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As shown by the existing empirical literature,1 market makers in over-the-counter markets

tend to make offsetting trades and have significant market power. In this paper, we develop

a market making model that captures these market features as well as other important char-

acteristics such as information asymmetry and inventory risk. In contrast to the existing

rational expectations models and microstructure models with information asymmetry,2 this

model introduces an alternative equilibrium setting where some uninformed investor with

market power (e.g., a market maker) can optimally shift some trades with the informed to

other discretionary investors by adjusting bid or ask. As a result, this model can help ex-

plain the puzzle that bid-ask spreads may decrease with information asymmetry, as shown

by empirical studies.3 Moreover, we show that consistent with empirical evidence,4 bid-ask

spreads can be positively correlated with trading volume. In contrast to double auction

models (e.g., Kyle (1989), Rostek and Weretka (2012)), supply and demand function compe-

tition models (e.g., Vives (2011)), and Nash Bargaining models (e.g., Atkeson, Eisfeldt, and

Weill (2014)), some agent in our model (i.e., the market maker) serves a dual role: a buyer

in one market and simultaneously a seller in another. Our solution shows how this dual role

of some participants affects the equilibrium outcome in these markets.

Specifically, we consider a setting with two trading dates and three types of risk averse

investors: informed investors, uninformed investors, and an uninformed market maker. On

date 0, all investors optimally choose how to trade a risk-free asset and a risky security

(e.g., an OTC stock, a corporate bond, or a derivative security) to maximize their expected

constant absolute risk averse (CARA) utility from the terminal wealth on date 1. All may

be endowed with some shares of the risky security. The security payoff becomes public just

before trading on date 1. Informed investors observe a private signal about the date 1 payoff

of the security just before trading on date 0 and thus have trading demand motivated by

private information. Informed investors also have non-information-based incentives to trade,

which we term as a liquidity shock and model as a random endowment of a nontradable asset

1E.g., Sofianos (1993), Shachar (2012), Garman (1976), Lyons (1995), Ang, Shtauber, and Tetlock (2011).
2E.g., Grossman and Stiglitz (1980), Diamond and Verrecchia (1981)), Glosten and Milgrom (1985), Kyle

(1989), Admati and Pfleiderer (1988), Boulatov, Hendershott, and Livdan (2010), Goldstein, Li, and Yang
(2013).

3E.g., Brooks (1996), Huang and Stoll (1997), Acker, Stalker and Tonks (2002), Acharya and Johnson
(2007).

4See, for example, Lin, Sanger and Booth (1995), Chordia, Roll, and Subrahmanyam (2001).
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whose payoff is correlated with that of the risky security.5 It follows that informed investors

also have trading demand motivated by the liquidity needs for hedging.

Due to high search costs, informed and uninformed investors must trade through the

market maker. We assume that the market maker posts bid and ask price schedules first as

in a Stackelberg game, taking into account their impact on other investors’ trading demand,

other investors then trade optimally taking the posted price schedules as given.6 The equi-

librium bid and ask depths are determined by the market clearing conditions at the bid and

at the ask, i.e., the total amount the market maker buys (sells) at the bid (ask) is equal to

the total amount other investors sell (buy). In equilibrium, the risk-free asset market also

clears.

Although this model incorporates many important features in these markets, such as

asymmetric information, inventory risk, imperfect competition, and risk aversion, and allows

both bid/ask prices and depths as well as all demand schedules to be endogenous, the model

is still tractable. Indeed, we solve the equilibrium bid and ask prices, bid and ask depths,

trading volume, and inventory levels in closed-form even when investors have different risk

aversion, different inventory levels, different liquidity shocks, different resale values of the

risky asset and heterogeneous private information.7

We find that in equilibrium, both bid-ask spread and market trading volume are pro-

portional to the absolute value of the reservation price difference between the informed and

the uninformed.8 The key intuition is that because the market maker can buy from some

investors at the bid and sell to other investors at the ask, what matters for the spread and the

5An alternative approach is to have three types of investors whom the market maker trades with: the
informed who trade only on private information, the discretionary uninformed, and the noise traders some
of whom buy and some of whom sell an exogenously given amount. This alternative model is much less
tractable because of the non-Gaussian filtering problem and more importantly, would not yield different
qualitative results, because the liquidity motivated trade of the informed in our model can be reinterpreted
as noise traders’ trade and the main intuition for our results still applies.

6This is equivalent to a setting where other investors submit demand schedules to the market maker (as in
Kyle (1989) and Cespa and Vives (2012)), who then chooses bid and ask prices. The order size dependence
of price schedules is consistent with the bargaining feature in less liquid markets. Indeed, we show that
the equilibrium outcome is equivalent to the solution to a Nash bargaining game between investors and the
market maker where the market maker has all the bargaining power.

7In the generalized model (in Section 5), there are eight types of equilibria characterized by the trading
directions of investors, e.g., some investors may choose not to trade in equilibrium, and both the informed
and the uninformed can trade in the same directions.

8The reservation price is the critical price such that an investor buys (sells) the security if and only if the
ask (bid) is lower (higher) than this critical price.
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trading volume is the reservation price difference between these investors. As in Goldstein,

Li, and Yang (2013), investors have different motives to trade and thus the reservation prices

can change differently in response to the same information and liquidity shocks. The greater

the reservation price difference, the greater the total gain from trading, the more other in-

vestors trade, and because of the market maker’s market power, the higher the spread. This

also implies that in contrast to the literature on portfolio selection with transaction costs

(e.g., Davis and Norman (1990), Liu (2004)), bid-ask spreads can be positively correlated

with trading volume. Clearly, a market maker’s market power and the feasibility of making

offsetting trades, which are missing in most of the existing literature, are critical for this

result. Therefore, our model predicts that in markets where dealers have significant market

power and can make offsetting trades, trading volume is positively correlated with bid-ask

spreads.

Empirical studies have shown that bid-ask spreads can decrease with information asym-

metry. For example, among studies that decompose the components of bid-ask spreads,

Huang and Stoll (1997) find that the asymmetric information component of the bid-ask

spread can be negative and statistically significant. Acharya and Johnson (2007) show that

in the credit default swap (CDS) market, spreads can also be lower with greater information

asymmetry. In contrast, extant asymmetric information models predict that as information

asymmetry increases, bid-ask spreads also increase. We show that our model can help ex-

plain this puzzle. Intuitively, as information asymmetry increases, to reduce exposure to the

greater adverse selection effect, the market maker prefers to shift part of the trades with

the informed to the uninformed. Unlike “noise traders” who have to trade the same amount

at whatever quoted prices, in our paper the uninformed’s trading amount depends on the

trading price and the adverse selection effect they face. Therefore, with a greater adverse

select effect, the market maker needs to offer a better price (lower ask or higher bid) to the

uninformed in order to induce them to take some of the market maker’s trades with the

informed. This results in a narrower spread. On the other hand, if the uninformed have an

initial endowment of the asset, then there is an opposing force: as information asymmetry

increases, the uncertainty about the value of the initial endowment increases, and thus the

uninformed are willing to sell at a lower bid price. This opposing force drives down the bid
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price when the informed buy and thus can drive up the spread. Accordingly, our model

predicts that in markets where market makers have significant market power and can make

frequent offsetting trades and the current holdings of the uninformed are small, the average

spread decreases with information asymmetry.

In most existing models on the determination of bid-ask spread or price impact in the

presence of information asymmetry (e.g., Glosten and Milgrom (1985), Kyle (1989)), a mar-

ket maker deals with the adverse selection problem by lowering the bid and/or increasing

the ask or increasing the price impact per unit of trade. Our model demonstrates a second

approach a market maker can use to control the adverse selection effect: shifting part of her

trade with the informed to other investors.9 We show that it is optimal for the market maker

to combine these two approaches to best manage the adverse selection effect. When a market

maker only uses the first approach, bid-ask spread is higher with asymmetric information,

trading volume is negatively correlated with bid-ask spread and market breaks down (i.e.,

no trade) when bid-ask spread is infinity. In contrast, when a market maker also uses the

second approach, not only bid-ask spread can be lower with asymmetric information, trading

volume can be positively correlated with bid-ask spreads, but also market breaks down when

the bid-ask spread is zero.

The critical driving forces behind our main results are: (1) the market maker has market

power; (2) investors trade through the market maker (possibly due to high search costs);

and (3) the uninformed are discretionary. Because of (1) and (2), the spread is proportional

to the absolute value of the reservation price difference between the informed and the unin-

formed. Because of (3), the adverse selection effect of information asymmetry drives down

the expected spread as explained above. Our main results are robust to changes in other

ingredients of the model. For example, a market maker’s risk aversion is irrelevant because

it does not affect the reservation price difference between the informed and the uninformed.

As we show in an earlier version and report in Section A.4 in the Appendix, having multiple

market makers engaging in oligopolistic Cournot competition lowers the spread but does

not change the main qualitative results. Similarly, the assumption that all the informed

9In contrast, in the existing literature, while noise traders pay worse prices as information asymmetry
increases, a market maker cannot choose to transfer more of the trade with the informed to noise traders by
adjusting prices.
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are price takers and have the same information is only for simplicity. For example, suppose

the informed have heterogeneous information and are strategic, but all have significantly

higher reservation prices than the uninformed. Then in equilibrium all the informed will be

buyers and the uninformed will be the sellers, as in our simplified model. The spread will

be proportional to the absolute value of the difference between some weighted average of

the reservation prices of the informed and the reservation price of the uninformed by similar

intuition.

While as cited before, there are findings where bid-ask spreads can decrease with informa-

tion asymmetry, and trading volume and bid-ask spreads can be positively correlated, there

are also findings where the opposite is true (e.g., Green, Hollifield and Schürhoff (2007), Ed-

wards, Harris and Piwowar (2007)). The existing literature cannot reconcile these seemingly

contradictory empirical evidence. While many factors may drive these opposite findings and

it is beyond the scope of this paper to pinpoint the key drivers for these results through

a thorough empirical analysis, our model provides conditions under which these opposite

empirical findings can arise and can shed some light on possible sources. For example, our

model might help explain the negative relationship between spread and information asymme-

try found by Acharya and Johnson (2007), because they focus on more active CDS markets

where dealers with significant market power can make relatively frequent offsetting trades

and most customers have small initial holdings. In addition, consistent with the prediction

of positive correlation between spreads and trading volume, Li and Schürhoff (2011) find

that in municipal bond markets central dealers, who likely have greater market power and

can make offsetting trades more easily than peripheral dealers, charge higher bid-ask spreads

and also experience greater trading volume.

As our paper, Hall and Rust (2003) also consider a monopolist market maker who posts

bid and ask prices. Different from our model, however, their model abstracts away from

asymmetric information, which is the main focus of our analysis. Although our model

focuses on OTC financial markets, minor modifications of the model can be applied to other

markets such as a market where producers have market power in both input and output

markets and buy from input producers and sell to output buyers.10

10For example, if the output is proportional to input due to a linear production technology, then our model
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The remainder of the paper proceeds as follows. In Section 1 we briefly describe the

OTC markets and discuss additional related literature. We present the model in Section 2.

In Section 3 we derive the equilibrium. In Section 4 we provide some comparative statics

on asset prices and bid-ask spreads. We present, solve and discuss a generalized model in

Section 5. We conclude in Section 6. All proofs are provided in Appendix A. In Appendix

B, we present the rest of the results of Theorem 2 for the generalized model.

1. Over-the-Counter Markets and Related Literature

Most types of government and corporate bonds, a wide range of derivatives (e.g., CDS and

interest rate swaps), securities lending and repurchase agreements, currencies, and penny

stocks are traded in the OTC markets.11 In almost all of these markets, investors only

trade with designated dealers (market makers) who typically quote a pair of bid and ask

prices that are explicitly or implicitly contingent on order sizes.12 Nash bargaining has been

widely used by the existing literature to model bilateral negotiation in OTC markets (e.g.,

Duffie, Garleanu, and Pedersen (2005), Gofman (2011), Atkeson, Eisfeldt, and Weill (2014)).

As shown in Section A.2 in Appendix A, our modeling approach where the market maker

chooses prices to maximize her utility taking into account the impact on other investors’

trading demand is equivalent to the solution to a Nash bargaining game between investors

and the market maker where the market maker has all the bargaining power.

Dealers in OTC markets face significant information asymmetry and inventory risk, and

therefore, they frequently engage in offsetting trades within a short period of time with

other customers or with other dealers when their inventory level deviates significantly from

desired targets (e.g., Acharya and Johnson (2007), Shachar (2012)). The cost of searching for

a counterparty can be significant in some OTC markets for some investors, which motivates

many studies to use search-based or network-based models for OTC markets (e.g., Duffie,

only needs almost trivial changes.
11The Nasdaq stock market was traditionally also a dealer market before the regulatory reforms imple-

mented in 1997. Some of the empirical studies we cite (e.g., Huang and Stoll (1997)) use before-1997 Nasdaq
data.

12For example, Li and Schürhoff (2011) show that dealers intermediate 94% of the trades in the municipal
bond market, with most of the intermediated trades representing customer-dealer-customer transactions.
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Gârleanu, and Pedersen (2005), Vayanos and Weill (2008)). While we do not explicitly model

the search cost, the assumption that investors can only trade through a market maker can

be viewed as a result of significant costs of searching for other counterparty. In addition, the

generalized model can indirectly capture some additional costs for liquidation of inventory

on date 1. For example, the effect of high search cost, long search time, and highly uncertain

resale value of the security is qualitatively similar to the effect of a low mean and high

volatility distribution for the resale value of the security acquired by a market maker in

the generalized model. This is clearly just a reduced form, but likely indirectly captures

the first order effect of these features. More importantly, explicitly modeling searching

would not change our main results such as bid-ask spreads and trading volume increase

with the magnitude of the reservation price difference and bid-ask spreads can decrease with

information asymmetry, because after a successful search of a counterparty, traders face the

same optimization problems as what we model.

In contrast to this model, existing market making literature either ignores information

asymmetry (e.g., Garman (1976), Stoll (1978), and Ho and Stoll (1981)) or abstracts away

a market maker’s inventory risk (e.g., Kyle (1989), Glosten and Milgrom (1985), Admati

and Pfleiderer (1988)). However, both information asymmetry and inventory risk are impor-

tant determinants of market prices and market liquidity for many over-the-counter (OTC)

markets. Different from inventory-based models, our model takes into account the im-

pact of information asymmetry on bid and ask prices and inventory levels. In contrast to

most information-based (rational expectations) models (e.g., Grossman and Stiglitz (1980),

Glosten and Milgrom (1985)), in our model a market maker faces discretionary uninformed

investors, has significant market power, profits from bid-ask spreads, and can face significant

inventory risk. In particular, the market maker in our model may be willing to lose money

from a particular trade in expectation in equilibrium especially when she has high initial

inventory.13

Different from most of the existing literature on dealership markets,14 a market maker in

13On the other hand, when the market maker has low initial inventory she makes positive expected profit
from inventory carried to date 1 because of the required inventory risk premium, consistent with the findings
of Hendershott, Moulton, and Seasholes (2007).

14E.g., Leach and Madhavan (1992, 1993), Lyons (1997), Biais, Foucault and Salanié (1998), Viswanathan
and Wang (2004), and Duffie, Gârleanu, and Pedersen (2005).
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our model can shift part of the trade with the informed to other customers by adjusting bid

or ask and as a result, expected spread can decrease with information asymmetry.

2. The model

We consider a one period setting with trading dates 0 and 1. There are a continuum of

identical informed investors with mass NI , a continuum of identical uninformed investors

with mass NU , and NM = 1 designated market maker who is also uninformed. They can

trade one risk-free asset and one risky security on date 0 and date 1 to maximize their

expected constant absolute risk aversion (CARA) utility from their wealth on date 1. There

is a zero net supply of the risk-free asset, which also serves as the numeraire and thus the

risk-free interest rate is normalized to 0. The total supply of the security is N × θ̄ ≥ 0 shares

where N = NI+NU +NM and the date 1 payoff of each share Ṽ ∼ N(V̄ , σ2
V ) becomes public

on date 1, where V̄ is a constant, σV > 0, and N denotes the normal distribution. The

aggregate risky asset endowment is Niθ̄ shares for type i ∈ {I, U,M} investors. No investor

is endowed with any risk-free asset.

On date 0, informed investors observe a private signal

ŝ = Ṽ − V̄ + ε̃ (1)

about the payoff Ṽ , where ε̃ is independently normally distributed with mean zero and

variance σ2
ε .

15 To prevent the informed’s private information from being fully revealed in

equilibrium, following Wang (1994), O’Hara (1997), and Vayanos and Wang (2012), we

assume that the informed also have non-information based trading demand. Specifically, we

assume that an informed investor is also subject to a liquidity shock that is modeled as a

random endowment of X̂I ∼ N(0, σ2
X) units of a non-tradable risky asset on date 0, with

X̂I realized on date 0 and only known to informed investors.16 The non-tradable asset has

a per-unit payoff of Ñ ∼ N(0, σ2
N) that has a covariance of σV N with Ṽ and is realized and

15Throughout this paper, “bar” variables are constants, “tilde” random variables are realized on date 1
and “hat” random variables are realized on date 0.

16The random endowment can represent any shock in the demand for the security, such as a liquidity
shock or a change in the needs for rebalancing an existing portfolio or a change in a highly illiquid asset.
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becomes public on date 1. The correlation between the non-tradable asset and the security

results in a liquidity demand for the risky asset to hedge the non-tradable asset payoff.

In addition, to provide a good measure of information asymmetry, we assume that there

is a public signal

Ŝs = ŝ+ η̂ (2)

about the informed’s private signal ŝ that all investors (i.e., the uninformed, the market

maker, and the informed) can observe, where η̂ is independently normally distributed with

mean zero and variance σ2
η.

17 This public signal represents public news about the asset payoff

determinants, such as macroeconomic conditions, cash flow news and regulation shocks,

which is correlated with but less precise than the informed’s private signal. As we show

later, the noisiness σ2
η of the public signal can serve as a good measure of information

asymmetry. In empirical tests, one can use the amount of relevant public news as a proxy

for this information asymmetry measure, because the more relevant public news, the better

the uninformed can estimate the security payoff.18

Due to high search costs, all trades must go through the designated market maker (dealer)

whose market making cost is assumed to be 0.19 Specifically, I and U investors sell to the

market maker at the bid B or buy from her at the ask A or do not trade at all. The market

maker posts (commits) her price schedules first. Then informed and uninformed investors

decide how much to trade. When deciding on what price schedules to post, the market maker

takes into account the best response functions (i.e., the demand schedules) of the informed

and the uninformed given the posted price schedules.20

For each i ∈ {I, U,M}, investors of type i are identical both before and after realizations

of signals on date 0 and thus adopt the same trading strategy. Let Ii represent a type i

17While this public signal can also be observed by the informed, it is useless to them because they can
already perfectly observe it privately.

18Information asymmetry proxies such as disclosure level, analyst coverage and transparency commonly
used in the empirical literature are clearly some measures of the amount of relevant public news.

19Assuming zero market making cost is only for better focus and expositional simplicity. Market making
cost is considered in an earlier version, where a potential market maker must pay a fixed market-making
utility cost on date 0 to become a market maker. We show that no results in this paper are altered by this
fixed cost.

20This can be reinterpreted as a Stackelberg game between the market maker and other investors where
the market maker moves first by posting bid and ask price schedules (that depend on order sizes), then other
players move by trading the optimal amount given the prices.
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investor’s information set on date 0 for i ∈ {I, U,M}. For i ∈ {I, U}, a type i investor’s

problem is to choose the (signed) demand schedule θi(A,B) to solve

maxE[−e−δW̃i |Ii], (3)

where

W̃i = θ−i B − θ+i A+ (θ̄ + θi)Ṽ + X̂iÑ , (4)

X̂U = 0, δ > 0 is the absolute risk-aversion parameter, x+ := max(0, x), and x− :=

max(0,−x).

Since I and U investors buy from the market maker at ask and sell to her at bid, we

can view these trades as occurring in two separate markets: the “ask” market and the “bid”

market. In the ask market, the market maker is the supplier, other investors are demanders

and the opposite is true in the bid market. The monopolist market maker chooses bid and

ask prices, taking into account other investors’ demand curve in the ask market and other

investors’ supply curve in the bid market.

Given bid price B and ask price A, let the demand schedules of the informed and the

uninformed be denoted as θ∗I (A,B) and θ∗U (A,B) respectively. By market clearing conditions,

the equilibrium ask depth α must be equal to the total amount bought by other investors

and the equilibrium bid depth β must be equal to the total amount sold by other investors,21

i.e.,

α =
∑

i=I, U

Niθ
∗
i (A,B)+, β =

∑

i=I, U

Niθ
∗
i (A,B)−, (5)

where the left-hand sides represent the sale and purchase by the market maker respectively

and the right-hand sides represent the total purchases and sales by other investors respec-

tively.22 Note that if an investor decides to buy (sell), then only the ask (bid) price affects

how much he buys (sells), i.e., θ∗i (A,B)+ only depends on A and θ∗i (A,B)− only depends on

B. Therefore, the bid depth β only depends on B, henceforth referred as β(B) and the ask

depth α only depends on A, hence forth referred as α(A).

Then the designated market maker’s problem is to choose ask price A and bid price B

21To help remember, Alpha denotes Ask depth and Beta denotes Bid depth.
22The risk-free asset market will be automatically cleared by the Walras’ law.
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to solve

maxE
[

−e−δW̃M |IM

]

, (6)

subject to

W̃M = α(A)A− β(B)B + (θ̄ + β(B)− α(A))Ṽ . (7)

This leads to our definition of an equilibrium:

Definition 1 An equilibrium (θ∗I (A,B), θ∗U(A,B), A∗, B∗, α∗, β∗) is such that

1. given any A and B, θ∗i (A,B) solves a type i investor’s Problem (3) for i ∈ {I, U};

2. given θ∗I (A,B) and θ∗U(A,B), A∗ and B∗ solve the market maker’s Problem (6);

3. market clearing condition (5) is satisfied by θ∗I (A,B), θ∗U(A,B), A∗, B∗, α∗, and β∗.

2.1. Discussions on the assumptions of the model

In this subsection, we provide justifications for our main assumptions and discuss whether

these assumptions are important for our main results.

The assumption that there is only one market maker is for expositional focus. A model

with multiple market makers was solved in an earlier version of this paper, the results of which

are reported in Section A.4 in the Appendix. In this model with oligopolistic competition,

we show that competition among market makers, while lowering spreads, does not change

our main qualitative results (e.g., expected bid-ask spread can decrease with information

asymmetry). In illiquid markets such as some OTC markets, it is costly for non-market-

makers to find and directly trade with each other. Therefore, most trades are through a

market maker.

One important assumption is that the market maker can buy at the bid from some

investors and sell at the ask to other investors at the same time. This assumption captures

the fact that in many OTC markets, when a dealer receives an inquiry from a client, she

commonly contacts other clients (or dealers) to see at which price and by how much she

can unload the inquired trade before she trades with the initial client. In addition, even
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for markets where there is a delay between offsetting trades, using a dynamic model with

sequential order arrival would unlikely yield qualitatively different results. For example, in

such a dynamic model, spreads can still decrease with information asymmetry, because even

when orders arrive sequentially and thus a market maker needs to wait a period of time for

the offsetting trades, as long as she has a reasonable estimate of the next order, she will

choose qualitatively the same trading strategy.

To keep information from being fully revealed in equilibrium, we assume that informed

investors have liquidity shocks in addition to private information. One can interpret this

assumption as there are some pure liquidity traders who trade in the same direction as the

informed. Alternatively, one can view an informed investor as a broker who combines infor-

mation motivated trades and liquidity motivated trades. The assumption that all informed

traders have the same information and the same liquidity shock is only for simplicity so that

there are only two groups of non-market-makers in the model. Our main results still hold

when they have different information and different liquidity shocks. Intuitively, no matter

how many heterogenous investor groups there are, the equilibrium bid and ask prices would

divide these groups into Buy group, Sell group, and No trade group. Therefore, as long as

the characteristics of the Buy and Sell group investors are similar to those in our simpli-

fied model, our main results still hold. For example, if in equilibrium some informed buy,

other informed sell, and the uninformed do not trade, then the reservation price difference

between the two informed groups would determine the spread, which can still decrease with

information asymmetry (between the two informed groups) by similar intuition.

We also assume that the market maker posts price schedules first (after taking into

account what would be the best responses of other investors), then other investors choose

their optimal trading strategies taking the posted price schedules as given, and thus other

investors are not strategic. As we show, this assumption is equivalent to assuming that in

a Nash Bargaining game between the market maker and other investors, the market maker

has all the bargaining power. This is consistent with the common practice in OTC markets

that a dealer making two-sided markets typically provides a take-it-or-leave-it pair of prices,

a bid and an offer, to customers (e.g., Duffie (2012), Chapter 1).

Different from the existing models, we assume there is public signal that is correlated
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with the private signal of the informed. This additional signal is not critical for our main

results (e.g., spread can be smaller with asymmetric information), but has two main benefits.

In addition to providing a good measure of information asymmetry, its introduction also

makes our model nest models with different degrees of information asymmetry in one unified

setting.23

3. The equilibrium

In this section, we solve the equilibrium bid and ask prices, bid and ask depths and trading

volume in closed form.

Given A and B, the optimal demand schedule of a type i investor (i ∈ {I, U}) is

θ∗i (A,B) =







PR
i −A

δVar[Ṽ |Ii]
A < PR

i ,

0 B ≤ PR
i ≤ A,

−
B−PR

i

δVar[Ṽ |Ii]
B > PR

i ,

(8)

where

PR
i = E[Ṽ |Ii]− δCov[Ṽ , Ñ |Ii]X̂i − δVar[Ṽ |Ii]θ̄ (9)

is the investor’s reservation price (i.e., the critical price such that a non-market-maker buys

(sells, respectively) the security if and only if the ask price is lower (the bid price is higher,

respectively) than this critical price).

Because the informed know exactly {ŝ, X̂I} while equilibrium prices A∗ and B∗ and the

public signal Ŝs are only noisy signals about {ŝ, X̂I}, the information set of the informed in

equilibrium is

II = {ŝ, X̂I}, (10)

23For example, the case where σ2
η = 0 implies that the uninformed and the market maker can perfectly

observe ŝ from the public signal and thus represents the symmetric information case. The case where
σ2
η = ∞, on the other hand, implies that the public signal is useless and thus corresponds to the asymmetric

information case as modeled in the standard literature, i.e., there is no public signal about the private
information.
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which implies that

E[Ṽ |II ] = V̄ + ρI ŝ, Var[Ṽ |II ] = ρIσ
2
ε , Cov[Ṽ , Ñ |II ] = (1− ρI)σV N , (11)

where

ρI :=
σ2
V

σ2
V + σ2

ε

. (12)

Equation (9) then implies that

PR
I = V̄ + Ŝ − δρIσ

2
ε θ̄, (13)

where Ŝ := ρI ŝ + hX̂I and h = −δ(1 − ρI)σV N represents the hedging premium per unit of

liquidity shock.

While ŝ and X̂I both affect the informed investor’s demand and thus the equilibrium

prices, other investors can only infer the value of Ŝ from market prices because the joint

impact of ŝ and X̂I on market prices is only through Ŝ. In addition to Ŝ, other investors

can also observe the public signal Ŝs about the private signal ŝ. Thus we conjecture that the

equilibrium prices A∗ and B∗ depend on both Ŝ and Ŝs. Accordingly, the information sets

for the uninformed investors and the market maker are24

IU = IM = {Ŝ, Ŝs}. (14)

Then the conditional expectation and conditional variance of Ṽ for the uninformed and the

market maker are respectively

E[Ṽ |IU ] = V̄ + ρU(1− ρX)Ŝ + ρUρXρI Ŝs, (15)

Var[Ṽ |IU ] = ρUρI(σ
2
ε + ρXσ

2
η), (16)

24Note that uninformed only need to observe their own trading price, i.e., A∗ or B∗, not both A∗ and B∗.
For OTC markets, investors may not be able to observe trading prices by others, although with improving
transparency, this has also become possible in some markets (e.g., TRACE system in the bond market).
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where

ρX :=
h2σ2

X

h2σ2
X + ρ2Iσ

2
η

, ρU :=
σ2
V

σ2
V + ρXρIσ2

η

≤ 1. (17)

It follows that the reservation price for a U investor and the market maker is

PR
U = PR

M = V̄ + ρU(1− ρX)Ŝ + ρUρXρI Ŝs − δρUρI
(
σ2
ε + ρXσ

2
η

)
θ̄. (18)

Let ∆ denote the difference in the reservation prices of I and U investors. We then have

∆ := PR
I − PR

U = (1− ρU)

((

1 +
σ2
V

ρIσ2
η

)

Ŝ −
σ2
V

σ2
η

Ŝs + δρIσ
2
V θ̄

)

. (19)

Let

ν :=
Var[Ṽ |IU ]

Var[Ṽ |II ]
= ρU +

ρUρXσ
2
η

σ2
ε

≥ 1

be the ratio of the security payoff conditional variance of the uninformed to that of the

informed, and

N := νNI +NU + 1 ≥ N

be the information weighted total population. The following theorem provides the equilib-

rium bid and ask prices and equilibrium security demand in closed-form.25

Theorem 1 1. The equilibrium bid and ask prices are respectively

A∗ = PR
U +

νNI

2
(
N + 1

)∆+
∆+

2
, (20)

B∗ = PR
U +

νNI

2
(
N + 1

)∆−
∆−

2
. (21)

25Because all utility functions are strictly concave and all budget constraints are linear in the amount
invested in the security, there is a unique solution to the problem of each informed and each uninformed
given the bid and ask prices. Because the market clearing bid and ask depths are linear in bid and ask prices,
there is a unique solution to her utility maximization problem (which already takes into account the market
clearing conditions). This implies that there is a unique equilibrium when all investors trade in equilibrium.
When some investors do not trade in equilibrium as illustrated in Section 5, there are multiple equilibria
because either bid or ask would not be unique (see Theorem 2).
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The bid-ask spread is

A∗ − B∗ =
|∆|

2
=

1

2
(1− ρU)

∣
∣
∣
∣

(

1 +
σ2
V

ρIσ2
η

)

Ŝ −
σ2
V

σ2
η

Ŝs + δρIσ
2
V θ̄

∣
∣
∣
∣
. (22)

2. The equilibrium quantities demanded are

θ∗I =
NU + 2

2
(
N + 1

)
∆

δVar[Ṽ |II ]
, θ∗U = −

νNI

2
(
N + 1

)
∆

δVar[Ṽ |IU ]
; (23)

the equilibrium ask and bid depths are respectively

α∗ = NI(θ
∗
I )

+ +NU(θ
∗
U )

+, (24)

β∗ = NI(θ
∗
I )

− +NU(θ
∗
U )

−, (25)

which implies that the equilibrium trading volume is

α∗ + β∗ =
NI(NU + 1)

N + 1

(
|∆|

δVar[Ṽ |II ]

)

. (26)

As shown in Section A.2 in Appendix A, the above equilibrium can be reinterpreted as

the solution to a Nash bargaining game between the market maker and other investors where

the market maker has all the bargaining power. In a nutshell, in the Nash bargaining game,

the market maker and an investor bargain over the trading price with the trading amount

determined by the optimal demand schedule of the investor. Therefore, the Nash bargaining

game where the market maker has all the bargaining power is to choose the trading price

to maximize the market maker’s expected utility given the demand schedule of the investor,

and thus yields exactly the same outcome as our solution above.26

Equations (20) and (21) imply that in equilibrium both bid and ask prices are determined

by the reservation price of the uninformed and the reservation price difference between the in-

formed and the uninformed. In existing models with information asymmetry, an uninformed

26We also solve the case where other investors have bargaining power and the case where they bargain over
both trade price and trade size, the qualitative results are the same. For example, the equilibrium bid-ask
spread is still proportional to the absolute value of the reservation price difference between the informed and
the uninformed.
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counterparty of the informed controls the adverse selection effect of information asymmetry

by charging a price premium (if the informed buy) or demanding a price discount (if the

informed sell). In our model, to control the adverse selection effect, the market maker also

adjusts the trading price with the uninformed to induce them to take part of her trade with

the informed, in addition to varying the trading price with the informed. Consider the case

where the reservation price of the informed is higher than that of the uninformed (i.e., ∆ > 0)

and thus the informed buy and the uninformed sell in equilibrium. Because the information

weighted total population N̄ increases with the uninformed population NU , Equation (20)

implies that as NU decreases, the ask price paid by the informed increases. This is because

as the uninformed population NU decreases, the market maker can shift less of her trade

with the informed to the uninformed. In the extreme case where there is no (discretionary)

uninformed investor (as in many existing models), the market maker charges the highest ask

price because she can no longer shift any of her trade with the informed to other investors.

In addition, given the public signal Ŝs, all investors can indeed infer Ŝ from observing

their trading prices as conjectured, because of the one-to-one mapping between the two.

Even in the generalized model in Section 5 where the informed do not trade in equilibrium,

the uninformed can still infer Ŝ if the equilibrium price is set such that the informed are

indifferent between trading and no trading, because the uninformed can then back out Ŝ

that makes the informed’s trade size equal to zero from market prices.27

Note that because the equilibrium bid and ask price schedules depend on Ŝ and the public

signal Ŝs, the market maker can indeed post the bid and ask price schedules before observing

the order flow and the public signal. The bid and ask price levels are then determined after

the realizations of the signals revealed by the orders. Because by (23) there is a one-to-one

mapping between Ŝ and the informed’s and the uninformed’s order sizes for a given Ŝs, the

market maker can also equivalently post the price schedules as (nonlinear) functions of the

informed’s and the uninformed’s order sizes. The order size dependence is similar to the

“quantity discounts” allowed by Biais, Foucault and Salanié (1998) for dealership markets,

although there is no information asymmetry considered in their model.

27As in Glosten (1989) and Vayanos and Wang (2012), the market maker in our model can infer how
much informed investors are trading. However, she does not know how much is due to information on the
security’s payoff or how much is due to the liquidity demand.
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Theorem 1 also shows that the equilibrium bid-ask spread is equal to the absolute value

of the reservation price difference between the informed and the uninformed, divided by 2

(more generally, as shown in an earlier version of the paper, divided by NM + 1). This is

similar to the results of classical models on monopolistic firms who set the market price to

maximize profit. Different from these monopolistic firms, however, the market maker both

buys and sells and makes profit from the spread. As conjectured, Equation (23) implies

that I investors buy and U investors sell if and only if I investors have a higher reservation

price than U investors. Because the market maker has the same reservation price as the U

investors, in the net she trades in the same direction as U investors.

In the standard literature on portfolio choice with transaction costs (e.g., Davis and

Norman (1990), Liu (2004)), it is well established that as the bid-ask spread increases,

investors reduce trading volume to save on transaction costs and thus trading volume and

bid-ask spread move in the opposite directions. In contrast, Theorem 1 implies that bid-ask

spreads and trading volume can move in the same direction, because both trading volume and

bid-ask spread increase with |∆|. Lin, Sanger and Booth (1995) find that trading volume and

effective spreads are positively correlated at the beginning and the end of the day. Chordia,

Roll, and Subrahmanyam (2001) find that the effective bid-ask spread is positively correlated

with trading volume. Our model suggests that these positive correlations may be caused

by changes in the valuation difference of investors. There are also empirical findings that

bid-ask spreads can be negatively correlated with trading volume (e.g., Green, Hollifield

and Schürhoff (2007), Edwards, Harris and Piwowar (2007)). The negative correlation is

consistent with the case where the bid-ask spread is almost exogenous, as in any partial

equilibrium model (e.g., Liu (2004)). When market makers have near perfect competition,

the bid-ask spread is essentially determined by the market-making cost and therefore is

largely exogenous. Thus, one of the empirically testable implications of our model is that

when market makers have significant market power, bid-ask spreads and trading volume are

positively correlated. This prediction seems consistent with the finding of Li and Schürhoff

(2011): In municipal bond markets, central dealers, who likely have greater market power

than peripheral dealers, charge higher bid-ask spreads and also enjoy greater trading volume.

Next we provide the essential intuition for the results in Theorem 1 through graphical
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(b) The Uninformed Buy and the Informed Sell

Figure 1: Demand/Supply Functions and Bid/Ask Spreads.
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illustrations. Suppose PR
I > PR

U and thus I investors buy and U investors sell. The market

clearing condition (5) implies that

α = NI
PR
I − A

δVar[Ṽ |II ]
, β = NU

B − PR
U

δVar[Ṽ |IU ]
.

We plot the above demand and supply functions and equilibrium spreads in Figure 1 (a).

Similarly, we present Figure 1 (b) for the case where the informed sell and the uninformed

buy. Figure 1 shows that the higher the bid, the more a market maker can buy from other

investors, and the lower the ask, the more a market maker can sell to other investors. Facing

the demand and supply functions of other investors, a monopolist market maker optimally

trades off the prices and quantities. Similar to the results of classical models on monopolistic

firms who set a market price to maximize profit, the bid and ask spread is equal to the

absolute value of the reservation price difference |∆| divided 2. In addition, as implied by

Theorem 1, Figure 1 (a) illustrates that the difference between PR
I (PR

U ) and the ask (bid)

price is also proportional to the reservation price difference magnitude |∆|. Therefore the

trading amount of both I and U investors and thus the aggregate trading volume all increase

with |∆|. The shaded areas represent the profits (min(α∗, β∗)(A∗ − B∗)) the market maker

makes from the bid-ask spread at time 0.

In contrast to the existing literature that assumes zero expected profit for each trade (e.g.,

Glosten and Milgrom (1985)), Theorem 1 implies that a market maker may lose money in

expectation on a particular trade. For example, suppose ∆ > 0 (which implies that the

informed buy at the ask and the uninformed sell at the bid), the per share expected profit

of the market maker from the trade at the bid (not including the profit from the spread) is

equal to

E[Ṽ |IM ]− B∗ = δVar[Ṽ |IM ]θ̄ −
NIν

2(N̄ + 1)
∆, (27)

which can be negative if ∆ is large, in which case the market maker on average loses to the

uninformed and makes money from the informed. The market maker is willing to buy from

the uninformed in anticipation of a loss from this trade because she can sell the purchased

shares at a higher price (i.e., ask). Because of the hedging benefit, the informed may be

willing to buy from the market maker in anticipation of a loss from this purchase. This same

19



intuition applies to a dynamic setting where orders arrive sequentially. For example, seeing

an order to sell at the bid, if the market maker expects that she will be able to unwind part

of her purchase later at a higher price, she would be willing to accommodate the sell order

even in anticipation of a loss for this purchase. This suggests that using a dynamic model

does not change these qualitative results, while making the analysis less tractable.

Theorem 1 and Equation (27) imply when ∆ < 0, a market maker buys in the net and

she makes positive expected profit from inventory carried over if she does not have any initial

inventory (i.e., θ̄ = 0), because of the required inventory risk premium. This is consistent

with the findings of Hendershott, Moulton, and Seasholes (2007).

4. Comparative statics

In this section, we provide some comparative statics on asset prices and market illiquidity,

focusing on the impact of information asymmetry and liquidity shock volatility.

4.1. A measure of information asymmetry

While there is a vast literature on the impact of information asymmetry on asset pricing and

market liquidity, to our knowledge, if the informed do not know exactly the future payoff

(as in our model), then there is still not a good measure of information asymmetry, i.e.,

a change of which does not affect other relevant economic variables such as the quality of

aggregate information about the security payoff.28 For example, the precision of a private

signal about asset payoff would not be a good measure, because a change in the precision

also changes the quality of aggregate information about the payoff and both information

asymmetry and information quality can affect economic variables of interest (e.g., prices,

liquidity). Even a comparison between the cases with and without asymmetric information

28The quality of aggregate information about the security payoff is measured by the inverse of the security
payoff variance conditional on all the information in the economy, i.e.,

(Var(Ṽ |II ∪ IU ∪ IM ))−1 = (Var(Ṽ |II))
−1 =

σ2
V + σ2

ε

σ2
V σ

2
ε

, (28)

where the first equality follows from the fact that the informed have better information than the rest and
the second from (11).

20



cannot attribute the difference to the impact of information asymmetry alone, as long as

the information quality is different across these two cases. We next propose a measure of

information asymmetry.

One of the fundamental manifestations of asymmetric information is that the security

payoff conditional variance for the uninformed is greater than that for the informed, i.e.,

Var(Ṽ |IU)− Var(Ṽ |II) =

((
σ2
ε + σ2

V

σ2
V

)2(

1 +
σ4
V σ

2
η

δ2σ4
εσ

2
V Nσ

2
X

)
1

σ2
η

+
σ2
ε + σ2

V

σ4
V

)−1

≥ 0. (29)

The greater this conditional variance difference, the greater the information asymmetry.

This difference is monotonically increasing in σ2
η, σ2

V N and σ2
X , but nonmonotonic in σ2

ε

and σ2
V .

29 A change in σ2
V N would change the correlation between the nontraded asset

and the risky security while a change in σ2
X would change the unconditional liquidity shock

uncertainty. In addition to the undesirable nonmononicity, a change in σ2
ε or σ2

V would also

change the quality of aggregate information about the security payoff. In contrast, a change

in σ2
η only changes the information asymmetry but not the quality of aggregate information

or the unconditional liquidity shock uncertainty or the correlation between the nontraded

asset and the risky security. Accordingly, to isolate the impact of information asymmetry in

the subsequent analysis, we use σ2
η as the measure of information asymmetry. Similar idea

behind the noisiness of the public signal (σ2
η) about the private signal serving as a measure of

information asymmetry extends to other models with information asymmetry. For example,

in a model where informed investors have heterogeneous private information, one can still

use the noisiness of a public signal that has already been reflected in every private signal to

measure the information asymmetry.

4.2. Bid-ask spread, market depths, and trading volume

The following proposition implies that in contrast to most of the existing literature (e.g.,

Glosten and Milgrom (1985)), not only ex post bid-ask spreads (i.e., spreads after signal real-

29The nonmonotonicity follows because as σ2
ε decreases or σ2

V increases, the conditional covariance mag-

nitude
∣
∣
∣

σ2

ε

σ2

V
+σ2

ε

σV N

∣
∣
∣ decreases, thus the noise from the hedging demand decreases and hence the conditional

security payoff variance of the uninformed may get closer to that of the informed.

21



izations) but also expected bid-ask spreads across all realizations can decrease as information

asymmetry increases.

Proposition 1 1. The reservation price difference ∆ is normally distributed with mean

µD and variance σ2
D, where

µD = δρI(1− ρU)σ
2
V θ̄, σ2

D = h2σ2
X − ρI(1− ρU)σ

2
V , (30)

which implies that the expected bid-ask spread is equal to:

E[A∗ −B∗] =
2σDn

(
µD

σD

)

+ µD

(

2N
(

µD

σD

)

− 1
)

2
, (31)

where n and N are respectively the pdf and cdf of the standard normal distribution.

2. The expected bid-ask spread decreases with information asymmetry σ2
η if and only if

n

(
µD

σD

)

− δθ̄σD

(

2N

(
µD

σD

)

− 1

)

> 0, (32)

which is always satisfied when θ̄ = 0 or µD is small enough.

3. The expected bid-ask spread increases with both the liquidity shock volatility σX and the

covariance magnitude |σV N |.

Because ρU goes to 1 as σ2
X goes to 0 and ρI goes to 0 as σ2

ε goes to ∞, Part 2 of

Proposition 1 implies that for small enough θ̄ or σ2
X or large enough σ2

ε , which leads to small

enough µD, the expected spread decreases with information asymmetry σ2
η . Therefore, the

expected spread with even large information asymmetry (e.g., σ2
η = ∞) can be smaller than

that with symmetric information. Consistent with these results, Figure 2 shows that when

σε = 1.2, for example, the expected spread decreases with information asymmetry even when

information asymmetry is large.

The fundamental driving force of the results on expected spreads is that information

asymmetry can reduce the reservation price difference between the buyer and the seller be-

cause of the well known adverse selection effect. A sell order by the informed on average

22



0.2 0.4 0.6 0.8 1.0
ΣΗ

20.119

0.120

0.121

0.122

E@A*-B*D

0.2 0.4 0.6 0.8 1.0
ΣΗ

2
0.2050

0.2055

0.2060

0.2065

E@A*-B*D

σ   
ε

= 0.6
= 1.2

ε
σ   

Figure 2: Expected bid-ask spread against information asymmetry σ2
η . The default parameter

values are: δ = 1, θ̄ = 4, V̄ = 3, NI = 100, NU = 1000, σV = 0.4, σX = 1, and σV N = 0.8.

conveys negative information about the asset payoff, and therefore the uninformed’s reser-

vation price becomes lower and they are thus only willing to purchase it at a lower ask

price. Similarly, a buy order by the informed on average implies positive information about

the payoff, and therefore the uninformed’s reservation price becomes higher and they thus

demand a higher bid price to sell it for. As information asymmetry increases, the informed’s

reservation price on average gets closer to that of the informed, and as a result the average

spread goes down. If the uninformed have an initial endowment of the asset (θ̄ > 0), then

there is an opposing force: as information asymmetry increases, the uncertainty about the

value of the initial endowment increases, and thus the uninformed are willing to accept a

lower bid price to sell it for. This opposing force drives down the bid price when the informed

buy and thus can drive up the spread. Accordingly, our model predicts that in markets where

market makers have significant market power and the current holdings of the uninformed

are small, the average spread decreases with information asymmetry. Next, we provide more

detailed explanations of this result.

We can rewrite the reservation price difference (19) as

∆ = hX̂I
︸︷︷︸

hedging effect

+
(

E[Ṽ |II ]− E[Ṽ |IU ]
)

︸ ︷︷ ︸

estimation error effect

+
(

δV ar[Ṽ |IU ]θ̄ − δV ar[Ṽ |II ]θ̄
)

︸ ︷︷ ︸

estimation risk effect

, (33)
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where the first term is from the difference in the hedging demand (“hedging effect”) between

the informed and the uninformed, the second term is the difference in the estimation of the

expected security payoff (“estimation error effect”), and the third term is the difference in

the risk premium required for the estimation risk (“estimation risk effect”). Consider first

the simplest case where θ̄ = 0, i.e., there is no estimation risk effect. On average, hedging

effect and estimation error effect are equal to zero, and thus the expected reservation price

difference is zero. However, because the spread is proportional to the absolute value of the

reservation price difference, the expected spread becomes greater both when the reservation

price difference is more positive and when it is more negative. Therefore, the expected spread

increases as the volatility of the reservation price difference increases. As information asym-

metry increases, the volatility of the reservation price difference becomes smaller because

of the adverse selection effect of the information asymmetry. More specifically, for given

changes in Ŝ (that determines the order size of the informed) and in the public signal Ŝs,

as information asymmetry σ2
η increases, the uninformed attribute a greater portion of the

change in Ŝ to the change in the private signal ŝ,30 reflecting the adverse selection effect, and

also put less weight on the public signal. Therefore, in the estimation of the expected payoff,

as information asymmetry increases, the uninformed have closer weights on the private signal

ŝ and the public signal Ŝs to those of the informed. Thus, the estimation error effect becomes

less sensitive to realizations of Ŝ and Ŝs. Because the hedging effect does not change with

information asymmetry, the volatility of the reservation price difference (which is equal to

the sum of the hedging effect and the estimation error effect when θ̄ = 0) decreases as in-

formation asymmetry increases, and so does the expected bid-ask spread. If the uninformed

have some initial endowment of the asset, then the uninformed have a higher risk premium

and thus on average a lower reservation price than the informed. Therefore, on average the

informed buy at the ask and the uninformed sell at the bid. As the information asymmetry

increases, the reservation price of the uninformed becomes lower and the expected spread

gets greater, because the uninformed’s uncertainty about the value of the initial holdings

increases.

30I.e., ρU (1− ρX) in (15) increases with σ2
η.
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With the understanding of the main intuition behind the result on expected spread and

of the fact that the reservation price of the informed does not depend on the information

asymmetry σ2
η, it is clear that, as also confirmed by the generalized model presented later, as

long as the uninformed’s estimation risk premium is small, then expected spread decreases

with information asymmetry. For most securities, on average an uninformed investor has

small estimation risk premium, either because the investor has small holdings (e.g., for a

retail investor θ̄ is small) or because the risk aversion toward the estimation risk is low (e.g.,

for investors who have offsetting positions elsewhere δ is small). Accordingly, one empirically

testable implication is that in markets where market makers have significant market power

and can offset their trades relatively frequently (e.g., relatively active derivative markets),

average spreads decrease with information asymmetry.

Proposition 1 also implies that as liquidity shocks become more volatile or the payoffs

of the security and the nontraded asset covary more, the expected bid-ask spread increases.

Intuitively, as σ2
X or |σV N | increases, the volatilities of the hedging effect, the estimation error

effect, and the estimation risk effect all increase. Therefore, the expected spread increases.

Because market makers face both information asymmetry and inventory risk, it would be

helpful to separate the effects of information asymmetry and inventory risk on equilibrium

asset prices and bid-ask spreads. However, it seems impossible to completely separate these

effects in every single case for every economic variable of interest because in general these

two effects interact with each other. On the other hand, we can separate them for some

important economic variables in some important cases. First, clearly, in the symmetric

information case, there is no information asymmetry effect. Second, the effect of inventory

risk is through the market maker’s risk aversion. For example, if the market maker were

risk neutral, then the market maker’s inventory risk would have no effect on asset prices.

Because the spread is determined by the reservation price difference between the informed

and the uninformed and this difference is independent of the market maker’s risk aversion,

the spread is not affected by the market maker’s inventory risk. Therefore our results in

Proposition 1 and Figure 2 on how information asymmetry affects expected spread are free

of the inventory risk effect.
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Figure 3: The expected trading volume in equilibrium against information asymmetry σ2
η .

The default parameter values are δ = 1, θ̄ = 4, V̄ = 3, NM = 1, NI = 100, NU = 1000,
σε = 0.8, σV = 0.8, σV N = 0.8, and σX = 2.

Next we examine how expected market depths and trading volume change with informa-

tion asymmetry and liquidity shock volatility.

Proposition 2 1. If NU is large enough, then the expected trading volume increases with

information asymmetry, i.e., ∂E[α∗+β∗]
∂σ2

η
> 0, if and only if the expected spread increases

with information asymmetry.

2. As the liquidity shock volatility σX or the covariance magnitude |σV N | increases, the

expected trading volume increases.

As many studies of asymmetric information show (e.g., Akerlof (1970)), information

asymmetry decreases trading volume because of the well known “lemons” problem. In con-

trast, as shown in Part 1 of Proposition 2 and Figure 3, the average trading volume can

increase with information asymmetry when the population of the uninformed investors is

relatively large. This is because expected trading volume increases with the expected mag-

nitude of the reservation price difference, which can increase with information asymmetry

when the marginal impact of the adverse selection effect on each uninformed investor is small

that occurs when their population size is large. In addition, because as the liquidity shock

volatility or the covariance magnitude |σV N | increases, the expected magnitude of the reser-

vation price difference increases as implied by Part 2 of Proposition 1, so does the expected

trading volume.
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5. A generalized model

To simplify exposition, in the main model studied above we assume that all investors have

the same risk aversion, the same initial inventory, the same date 1 resale value of the security,

and only the informed have private information and liquidity shocks. In this section, we relax

these assumptions and still, the generalized model is tractable and solved in closed-form.

This generalized model can be used to conduct many interesting analyses such as the

effect of a market maker’s inventory (e.g., Garman (1976)), private information (Van der

Wel et. al. (2009)), and liquidity shocks (e.g., Acharya and Pedersen (2005)) on asset prices.

Let θ̄i, δi, X̂i, Ṽi and Ii denote respectively the initial inventory, risk aversion coefficient,

liquidity shock, date 1 resale value of the security and information set for a type i investor

for i ∈ {I, U,M}. Then by the same argument as before, a type i investor’s reservation price

can be written as

PR
i = E[Ṽi|Ii]− δiCov[Ṽi, Ñ |Ii]X̂i − δiVar[Ṽi|Ii]θ̄i, i ∈ {I, U,M}. (34)

Let ∆ij := PR
i − PR

j denote the reservation price difference between type i and type j

investors for i, j ∈ {I, U,M}. In this generalized model, there are eight cases corresponding

to eight different trading direction combinations of the informed and the uninformed, as

illustrated in Figure 4.31 Figure 4 shows that the trading directions are determined by the

ratio of the reservation price difference between the informed and the uninformed (∆IU)

to the reservation price difference between the uninformed and the market maker (∆UM).

When the magnitude of this ratio is large enough (Cases (1) and (5)), the informed and

the uninformed trade in opposite directions. If it is small enough (Cases (3) and (7)), on

the other hand, they trade in the same direction. In between, either the informed or the

uninformed do not trade.

To save space, we only present the equilibrium results for Cases (1), (2), and (5) in this

section, where Cases (1) and (5) are a direct generalization of the main model in Section 2.

and Case (2) illustrates what happens if some investors do not trade. The rest are similar

31The case where both informed and uninformed do not trade is a measure zero event that occurs only
when the reservation prices of all investors are exactly the same, i.e., at the origin of the figure.
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Figure 4: Eight cases of equilibria characterized by the trading directions of the informed
and the uninformed, where b1, b2, b3 and b4 are defined in (35), (36) and (B-1).

and are provided in Appendix B. Define

b1 =
2δUν1

δMν2NU + 2δUν1
, b2 =

2δI
δMν2NI

, (35)

b3 =
δI

δI + δMν2NI
≤ b2, (36)

and

CU :=
ν2NIδM

2δI

(

N̂ + 1
) , (37)

where

ν1 =
Var[ṼU |IU ]

Var[ṼI |II ]
, ν2 =

Var[ṼM |IM ]

Var[ṼI |II ]
, N̂ :=

δM
δI

ν2NI + 1 +
δMν2
δUν1

NU .

Theorem 2 For the generalized model, we have:

28



1. The informed buy and the uninformed sell (Case (1)) if and only if

∆IU > max{−b1∆UM , b2∆UM}. (38)

The informed sell and the uninformed buy (Case (5)) if and only if

∆IU < min{−b1∆UM , b2∆UM}.

For Cases (1) and (5), the equilibrium bid and ask prices are

A∗ = PR
U + CU∆IU −

∆UM

N̂ + 1
+

∆+
IU

2
,

B∗ = PR
U + CU∆IU −

∆UM

N̂ + 1
−

∆−
IU

2
,

and the bid-ask spread is

A∗ − B∗ =
|∆IU |

2
; (39)

the equilibrium security quantities demanded are

θ∗I =
(δMν2NU + 2δUν1)∆IU + 2δUν1∆UM

2(N̂ + 1)δUδIν1Var[ṼI |II ]
, (40)

θ∗U =
−δMν2NI∆IU + 2δI∆UM

2(N̂ + 1)δUδIν1Var[ṼI |II ]
, (41)

θ∗M = − (NIθ
∗
I +NUθ

∗
U ) ; (42)

the equilibrium quote depths are

α∗ = NI(θ
∗
I )

+ +NU(θ
∗
U )

+, (43)

β∗ = NI(θ
∗
I )

− +NU(θ
∗
U )

−. (44)
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2. The informed buy and the uninformed do not trade (Case (2)) if and only if

b3∆UM ≤ ∆IU ≤ b2∆UM . (45)

For Case (2), the equilibrium bid and ask prices are

A∗ = PR
I −

∆IM

2 +NIν2δM/δI
, B∗ ≤ PR

U ; (46)

the equilibrium security quantities demanded are

θ∗I =
∆IM

(2δI +NIν2δM)Var[ṼI |II ]
, θ∗U = 0, θ∗M = −NIθ

∗
I ; (47)

the equilibrium quote depths are

α∗ =
NI∆IM

(2δI +NIν2δM)Var[ṼI |II ]
, β∗ = 0. (48)

In the generalized model, all investors can receive private signals about the security payoff,

and thus the market maker and the “uninformed” can both be viewed as informed investors

who might have different information. Our main results that expected spread can decrease

with information asymmetry and that trading volume can be positively correlated with bid-

ask spreads still hold under some conditions in the generalized model. For example, Theorem

2 implies when the market maker and the “uninformed” have the same reservation price,

only Cases (1) and (5) are possible, i.e., all investors trade in equilibrium and the market

maker trades at both the bid and the ask as long as the reservation price of the informed is

different. The spread and trading volume are still both proportional to the absolute value

of the reservation price difference between the informed and the “uninformed.” Thus our

main results follow by the same intuitions as in the main model, even when the informed

have different risk aversion, different initial endowment, and the uninformed and the market

maker also have liquidity shocks.

In addition, Part 2 of Theorem 2 shows when the market maker and the uninformed have

different reservation prices, there may exist equilibria where some investors do not trade and

30



the market maker only trades on one side. For example, in Case (2), the reservation price

of the uninformed is lower than that of the informed but higher than that of the market

maker, the market maker chooses not to trade with the uninformed to avoid buying from

the uninformed at a price that is significantly higher than her reservation price. This is

because in this case the profit from the spread and the benefit from shifting the trade with

the informed are relatively small. Other examples include Cases (3), (4), (6), (7), and (8)

presented in Appendix B. This shows that while the market maker can trade both at the bid

and at the ask on date 0, she may choose to trade only on one side, as in all the cases except

(1) and (5). These equilibria where the market maker trades only on one side at a time imply

similar trading behaviors to those implied by a sequential trading model. Cases (1) and (5)

are more applicable to more active markets such as OTCQX and OTCQB stock markets

where search cost is low, trading frequency is relatively high and thus a market maker has a

better estimate of the order flow on the other side, while the rest is more representative of

less active markets where search cost is high and time between trades is relatively long (e.g.,

bond markets and pink sheets markets).32

As Theorem 1, Theorem 2 reveals that conditional on the uninformed and the informed

trading in the opposite directions (i.e., Cases (1) and (5)), the equilibrium spread only

depends on the reservation price difference between the informed and the uninformed, but

not on the initial inventory, or the risk aversion, or the private valuation of a market maker.

Intuitively, the initial inventory, the risk aversion, and the private valuation of a market

maker only affect the certainty equivalent wealth corresponding to the net inventory and

a market maker can change the spread without changing inventory by varying the bid and

the ask such that equilibrium bid and ask depths change by the same amount. For Case

(2), however, the spread in general depends on the characteristics of the market maker as

implied by (46) with B∗ set to PR
U , this is because the market maker is not making offsetting

trades at the bid and thus any trade at the ask changes inventory. This result suggests

whether the initial inventory, the risk aversion, or the private valuation of a market maker

is important for the spread depends on whether the market maker can relatively frequently

32OTCQX and OTCQB are top tier OTC markets for equity securities (more than 3,700 stocks) with a
combined market capitalization of more than $1 trillion and more than 2 billion daily share trading volume.
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make offsetting trades. One empirically testable implication of this result is that in relatively

less active markets, the average spread is more sensitive to the inventory level and the private

information of a market maker.

Although inventory risk does not affect the spread in Cases (1) and (5), it always affects

active depths and prices (i.e., at which trades occur). For example, for Cases (1) and (5),

Theorem 2 implies when the initial inventory is large and the market maker’s risk aversion

is high, she reduces the inventory by lowering both the ask and the bid, which encourages

purchases and discourages sales by other investors and thus increases equilibrium ask depth

and decreases bid depth.33 Accordingly, another empirically testable implication is that

average ask depth increases, but average bid depth decreases with a market maker’s initial

inventory.

The generalized version can also serve as a reduced form model that captures some

additional costs for liquidation of inventory on date 1. The date 1 resale value ṼM of the

security represents what price a market maker can sell the security for on date 1. In the

model in Section 2, for expositional simplicity, we assume that the true value of the security

is publicly announced on date 1 and thus the resale value on date 1 is the same across all

investors and does not vary with market features like search costs. In the generalized model,

the date 1 utility function can represent the continuation value function in a multi-period

setting and one can adapt the distribution of ṼM to model indirectly market conditions such

as searching costs and opacity. For example, when search cost is high, search takes a long

time, and the resale value of the security is with large uncertainty, one can approximate this

situation by using a low mean and high volatility distribution for ṼM . This is clearly just

a reduced form, but likely indirectly captures the first order effect of these features. For

example, when search cost is high and the uncertainty about the resale value of the security

is high, a market maker charges a higher premium for the security on date 0 and the bid-ask

spread increases in a search model (e.g., Duffie, Gârleanu, and Pedersen (2005, 2007)). With

a lower mean and higher volatility for ṼM , it can be shown that our model can generate the

same result. Intuitively, an increase in the volatility or a decrease in the mean of the resale

33This is because the reservation price of a market maker decreases with the initial inventory and risk
aversion, and thus ∆UM increases with it.
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value on date 1 reduces the value of the security on date 0. In addition, when the market

maker buys from one type of investors and the other type do not trade in equilibrium (Cases

(6) and (8) in Appendix B), the bid price goes down and ask price does not change, and

thus the spread goes up.

6. Summary and conclusions

Market makers in over-the-counter markets often make offsetting trades and have significant

market power. In this paper, we develop a market making model that captures this market

feature as well as other important characteristics such as information asymmetry and inven-

tory risk. We solve the equilibrium bid and ask prices, bid and ask depths, trading volume,

and inventory levels in closed-form. Our model can accommodate substantial heterogeneity

across investors in preferences, endowment, informativeness, and liquidity demand (as in

Section 5). The trading behavior in these equilibria is largely consistent with those observed

in a wide range of financial markets.

In contrast to the existing literature, a market maker in our model can optimally shift

some trade with the informed to other discretionary investors by adjusting bid or ask. As

a result, we find that consistent with empirical evidence, expected bid-ask spreads may

decrease with information asymmetry and bid-ask spreads can be positively correlated with

trading volume. Our analysis shows that when market makers can make offsetting trades and

have significant market power, their pricing, liquidity provision, and inventory decisions as

well as the impact of information asymmetry on these decisions can be qualitatively different

from those predicted by the existing literature. The important empirical implications of our

analysis include:

1. In markets where market makers have significant market power and can frequently

offset their trades, average spreads decrease with information asymmetry and are pos-

itively correlated with trading volume.

2. Average spread is more sensitive to a market maker’s inventory level in relatively

inactive OTC markets.
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3. As a market maker’s initial inventory increases, average ask depth increases, but aver-

age bid depth decreases.

We hope future empirical investigations will study the importance of a market maker’s

offsetting trades and market power in affecting asset pricing and market liquidity.
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Appendix A

In this Appendix, we provide the proofs of Theorem 1 and Propositions 1-2. We also show

that our equilibrium is equivalent to the solution to a Nash Bargaining game between other

investors and the market maker when the market maker has all the bargaining power.

A.1 Proof of Theorem 1

We prove the case when ∆ < 0. In this case, we conjecture that I investors sell and U

investors buy. Given bid price B and ask price A, the optimal demand of I and U are:

θ∗I =
PR
I −B

δVar[Ṽ |II ]
and θ∗U =

PR
U − A

δVar[Ṽ |IU ]
. (A-49)

Substituting (A-49) into the market clearing condition (5), we get that the market clearing

bid and ask depths are:

α = NUθ
∗
U = NU

PR
U − A

δVar[Ṽ |IU ]
, β = −NIθ

∗
I = NI

B − PR
I

δVar[Ṽ |II ]
. (A-50)

The market maker’s problem is equivalent to:

max
A,B

αA− βB + (θ̄ + β − α)E[Ṽ |IM ]−
1

2
δVar[Ṽ |IM ](θ̄ + β − α)2, (A-51)

subject to (A-50). The F.O.C with respect to B (noting that β is a function of B) gives us:

−β −B
NI

δVar[Ṽ |II ]
+ E[Ṽ |IM ]

NI

δVar[Ṽ |II ]
− δVar[Ṽ |IM ](θ̄ + β − α)

NI

δVar[Ṽ |II ]
= 0,

which is reduced to

(νNI + 2)β − νNIα = −
NI∆

δVar[Ṽ |II ]
, (A-52)

by (9), (18), and expressing B in terms of β using (A-50).

Similarly using the F.O.C with respect to A, we get:

α+A

(

−
NU

δVar[Ṽ |IU ]

)

−E[Ṽ |IM ]

(

−
NU

δVar[Ṽ |IU ]

)

+δVar[Ṽ |IM ](θ̄+β−α)

(

−
NU

δVar[Ṽ |IU ]

)

= 0,
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which can be reduced to

(NU + 2)α−NUβ = 0, (A-53)

by using (9), expressing A in terms of α using (A-50), and noting that IM = IU .

Solving (A-53) and (A-52), we can get the equilibrium ask depth and bid depth α∗ and β∗

as in (24) and (25). Substituting α∗ and β∗ into (A-50), we can get the equilibrium ask and

bid prices A∗ and B∗ as in (20) and (21). In addition, by the market clearing condition, we

have θ∗U = α∗/NU and θ∗I = −β∗/NI as in (23). Also, A∗ < PR
U and B∗ > PR

I are equivalent

to ∆ < 0, which is exactly the condition we conjecture for I investors to sell and U investors

to buy. Similarly, we can prove Theorem 1 for the other case where I investors buy and U

investors sell. Q.E.D.

A.2 Equivalence to the Nash bargaining solution

Now we show that our equilibrium result is equivalent to the solution to a Nash Bargaining

game between investors and the market maker when the market maker has all the bargaining

power. We show this for the case where ∆ < 0, the other case follows from the same

argument. In this case, I investors sell at the bid and U investors buy at the ask. Given A

and B, let ϕU and ϕI be the vectors of the number of shares the market maker sells to the

uninformed and buys from the informed respectively. In general, suppose a market maker

has bargaining power of λ and other investors have bargaining power of 1−λ, then the Nash

Bargaining solution is to

max
A

(UM(ϕU , ϕI)− UM(ϕ−i
U , ϕI))

λ(UU(ϕ
i
U)− UU (0))

1−λ, i = 1, 2, · · ·NU , (A-54)

max
B

(UM(ϕU , ϕI)− UM(ϕU , ϕ
−j
I ))λ(UI(ϕ

j
I)− UI(0))

1−λ, j = 1, 2, · · ·NI , (A-55)

where UM(ϕU , ϕI) is the utility of the market maker when she buys ϕj
I from the jth I

investor and sells ϕi
U to the ith U investor given the trades with other investors, UM (ϕ−i

U , ϕI)

(resp. UM (ϕU , ϕ
−j
I )) is the utility when she does not trade with the ith uninformed investor

(resp., jth informed investor), UI(ϕ
j
I) (resp. UU(ϕ

i
U)) is the utility of the jth I investor

(resp., ith U investor) when he trades, and UI(0) (resp. UU(0)) is the utility of an I (resp.,
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a U) investor when he does not trade. If λ = 1, then (A-54) and (A-55) are respectively

equivalent to

max
A

[

Aϕi
U(A) +

(

θ̄ +

NI∑

j=1

ϕj
I − ϕi

U(A)−

NU∑

k 6=i

ϕk
U

)

E[Ṽ |IM ]

−1/2δVar[Ṽ |IM ]

(

θ̄ +

NI∑

j=1

ϕj
I − ϕi

U(A)−

NU∑

k 6=i

ϕk
U

)2


 , (A-56)

and

max
B

[

−Bϕj
I(B) +

(

θ̄ + ϕj
I(B) +

NI∑

k 6=j

ϕk
I −

NU∑

i=1

ϕi
U

)

E[Ṽ |IM ]

−1/2δVar[Ṽ |IM ]

(

θ̄ + ϕj
I(B) +

NI∑

k 6=j

ϕk
I −

NU∑

i=1

ϕi
U

)2


 , (A-57)

where

ϕi
U(A) =

PR
U − A

δVar[Ṽ |IU ]
, ϕj

I(B) =
B − PR

I

δVar[Ṽ |II ]

are the optimal demand schedules.

Using first order conditions and symmetry among I and U investors (i.e., ϕi
U = ϕk

U ,

ϕj
I = ϕk

I , for all i, j, k) gives us

NIϕ
j
I = (NU + 2)ϕi

U , (νNI + 2)ϕj
I − νNUϕ

i
U = −

∆

δVar[Ṽ |II ]
, (A-58)

which is equivalent to (A-52) and (A-53) because α = NUϕ
i
U and β = NIϕ

j
I . It follows that

ϕi
U = −

νNI

2
(
N + 1

)
∆

δVar[Ṽ |IU ]
, i = 1, 2, · · ·NU , ϕj

I = −
NU + 2

2
(
N + 1

)
∆

δVar[Ṽ |II ]
, j = 1, 2, · · ·NI ,

(A-59)

A = PR
U −δVar[Ṽ |IU ]ϕ

i
U = PR

U +
νNI

2(N̄ + 1)
∆, B = PR

I +δVar[Ṽ |II ]ϕ
i
I = PR

U +
νNI

2
(
N + 1

)∆−
∆−

2
.

(A-60)

Comparing to the results in Theorem 1 and noting that ∆ < 0, θ∗U = ϕi
U and θ∗I = −ϕj

I

(because I sells in this case), we have that our equilibrium is equivalent to the solution to
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a Nash Bargaining game between investors and the market maker when the market maker

has all the bargaining power.

A.3 Proofs of Propositions 1-2

Proof of Proposition 1: Part 1:

∆ = ρI(1− ρU )

(

ŝ+
h

ρI

(

1 +
σ2
V

ρIσ2
η

)

X̂I −
σ2
V

ρIσ2
η

η̂ + δσ2
V θ̄

)

,

which implies that ∆ is normally distributed with mean µD = δρI(1− ρU )σ
2
V θ̄ and variance

σ2
D = ρ2I(1− ρU)

2

(

σ2
V + σ2

ε +

(
h

ρI

(

1 +
σ2
V

ρIσ2
η

))2

σ2
X +

σ4
V

ρ2Iσ
2
η

)

= h2σ2
X − ρI(1− ρU)σ

2
V ,

(A-61)

where the last equality follows from simplification using the law of total variance. Direct

integration then yields (31).

Part 2: Taking the derivative of the right hand side of (31) with respect to ρU , we have

∂E[A∗ −B∗]

∂ρU
=

ρIσ
2
V

2σD

[

n

(
µD

σD

)

− δθ̄σD

(

2N

(
µD

σD

)

− 1

)]

.

Because ρU is decreasing in σ2
η , we have (32). When θ̄ = 0 or µD is small enough, the above

expression is always positive.

Part 3: It can be shown that µD increases but µD/σD decreases in σ2
X .

∂E[A∗−B∗]

∂σ2

X

> 0

then follows from taking derivatives with respect to µD and µD/σD after factoring out µD in

(31). Similarly, it follows from straightforward (but tedious) computation that ∂E[A∗−B∗]
∂|σV N |

> 0.

Q.E.D.

Proof of Proposition 2: Part 1: From the expression of trading volume in Theorem 1, we

have

Sign

(
∂E[α∗ + β∗]

∂σ2
η

)

= Sign

(
∂E|∆|

∂σ2
η

−
E|∆|

N + 1

∂N

∂σ2
η

)

. (A-62)
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Because ∂N
∂σ2

η
= A1NI , where A1 :=

ρIρ
2

Xρ2U
σ2
ε

. Therefore, if NU is large enough, we have

∂E[α∗+β∗]
∂σ2

η
> 0 if and only if ∂E|∆|

∂σ2
η

> 0.

Part 2: It can be shown that
∂(µD/(N+1))

∂σ2

X

> 0. From (26), (31), and taking derivatives of

µD/(N + 1) and µD/σD after factoring out µD with respect to σ2
X , we have ∂E[α∗+β∗]

∂σ2

X

> 0.

Similarly, straightforward computation yields ∂E[α∗+β∗]
∂|σV N |

> 0. Q.E.D.

A.4 An Extension with multiple market makers

In contrast to the standard microstructure literature where market makers directly choose

market prices (Bertrand competition), for this multiple market maker case, we model the

oligopolistic competition among the market makers as a Cournot competition that is well

studied and understood.34 Specifically, we assume that market makers simultaneously choose

how much to buy at bid given the inverse supply function (a function of the market mak-

ers’ purchasing quantity) of all other participants and how much to sell at ask given the

inverse demand function (a function of the market makers’ selling quantity) of all other

participants. The posted bid and ask prices are the required prices to achieve the optimal

amount market makers choose to trade. The equilibrium definition for the main model can

be directly extended to this multiple market maker case. Note that in the monopoly case, the

Bertrand competition formulation and the demand/supply function competition formulation

(e.g., Vives (2011)) yield the same results as the Cournot competition formulation.

Let α = (α1, α2, ..., αNM
)⊤ and β = (β1, β2, ..., βNM

)⊤ be the vector of the number of

shares market makers sell at ask (i.e., ask depth) and buy at bid (i.e., bid depth) respectively.

Given the demand schedules of the informed and the uninformed (θ∗I (A,B) and θ∗U(A,B)),

the bid price B(β) (i.e., the inverse supply function) and the ask price A(α) (i.e., the inverse

demand function) can be determined by the following stock market clearing conditions at

the bid and ask prices.

NM∑

j=1

αj =
∑

i=I, U

Niθ
∗
i (A,B)+,

NM∑

j=1

βj =
∑

i=I, U

Niθ
∗
i (A,B)−, (A-63)

34Similar extension and closed form results can be obtained for the generalized model.
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where the left-hand sides represent the total sales and purchases by market makers respec-

tively and the right-hand sides represent the total purchases and sales by other investors

respectively.

Then for j = 1, 2, ..., NM , the designated market maker Mj ’s problem is

max
αj≥0,βj≥0

E
[

−e−δW̃Mj |IM

]

, (A-64)

where

W̃Mj
= αjA(α)− βjB(β) + (θ̄ + βj − αj)Ṽ . (A-65)

We now state the multiple-market-maker version of Theorem 1 for the NM ≥ 1 case

(setting NM = 1 yields Theorem 1).

Theorem 1 (with multiple market makers):

1. The equilibrium bid and ask prices are

A∗ := A(α∗) = PR
U +

νNMNI

(NM + 1)
(
N + 1

)∆+
∆+

NM + 1
,

B∗ := B(β∗) = PR
U +

νNMNI

(NM + 1)
(
N + 1

)∆−
∆−

NM + 1
,

and we have A∗ > P ∗ > B∗, where

P ∗ =
νNI

N
PR
I +

NU

N
PR
U +

NM

N
PR
M (A-66)

is the equilibrium price of a perfect competition equilibrium where market makers are

also price takers. The bid-ask spread is

A∗ −B∗ =
|∆|

NM + 1
=

(1− ρU)
∣
∣
∣

(

1 +
σ2

V

ρIσ2
η

)

Ŝ −
σ2

V

σ2
η
Ŝs + δρIσ

2
V θ̄
∣
∣
∣

NM + 1
. (A-67)
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2. The equilibrium quantities demanded are

θ∗I =
NM (NU +NM + 1)

(NM + 1)
(
N + 1

)
∆

δVar[Ṽ |II ]
, θ∗U = −

νNMNI

(NM + 1)
(
N + 1

)
∆

δVar[Ṽ |IU ]
; (A-68)

the equilibrium quote depths are

α∗ =
NI

NM
(θ∗I )

+ +
NU

NM
(θ∗U)

+, (A-69)

β∗ =
NI

NM

(θ∗I )
− +

NU

NM

(θ∗U)
−, (A-70)

which implies that the equilibrium trading volume is

NM(α∗ + β∗) =
NMNI(NM + 2NU + 1)

(NM + 1)(N + 1)

(
|∆|

δVar[Ṽ |II ]

)

. (A-71)

Appendix B

In this Appendix, we report the remaining results on the generalized model. Define

b4 =
NUδI + ν1NIδU

δINU(N̂ + 1) + ν1NIδU
(< b1). (B-1)

The rest of Theorem 2 is as follows.

1. Both the informed and uninformed buy (Case (3)) if and only if

−b4∆UM < ∆IU < b3∆UM . (B-2)

For Case (3), the equilibrium prices are

A∗ =
NIν1δUP

R
I +NUδIP

R
U

NIν1δU +NUδI
−

NIν1δU∆IM +NUδI∆UM

(N̂ + 1)(NIν1δU +NUδI)
, B∗ ≤ A∗; (B-3)

the equilibrium security quantities demanded are

θ∗I =
∆IM

(N̂ + 1)δIVar[ṼI |II ]
, θ∗U =

∆UM

(N̂ + 1)δUVar[ṼU |IU ]
, θ∗M = −NIθ

∗
I −NUθ

∗
U ; (B-4)
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and the equilibrium depths are

α∗ = NIθ
∗
I +NUθ

∗
U , β∗ = 0. (B-5)

2. The informed do not trade and uninformed buy (Case (4)) if and only if

−b1∆UM ≤ ∆IU ≤ −b4∆UM . (B-6)

For Case (4), the equilibrium prices are

A∗ = PR
U −

∆UM

2 +NUν2δM/(ν1δU)
, B∗ ≤ PR

I ; (B-7)

the equilibrium security quantities demanded are

θ∗I = 0, θ∗U =
∆UM

(2 +NUν2δM/(ν1δU))δUVar[ṼU |IU ]
, θ∗M = −NUθ

∗
U ; (B-8)

and the equilibrium depths are

α∗ = NUθ
∗
U , β∗ = 0. (B-9)

3. The informed sell and the uninformed do not trade (Case (6)) if and only if

b2∆UM ≤ ∆IU ≤ b3∆UM . (B-10)

For Case (6), the equilibrium prices are

B∗ = PR
I −

∆IM

2 +NIν2δM/δI
, A∗ ≥ PR

U ; (B-11)

the equilibrium security quantities demanded are

θ∗I =
∆IM

(2 +NIν2δM/δI)δIVar[ṼI |II ]
, θ∗U = 0, θ∗M = −NIθ

∗
I ; (B-12)

46



and the equilibrium depths are

α∗ = 0, β∗ = −NIθ
∗
I . (B-13)

4. Both the informed and uninformed sell (Case (7)) if and only if

b3∆UM < ∆IU < −b4∆UM . (B-14)

For Case (7), the equilibrium prices are

B∗ =
NIν1δUP

R
I +NUδIP

R
U

NIν1δU +NUδI
−

NIν1δU∆IM +NUδI∆UM

(N̂ + 1)(NIν1δU +NUδI)
, (B-15)

and A∗ ≥ B∗; the equilibrium security quantities demanded are

θ∗I =
∆IM

(N̂ + 1)δIVar[ṼI |II ]
, θ∗U =

∆UM

(N̂ + 1)δUVar[ṼU |IU ]
, (B-16)

and the equilibrium depths are

α∗ = 0, β∗ = −NIθ
∗
I −NUθ

∗
U . (B-17)

5. The informed do not trade and the uninformed sell (Case (8)) if and only if

−b4∆UM ≤ ∆IU ≤ −b1∆UM . (B-18)

For Case (8), the equilibrium prices are

B∗ = PR
U −

∆UM

2 +NUν2δM/(ν1δU)
, A∗ ≥ PR

I . (B-19)

the equilibrium security quantities demanded are

θ∗I = 0, θ∗U =
∆UM

(2 +NUν2δM/(ν1δU))δUVar[ṼU |IU ]
, θ∗M = −NUθ

∗
U ; (B-20)
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and the equilibrium depths are

α∗ = 0, β∗ = −NUθ
∗
U . (B-21)

Proof of Theorem 2: This is similar to the proof of Theorem 1. We only sketch the main

steps. First, for each case, conditional on the trading directions (or no trade), we derive

the equilibrium depths, prices, and trading quantities, similar to the proof of Theorem 1.

Then we verify that under the specified conditions the assumed trading directions are indeed

optimal. Q.E.D.
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