furthermore, both
z
¯
∗ and z̄∗ move closer to the Merton line, but the amount of each transaction is

not very sensitive to changes in the volatility.

A.3. Changes in Expected Return

Figure 11 plots the optimal boundaries z
¯
, z

¯
∗, z̄∗, and z̄ against the expected

stock return µ. As the expected return increases, z
¯
, z

¯
∗, z̄∗, and z̄ all increase.
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Figure 10. Boundaries as functions of the return volatility. The graph plots the optimal
boundaries z

¯
, z

¯
∗, z̄∗, and z̄ against return volatility σ for the following parameters: time discount

rate δ = 0.01, risk-free rate r = 0.01, expected return µ = 0.069, proportional cost α = 0.01, fixed
cost F = 5, and absolution risk aversion coefficient β = 0.001.

Figure 11. Boundaries as functions of the expected return. The graph plots the optimal
boundaries z

¯
, z

¯
∗, z̄∗, and z̄ against expected return µ for the following parameters: time discount

rate δ = 0.01, risk-free rate r = 0.01, return volatility σ = 0.22, proportional cost α = 0.01, fixed
cost F = 5, and absolution risk aversion coefficient β = 0.001.

Both z
¯

and z
¯
∗ increase at a lower rate than the Merton line, while z̄ and z̄∗

increase at a higher rate. This implies that the no-transaction region widens as
the expected return rises. In addition, the size of each purchase and sale also
increases.

B. Frequency of Trading

To better understand the optimal transaction policy in the stock, we now
analyze the stochastic behavior of the investment in the stock in this subsection.
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Within the no-transaction region, the (scaled) amount in stock z evolves as
follows:

dzt = µzt dt + σ zt dwt .

Now let z0 = z ∈ (z
¯
, z̄) be fixed,

τ = inf{t ≥ 0 : zt /∈ (z
¯
, z̄)}

denote the time of the next transaction,

Pz (τ < ∞) = P (τ < ∞ | z0 = z)

denote the conditional probability that τ is finite, and

Ez [τ ] = E[τ | z0 = z]

denote the conditional expectation of τ .
The following proposition states that with positive probability the investor

will transact in the stock, and that the expected time to the next transaction is
always finite.

PROPOSITION 2: If 0 < z
¯

< z̄ < ∞, then Pz(τ < ∞) = 1 and Ez[τ ] < ∞ for all z ∈
(z
¯
, z̄). Moreover, both boundaries of the no-transaction region, z

¯
and z̄, can be

reached with positive probability.

Proof: This follows immediately from the propositions in Section 5.5 of
Karatzas and Shreve (1988). Q.E.D.

Since for the case in which 0 < z
¯

< z̄ < ∞ both boundaries can be reached in
finite expected time, we can compute a set of measures of trading frequency; for
example, expected time to the next trade, expected time to the next sale after
a purchase, and so on. Let

τs = inf{t ≥ 0 : zt = z̄} and τb = inf{t ≥ 0 : zt = z
¯
}

represent the first time zt reaches the sell boundary z̄ and the buy boundary z
¯of the no-transaction region, respectively. Let

Ez [τs] = E[τs | z0 = z] and Ez [τb] = E[τb | z0 = z]

denote the conditional expectations of τ s and τ b, respectively.
Letting T (z) = Ez [τs] and applying Itô’s lemma, we find that T satisfies the

following differential equation (cf. Karlin and Taylor (1981, p. 192)):

1
2σ 2z2T ′′ + µzT ′ + 1 = 0. (62)
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For the boundary conditions, first we note that obviously T (z̄) = 0. Since the
transaction policy is to jump to z

¯
∗ from z

¯
as soon as z

¯
is reached, we must have

the second boundary condition T (z
¯
) = T (z

¯
∗). Solving the above ODE (62) subject

to these two boundary conditions and following a similar procedure for Ez [τb],
we have the following result.

PROPOSITION 3: Suppose 0 < z
¯

< z̄ < ∞. Then

Ez [τs] =




log(z̄/z)(z
¯
∗k − z

¯
k) − log(z

¯
∗/z

¯
)(z̄k − zk)

(µ − 1
2σ 2)(z

¯
∗k − z

¯
k)

if µ �= 1
2σ 2

1
σ 2

log
(

z̄
z

)
log

(
z̄z
z
¯
∗z
¯

)
if µ = 1

2σ 2

and

Ez [τb] =




log(z
¯
/z)(z̄∗k − z̄k) − log(z̄∗/z̄)(z

¯
k − zk)

(µ − 1
2σ 2)(z̄∗k − z̄k)

if µ �= 1
2σ 2

1
σ 2

log
( z

¯
z

)
log

( z
¯
z

z̄∗z̄

)
if µ = 1

2σ 2,

where

k = 1 − 2µ

σ 2
. (63)

Figure 12 plots the expected time to the next sale after a sale and the expected
time to the next purchase after a purchase against the proportional transaction
cost rate. When α = 0.01, on average, it takes about 1.2 years from sell to sell
and about 2.5 years from buy to buy. As the transaction costs increase, the
transaction frequency decreases and the difference between the expected time
from buy to buy and the expected time from sell to sell also becomes greater.

A wealth of literature exists on stock return predictability (e.g., Kandel and
Stambaugh (1996), Barberis (2000), Xia (2001)). Generally, it is found that incor-
porating predictability would significantly increase the welfare of an investor,
even in the presence of parameter uncertainty. However, most of these studies
do not take transaction costs into account. The large deviation of trading pol-
icy in the presence of transaction costs from optimal policy in the absence of
transaction costs implies, as found in the above analysis, a very low frequency
of trading. This infrequency of trading seems to suggest that the gain from in-
corporating predictability would be significantly decreased if transaction costs
were considered. We will return to this point later. This finding of low trad-
ing frequency in the presence of transaction costs also has some implications
for models of trading volume. Since transaction costs have dramatic effects on
both trading frequency and trading size, to explain the observed trading vol-
ume, it seems that one has to consider transaction costs in addition to other
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Figure 12. Expected time to the next transaction as functions of the proportional cost.
The graph plots the expected time to the next transaction Ez[τ s] and Ez[τb] starting from z̄∗ and z

¯
∗

respectively against proportional cost α for the following parameters: time discount rate δ = 0.01,
risk-free rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22, fixed cost F = 5, and
absolution risk aversion coefficient β = 0.001.

Figure 13. Expected time to the next transaction as functions of the absolute risk aver-
sion coefficient. The graph plots the expected time to the next transaction Ez[τ s] and Ez[τb]
starting from z̄∗ and z

¯
∗, respectively, against absolute risk aversion coefficient β for the following

parameters: time discount rate δ = 0.01, risk-free rate r = 0.01, expected return µ = 0.069, return
volatility σ = 0.22, proportional cost α = 0.01, and fixed cost F = 5.

standard factors considered in the literature (e.g., Admati and Pfleiderer (1988)
and Wang (1994)) such as information asymmetry and heterogeneous beliefs.

Figures 13 to 15 plot the expected time to the next sale after a sale and
the expected time to the next purchase after a purchase against the absolute
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Figure 14. Expected time to the next transaction as functions of the return volatility. The
graph plots the expected time to the next transaction Ez[τ s] and Ez[τb] starting from z̄∗ and z

¯
∗,

respectively, against return volatility σ for the following parameters: time discount rate δ = 0.01,
risk-free rate r = 0.01, expected return µ = 0.069, proportional cost α = 0.01, fixed cost F = 5, and
absolution risk aversion coefficient β = 0.001.

Figure 15. Expected time to the next transaction as functions of the expected return.
The graph plots the expected time to the next transaction Ez[τ s] and Ez[τb] starting from z̄∗ and z

¯
∗,

respectively, against expected return µ for the following parameters: time discount rate δ = 0.01,
risk-free rate r = 0.01, return volatility σ = 0.22, proportional cost α = 0.01, fixed cost F = 5, and
absolution risk aversion coefficient β = 0.001.

risk aversion coefficient β, stock return volatility σ, and the expected return
µ, respectively. As the investor becomes more risk averse, the frequency of
trading decreases. The expected time between purchases increases faster than
the expected time between sales. It should be emphasized that although the
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no-transaction region narrows as β increases, the trading frequency still de-
creases. This inverse correlation suggests that trading frequency not only de-
pends on the width of the no-transaction region but also on the location of the
NT region.

As stock return volatility increases, while the expected time between sales
increases, the expected time between purchases decreases. This finding seems
counterintuitive because as volatility increases it seems probable that the in-
vestor would widen the no-transaction region to decrease the trading frequency
so as to save on the transaction costs. However, the investor’s response is more
sophisticated than simply saving transaction costs. As volatility increases, the
risk increases. So, on average, the investor holds less in the stock (as suggested
by Figure 10 and can be verified using the measure developed in the next sub-
section). Over time then, the investor needs to sell less frequently to finance
current consumption and actually needs to buy stock more often to finance
future consumption.

As the expected stock return increases, both the expected time between pur-
chases and the expected time between sales decrease, but the expected time
between sales decreases faster. Again, it should be noted that the frequency of
transaction is not determined only by the width of the no-transaction region
(Figure 11 shows that the region widens as µ grows). With the risk premium
increasing from 5 percent to 9 percent, the expected time between sales reduces
from 1.4 years to about 7 months.

C. Average Amount Invested in Stock

In this subsection, we compute a measure of the average amount the investor
would optimally hold in the risky asset. When 0 < z

¯
< z̄ < ∞, the expected time

to reach either boundary is finite; therefore, it follows that z is a positively
recurrent process. Let k be as defined in equation (63) and

G(x, ξ ) =
{

2(xk − z
¯

k)(z̄k − ξk)ξ−1−k/[σ 2(z̄k − z
¯

k)] if z
¯

≤ x ≤ ξ ≤ z̄

2(z̄k − xk)(ξk − z
¯

k)ξ−1−k/[σ 2(z̄k − z
¯

k)] if z
¯

≤ ξ ≤ x ≤ z̄

be the Green function of z inside the no-transaction region. We focus on the case
with both fixed and proportional costs. Then

f (z) = (z̄k − z̄∗k)G(z
¯
∗, z) + (z

¯
∗k − z

¯
k)G(z̄∗, z)∫ z̄

z
¯

((z̄k − z̄∗k)G(z
¯
∗, η) + (z

¯
∗k − z

¯
k)G(z̄∗, η)) dη

is the stationary (or steady-state) probability density function (cf. Karlin and
Taylor (1981), p. 381).

Figure 16 shows the typical shape of the stationary density function. As ex-
pected, significant mass falls around the optimal targets z

¯
∗ and z̄∗, because

these are the points to which the investor must return after reaching the
transaction boundaries. Since µ > 0, there is greater mass around z̄∗ than
around z

¯
∗.
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Figure 16. The stationary density function of the amount in a stock. The graph plots the
stationary density function f (z) for the following parameters: time discount rate δ = 0.01, risk-free
rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22, proportional cost α = 0.01,
fixed cost F = 5, and absolution risk aversion coefficient β = 0.001.

Figure 17. The average amount in a stock as a function of the proportional cost. The
graph plots the average amount in stock against proportional cost α for the following parameters:
time discount rate δ = 0.01, risk-free rate r = 0.01, expected return µ = 0.069, return volatility
σ = 0.22, fixed cost F = 5, and absolution risk aversion coefficient β = 0.001.

Using the stationary distribution, we can compute the average amount in-
vested in the stock in the steady state (as t approaches ∞). Figure 17 shows
the steady-state average amount invested in the stock as a function of the pro-
portional transaction cost rate α. Surprisingly, the average amount invested
in the stock increases as the transaction costs increase. As transaction costs
increase, to save on such costs, the investor widens the no-transaction region.
The tension occurs between investing more on average versus transacting more
often to keep a lower average but paying higher transaction costs. In this case,
saving transaction costs is dominant. Figure 18 shows the steady-state aver-
age amount invested in the stock as a function of the fixed transaction cost
F. Again, as transaction costs increase, the average amount increases. How-
ever, the increase in the average amount as the fixed cost increases from $0
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Figure 18. The average amount in stock against fixed cost. The graph plots the average
amount in a stock as a function of the fixed cost F for the following parameters: time discount rate
δ = 0.01, risk-free rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22, proportional
cost α = 0.01, and absolution risk aversion coefficient β = 0.001.

Figure 19. The expected return that implies the same average amount in a stock as a
function of the proportional cost. The graph plots an expected return that implies the same
average amount in a stock against proportional cost α for the following parameters: time discount
rate δ = 0.01, risk-free rate r = 0.01, return volatility σ = 0.22, fixed cost F = 5, and absolution
risk aversion coefficient β = 0.001.

to $30 is small compared to that shown in Figure 17 because the fixed cost is
small compared to the actual transaction size of $22,000 when F = $30. That
the steady-state average amount invested in the stock increases as transaction
costs increase suggests that to induce an investor to hold the same average
amount as before, one needs to make the stock less attractive, for example, by
lowering the expected return of the stock. Figure 19 shows the expected returns
that induce the investor to hold the same steady-state average amount as that
in the absence of transaction costs as a function of the proportional cost rate
α when the fixed cost is $5. Consistent with the above analysis, the expected
return of the stock that implies the same average amount in stock is inversely
related to the transaction costs. In addition, this relationship is almost linear
in this range of the transaction costs.
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Figure 20. The required extra risk premium as a function of the average time between
transactions. The graph plots the required extra risk premium against the average time between
transactions for the following parameters: time discount rate δ = 0.01, risk-free rate r = 0.01, re-
turn volatility σ = 0.22, proportional cost α = 0.01, fixed cost F = 5, and absolution risk aversion
coefficient β = 0.001.

As already shown, in the presence of transaction costs, optimal trading occurs
infrequently. To measure how much the investor loses from trading at a higher
frequency than the optimal one and to be consistent with the convention of using
extra risk premium to measure utility gain from incorporating predictability, we
compute the extra risk premium required to compensate the investor for trading
more frequently than the optimal trading strategy. Specifically, we suppose that
the investor shrinks the optimal buy boundary and sell boundary symmetrically
about the mid-point of the no-transaction region, but then chooses optimally the
buy and sell targets. This change would imply an increase in trading frequency
and a loss of utility. Figure 20 plots the extra risk premium required against the
average time between transactions in the steady state. This figure shows that
with a monthly trading frequency, the investor would need about 25 basis points
extra premium. With a daily trading frequency, the extra premium required
would be as high as 300 basis points. These numbers seem to suggest that the
importance of predictability as reported in the literature would be significantly
diminished if transaction costs were taken into account.

VIII. Conclusions and Extensions

In this paper we consider the optimal intertemporal consumption and in-
vestment policy of an infinite-horizon CARA investor who faces both fixed and
proportional transaction costs in trading multiple risky assets. We find that in
the presence of even small transaction costs, trading in risky assets becomes
infrequent and increasing trading frequency beyond the optimal frequency re-
sults in significant utility loss. These findings suggest that transaction costs is
an important factor in affecting trading volume, and the importance of stock
return predictability as reported in the literature would be significantly dimin-
ished if transaction costs were taken into account. In addition, we find that
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conditional on investment, as transaction costs increase, the average amount
invested in each risky asset increases.

Compared to the existing literature, this paper provides a simple model that
makes it feasible to compute the optimal trading strategies when there are
large numbers of risky assets subject to both fixed and proportional trans-
action costs. Incorporating more realistic market features such as stochastic
investment opportunities, portfolio constraints, exogenous income, correlated
asset returns, and incomplete information would be economically interesting
but mathematically challenging for future research.

Appendix A

In the first part of Appendix A, we provide a proof of Theorem 4. The proofs of
Theorems 2 and 3 are special cases and are thus omitted. Since the investor’s
problem involves continuous consumption and discrete stock transactions at
stopping times, this optimal control problem belongs to the class of combined
stochastic control as studied by Brekke and Øksendal (1998).14 In contrast to
Brekke and Øksendal (1998), the investor in this model has an infinite horizon.
The proof in this appendix is a variation of the proofs in Brekke and Øksendal
(1998) and Korn (1998). We first introduce some notation and terminology,
then provide a modified version of the verification theorems of Brekke and
Øksendal (1998) and Korn (1998), and finally show that the conditions provided
in Theorem 4 satisfy the conditions in this verification theorem.

DEFINITION 1: An impulse control χ = {(τ j , ζ j ), j ∈ IN} is a sequence of trading
times τj and trading amounts ζ j = d Iτ j − d Dτ j ∈ IRn such that ∀ j ∈ IN,

1. 0 ≤ τj ≤ τj+1 a.s.,
2. τj is a stopping time and ζ j is Fτ j measurable, and
3. P(limn→∞τn ≤ K) = 0, ∀K ≥ 0,

where IN denotes the set of natural numbers, and I and D are the cumulative
purchase and sale processes, respectively.

DEFINITION 2: For a given impulse control χ and a consumption policy c, the
pair ξ = (χ ,c) is called a combined stochastic control.

DEFINITION 3: A combined stochastic control ξ = (χ , c) is admissible if the
implied processes (I, D) and c form an admissible strategy as defined in the
text; that is, the implied xt and yt from (2) and (3) satisfy (5). Let W denote
the set of admissible combined stochastic controls.

Next, we let H denote the space of all measurable functions h : IRn+1 → IR.
We define the maximum operator M : H → H by

Mh(x, y) ≡ sup
ζ∈IRn\{0}

h

(
x −

n∑
i=1

(
Fi1{ζi �=0} + ζ+

i − (1 − αi)ζ−
i

)
, y + ζ

)
,

14 I thank the referee for pointing this out.
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where ζ i is the ith element of ζ . For each (x, y) ∈ IRn+1, let ζ̂ h(x, y) be such that

Mh(x, y) = h

(
x −

n∑
i=1

(
Fi1{ζ̂ h

i (x, y)�=0} + ζ̂ h
i (x, y)+

−(1 − αi)ζ̂ h
i (x, y)−

)
, y + ζ̂ h(x, y)

)
. (A1)

For a given consumption policy c, we next define the differential operator Lc

by

Lc g (x, y) ≡ 1
2σ 2 y2 gyy + µ y g y + rx gx − cgx − δ g ,

for all functions g : IRn+1 → IR for which the derivatives involved exist at (x, y).
We now provide a lemma which serves as a verification theorem for solving the
investor’s problem. It provides sufficient conditions under which a combined
stochastic control ξ = (χ , c) solves the investor’s optimal consumption and in-
vestment problem, and a given function V is the value function.

LEMMA 1. (Verification Theorem)

(a). Suppose there exists a C1 function V : IRn+1 → IR, which is C2 except over
a Lebesgue measure zero subset of IRn+1, such that

1. LcV (x, y) + u(c) ≤ 0, ∀c ∈ C;
2. V (x, y) ≥ MV (x, y);
3.

∀T ∈ [0, ∞), E
∫ T

0

∣∣e−δs ysVY (xs, ys)
∣∣2 ds < ∞ (A2)

and

lim
T→∞

E
[
e−δT V (xT , yT )

] = 0, (A3)

for any process (xt, yt) corresponding to an admissible combined
stochastic control, where VY is the n × n diagonal matrix with Vyi (i =
1, 2, . . . , n) as its diagonal elements and |·| represents the Euclidian
norm; and,

4. {e−δtV(xt, yt)}t≥0 is uniformly integrable.

Then

V (x, y) ≥ vξ (x, y), ∀ξ ∈ W, (x, y) ∈ IRn+1, (A4)

where vξ (x, y) is the value function from following ξ .
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(b). Define

N T = {(x, y) : V (x, y) > MV (x, y)}.

Suppose in addition to the conditions in part (a), there exists a function
ĉ : N T → IR such that

Lĉ(x, y)V (x, y) + u(ĉ(x, y)) = 0, (A5)

for all (x, y) ∈ NT. Define the impulse control

χ̂ ≡ (τ̂1, τ̂2, . . . ; ζ̂ 1, ζ̂ 2, . . .)

inductively as follows: τ̂0 = 0 and ∀k = 0, 1, 2, . . .,

τ̂k+1 = inf
{
t > τ̂k :

(
x(k)

t , y (k)
t

)
/∈ N T

}
and

ζ̂ k+1 = ζ̂ V (
x(k)

t , y (k)
t

)
,

where (x(k)
t , y(k)

t ) is the result of applying the combined stochastic control

ξ̂k ≡ ((τ̂1, . . . , τ̂k ; ζ̂ 1, . . . , ζ̂ k), ĉ)

and ζ̂ V is as defined in (A1) for V. If ξ̂ ≡ (χ̂ , ĉ) is admissible, then

V (x, y) = v(x, y)

and the combined stochastic control ξ ∗ = ξ̂ is optimal, where v(x, y) is the
value function defined in (6).

Proof: (a) Assuming that V satisfies the conditions in part (a), we let ξ =
(χ , c) ∈ W be any admissible combined stochastic control, where

χ = (
τ1, τ2, . . . ; ζ 1, ζ 2, . . .)

Let T ∈ [0, ∞) be fixed. For all k ≥ 0, define

θk = τk ∧ T ,
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with τ0 = 0 and let (xt, yt) = (xξ
t , yξ

t ). We can then write for every n ∈ IN,

e−δθn V
(
xθn , yθn

) − V (x, y)

=
n∑

i=1

[
e−δθi V

(
xθ−

i
, yθ−

i

) − e−δθi−1 V
(
xθi−1 , yθi−1

)]

+
n∑

i=1

1{τi<T }e−δθi
[
V

(
xθi , yθi

) − V
(
xθ−

i
, yθ−

i

)]
. (A6)

Since yt is a continuous semi-martingale in the stochastic interval [θk, θk+1) and
V is C2 except over a Lebesgue measure zero subset of IRn+1 and C1 in IRn+1,
Lemma (45.9) (a generalized version of Itô’s lemma) of Rogers and Williams
(2000) applies (see also Korn (1997)). Therefore, ∀i ∈ IN, we have

e−δθi V
(
xθ−

i
, yθ−

i

) − e−δθi−1 V
(
xθi−1 , yθi−1

)
=

∫ θi

θi−1

e−δsLcV (xs, ys) ds +
∫ θi

θi−1

e−δs ysVY (xs, ys)σ dws, (A7)

where σ is a n × n diagonal matrix with σi(i = 1, 2, . . . , n) as its elements. By
condition 1, we have

e−δθi V
(
xθ−

i
, yθ−

i

) − e−δθi−1 V
(
xθi−1 , yθi−1

)
≤ −

∫ θi

θi−1

u(cs, s) ds +
∫ θi

θi−1

e−δs ysVY (xs, ys)σ dws. (A8)

By condition 2, we have

V
(
xθi , yθi

) − V
(
xθ−

i
, yθ−

i

) ≤ 0. (A9)

Combining (A6)–(A9) and taking expectations, we then get

V (x, y) ≥ E

[
e−δθn V

(
xθn , yθn

) +
n∑

i=0

(∫ θi

θi−1

u(cs, s) ds −
∫ θi

θi−1

e−δs ysVY (xs, ys)σdws

)]
.

(A10)

By (A2), for any fixed n, we have

E
[∫ θn

0
e−δs ysVY (xs, ys)σdws

]
= 0.

From condition 3 in Definition 1 and condition 4 in this lemma, we have

lim
n→∞ E

[
e−δθn V

(
xθn , yθn

)] = E
[
e−δT V (xT , yT )

]
.
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Therefore, taking the limit as n → ∞ in (A10) and using the monotone con-
vergence theorem, we have

V (x, y) ≥ E
[
e−δT V (xT , yT )

] + E
[∫ T

0
u(cs, s) ds

]
.

Taking the limit as T → ∞ and using (A3) and the monotone convergence
theorem, we obtain

V (x, y) ≥ E
[∫ ∞

0
u(cs, s) ds

]
,

for all ξ ∈ W and thus V(x, y) ≥ vξ (x, y).
(b) By (A5), we have equality (rather than inequality) in (A8). Given the

definition of ξ̂ we also have equality in (A9). Combining this with (A4), we then
get

V (x, y) ≥ sup
ξ∈W

vξ (x, y) ≥ vξ̂ (x, y) = V (x, y).

Hence V(x, y) = v(x, y) and ξ ∗ = ξ̂ is optimal. Q.E.D.

Since one of the conditions in the above verification theorem is that ξ̂ is an ad-
missible combined stochastic control, we next show that the combined stochas-
tic control implied by the consumption policy and trading strategy specified in
Theorem 4 is indeed admissible.

LEMMA 2: Let ξ̂ = (χ̂ , ĉ) represent the stock trading strategy specified in Theorem 4.
Then ξ̂ is an admissible combined stochastic control.

Proof: Let τ j, j ∈ IN denote the time when the investor trades according to
the policy specified in Theorem 4. Since the prescribed stock trading strategy
is to trade stock i whenever yit is outside (y

¯ i
, ȳi), the trading time is clearly a

stopping time with 0 ≤ τj ≤ τj+1 a.s., ∀ j ∈ IN. For all j ∈ IN, define

ζ̂
j

i =




y
¯

∗
i
− yiτ j if yiτ j ≤ y

¯ i

ȳ∗
i − yiτ j if yiτ j ≥ ȳi

0 otherwise.

Obviously, ζ̂ j is adapted toFτ j . Because ∀t ∈ (0, ∞), P{zit ∈ [z
¯ i, z̄i]} = 1, and zit is

positively recurrent by Proposition 2 for i = 1, 2, . . . , n, we find that
P(limm→∞τm ≤ K) = 0, ∀K ≥ 0 and thus condition 3 in Definition 1 is also sat-
isfied. To complete the proof we now show that (5) is also satisfied. For all
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t > 0 and m ∈ IN, by (2) and (48), we have

rβxt∧τm = rβx0 −
n∑

i=1

∫ t∧τm

0
rψi(zis) ds

+
n∑

i=1

m∑
j=0

1{τ j <t}
(

− rβFi1{|ζ̂ j
i |>0} − rβζ̂

j+
i + (1 − αi)rβζ̂

j−
i

)
,

where ζ̂
j

i is the ith element of ζ̂ j . By (37) and (42)–(44), we find that

−rβFi1{|ζ̂ j
i |>0} − rβζ̂

j+
i + (1 − αi)rβζ̂

j−
i = ψi

(
ziτ j−

) − ψi
(
ziτ j

)
,

where at time τ j > 0: if it is a purchase in ith stock, then ziτ j− = z
¯ i and ziτ j = z

¯
∗
i ;

if it is a sale then ziτ j− = z̄i and ziτ j = z̄∗
i ; if there is no trade in the stock (i.e.,

ζ̂
j

i = 0) then ziτ j− = ziτ j . We then have

m∑
j=0

1{τ j <t}
(
ψi

(
ziτ j−

) − ψi
(
ziτ j

)) = ψi(zi,0) − ψi
(
zi,t∧τm

)

+
m∑

j=1

[ψi(zi,t∧τ j− ) − ψi
(
zi,t∧τ j−1

)
].

Since ψ i is a solution of (22) subject to (37)–(44) and (22) satisfies the conditions
of Corollary 4.1 of Hartman (1964), ϕi(zi) as defined in (23) is C2 except at {z

¯ i, z̄i}
(a Lebesgue measure zero set) and C1 at these points. Using the generalized
version of Itô’s lemma, we then obtain

ψi
(
zi,t∧τ j−

) − ψi
(
zi,t∧τ j−1

) =
∫ t∧τ j−

t∧τ j−1

( 1
2σ 2

i z2
isψ

′′
i − 1

2σ 2
i z2

is(ψ
′
i )

2 + µizisψ
′
i

)
ds

+
∫ t∧τ j−

t∧τ j−1

[ 1
2σ 2

i z2
is(ψ

′
i )

2 ds + σizisψ
′
i dwis

]
.

Therefore,

rβxt∧τm = rβx0 +
n∑

i=1

(
ψi(zi,0) − ψi(zi,t∧τm)

+
∫ t∧τm

0

( 1
2σ 2

i z2
isψ

′′
i − 1

2σ 2
i z2

is(ψ
′
i )

2 + µizisψ
′
i − rψi

)
ds

+
∫ t∧τm

0

[ 1
2σ 2

i z2
is(ψ

′
i )

2 ds + σizisψ
′
i dwis

])
.
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By (22), we then have

rβxt∧τm = rβx0 +
n∑

i=1

(ψi(zi,0) − ψi(zi,t∧τm)) − (δ − r)(t ∧ τm)

+
n∑

i=1

∫ t∧τm

0

[ 1
2σ 2

i z2
is(ψ

′
i )

2 ds + σizisψ
′
i dwis

]
. (A11)

Taking the limit as m → ∞ on both sides of (A11), by condition 3 in Definition 1
shown above, we get

rβxt = rβx0 +
n∑

i=1

(ψi(zi,0) − ψi(zi,t)) − (δ − r)t

+
n∑

i=1

∫ t

0

[ 1
2σ 2

i z2
is(ψ

′
i )

2 ds + σizisψ
′
i dwis

]
.

By (4) we have ∀t ∈ [0, ∞),

e−δt−rβWt = e−rt−rβx0−∑n
i=1[ψi (zi,0)−ψi (zi,t )+(1−αi )z+

it−z−
it−Fi1{zit �=0}]N (t),

where

N (t) = e− ∑n
i=1

∫ t
0

[
1
2 σ 2

i z2
is(ψ

′
i )

2 ds+σi zisψ
′
i dwis

]
.

Since ∀t ∈ [0, ∞), zit, ψ i(zit), and ψ ′
i(zit) are all bounded and E[N(t)] = 1, we

obtain

0 ≤ lim
t→∞ E[e−δt−rβWt ] ≤ lim

t→∞[K e−rtE(N (t))] = 0,

where K is some finite constant. This shows that the first part of (5) holds, i.e.,

lim
t→∞ E[e−δt−rβWt ] = 0.

In addition, since ∀t ∈ [0, ∞), zit and ψ i(zit) are both bounded, we have for some
finite constant K1,

e−2δt−2rβWt = e−2rt−2rβx0−2
∑n

i=1[ψi (zi,0)−ψi (zi,t )+(1−αi )z+
it−z−

it−Fi1{zit �=0}]N (t)2

< K1e−2rt N (t)2.

Since ∀t ∈ [0, ∞), zit and ψ ′
i(zit) are also bounded, we obtain E[N(t)2] < eK2t, for

some finite constant K2. Therefore, we have ∀i = 1, 2, . . . , n and T ∈ [0, ∞),
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E
[∫ T

0

∣∣ yite−δt−rβWt
∣∣2 dt

]
= 1

rβ
E

[∫ T

0

∣∣zite−δt−rβWt
∣∣2 dt

]
< ∞.

This shows that the second part of (5) is also satisfied. Q.E.D.

We are now ready to prove Theorem 4.

Proof of Theorem 4: In this proof, we show that all the conditions in the
verification theorem Lemma 1 are satisfied. First, by Lemma 2, the combined
stochastic control proposed in Theorem 4 is admissible. Also, as explained in the
proof of Lemma 2, the ϕi’s are C2 except over a Lebesgue measure zero subset
of IR and C1 in IR and thus v(x, y) are C2 except over a Lebesgue measure zero
subset of IRn+1 and C1 in IRn+1. Next, we show that (A2) and (A3) hold with the
proposed value function.

First recall that

v(x, y1, . . . , yn) = −1
r

e−rβx−∑n
i=1 ϕi (rβ yi )

and

vyi (x, y1, . . . , yn) = βϕ′
ie

−rβx−∑n
i=1 ϕi (rβ yi ), ∀i = 1, 2, . . . , n.

By (4) we have ∀t ∈ [0, ∞),

0 ≤ e−δt−rβxt−rβ
∑n

i=1( y+
it − y−

it ) ≤ e−δt−rβxt−rβ
∑n

i=1[(1−αi ) y+
it − y−

it −Fi1{ yit �=0}] = e−δt−rβWt .

(A12)

Taking the expectation and the limit, (5) then directly implies that

lim
t→∞ E

[
e−δt−rβ(xt+

∑n
i=1 yit )

] = 0. (A13)

Since ∀zi < z
¯ i, ϕi(zi) = Ci1 + zi and ∀zi, ϕ′

i(zi) > 0 according to the conditions in
the theorem, we then have

0 ≤ e−δT−rβxT −∑n
i=1 ϕi (rβ yiT ) ≤ e−δT−rβ(xT +∑n

i=1 yiT )−∑n
i=1 Ci1 , (A14)

and thus taking the expectation and the limit as T → ∞ we have (A3) by (A13);
that is,

lim
T→∞

E
[
e−δT v(xT , yT )

] = lim
T→∞

−1
r

E
[
e−δT−rβxT −∑n

i=1 ϕi (rβ yiT )] = 0. (A15)

The above expression implies that for any fixed t ≥ 0,

E
[∣∣e−δtv(xt , yt)

∣∣] < ∞ (A16)

and thus e−δtv(xt, yt) is in L1. In addition, (A15) also implies that e−δtv(xt, yt)
converges to 0 in L1. By Theorem 13.7 in Williams (1994), we have that condition
4 in Lemma 1 holds.



332 The Journal of Finance

For all T ∈ [0, ∞), we then have for some finite constants K1, K2 > 0,

E
∫ T

0

∣∣e−δt ytvy (xt , yt)
∣∣2 dt = E

∫ T

0

[
rβ

(
n∑

i=1

yitϕ
′
i

)
e−δtv(xt , yt)

]2

dt

< E
∫ T

0
K1

n∑
i=1

y2
it

∣∣e−δtv(xt , yt)
∣∣2 dt

< E
∫ T

0
K2

n∑
i=1

∣∣ yite−δt−rβWt
∣∣2 dt

< ∞,

where the first inequality stems from the fact that ϕ′
i is bounded, the second

inequality follows from (A12) and (A14), and the last inequality follows from
(5). Therefore, (A2) also holds. Next, defining

Gv(x, y) ≡ 1
2

σ 2 y2vy y + µ yvy + rxvx + vx

β
log

(
vx

β

)
− δv − vx

β

=
(

n∑
i=1

(
1
2

σ 2
i z2

i ϕ
′′
i − 1

2
σ 2

i z2
i ϕ

′
i
2 + µiziϕ

′
i − rϕi

)
+ (δ − r)

)
|v(x, y)|,

we then have for an arbitrary consumption policy c,

Lcv(x, y) + u(c) ≤ max
c

(Lcv(x, y) + u(c)) = Lc∗
v(x, y) + u(c∗) = Gv(x, y),

where the first equality follows from the optimality of c∗ defined in (48) for a
given v(x, y), which is straightforward to verify. By (22) and summing up over
i, we then have Gv(x, y) = 0 in NT and thus (A5) is satisfied in NT with ĉ = c∗.
By (38) and (45), we must have ψ ′′

i (z
¯ i) > 0. By (40) and (47), we must have

ψ ′′
i (z̄i) > 0. By (22) and plugging in (37), (38), (40), and (42), we then have

− 1
2σ 2

i z
¯

2
i + (µi − r)z

¯ i − rCi1 + δ − r
n

≤ 0 (A17)

and

− 1
2σ 2

i ((1 − αi)z̄i)2 + (µi − r)(1 − αi)z̄i − rCi2 + δ − r
n

≤ 0, (A18)

for i = 1, 2, . . . , n. Equations (A17) and (A18) then, respectively, imply that ∀zi ≤
z
¯ i,

− 1
2σ 2

i z2
i + (µi − r)zi − rCi1 + δ − r

n
≤ 0
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and ∀zi ≥ z̄i,

− 1
2σ 2

i ((1 − αi)zi)2 + (µi − r)(1 − αi)zi − rCi2 + δ − r
n

≤ 0,

for i = 1, 2, . . . , n. Summing over i and noting the fact that ϕ′′
i (zi) = 0 outside NT,

we then have Lcv(x, y) + u(c) ≤ Gv(x, y) ≤ 0 outside the NT region. Therefore,
condition 1 in part (a) also holds. Next, we show that condition 2 in part (a) is
true.

First,

Mv(x, y) = −1
r

e−rβx−∑n
i=1 νi ( yi ), (A19)

where

νi( yi) ≡ sup
ζi

(
ϕi(rβ( yi + ζi)) + (1 − αi)rβζ−

i − rβζ+
i − rβFi1{ζi �=0}

)
,

where ζ i �= 0 for at least one i. Conditional on a trade, by (45)–(47), we have

νi( yi) =




ψi
(
rβy

¯
∗
i

) − rβ
(
y
¯

∗
i
− yi

) − rβFi if yi < y
¯

∗
i

ψi(rβ yi) − rβFi if y
¯

∗
i

≤ yi ≤ ȳ∗
i

ψi
(
rβ ȳ∗

i

) + rβ(1 − αi)
(

yi − ȳ∗
i

) − rβFi if yi > ȳ∗
i .

(A20)

By (43) and (44), we find that (A20) becomes

νi( yi) =




Ci1 + rβ yi if yi < y
¯

∗
i

ψi(rβ yi) − rβFi if y
¯

∗
i

≤ yi ≤ ȳ∗
i

Ci2 + (1 − αi)rβ yi if yi > ȳ∗
i .

(A21)

By (45) and ψi(rβy
¯ i

) = Ci1 + rβy
¯ i

, we have ∀ yi ∈ (y
¯ i

, y
¯

∗
i
), ψi(rβ yi) > Ci1 + rβ yi.

Similarly, by (47) and ψi(rβ ȳi) = Ci2 + (1 − αi)rβ ȳi, we have ∀ yi ∈ ( ȳ∗
i , ȳi),

ψi(rβ yi) > Ci2 + (1 − αi)rβ yi. Combined with (A19) and (A21), this implies that
in NT

v(x, y) > Mv(x, y).

For any stock i that is in the buy region of this stock, that is, yi ≤ y
¯ i

, ϕi(rβyi) =
Ci1 + rβyi by (23). Similarly, for any stock i that is in the sell region of this stock,
that is, yi ≥ ȳi, ϕi(rβyi) = Ci2 + (1 − αi)rβyi. Thus, outside NT, we have

v(x, y) = Mv(x, y).

Therefore, condition 2 in part (a) also holds. Finally, we show that if there is a
solution to (22) subject to conditions (37)–(44), then it is unique. We prove by
contradiction.



334 The Journal of Finance

Suppose there are two different optimal combined controls ξ and ξ̂ . Clearly,
the value functions associated with these two controls must be identical in
IR × IRn for both to be optimal. The separability of the value function in ϕi then
implies that ∀i = 1, 2, . . . , n, ϕi(·) is identical to ϕ̂i(·) (and thus Ci1 = Ĉi1 and
Ci2 = Ĉi2), where ϕi(·) and ϕ̂i(·) are associated with ξ and ξ̂ , respectively. Since
the optimal consumption policy is completely determined by the value function,
it must also be identical for any given xt and yt. Therefore, the difference in ξ

and ξ̂ must come from the difference in the optimal stock trading policy (for at
least one stock). Without loss of generality, we suppose for stock k between 1
and n, there are two different optimal policies {z

¯k , z
¯
∗
k , z̄∗

k , z̄k} and {ẑ
¯k , ẑ

¯
∗
k , ˆ̄z∗

k , ˆ̄zk}.
Without loss of generality, we suppose z

¯k > a > ẑ
¯k , where a is a constant such

that ẑ
¯k < a < ẑ

¯
∗
k . By (37), we have ψ ′

k(a) = 1. On the other hand, by (45), we
have ψ̂ ′

k(a) > 1, which contradicts the fact that ϕk(·) is identical to ϕ̂k(·). There-
fore, the solution of the conjectured form is unique. This completes the proof of
Theorem 4. Q.E.D.

Proof of Proposition 1: Differentiating (22) once, we obtain

1
2σ 2

i z2
i ψ

′′′
i + (

σ 2
i zi − σ 2

i z2
i ψ

′
i + µizi

)
ψ ′′′

i − σ 2
i ziψ

′
i
2 + (µi − r)ψ ′

i = 0.

By (38) and (39), we have

ψ ′
i (z¯ i) = ψ ′

i

(
z
¯
∗
i

) = 1.

This implies that there must exist a ẑi ∈ (z
¯ i, z

¯
∗
i ) such that ψ ′′

i (ẑi) = 0 and ψ ′′′
i (ẑi) <

0. Otherwise, at any point z̃i such that ψ ′′
i (z̃i) = 0 we would have ψ ′

i (z̃i) < 1, con-
tradicting (45). We therefore have

−σ 2
i ẑiψ

′
i
2 + (µi − r)ψ ′

i > 0.

This implies

ẑi

rβ
<

µi − r
rβσ 2

i ψ ′
i

<
µi − r
rβσ 2

i

= y M
i .

Since z
¯ i < ẑi and y

¯ i
(αi, Fi) = z

¯ i
rβ

, the first inequality in (49) must hold. Similarly,
by (40), (41), and (47), the second inequality in (49) must also hold. Next, we
show that (50) holds.

We let z̃
¯ i = z

¯ i(αi, Fi) and z
¯ i = z

¯ i(αi, 0). Similar to (15)–(17), we have ψi(z¯ i) =
Ci1 + z

¯ i, ψ ′
i (z¯ i) = 1, and ψ ′′

i (z
¯ i) = 0. By (22), this implies that

− 1
2σ 2

i z
¯

2
i + (µi − r)z

¯ i − rCi1 + δ − r
n

= 0. (A22)

By (37) and (38), we have ψ̃ ′
i (z̃¯ i) = 1 and ψ̃i(z̃¯ i) = C̃i1 + z̃

¯ i. By (45), we then have
ψ̃ ′′

i (z̃
¯ i) > 0. By (22), we then have
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− 1
2σ 2

i z̃
¯

2
i + (µi − r)z̃

¯ i − rC̃i1 + δ − r
n

< 0. (A23)

Given a zi < min(z
¯ i, z̃

¯ i), we have ψ̃i(zi) = C̃i1 + zi and ψi(zi) = Ci1 + zi by the
boundary conditions. Because an increase in the fixed cost from zero to Fi > 0
decreases the value function for any given zi, we then must have Ci1 > C̃i1.
Combining this observation with (A22) and (A23), we then have

0 < − 1
2σ 2

i

(
z
¯

2
i − z̃

¯
2
i

) + (µi − r)(z
¯ i − z̃

¯ i) − r(Ci1 − C̃i1)

<
(−1

2σ 2
i (z

¯ i + z̃
¯ i) + (µi − r)

)
(z
¯ i − z̃

¯ i). (A24)

By the first inequality of (49), we have z
¯ i <

µi − r
σ 2

i
and z̃

¯ i <
µi − r

σ 2
i

. Inequality
(A24) then implies the first inequality of (50). Similarly, using the boundary
conditions at the sell boundary and the second inequality of (49), we find that
the second inequality of (50) holds. Q.E.D.

Appendix B

In this appendix, we provide the solution algorithms for solving the free-
boundary problems.

Algorithm 1: When there are only proportional costs.

1. Define a test function q : IR+ → IR+ as follows: for a given candidate z
¯ i,

solve the ODE (22) subject to equation (16) and

ψ(z
¯ i) = − 1

2σ 2
i z

¯
2
i + µiz¯ i + (δ − r)

r
,

which is obtained from equation (22) evaluated at z
¯ i using equations

(16) and (17); then solve equation (20) for z̄. If there is no z̄ satisfying
equation (20), set q equal to an arbitrarily large positive number, such as
ten. If there is a z̄ satisfying equation (20), set q equal to (1 − αi − ψ ′

i (z̄i))2.
2. Use a standard minimization algorithm to find the optimal z

¯ i ∈ [0, rβ y M
i ]

that minimizes q.15

Algorithm 2: When there are both fixed and proportional costs.

1. Define a test function q : IR2
+ → IR+ as follows: for a candidate z

¯ i and a
candidate d for ψ ′′

i (z
¯ i), solve the ODE (22) subject to condition (38) and

15 According to Theorems 2 to 4, the minimum of q is theoretically zero. Alternative numerical
procedures proposed in an earlier version of this paper also work well and obtain the same solu-
tions. However, this procedure and Algorithm 2 offer the advantage that they need virtually no
intervention on the starting points and are thus more robust for a wide range of parameters.
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ψ(z
¯ i) =

1
2σ 2

i z
¯

2
i d − 1

2σ 2
i z

¯
2
i + µiz¯ i + (δ − r)
r

,

which is obtained from ODE (22) evaluated at z
¯ i using condition (38);

then solve conditions (39)–(41) for z
¯
∗
i , z̄∗

i and z̄i, respectively. If there
is no solution for z

¯
∗
i , z̄∗

i , or z̄i, set q equal to an arbitrarily large posi-
tive number, such as ten. Otherwise, set Ci1 = ψi(z¯ i) − z

¯ i, Ci2 = ψi(z̄i) −
(1 − αi)z̄i, and q equal to [ψi(z¯

∗
i ) − (Ci1 + rβFi + z

¯
∗
i )]2 + [ψi(z̄∗

i ) − (Ci2 +
rβFi + (1 − αi)z̄∗

i )]2.
2. Use a standard minimization algorithm to find the optimal z

¯ i ∈ [0, rβ y M
i ]

and d > 0 that minimizes q, whose minimum theoretical value is zero at
the optimal solution.

Algorithm 3: When asset returns are correlated.

To save space, we only describe the algorithm for the two-stock case. For
the general case of n stocks, the procedure is similar. This algorithm is an
application of the projection method proposed by Judd (1999) to our problem. We
thus only provide the main steps in applying this method here. For details and
its theoretical foundation, we refer readers to Judd (1999). Let m = 0 and ẑi, i =
1, 2, . . . , 16, denote the coordinates of the eight corners of the no-transaction
and target boundaries (e.g., points “A,” “B,” “C,” “D,” “a,” “b,” “c,” and “d” in
Figure 5).

1. Set m = m + 1. Let the approximation function be

ψ̃m(z1, z2) =
m∑

i=0

m−i∑
j=0

aij Hi(z1)Hj (z2),

where the Hi(.) is the Hermite function of order i and coefficients aij are
to be determined.

2. Integrate the left-hand side of the PDE (53) over the no-transaction region,
NT using ψ̃m(z1, z2) in place of ψ(z1, z2). Denote this value as d1.

3. Next, reduce the four boundary conditions (54) and (59)–(61) to two con-
ditions by eliminating Ci1 and Ci2. Use ψ̃m(z1, z2) in place of ψ(z1, z2) to
compute the difference between the left-hand side value and the right-
hand side value of each of the resulting six boundary conditions ((55)–(58)
plus the newly obtained two conditions) for each stock. Denote these dif-
ferences (six for each stock) as dj, j = 1, 2, . . . , 12.

4. Then define the sum-of-squares test function qm = ∑13
i=1 d2

i .

5. Finally, use a standard optimization procedure to minimize qm over aij, i +
j ≤ m, 0 ≤ i, j and ẑi, i = 1, 2, . . . , 16. Note that qm is a polynomial function
of aij’s.

6. Repeat Steps 1–5 until both qm and qm+1 − qm are smaller than a preset
approximation error tolerance level.
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