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Abstract

We study the optimal trading strategy of mutual funds that face both position limits and differential
illiquidity. We provide explicit characterization of the optimal trading strategy and conduct an extensive an-
alytical and numerical analysis of the optimal trading strategy. We show that the optimal trading boundaries
are increasing in both the lower and the upper position limits. We find that position limits can affect current
trading strategy even when they are not currently binding and other seemingly intuitive trading strategies
can be costly. We also examine the optimal choice of position limits.
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1. Introduction

Mutual funds are often restricted to allocating certain percentages of fund assets to certain se-
curities that have different degrees of illiquidity. These restrictions are often specified in a fund’s
prospectus and differ across investment styles and country-specific regulations. For example, a
small cap fund may set a lower bound on its holdings of small cap stocks. In Switzerland, regu-
lations require that at least two thirds of a fund’s assets be invested in the relevant geographical
sectors (e.g., Switzerland, Europe) or asset classes depending on the fund’s category. In France,
regulations prevent bond and money market funds from investing more than 10% in stocks. Mu-
tual funds can also face significant transaction costs in trading securities in some asset classes.
Wermers [33] concludes that transaction costs drag down net mutual fund returns by as much
as 0.8%, about the same impact as fund expenses. Consistent with this finding, Chalmers et al.
[8] conclude that annual trading costs for equity mutual funds are large and exhibit substantial
cross-sectional variation, averaging 0.78% of fund assets per year and having an interquartile
range of 0.59%. Karceski et al. [24] find that about 46% of all small cap mutual funds have trad-
ing costs that are higher than the annual fees investors pay. The prevalence of turnover constraints
also suggests the importance of transaction costs (e.g., Clarke et al. [9]).

There is a large literature on the optimal trading strategy of a mutual fund.1 However, most
of this literature does not consider the significant trading costs faced by funds or the widespread
position limits imposed upon mutual funds. As is well known, the presence of transaction costs
and position limits can have a drastic impact on the optimal trading strategy and portfolio perfor-
mance.2 The coexistence of the position limits and asset illiquidity and the interactions among
them can thus be important for the optimal trading strategy of a mutual fund. However, the exist-
ing literature ignores this coexistence and the interactions. Therefore, the optimal trading strategy
of a fund that is subject to position limits and asset illiquidity is still unknown.

In this paper, we study the optimal investment problem of a mutual fund that faces position
limits and trades a risk-free asset, a liquid stock, and an illiquid stock that is subject to pro-
portional transaction costs. Because the implied Hamilton–Jacobi–Bellman equation is highly
nonlinear and difficult to analyze, we convert the original problem into a double obstacle prob-
lem that is much easier to analyze. Using this alternative approach, we are able to characterize the
value function and to provide many analytical comparative statics on the optimal trading strat-
egy. We show that there exists a unique optimal trading strategy and the value function is smooth
except on a measure zero set. The optimal trading strategy for the illiquid stock is determined
by a time-varying buy boundary and a time-varying sell boundary between which no transaction
occurs.

In addition, we establish some important monotonicity properties analytically for the trading
boundaries, which are also useful for improving the precision and robustness of the numerical
procedure. For example, both the buy boundary and the sell boundary (in terms of the fraction of
assets under management (AUM) invested in the illiquid stock) are monotonically increasing in
the position limits. In addition, in most cases the optimal buy (sell) boundary is monotonically
decreasing (increasing) in calendar time when time to horizon is short.

We also conduct an extensive numerical analysis on optimal trading strategies. Our numerical
analysis shows that in the presence of transaction costs, even for log preferences, the optimal

1 See, for example, Carpenter [7], Basak et al. [6], Cuoco and Kaniel [13].
2 See, for example, Davis and Norman [21], Cuoco [12], Cuoco and Liu [15], Balduzzi and Lynch [5], Liu and Loewen-

stein [28], Liu [27].
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trading strategy is nonmyopic with respect to position limits, in the sense that position limits can
affect current trading strategy even when they are not currently binding. Intuitively, even though
the position limits are not currently binding, they will for sure bind when time to horizon becomes
short enough. In anticipation of this future binding of the position limits, the fund changes its
current trading boundaries due to transaction cost concerns. The correlation coefficient between
the two stocks affects the efficiency of diversification and thus can significantly alter the optimal
trading strategy in both the liquid stock and the illiquid stock.

One alternative intuitive trading strategy in the presence of position limits is to take the op-
timal trading strategy for the unconstrained case and modify it myopically, i.e., set a trading
boundary to the position upper bound or lower bound if and only if the unconstrained boundaries
violate the bounds. We show that this myopically modified strategy can be quite costly. The main
reason for this large cost is that with the myopic strategy, the no-transaction region may be too
narrow and thus an investor can incur large transaction costs. This result shows the importance of
adopting the optimal trading strategy that simultaneously takes into account both position limits
and transaction costs.

To partly address the endogeneity issue of the position limits, we also examine the optimal
choice of the position limits by investors who have different risk preferences from the fund man-
agers.3 Our analysis shows that the optimal upper (lower) bound is increasing (decreasing) in
transaction costs. This is because loosening the limits reduces transaction frequency and hence
transaction costs. In addition, the optimal position limits can be sensitive to the level of trans-
action costs, which suggests that transaction cost can be a significant factor in determining the
optimal position limits.

As far as we know, this is the first paper to characterize and compute the optimal trading
strategies for mutual funds that face both asset illiquidity and position limits, which we view
as the most important contribution of this paper.4 Although the qualitative impact of position
limits on trading strategies may be clear even without explicitly computing them, what is more
important for mutual funds (or any investment institution) is to quantitatively determine the op-
timal trading strategies. For example, as we show in the paper, adopting some other seemingly
reasonable trading strategies can severely worsen the fund performance. Given the large size of
a typical fund and the prevalence of asset illiquidity and position limits for most mutual funds,
even a small improvement in the trading strategy is likely to have a significant impact on fund
performance. With the enormous amount of assets under management in the mutual fund indus-
try, a better understanding of the optimal trading strategy for a typical fund is necessary for a
better understanding of the impact of mutual funds on asset pricing. The analytical and numeri-
cal results on the optimal trading strategies also provide an important foundation for research on
fund performance evaluation and optimal contracting.5

3 There are obviously other reasons for imposing position limits, e.g., different investment horizons, asymmetric infor-
mation, etc.

4 Admittedly, our model has left out some other factors of mutual funds (e.g., tax management, fund flows) that affect
fund trading to some extent and only focuses on the joint impact of transaction costs and position limits on the optimal
trading strategy. However, we believe this is a significant step toward a better understanding of how mutual funds should
trade.

5 In contrast to Constantinides [10] and consistent with empirical evidence (e.g., Amihud, Mendelson, and Pedersen [2],
Acharya and Pedersen [1]), we also find that, as expected, position limits can make transaction costs have a first-order
effect on the liquidity premium, similar to the impact of a time-varying investment opportunity set (e.g., Jang, Koo, Liu
and Loewenstein [26], Lynch and Tan [29]). Surprisingly, however, we show that the liquidity premium can be higher
when position limits are less binding. The details on these results are not presented in the text to save space.
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We also make significant contributions on solution methods for problems with transaction
costs and portfolio constraints. First, as far as we know, this is the first paper that applies the
techniques for double obstacle problems to solve and analyze a portfolio selection problem with
both transaction costs and position limits. As our analysis indicates, this alternative method can
be used to solve a large class of portfolio selection problems with transaction costs, portfolio
constraints, and finite investment horizons (e.g., optimal investment problem of an investor who
is subject to margin requirement and transaction costs, with or without labor income).

Second, our numerical procedure produces economically sensible and numerically stable re-
sults that satisfy all the analytical properties we establish. As shown in the vast literature on
portfolio selection with transaction costs (e.g., Constantinides [10]), the computation of the opti-
mal trading boundaries even in the absence of portfolio constraints and the time-to-horizon effect
is challenging, because one needs to solve the HJB equation with two free boundaries. The si-
multaneous presence of portfolio constraints and the time-to-horizon effect makes it much more
difficult. Most of the existing literature uses smooth pasting conditions on the trading boundaries
to determine the optimal trading strategy. In contrast, we use a finite difference scheme to di-
rectly discretize the HJB equation into a system of nonlinear algebraic equations and then use
a projected successive over-relaxation method to solve this system. This alternative method can
readily deal with both portfolio constraints and the time-to-horizon effect.

This paper is closely related to two strands of literature: one on portfolio selection with trans-
action costs and the other on portfolio selection with portfolio constraints. The first strand of
literature (e.g., Constantinides [10], Davis and Norman [21], Gârleanu and Pedersen [25], Lynch
and Tan [30]) finds that the presence of transaction costs can dramatically change the optimal
trading strategy. For example, Gârleanu and Pedersen [25] derive in closed form the optimal
dynamic portfolio policy when trading is costly and security returns are predictable by signals
with different mean-reversion speeds. They show that the optimal updated portfolio is a linear
combination of the existing portfolio, the optimal portfolio absent trading costs, and the optimal
portfolio based on future expected returns and transaction costs. The second strand of literature
(e.g., Cvitanić and Karatzas [16], Cuoco [12], Cuoco and Liu [14]) shows that portfolio con-
straints can also have a large impact on the optimal trading strategy. However, as far as we know,
this is the first paper to consider the joint impact of transaction costs and portfolio constraints on
the optimal trading strategy, and our results show that this joint consideration is important both
quantitatively and qualitatively.

As shown in the literature (e.g., Almazan et al. [4]), managers may choose not to adopt cer-
tain investment strategies even when they are not restricted from doing so. However, this does
not necessarily imply that position limits are unimportant for mutual fund investment strategies.
As Almazan et al. [4] explain, it is possible that “circumstances requiring the use of certain in-
vestment practices might not arise in a given reporting period” and “alternatively, it is possible
for a portfolio manager to adopt a constraint on a purely voluntary basis.” Studies on whether
position limits can be (economically) significantly binding for mutual funds are scarce, possi-
bly due to measurement difficulty and data availability. However, some existing literature and
indirect evidence suggest position limits can indeed be (economically) significantly binding for
mutual funds. For example, Clarke et al. [9] find that “constraints on short positions and turnover,
for example, are fairly common and materially restrictive. Other constraints, such as market
capitalization and value/growth neutrality with respect to the benchmark or economic sectors
constraints, can further restrict an active portfolio’s composition.” Consistent with this finding,
many prospectuses of mutual funds list investment-style risk, sector risk, industry concentration
risk, and country risk as primary risks of the corresponding funds. This suggests that position
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limits required for concentrations on certain styles, sectors, industries, and geographical regions
can significantly bind in some states and in some time periods and can significantly affect fund
performance.

The remainder of the paper is organized as follows. In Section 2, we describe the model.
We solve the first benchmark case without transaction costs in Section 3. We solve the second
benchmark case with transaction costs but without position limits in Section 4. Section 5 pro-
vides a verification theorem and an analytical analysis of the main problem with both transaction
costs and position limits. In Section 6, we conduct an extensive numerical analysis. Section 7
concludes. All the proofs are provided in Appendix A.

2. The model

We consider a fund manager who has a finite horizon T ∈ (0,∞) and maximizes the expec-
tation of his constant relative risk averse (CRRA) utility from terminal wealth.6 The fund can
invest in three assets. The first asset (“the bond”) is a money market account growing at a contin-
uously compounded, constant rate r .7 The second asset is a liquid risky asset (“the liquid stock,”
e.g., a large cap stock, S&P index) whose price process SLt evolves as

dSLt

SLt
= μL dt + σL dBLt, (1)

where both μL and σL > 0 are constants and BLt is a one-dimensional standard Brownian motion.
The third asset is an illiquid risky asset (“the illiquid stock,” e.g., a small cap stock, an emerging
market portfolio). The investor can buy the illiquid stock at the ask price SA

It = (1+ θ)SIt and sell
the stock at the bid price SB

It = (1 − α)SIt, where θ � 0 and 0 � α < 1 represent the proportional
transaction cost rates and SIt follows the process

dSIt

SIt
= μI dt + σI dBIt, (2)

where μI and σI > 0 are both constants and BIt is another one-dimensional standard Brownian
motion that has a correlation of ρ with BLt with |ρ| < 1.8

When α + θ > 0, the above model gives rise to equations governing the evolution of the dollar
amount invested in the liquid assets (i.e., the bond and the liquid stock), xt , and the dollar amount
invested in the illiquid stock, yt :

dxt = rxt dt + ξt (μL − r) dt + ξtσL dBLt − (1 + θ) dIt + (1 − α)dDt , (3)

dyt = μIyt dt + σI yt dBIt + dIt − dDt , (4)

where stochastic process ξ denotes the dollar amount invested in the liquid stock and the pro-
cesses D and I represent the cumulative dollar amount of sales and purchases of the illiquid
stock, respectively. D and I are nondecreasing and right continuous adapted processes with
D0 = I0 = 0.

6 This form of utility function is consistent with a linear fee structure predominantly adopted by mutual fund com-
panies (e.g., Das and Sundaram [19], Elton, Gruber, and Blake [20]) and is also commonly used in the literature (e.g.,
Carpenter [7], Basak, Pavlova, and Shapiro [6], Cuoco and Kaniel [13]).

7 Although significant cash position is rare for most mutual funds, some funds do hold some cash. Later, we analyze
the case where cash position is restricted.

8 The case with perfect correlation is straightforward to analyze, but needs a separate treatment. We thus omit it to save
space.
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Let At = xt + yt > 0 be the fund’s assets under management (AUM) (on paper) at time t . The
fund is subject to the following exogenously given constraints on its trading strategy9:

b � yt

At

� b̄, ∀t � 0, (5)

where − 1
θ

� b < b̄ � 1
α

are constants.10 These constraints restrict the fraction of AUM (on
paper) that must be invested in the illiquid asset and imply that the fund is always solvent after
liquidation, i.e., the liquidation value11

Ât � 0, ∀t � 0, (6)

where

Ât = xt + (1 − α)y+
t − (1 + θ)y−

t . (7)

Let x0 and y0 be the given initial positions in the liquid assets (the bond and the liquid stock)
and the illiquid stock, respectively. We let Θ(x0, y0) denote the set of admissible trading strate-
gies (ξ,D, I) such that (3), (4), and (5) are satisfied.

The fund manager’s problem is then12

sup
(ξ,D,I)∈Θ(x0,y0)

E
[
u(AT )

]
, (8)

where the utility function is given by

u(A) = A1−γ − 1

1 − γ

and γ > 0 is the constant relative risk aversion coefficient. This specification allows us to obtain
the corresponding results for the log utility case by letting γ approach 1. Implicitly, we assume
that the performance evaluation or incentive fee structure depends on the AUM on paper instead
of the liquidation value. This is consistent with common industry practice and avoids trading
strategies that lead to liquidation on the performance evaluation or terminal date.

3. Optimal policies without transaction costs

For the purpose of comparison, let us first consider the case without transaction costs (i.e.,
α = θ = 0). In this case, the fund manager’s problem at time t becomes

J (A, t) ≡ sup
{πL,π}

Et

[
u(AT )

∣∣ At = A
]
, (9)

9 Because of a possible misalignment of interests between the fund manager and the investor (e.g., different risk
tolerance, different investment horizons, different view of asset characteristics, etc.), the investor may impose constraints
on the trading strategy of the fund. See Almazan et al. [4] for more details on why many mutual fund managers are
constrained. In this paper, we focus on the case where these constraints are exogenously given and do not consider the
optimal contracting issue. This serves as a foundation toward examining the optimal contracting problem that allows
endogenous position limits in the presence of transaction costs. Later in this paper, we illustrate the choice of optimal
position limits using numerical examples.
10 Similar arguments to those in Cuoco and Liu [14] imply that the margin requirement for the one-stock case is a
special case of this constraint. So our model can also be used to study the effect of margin requirement in the presence
of transaction costs.
11 Choosing the AUM on paper in (5) instead of the AUM after liquidation (as defined in (7)) as the denominator is
consistent with common industry practice. Switching the choice does not affect our main results.
12 It can be shown that as long as b̄ > b, there exist feasible strategies and this problem is well posed. The proof of this
claim is omitted to save space.
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subject to the self-financing condition

dAs = rAs ds + πLs As(μL − r) ds + πLs AsσL dBLs + πsAs(μI − r) ds

+ πsAsσI dBIs, ∀s � t, (10)

and the portfolio constraint

πs ∈ [b, b̄], ∀s � t,

where πL and π represent the fractions of AUM invested in the liquid stock and illiquid stock,
respectively.

Let πM (“Merton line,” Merton [31]) be the optimal fraction of AUM invested in the illiquid
stock in the unconstrained case in the absence of transaction costs. Then it can be shown that

πM = 1

1 − ρ2

(
μI − r

γ σ 2
I

− ρ
μL − r

γ σLσI

)
. (11)

We summarize the main result for this no-transaction-cost case in the following theorem.

Theorem 1. Suppose that α = θ = 0. Then for any time t ∈ [0, T ], the optimal trading policy is
given by

π∗(t) = π∗ ≡
⎧⎨⎩

b̄ if πM � b̄,

πM if b < πM < b̄,

b if πM � b

and

π∗
L(t) = π∗

L ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μL−r

γ σ 2
L

− ρ σI

σL
b̄ if πM � b̄,

1
1−ρ2 (

μL−r

γ σ 2
L

− ρ
μI −r
γ σLσI

) if b < πM < b̄,

μL−r

γ σ 2
L

− ρ σI

σL
b if πM � b,

and the value function is

J (A, t) = (eη(T −t)A)1−γ − 1

1 − γ
,

where

η = r − 1

2
γ
((

π∗
LσL

)2 + 2π∗
Lπ∗ρσLσI + (

π∗σI

)2) + π∗
L(μL − r) + π∗(μI − r). (12)

Theorem 1 implies that the optimal fractions of AUM invested in each asset are time and
horizon independent. In addition, the investor is myopic with respect to the constraints even
for a nonlog preference. Specifically, the optimal fraction is equal to a bound if and only if
the unconstrained optimal fraction violates the bound. We will show that in the presence of
transaction costs, the investor will no longer be myopic even with a log preference. In addition,
the optimal trading strategy will be horizon dependent.
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4. The transaction cost case without constraints

In the presence of transaction costs, i.e., α + θ > 0, the problem becomes considerably more
complicated. In this section, we consider the unconstrained case first. In this case, the investor’s
problem at time t becomes

V (x, y, t) ≡ sup
(ξ,D,I)∈Θ(x,y)

Et

[
u(AT )

∣∣ xt = x, yt = y
]

(13)

with b = − 1
θ

and b̄ = 1
α

, which is equivalent to the solvency constraint (6). Under some regularity
conditions on the value function, we have the following HJB equation:

max
(
Vt + L V, (1 − α)Vx − Vy, −(1 + θ)Vx + Vy

) = 0,

with the boundary conditions

(1 − α)Vx − Vy = 0 on
y

x + y
= 1

α
, −(1 + θ)Vx + Vy = 0 on

y

x + y
= −1

θ
,

and the terminal condition

V (x, y,T ) = (x + y)1−γ − 1

1 − γ
,

where

L V = 1

2
σ 2

I y2Vyy + μIyVy + rxVx + max
ξ

{
1

2
σ 2

Lξ2Vxx + (μL − r)ξVx + ρσIσLξyVxy

}
= 1

2
σ 2

I y2Vyy + μIyVy + rxVx − [(μL − r)Vx + ρσIσLyVxy]2

2σ 2
LVxx

,

and the optimal ξ , denoted by ξ∗, is

ξ∗ = − (μL − r)Vx + ρσIσLyVxy

σ 2
LVxx

.

The HJB equation implies that the solvency region for the illiquid stock

S = {
(x, y): x + (1 − α)y+ − (1 + θ)y− > 0

}
at each point in time splits into a buy region (BR), a no-transaction region (NTR), and a sell
region (SR), as in Davis and Norman [21]. Formally, we define these regions as follows:

SR ≡ {
(x, y, t) ∈ S × [0, T ): (1 − α)Vx − Vy = 0

}
,

BR ≡ {
(x, y, t) ∈ S × [0, T ): (1 + θ)Vx − Vy = 0

}
,

and

NTR ≡ {
(x, y, t) ∈ S × [0, T ): (1 − α)Vx < Vy < (1 + θ)Vx

}
.

The homogeneity of the function u + 1
1−γ

and the fact that Θ(βx,βy) = βΘ(x, y) for all

β > 0 imply that V + 1
1−γ

is concave in (x, y) and homogeneous of degree 1 − γ in (x, y)

[cf. Fleming and Soner [22, Lemma VIII.3.2]]. This homogeneity implies that

V (x, y, t) ≡ (x + y)1−γ ϕ

(
y

x + y
, t

)
− 1

1 − γ
, (14)
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Fig. 1. The solvency region.

for some function ϕ : (−1/θ,1/α) × [0, T ] → R. Let

π = y

x + y
(15)

denote the fraction of AUM invested in the illiquid stock. The combination of the concavity
of the utility function and the homogeneity property then implies that buy, no-transaction, and
sell regions can be described by two functions of time π(t) and π̄(t). The buy region BR cor-
responds to π � π(t), the sell region SR to π � π̄(t), and the no-transaction region NTR to
π(t) < π < π̄(t). A time snapshot of these regions is depicted in Fig. 1. Similar to Davis and
Norman [21] and Liu and Loewenstein [28], the optimal trading strategy in the illiquid stock
is to transact a minimum amount to keep the fraction π(t) in the optimal no-transaction region.
Therefore the determination of the optimal trading strategy in the illiquid stock reduces to the de-
termination of the optimal no-transaction region. In contrast to the no-transaction-cost case, the
optimal fractions of AUM invested in both the illiquid and the liquid stocks change stochastically,
since πt varies stochastically due to no transaction in NTR.

By (14), the HJB equation simplifies into

max
(
ϕt + L1ϕ,−(1 − απ)ϕπ − α(1 − γ )ϕ, (1 + θπ)ϕπ − θ(1 − γ )ϕ

) = 0,

with the terminal condition

ϕ(π,T ) = 1

1 − γ
,

where

L1ϕ = 1

2
β1π

2(1 − π)2ϕππ + (β2 − γβ1π)π(1 − π)ϕπ

+ (1 − γ )

(
β3 + β2π − 1

2
γβ1π

2
)

ϕ − 1

2
β4

[(γ − 1)ϕ + πϕπ ]2

γ (γ − 1)ϕ + 2γπϕπ + π2ϕππ

,

β1 = (
1 − ρ2)σ 2

I , β2 = σI

(
μI − r

σI

− ρ
μL − r

σL

)
,

β3 = r − 1

2
γρ2σ 2

I + ρσI

μI − r

σL

, β4 =
(

μL − r

σL

− γρσI

)2

. (16)
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The nonlinearity of this HJB equation and the time-varying nature of the free boundaries (i.e.,
the buy and sell boundaries) make it difficult to solve directly. Instead, we transform the above
problem into a double obstacle problem, which is much easier to analyze. All the analytical
results in this paper are obtained through this approach.

Theorem 2 in the next section shows the existence and the uniqueness of the optimal trad-
ing strategy in the case with portfolio constraints and also applies to the unconstrained case by
choosing constraints that never bind. It also ensures the smoothness of the value function except
for a set of measure zero.

Before we proceed further, we make the following assumption to simplify analysis.

Assumption 1. α > 0, θ > 0, and − 1
α

+ 1 < πM < 1
θ

+ 1.

Assuming the transaction costs for both purchases and sales are positive reflects the common
industry practice. Because α and θ are typically small (e.g., 0.05), the assumption that − 1

α
+ 1 <

πM < 1
θ

+ 1 is almost without loss of generality.
Let π̄ (t) be the optimal sell boundary and let π(t) be the optimal buy boundary in the (π, t)

plane. Then we have the following properties for the no-transaction boundaries in the (π, t)

plane.

Proposition 1. Let πM be as defined in (11). Denote π̄ (T −) = limt→T π̄(t) and π(T −) =
limt→T π(t). Under Assumption 1, we have

(1) for the sell boundary, π̄ (T −) = 1
α

and

π̄ (t) � πM

1 − α(1 − πM)
, for any t;

(2) for the buy boundary, π(T −) = − 1
θ

and

π(t) � πM

1 + θ(1 − πM)
, for any t.

This proposition shows that both the buy boundary and the sell boundary tend to the cor-
responding solvency line as the investment horizon goes to zero. This implies that the entire
solvency region becomes the no-transaction region with a very short horizon. This is because
when a horizon is short enough, it is almost impossible to recoup the transaction cost incurred
from any trading. The lower and upper bounds provided in Proposition 1 are helpful in comput-
ing the optimal boundaries. Furthermore, if πM ∈ (0,1), then the width of the NTR is bounded
below by

(θ + α)(1 − πM)πM

(1 − α(1 − πM))(1 + θ(1 − πM))
.

Let

t̄0 = T − 1

β2
log(1 − α), (17)

t0 = T − 1

β2
log(1 + θ). (18)
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Proposition 2. Under Assumption 1, we have:

(1) If πM < 0, then π(t) < 0 for all t , and π̄ (t) is below 0 for t < t̄0 and above 0 for t � t̄0; in
addition, π̄(t) is increasing in t for t > t̄0.

(2) If πM > 0, then π(t) is above 0 for t < t0 and below 0 for t � t0; π̄(t) is above 0 for all t ;
in addition, π(t) is decreasing in t for t > t0.

(3) If πM = 0, then π(t) < 0 and π̄ (t) > 0 for all t , and π(t) is decreasing in t and π̄(t) is
increasing in t for t ∈ [0, T ).

Proposition 2 shows the presence of transaction costs can make a long position optimal when
a short position is optimal in the absence of transaction costs and vice versa. For example, Part (1)
of Proposition 2 shows that if the time to horizon is short (i.e., < T − t̄0), then the sell boundary
will always be positive even if it is optimal to short the illiquid asset in the absence of transaction
costs. This implies that if the fund starts with a large long position in the illiquid asset, then the
fund will only sell a part of its position and optimally choose to keep a long position in it. This is
because trading the large long position into a short position would incur large transaction costs.
Similar results also hold when it is optimal to long in the absence of transaction costs.

We conjecture that the optimal buy boundary is always decreasing in time and the optimal
sell boundary is always increasing in time. Unfortunately, we can only show this when πM = 0.
However, for other cases, we are able to show this property in some scenarios. For example,
Part (2) implies that the monotonicity of the buy boundary holds when t > t0.

Propositions 1 and 2 indicate that in the absence of position limits, the portfolio chosen by a
fund with a short horizon can be far from the portfolio that is optimal for a long horizon investor.
Thus, this large deviation can be substantially suboptimal for investors with longer horizons and
therefore it may be one of the reasons for investors to impose position limits.

5. The transaction cost case with position limits

Now we examine the case with both transaction costs and position limits. In this case, the
investor’s problem at time t can be written as

V c(x, y, t) ≡ sup
(ξ,D,I)∈Θ(x,y)

Et

[
u(AT )

∣∣ xt = x, yt = y
]

(19)

with

−1

θ
� b � ys

xs + ys

� b̄ � 1

α
,

for all T � s � t .
Under regularity conditions on the value function, we have the HJB equation

max
(
V c

t + L V c, (1 − α)V c
x − V c

y ,−(1 + θ)V c
x + V c

y

) = 0, (20)

with the boundary conditions

(1 − α)V c
x − V c

y = 0 on
y

x + y
= b̄, (1 + θ)V c

x − V c
y = 0 on

y

x + y
= b,

and the terminal condition

V c(x, y,T ) = (x + y)1−γ − 1

1 − γ
.
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The following verification theorem shows the existence and the uniqueness of the optimal
trading strategy. It also ensures the smoothness of the value function except for a set of measure
zero.

Theorem 2. Under Assumption 1, we have the following conclusions.

(i) The HJB equation (20) admits a unique viscosity solution, and the value function is the
viscosity solution.

(ii) The value function is C2,2,1 in {(x, y, t): x + (1 − α)y+ − (1 + θ)y− > 0, b < y/(x + y) <

b̄, 0 � t < T } \ ({y = 0} ∪ {x = 0}).

Similar to π̄(t) and π(t), let π̄ c(t;b, b̄) and πc(t;b, b̄) be respectively the optimal sell and
buy boundaries in the (π, t) plane in the presence of position limits.

We have the following proposition on the properties of the optimal no-transaction boundaries
in the (π, t) plane.

Proposition 3. Under Assumption 1, we have

(1) for the sell boundary, π̄ c(T −;b, b̄) = b̄ and

π̄ c(t;b, b̄) � max

(
min

(
πM

1 − α(1 − πM)
, b̄

)
, b

)
for any t; (21)

(2) for the buy boundary, πc(T −;b, b̄) = b and

πc(t;b, b̄) � min

(
max

(
πM

1 + θ(1 − πM)
, b

)
, b̄

)
for any t. (22)

Corollary 1. Under Assumption 1,

(1) if πM

1−α(1−πM)
� b̄, then π̄ c(t;b, b̄) = b̄ for all t ∈ [0, T ];

(2) if πM

1+θ(1−πM)
� b, then πc(t;b, b̄) = b for all t ∈ [0, T ].

As stated in Corollary 1, these results imply that if the selling cost adjusted Merton line is
higher than the upper bound, then the sell boundary becomes flat throughout the horizon and if the
buying cost adjusted Merton line is lower than the lower bound b, then the buy boundary becomes
flat throughout the horizon. Proposition 3 also shows that the buy (sell) boundary converges to
the lower bound b (upper bound b̄) as the remaining horizon approaches 0 irrespective of the
level of the Merton line.

Proposition 4. Under Assumption 1, we have

(1) both π̄ c(t;b, b̄) and πc(t;b, b̄) are increasing in b and b̄ for all t ∈ [0, T ];
(2) if b̄ > 0, then the upper bound does not affect any trading boundary that is below 0;
(3) if b < 0, then the lower bound does not affect any trading boundary that is above 0.

Part (1) of Proposition 4 suggests that both the sell boundary and the buy boundary at any
point in time shift upward as the lower bound or the upper bound increases. The intuition is
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straightforward. For example, if a binding lower bound is raised, then obviously one needs to in-
crease the buy boundary to satisfy the more stringent constraint. If the sell boundary remained the
same, then the no-transaction region would become narrower and the trading frequency would
increase. Therefore, the sell boundary also shifts upward to save transaction costs from too fre-
quent trading.

Parts (2) and (3) of Proposition 4 suggest that the optimal boundaries in either of the two
regions {π < 0} and {π > 0} are not affected by a constraint that lies in the other region. Intu-
itively, this is because in NTR, the position in the illiquid asset can never become negative if it is
positive at time 0, i.e., the fraction of AUM invested in the illiquid asset cannot cross the π = 0
line.

Proposition 5. Under Assumption 1 except that either θ = 0 or α = 0, we have

(1) (21) and (22) remain valid;
(2) if θ = 0 and α > 0, then we have

(a) both πc(t;b, b̄) and π̄ c(t;b, b̄) are increasing in t ;
(b) πc(T −;b, b̄) = min(max(πM,b), b̄) and π̄ c(T −;b, b̄) = b̄;

(3) if α = 0 and θ > 0, then we have
(a) both πc(t;b, b̄) and π̄ c(t;b, b̄) are decreasing in t ;
(b) πc(T −;b, b̄) = b and π̄ c(T −;b, b̄) = max(min(πM, b̄), b).

Proposition 5 shows that if the buying cost is zero, then both trading boundaries are monoton-
ically increasing in time. In contrast, if the selling cost is zero, then both trading boundaries are
monotonically decreasing in time. Intuitively, if both the buying and selling costs are zero, then
it is optimal to stay on the Merton line in the absence of constraints. If the selling cost is positive
(and the buying cost is zero), then before maturity there is a chance that the investor needs to sell
the stock and thus incurs the selling cost before maturity; therefore, the investor buys less, and
thus the buy boundary stays below the Merton line. As the time to horizon shrinks, the probability
of future sale decreases (note that there is no liquidation at maturity), thus the investor is willing
to buy more and the buy boundary converges to the Merton line. The opposite is true for the sell
boundary, because as time to horizon decreases, the benefit of selling (i.e., keeping the optimal
risk exposure) decreases to zero and the cost of selling is always positive. Therefore, the investor
sells less as the remaining horizon shortens and the sell boundary increases. The intuitive for the
case with zero selling cost is similar.

Proposition 5 also suggests that the slopes of the trading boundaries with respect to time can
be discontinuous in the transaction costs. For example, Part (1) of Proposition 2 shows that if
both selling and buying costs are strictly positive, the sell boundary is increasing in time for
t > t̄0. In contrast, Proposition 5 shows that the sell boundary is always decreasing in time if the
selling cost is zero. So any positive increase in the selling cost can change the slope of the sell
boundary from positive to negative and thus has a discontinuous impact.

Propositions 1–5 provide analytical results that help better understand the properties of the
optimal trading strategy. Equally important, these results also serve as effective checks on the
validity of numerical results. As shown later, our numerical results all satisfy these analytical
properties and thus indicate the reliability of our numerical method.
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5.1. An additional no-borrowing constraint

Because some mutual funds are restricted from borrowing, we next extend our analysis to
impose an additional no-borrowing constraint. In this case, the investor’s problem at time t can
be written as

V c(x, y, t) ≡ sup
(ξ,D,I)∈Θ(x,y)

Et

[
u(AT )

∣∣ xt = x, yt = y
]

(23)

with the constraint on the illiquid asset

−1

θ
� b � ys

xs + ys

� b̄ � 1

α
, ∀T � s � t,

and the no-borrowing constraint

xs − ξs � 0, ∀T � s � t.

Let π̄ c(t;b, b̄) be the associated optimal sell boundary and let πc(t;b, b̄) be the optimal buy
boundary in the (π, t) plane. Then under some technical conditions (specified in the proof), the
following proposition holds and most of our analytical results in the previous section remain
valid with the additional constraint.

Proposition 6. . Let

πM
0 = μI − μL + γ σL(σL − ρσI )

γ (σ 2
I + σ 2

L − 2ρσIσL)

be the Merton line for the market with only the two risky assets such that − 1
α

+ 1 < πM
0 < 1

θ
+ 1

and define

Π(δ) = {
π :

[
(μL − r − γρσIσL)δ + γ

(
σ 2

L − ρσIσL

)]
π < −(

μL − r − γ σ 2
L

)}
.

Under Assumption 1, we have

(1) π̄ c(T −;b, b̄) = b̄, and

π̄ c(t;b, b̄) � max

(
min

(
πM

1 − α(1 − πM)
, b̄

)
, b

)
if π̄ c(t;b, b̄) ∈ Π(−α),

π̄c(t;b, b̄) � max

(
min

(
πM

0

1 − α(1 − πM
0 )

, b̄

)
, b

)
if π̄ c(t;b, b̄) /∈ Π(−α).

πc(T −;b, b̄) = b, and

πc(t;b, b̄) � max

(
min

(
πM

1 + θ(1 − πM)
, b̄

)
, b

)
if πc(t;b, b̄) ∈ Π(θ), (24)

πc(t;b, b̄) � max

(
min

(
πM

0

1 + θ(1 − πM
0 )

, b̄

)
, b

)
if πc(t;b, b̄) /∈ Π(θ). (25)

(2) Both πc(t;b, b̄) and πc(t;b, b̄) are increasing in b and b̄ for all t ∈ [0, T ]; if b̄ > 0, then the
upper bound does not affect any trading boundary that is below 0; if b < 0, then the lower
bound does not affect any trading boundary that is above 0.
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(3) Suppose either θ = 0 or α = 0, then (i) Part (1) remains valid; (ii) if θ = 0 and α > 0, then
both πc(t;b, b̄) and π̄ c(t;b, b̄) are increasing in t , π̄ c(T −;b, b̄) = b̄,

πc
(
T −;b, b̄

) =
{

min(max(πM,b), b̄) if πc(T −;b, b̄) ∈ Π(0),

min(max(πM
0 , b), b̄) if πc(T −;b, b̄) /∈ Π(0).

(iii) if α = 0 and θ > 0, then both πc(t;b, b̄) and π̄ c(t;b, b̄) are decreasing in t ,
πc(T −;b, b̄) = b, and

π̄ c
(
T −;b, b̄

) =
{

min(max(πM,b), b̄) if π̄ c(T −;b, b̄) ∈ Π(0),

min(max(πM
0 , b), b̄) if π̄ c(T −;b, b̄) /∈ Π(0).

6. Numerical analysis

In this section, we conduct a numerical analysis of the optimal trading strategy and the cost
from following some seemingly intuitive, but suboptimal strategies. We also examine the optimal
choice of position limits. For this analysis, we use the following default parameter values: γ = 2,
T = 5, μL = 0.05, σL = 0.20, μI = 0.11, σI = 0.25, r = 0.01, ρ = 0.3, α = 0.01, θ = 0.01,
b = 0.60, and b̄ = 0.80, which implies that in the default case the fraction of AUM invested in
the illiquid stock is greater than that in the liquid assets, like in a small cap fund. For a large
cap fund, we set b = 0.10 and b̄ = 0.30 so that the fraction of AUM invested in the liquid (large
cap) stock is greater than that in the illiquid (small cap) stock. These parameter values imply that
the illiquid stock has higher expected return and volatility than the liquid stock. We also impose
the no-borrowing constraint in our numerical examples. We use a finite difference scheme to
discretize the HJB equations and then use a projected successive over-relaxation method (and a
penalty method in some cases) to solve the resulting nonlinear algebraic system (e.g., Wilmott,
Dewynne, and Howison [34] and Dai, Kwok, and Zong [17]).

6.1. Horizon effect

In Fig. 2, we plot π against calendar time t for the constrained case (the solid lines) and the
unconstrained case (the dotted lines). The dashed line represents the Merton line in the absence of
transaction costs. Consistent with the theoretical results in the previous section, this figure shows
that the buy boundary is monotonically decreasing in time and the sell boundary is monotonically
(weakly) increasing in time, with or without the position limits. The upper bound of 80% is
binding throughout the investment horizon and therefore the sell boundary becomes flat at 80%
across all time. In Fig. 2, the no-borrowing constraint is never binding. The lowest riskless asset
position is about 0.5% of the AUM, with an average of 4.7% across the investment horizon,
consistent with empirical evidence.

The buy boundary reaches the lower bound of 60% at t = 4.6. In addition, compared to the
unconstrained case, the buy boundary before t = 3.7 is moved lower and the portion after t = 3.7
is moved higher. Thus, the optimal trading strategy is not myopic in the sense that in anticipation
of the constraint becoming binding later, it is optimal to change the early trading strategy. To
understand this result, recall that by Proposition 3, as time to horizon decreases to 0, the buy
boundary decreases to −1/θ and the sell boundary increases to 1/α. A lower bound b < 1 will
then for sure bind if time to horizon is short. For a fund with a long time to horizon, it will there-
fore change its optimal trading boundaries in anticipation of the fact that when its remaining
investment horizon gets short enough, it will be forced to buy the illiquid asset and incur trans-
action costs. In this sense, the fund’s trading strategy is nonmyopic with respect to the portfolio
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Fig. 2. The optimal trading strategy for the illiquid asset for a small cap fund against time. Parameter default values:
γ = 2, T = 5, μL = 0.05, σL = 0.20, μI = 0.11, σI = 0.25, r = 0.01, ρ = 0.3, α = 0.01, θ = 0.01, b = 0.60, and
b̄ = 0.80.

constraints in the presence of transaction costs because what will happen in the future affects
the current trading behavior. Since the results in this proposition hold for any risk aversion, it
also holds for a log utility (a special case with γ = 1). Therefore, the optimal trading strategy
is nonmyopic even for log preferences by the same intuition. This nonmyopium of the optimal
trading strategy with respect to the portfolio constraints is robust and present in all the cases we
have numerically solved.

The Merton line is flat through time, implying that in the absence of transaction costs, it is
optimal to keep a constant fraction of AUM in the stock. In the presence of transaction costs,
however, the optimal fraction becomes a stochastic process because the investor cannot trade
continuously to keep the fraction constant.

We present a similar figure (Fig. 3) for the large cap fund case with the expected return for the
large cap (liquid) stock changed to 9%. In this case, both the lower bound (10%) and the upper
bound (30%) are tight constraints and the upper bound is so restrictive that the sell boundary
becomes flat at 30% throughout the horizon. In contrast to the case depicted in Fig. 2, the no-
borrowing constraint is always binding and the investor does not invest in the riskless asset at
all, because both stocks provide a better risk and return trade-off. This implies that the large
cap stock position varies from 70% to 90% of the AUM. The buy boundary also shifts downward
significantly through most of the horizon and only shifts upward toward the end of the horizon. In
contrast to Fig. 2, the Merton line is outside the optimal no-transaction region for the constrained
case. These parameter values for the constraints can be reasonable for investors who are more
risk averse than the fund manager.

6.2. Change in illiquidity

In Fig. 4, we plot the time 0 optimal boundaries (π(0)) against the transaction cost rate α for
several different cases. In the unconstrained case, as the transaction cost rate increases, the buy
boundary decreases and the sell boundary increases and thus the no-transaction region widens



Author's personal copy

1614 M. Dai et al. / Journal of Economic Theory 146 (2011) 1598–1630

Fig. 3. The optimal trading strategy for the illiquid asset for a large cap fund against time. Parameter default values:
γ = 2, T = 5, μL = 0.09, σL = 0.20, μI = 0.11, σI = 0.25, r = 0.01, ρ = 0.3, α = 0.01, θ = 0.01, b = 0.10, and
b̄ = 0.30.

Fig. 4. The initial optimal trading strategy for the illiquid asset for a small cap fund against transaction cost rate. Parameter
default values: γ = 2, T = 5, μL = 0.05, σL = 0.20, μI = 0.11, σI = 0.25, r = 0.01, ρ = 0.3, θ = α, b = 0.60, and
b̄ = 0.80.

to decrease transaction frequency. In contrast, the sell boundary in the presence of constraints
first increases and then stays at the upper bound because the upper bound becomes binding. The
binding upper bound also drives down the buy boundary and makes it move down more for higher
transaction cost rates.

This figure also shows that as the correlation between the liquid and illiquid stock returns de-
creases, the fraction of AUM invested in the illiquid stock decreases in the absence of transaction
costs. This is because the diversification benefit of investing in the large cap stock increases and
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Fig. 5. The initial optimal trading strategy for the illiquid asset for a small cap fund against net excess return over the
liquid asset. Parameter default values: γ = 2, T = 5, μL = 0.05, σL = 0.20, σI = 0.25, r = 0.01, ρ = 0.3, α = 0.01,
θ = 0.01, b = 0.60, and b̄ = 0.80.

thus one should invest less in the small cap stock that has a higher risk. In the presence of trans-
action costs, a decrease of the correlation drives both the sell boundary and the buy boundary
downward.

6.3. Expected return of the illiquid stock

In Fig. 5, we plot the time 0 optimal boundaries (π(0)) against the excess return RI ≡
μI − μL − α (a measure of the excess return over the liquid stock net of illiquidity), varying
the expected return of the illiquid stock μI . Even when the excess return is negative, it is still
optimal to invest in the illiquid asset due to its diversification benefit. The lower bound is binding
for low excess returns. This binding constraint makes the buy boundary flat at 60% until it gets
close to the buy boundary for the unconstrained case at RI = 4.1%. It also makes the sell bound-
ary significantly higher than the unconstrained case to balance the cost from over-investment in
the illiquid asset and the transaction cost payment.

As the excess return increases, the no-transaction region widens because the cost of over-
investment decreases. Between RI = 4.1% and RI = 4.8%, the constraints become less bind-
ing and thus the constrained boundaries are close to the unconstrained boundaries. Above
RI = 4.8%, the upper bound becomes binding, which makes the sell boundary flat at 80%
for RI > 4.8%. To reduce transaction costs, the buy boundary is adjusted downward to reduce
transaction frequency. An increase in the correlation drives down the optimal boundaries if the
excess return is low and drives them up if the excess return is high. Intuitively, if the correlation
gets larger, the diversification benefit shrinks and so the fund will shift funds into the asset with
a more attractive Sharpe ratio. Therefore, if the excess return is high then the fund will shift into
the illiquid asset and vice versa.
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Fig. 6. The initial optimal trading strategy for the illiquid asset for a small cap fund against correlation coefficient.
Parameter default values: γ = 2, T = 5, μL = 0.05, σL = 0.20, μI = 0.11, σI = 0.25, r = 0.01, θ = α, b = 0.60, and
b̄ = 0.80.

6.4. Correlation and diversification

Next we examine more closely the effect of correlation on diversification. In Fig. 6, we plot
the time 0 optimal fraction of AUM invested in the illiquid asset (π(0)) against the correlation
coefficient ρ for different levels of transaction cost rates. Consistent with Fig. 4, Fig. 6 verifies
that for this set of parameter values such that the Sharpe ratio of the illiquid stock is higher, as
the correlation coefficient increases the optimal fraction of AUM invested in the illiquid asset
increases, because of the decrease in the diversification effect of the liquid stock investment.
In addition, as the transaction cost rate increases, the no-transaction region widens and both
the upper bound and the lower bound bind for a larger range of correlation coefficients. For
example, the buy boundary is flat at 60% only for ρ < −0.1 with α = θ = 0.01. In contrast,
if α = θ = 0.02, it remains flat at 60% for all ρ < 0.01. The intuition behind this result is that
an increase in transaction costs makes the fund lower the buy boundary and increase the sell
boundary to reduce transaction cost payment.

6.5. The cost of a myopic trading strategy

One intuitive trading strategy in the presence of position limits is to take the optimal trading
strategy for the unconstrained case and modify it myopically, i.e., set a trading boundary to the
position upper bound or lower bound if and only if the bound is binding. We show that this
myopically modified strategy can be costly and thus it is important for an institution to adopt
the optimal trading strategy. First, if the unconstrained buy (lower) boundary is greater than the
position upper bound, then both the unconstrained sell and the unconstrained buy boundaries
violate the position upper bound and thus the myopic strategy would set both the sell and the buy
boundaries at the position upper bound, which implies infinite transaction costs because of the
implied continuous trading. A similar result obtains if the unconstrained sell (upper) boundary
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Fig. 7. The fraction of the certainty equivalent AUM loss from the myopic strategy for a small cap fund. Parameter default
values: γ = 2, μL = 0.05, σL = 0.20, μI = 0.11, r = 0.01, ρ = 0.3, α = 0.01, θ = 0.01, b = 0.60, and b̄ = 0.80.

is smaller than the position lower bound. Next, we show that even for many other cases, this
myopic strategy can also be costly. We use the certainty equivalent AUM loss δ from the myopic
strategy to measure the cost. Fig. 7 plots the ratio of δ to the initial AUM for a small cap fund
against investment horizon. Fig. 7 shows that following the myopic strategy can be very costly.
For example, if σI = 29%, then the certainty equivalent AUM loss is as high as 10% of the initial
AUM for a 15-year horizon. As the horizon increases to 25 years, the cost increases to 17%. The
main reason for this large cost is that with the myopic strategy, the no-trading region is too narrow
and thus the investor incurs large transaction costs. Interestingly, Fig. 7 also shows that the cost
can be nonmonotonic in the illiquid asset volatility. In particular, the cost when σI = 25% is
lower than when σI = 29% and when σI = 23%. The reason for this nonmonotonicity is that
when σI = 29% and when σI = 23%, the implied myopically modified no-trading regions are
narrower than when σI = 25%. More specifically, when σI = 29%, only the lower bound is
binding and it is close to the unconstrained sell boundary. Similarly, when σI = 23%, only the
upper bound is binding and it is close to the unconstrained buy boundary.

6.6. Endogenous position limits

Now we briefly illustrate the optimal choice of the optimal position limits by investors who
hire fund managers. There are many possible reasons why investors might constrain their man-
agers, e.g., different preferences, different investment horizons, asymmetric information, moral
hazard, etc. In the subsequent analysis, for illustration purposes, we focus on the case where
the only difference between investors and managers is risk aversion. Specifically, suppose the
investor has the same type of utility function (i.e., CRRA), but with a different risk aversion co-
efficient (γI ) from that of the fund manager (γM ). To compute the optimal constraints, we follow
the following steps:

(1) first, for given position limits b and b̄, compute the optimal strategy of the fund manager
for the constrained case and the unconstrained case;
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Fig. 8. The optimal choice of the lower bound for an investor. Parameter default values: γI = 2, γM = 5, T = 5, μL =
0.05, σL = 0.20, μI = 0.11, σI = 0.25, r = 0.01, ρ = 0.3, α = 0.01, θ = 0.01, and b̄ = 0.80.

(2) then compute the value functions of the investor given the optimal trading strategy of
the fund manager for these two cases, denoting the value functions as Vc(A;b, b̄) and Vu(A),
respectively;

(3) then solve Vc(A − �;b, b̄) = Vu(A) for � to compute the equivalent AUM gain of the
investors from imposing the constraints as a measure of the value of constraints. Because of the
homogeneity, the ratio �/A is independent of A;

(4) Now repeat steps (1)–(3) for different b and b̄ to find the optimal b and b̄ that maximize
the equivalent AUM gain.

We illustrate the optimal choice through two cases: one case where the investor is less risk
averse than the manager (Fig. 8) and the other case where the investor is more risk averse (Fig. 9).
Specifically, we set γI = 2 and γM = 5 in Fig. 8 and γI = 5 and γM = 2 in Fig. 9. This implies
that in Fig. 8 (Fig. 9) the investor would like the manager to invest more (less) in the illiquid stock
than what the manager would choose to. Accordingly, we only consider the imposition of a lower
(upper) bound in Fig. 8 (Fig. 9). Loosely speaking, the investor chooses the limits so that the fund
portfolio is close to his own optimal portfolio “on average.” Fig. 8 plots the ratio �/A against b

and Fig. 9 plots the ratio �/A against b̄ for different correlation coefficients and transaction cost
rates, where the stars in the figures indicate where the ratios are maximized. Fig. 8 shows that
the optimal lower bound b is equal to 0.73 in the first case (given default parameter values) and
Fig. 9 shows that the optimal upper bound b̄ is equal to 0.31 in the second case. These figures
also show that as transaction cost rate increases, the optimal choice of the lower bound decreases
and the optimal upper bound increases. Intuitively, as transaction cost rate increases, the illiquid
stock becomes more costly to trade and thus the investor imposes looser constraints.

As correlation increases, the diversification benefit of investing in the liquid asset decreases
and therefore it is optimal to increase the investment in the illiquid stock, which has a higher ex-
pected return. Accordingly, as these figures suggest, as the correlation increases, both the optimal
upper bound and the optimal lower bound increase.

These figures also demonstrate that the benefit of constraining fund managers can be quite
significant. Fig. 8 indicates that the investor is willing to pay more than 4.8% of the initial AUM
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Fig. 9. The optimal choice of the upper bound for an investor. Parameter default values: γI = 5, γM = 2, T = 5, μL =
0.05, σL = 0.20, μI = 0.11, σI = 0.25, r = 0.01, ρ = 0.3, α = 0.01, θ = 0.01, and b = 0.

for the right to constrain fund managers. In Fig. 9, the gain from imposing portfolio constraints
is as high as 11.7%.

7. Conclusions

Mutual funds are often restricted to allocate certain percentages of fund assets to certain secu-
rities that have different degrees of illiquidity. However, the existing literature has largely ignored
the coexistence of position limits and differential illiquidity. Therefore, the optimal trading strat-
egy for a typical mutual fund is still largely unknown. This paper is the first to derive and analyze
the optimal trading strategy of mutual funds that face both asset illiquidity and position limits.
We conduct an extensive analytical and numerical analysis of the optimal trading strategy and
provide a fast numerical procedure for solving a large class of similar problems. In addition, we
show that adopting other seemingly intuitive strategies can be very costly. We also examine the
endogenous choice of position limits, which is a first step toward understanding why it might be
optimal for investors to impose position limits for mutual funds and how transaction costs and
return correlations affect the optimal position limits.

Appendix A

In this appendix, we present proofs for the propositions and theorems in this paper.

A.1. Proof of Theorem 1

Define

f (πL,π) = r + (μL − r)πL + (μI − r)π − γ

2

[
σ 2

Lπ2
L + 2ρσLσIπLπ + σ 2

I π2]. (A.1)

The following lemma gives the explicit form for the solutions in Theorem 1.
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Lemma A.1. The solution for

max
πL∈R,π∈[b,b̄]

f (πL,π) (A.2)

is

(
π∗

L,π∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
μL−r

γ σ 2
L

− ρσI b

σL
, b) if πM < b,

(πM
L ,πM) if πM ∈ [b, b̄],

(
μL−r

γ σ 2
L

− ρσI b̄
σL

, b̄) if πM > b̄,

and η = f (π∗
L,π∗), where

πM
L = 1

1 − ρ2

(
μL − r

γ σ 2
L

− ρ(μI − r)

γ σLσI

)
(A.3)

and η is as defined as in (12).

Proof of Lemma A.1. This follows from simple constrained bivariate quadratic function maxi-
mization. �

Now let us prove Theorem 1. Given any investment strategy (πLs,πs), we denote

σs =
√

π2
Lsσ

2
L + 2ρπLsπsσLσI + π2

s σ 2
I .

Then the budget constraint implies that for any feasible strategy πLs,πs ,

AT = At exp

( T∫
t

[
r + πLs(μL − r) + πs(μI − r) − 1

2
σ 2

s

]
ds

+
T∫

t

πLsσLdBLs +
T∫

t

πsσI dBIs

)
.

Therefore, for γ > 0, γ 	= 1, some algebra yields that13

Et

[
u(AT )

] + 1

1 − γ
= A

1−γ
t

1 − γ
Et

[
exp

(
(1 − γ )

T∫
t

f (πLs,πs) ds

)
Z(T )

]
, (A.4)

where f (πL,π) is as defined in (A.1), and

Z(ν) = exp

(
−

ν∫
t

1

2
(1 − γ )2σ 2

s ds +
ν∫

t

(1 − γ )πLsσL dBLs +
ν∫

t

(1 − γ )πsσI dBIs

)

is a positive local martingale, and therefore a supermartingale with

Et

[
Z(T )

]
� Z(t) = 1. (A.5)

13 The proof for the case with γ = 1 follows similar arguments, but involves more technicality. We omit it to save space.
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Lemma A.1 implies that for any feasible strategy (πLs,πs), f (πLs,πs) � η and equality holds
if and only if πLs = π∗

L,πs = π∗. We then deduce that

Et

[
u(AT )

]
� A

1−γ
t

1 − γ
e(1−γ )η(T −t)Et

[
Z(T )

] − 1

1 − γ

� (Ate
η(T −t))1−γ

1 − γ
− 1

1 − γ
,

and equalities hold if and only if πLs = π∗
L, πs = π∗, a.s. Therefore (πLs,πs) ≡ (π∗

L,π∗) is the
unique solution. �
A.2. Proof of Proposition 1 and Proposition 3

Proposition 1 is a special case of Proposition 3. So, we will only prove Proposition 3. By
transformation

V c(x, y, t) ≡ (x + y)1−γ ϕc(π, t) − 1

1 − γ
, π = y

x + y
, (A.6)

the HJB equation (20) reduces to

max
(
ϕc

t + L1ϕ
c,−(1 − απ)ϕc

π − α(1 − γ )ϕc, (1 + θπ)ϕc
π − θ(1 − γ )ϕc

) = 0,

where L1 is given in (16). The terminal and boundary conditions become

ϕc(π,T ) = 1

1 − γ
,

(1 + θπ)ϕc
π − θ(1 − γ )ϕc = 0 on π = b,

−(1 − απ)ϕc
π − α(1 − γ )ϕc = 0 on π = b̄.

Let

w = 1

1 − γ
log

[
(1 − γ )ϕc

]
. (A.7)

It is easy to see that w(π, t) satisfies

max

{
wt + L2w,− α

1 − απ
− wπ,wπ − θ

1 + θπ

}
= 0 (A.8)

in (b, b̄) × [0, T ), with the terminal condition w(π,T ) = 0 and the boundary conditions14

wπ(b, t) = θ

1 + θπ
, wπ(b̄, t) = − α

1 − απ
,

where

L2w = 1

2
β1π

2(1 − π)2[wππ + (1 − γ )w2
π

] + (β2 − γβ1π)π(1 − π)wπ

+ β3 + β2π − 1

2
γβ1π

2 − 1

2
β4

(πwπ − 1)2

−γ + 2γπwπ + π2(wππ + (1 − γ )w2
π )

14 For Proposition 1, b = − 1
θ or b̄ = 1

α , the boundary condition becomes v(− 1
θ , t) = +∞ or v( 1

α , t) = −∞. In this
case the boundary condition can be removed.
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Eq. (A.8) can be rewritten as

wt + L2w = 0, if − α

1 − απ
< wπ <

θ

1 + θπ
, (A.9)

wt + L2w � 0, if wπ = − α

1 − απ
, (A.10)

wt + L2w � 0, if wπ = θ

1 + θπ
. (A.11)

Denote

v(π, t) = wπ(π, t). (A.12)

Note that

∂

∂π
(L2w) = 1

2
β1π

2(1 − π)2vππ + [
β1 + β2 − (2 + γ )β1π

]
π(1 − π)vπ

+ [
β2 − 2(β2 + γβ1)π + 3γβ1π

2]v
+ (1 − γ )β1π(1 − π)v

[
(1 − 2π)v + π(1 − π)vπ

] + β2 − γβ1π

+ 1

2
β4

π2(πv − 1)[(vππ + 2vvπ)(πv − 1) − 2π(vπ + v2)]
[π2(vπ + v2) − γ (πv − 1)2]2

≡ Lv. (A.13)

The following lemma shows that we can transform the original problem into a double obstacle
problem.

Lemma A.2. v(π, t) is the solution to the following parabolic double obstacle problem:

max

{
min

{
−vt − Lv, v + α

1 − απ

}
, v − θ

1 + θπ

}
= 0, (A.14)

or equivalently,

vt + Lv = 0, if − α

1 − απ
< v(π, t) <

θ

1 + θπ
, (A.15)

vt + Lv � 0, if v(π, t) = − α

1 − απ
, (A.16)

vt + Lv � 0, if v(π, t) = θ

1 + θπ
(A.17)

in (b, b̄) × [0, T ), with the terminal condition v(π,T ) = 0 and the boundary conditions

v(b, t) = θ

1 + θπ
, v(b̄, t) = − α

1 − απ
.

Proof of Lemma A.2. In the (π, t) plane, define the associated sell region, buy region, and
no-transaction region as follows:

SRc
π (b, b̄) ≡

{
(π, t) ∈ (b, b̄) × [0, T ): v(π, t) = − α

1 − απ

}
= {

π � π̄ c(t;b, b̄)
}
,

BRc
π (b, b̄) ≡

{
(π, t) ∈ (b, b̄) × [0, T ): v(π, t) = θ

1 + θπ

}
= {

π � πc(t;b, b̄)
}
,
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and

NTRc
π (b, b̄) ≡

{
(π, t) ∈ (b, b̄) × [0, T ): − α

1 − απ
< v <

θ

1 + θπ

}
= {

πc(t;b, b̄) < π < π̄c(t;b, b̄)
}
,

where the second equalities in the above three expressions can be shown using similar ar-
guments to those in Dai and Yi [18]. For any t < T , if πc(t;b, b̄) = b and π̄ c(t;b, b̄) = b̄,
then differentiating Eq. (A.9) w.r.t. π immediately gives (A.15); if either πc(t;b, b̄) > b or
π̄ c(t;b, b̄) < b̄, we will use an indirect method. Suppose πc(t;b, b̄) > b,15 then we can de-
fine w1(π, t) ≡ F(t) + log(1 + θπc(t;b, b̄)) + ∫ π

πc(t;b,b̄)
v(ξ, t) dξ , where F(t) is chosen such

that

w1t + L2w1|π=πc(t;b,b̄) = 0. (A.18)

Clearly w1π = v. Then, by (A.13), we can rewrite (A.15)–(A.17) as

∂

∂π
(w1t + L2w1) � 0, w1π = θ

1 + θπ
, if π � πc(t;b, b̄),

∂

∂π
(w1t + L2w1) = 0, − α

1 − απ
< w1π <

θ

1 + θπ
,

if πc(t;b, b̄) < π < π̄c(t;b, b̄),

∂

∂π
(w1t + L2w1) � 0, w1π = − α

1 − απ
, if π � π̄ c(t;b, b̄).

This means that w1t +L2w1 is increasing in π � πc(t;b, b̄), flat in πc(t;b, b̄) < π < π̄c(t;b, b̄),
and decreasing in π � π̄ c(t;b, b̄). Combining with (A.18), we then deduce that w1 satisfies
(A.9)–(A.11). Due to the uniqueness of the solution to the problem (A.8), we have w = w1. The
desired result follows. This completes the proof of the lemma. �

Now let us use Lemma A.2 to prove Part (1), and the proof of Part (2) is similar. For any
(π, t) ∈ SRc

π , we have v = − α
1−απ

. By (A.16),

0 �
(

∂

∂t
+ L

)(
− α

1 − απ

)
= 1 − α

(1 − απ)3

[
β2 − (γβ1 − αγβ1 + αβ2)π

]
= (1 − α)γβ1

(1 − απ)3

[
πM − (

1 − α
(
1 − πM

))
π

]
.

Since (1−α)γβ1
(1−απ)3 > 0 and 1 − α(1 − πM) > 0, we obtain π � πM

1−α(1−πM)
for any (π, t) ∈ SRc

π ,
which implies that

π̄ c(t;b, b̄) � πM

1 − α(1 − πM)
.

Clearly π̄ c(t;b, b̄) must also be in [b, b̄]; we then obtain (21).

15 A similar proof goes through if π̄c(t;b, b̄) < b̄.
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It remains to show that π̄ c(T −;b, b̄) = b̄. Suppose not, then there exists a convergent se-
quence {π̄ c(tn;b, b̄)}n=1,2,... such that limn→+∞ tn = T and limn→+∞ π̄ c(tn;b, b̄) < b̄. It fol-
lows that

lim
n→+∞v

(
π̄ c(tn;b, b̄), tn

) = lim
n→+∞

(
− α

1 − απ̄c(tn;b, b̄)

)
< 0.

In contrast, v(π,T ) = 0 for all π . So, v is discontinuous at π = limn→+∞ π̄ c(tn;b, b̄) and t = T .
However, according to the regularity theory of solutions to the double obstacle problem (cf.
Friedman [23]), v(π, t) is continuous for any π 	= b̄, b. A contradiction! �
A.3. Proof of Proposition 2

The double obstacle problem transformation remains valid for the unconstrained case, where
b̄ = 1

α
, b = − 1

θ
. We still denote by v(π, t) the solution to the double obstacle problem. Let BRπ ,

SRπ , and NTRπ be the associated buy, sell, and no-transaction regions and let π(t) and π̄(t)

be the associated buy and sell boundaries. Note that the differential operator L is degenerate at
π = 0, where the double obstacle problem reduces to⎧⎪⎪⎨⎪⎪⎩

vt (0, t) + β2v(0, t) + β2 = 0, if − α < v(0, t) < θ,

vt (0, t) + β2v(0, t) + β2 � 0, if v(0, t) = −α,

vt (0, t) + β2v(0, t) + β2 � 0, if v(0, t) = θ,

v(0, T ) = 0.

Solving it, we then obtain

v(0, t) =
{

eβ2(T −t) − 1, when t > t̄0,

−α, when t � t̄0,
if β2 < 0, (A.19)

v(0, t) =
{

eβ2(T −t) − 1, when t > t0,

θ, when t � t0,
if β2 > 0, (A.20)

v(0, t) = 0, if β2 = 0. (A.21)

Now let us prove Part (1). If πM < 0, then β2 < 0. So, we have (A.19) from which we can see
that

v(0, t) � 0 < θ for all t.

Note that {π = 0} ∩ BRπ = {(0, t): v(0, t) = θ}. So, {π = 0} ∩ BRπ = ∅. Combining with
π(T −) = − 1

θ
, we then deduce π(t) < 0 for all t . Again by (A.19), we have

v(0, t) > −α for t > t̄0, and v(0, t) = −α for t � t̄0.

Noticing {π = 0} ∩ SRπ = {(0, t): v(0, t) = −α}, we get

{π = 0, t > t̄0} /∈ SRπ ,

{π = 0, t � t̄0} ∈ SRπ .

These mean that π̄(t) intersects with the line {π = 0} at t̄0. Combining with the fact π̄(T −) = 1
α

,
we then infer π̄ (t) � 0 for t < t̄0, and π̄(t) � 0 for t > t̄0.

To show the monotonicity of π̄(t) for t > t̄0, let us introduce the comparison principle that
plays a critical role in the subsequent proofs.
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Comparison principle for double obstacle problem (cf. Friedman [23])
Let vi , i = 1,2, satisfy the double obstacle problem

max
{
min

{−vit − Avi − fi, vi − gl
i

}
, vi − gu

i

} = 0

in Ω × [0, T ), where A is an elliptic operator.16 Assume

f1 � f2; gl
1 � gl

2; gu
1 � gu

2 in Ω̄ × [0, T )

and

v1 � v2 on t = T and ∂Ω × [0, T ).

Then

v1 � v2 in Ω × [0, T ).

Now we prove that π̄(t), t > t̄0, is increasing in t . It suffices to show if (π, t1) ∈ SRπ , then
(π, t2) ∈ SRπ for any t2 < t1, π > 0. Due to π̄(T −) = 1

α
and π(T −) = − 1

θ
, we have the equation

vt + Lv = 0 as t goes to T . So we can apply the equation at t = T to get

vt |t=T = −Lv|t=T = −β2 + γβ1π > −β2 > 0 for π > 0,

which gives v(·, T ) � v(·, T − δ), for small δ > 0. By (A.19), v(0, t) � v(0, t − δ) for any
t < T . Since both v(π, t) and v(π, t − δ) satisfy the double obstacle problem (A.14), applying
the comparison principle gives v(·, t) � v(·, t − δ) or vt � 0 in {π > 0}. Hence, if (π, t1) ∈ SRπ ,
i.e., v(π, t1) = − α

1−απ
, then v(π, t2) � v(π, t1) = − α

1−απ
. On the other hand, clearly v(π, t2) �

− α
1−απ

. It follows that v(π, t2) = − α
1−απ

, i.e., (π, t2) ∈ SRπ , which is desired.
The proof of Parts (2)–(3) is similar. �

A.4. Proof of Theorem 2

The uniqueness of viscosity solution can be obtained by using a similar argument in Akian,
Mendaldi, and Sulem [3] (see also Crandall, Ishii, and Lions [11]). Here we highlight that on
the boundaries the solution is a viscosity supersolution. In terms of the definition of viscosity
solution and Itô’s formula for a C2 function of a stochastic process with jump, we are able to
show that the value function is a viscosity solution to the HJB equation (see, for example, Shreve
and Soner [32]).

To show the smoothness of the value function, let us examine the regularity of the solution
v(π, t) to the double obstacle problem. Without loss of generality, we assume b < 0 and b̄ > 0.
Noticing the differential operator L is degenerate at π = 0,1, by the regularity theory of a dou-
ble obstacle problem (see Friedman [23]), we know that v(π, t) ∈ W

2,1
p ([b + ε,−ε] × [0, T ] ∪

[ε, b̄ − ε] × [0, T ]) for any p > 1 and small ε > 0, where W
2,1
p is the Sobolev space. Thanks

to the embedding theorem, we then infer v(π, t) ∈ C1,0((b, b̄) × [0, T ] \ ({π = 0} ∪ {π = 1})).
Further, we can obtain the smoothness of π̄ c(t;b, b̄) and πc(t;b, b̄), from which we can infer vt

is continuous across π = π̄ c(t;b, b̄) and π = πc(t;b, b̄). This indicates vt is continuous except
at π = 0,1 and π = b, b̄. Hence, v(π, t) ∈ C1,1((b, b̄) × [0, T ] \ ({π = 0} ∪ {π = 1})). Owing
to (A.12), we conclude w(π, t) ∈ C2,1((b, b̄) × [0, T ] \ ({π = 0} ∪ {π = 1})), which implies the
desired smoothness of the value function by virtue of (A.6) and (A.7). �
16 Strictly speaking, the elliptic operator A is required to satisfy certain conditions. Fortunately, we can show that the
operator L involved in subsequent proofs does satisfy those conditions.
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A.5. Proof of Proposition 4

Now we prove Part (1). Let v(π, t;b, b̄) be the solution of the double obstacle problem (A.14),
and BRc

π (b, b̄), SRc
π (b, b̄), and NTRc

π (b, b̄) be the associated buy, sell, and no-transaction regions
as given in the proof of Lemma A.2. Assume b̄1 � b̄2. Because

v(b, t;b, b̄1) = v(b, t;b, b̄2) = θ

1 + θb
,

v(π,T ;b, b̄1) = v(π,T ;b, b̄2) = 0,

and

v(b̄2, t;b, b̄1) � − α

1 − αb̄2
= v(b̄2, t;b, b̄2),

we apply the comparison principle in (b, b̄2) × [0, T ) to get

v(π, t;b, b̄1) � v(π, t;b, b̄2) in (b, b̄2) × [0, T ).

So, if (π, t) ∈ SRc
π (b, b̄1), i.e., v(π, t;b, b̄1) = − α

1−απ
, then

v(π, t;b, b̄2) � v(π, t;b, b̄1) = − α

1 − απ
.

Because − α
1−απ

is also the lower bound, we get v(π, t;b, b̄2) = − α
1−απ

, i.e., (π, t) ∈ SRc
π (b, b̄2).

This indicates SRc
π (b, b̄1) ⊂ SRc

π (b, b̄2), or equivalently, π̄ c(t;b, b̄1) � π̄ c(t;b, b̄2). That is,
π̄ c(t;b, b̄) is increasing with b̄. We can similarly obtain that π̄ c(t;b, b̄) is increasing with b.

Next we show that πc(t;b, b̄) is increasing with b. Assume b1 � b2. Again applying the
comparison principle in (b1, b̄) × [0, T ) gives

v(π, t;b1, b̄) � v(π, t;b2, b̄) in (b1, b̄) × [0, T ).

So, if (π, t) ∈ BRc
π (b2, b̄), i.e., v(π, t;b2, b̄) = θ

1+θπ
, then

v(π, t;b1, b̄) � v(π, t;b2, b̄) = θ

1 + θπ
.

Because θ
1+θπ

is also the upper bound, we get v(π, t;b1, b̄) = θ
1+θπ

, i.e., (π, t) ∈ BRc
π (b1, b̄).

This indicates BRc
π (b2, b̄) ⊂ BRc

π (b1, b̄), i.e., πc(t;b2, b̄) � πc(t;b1, b̄), which is the desired
result. In a similar way, we can show that πc(t;b, b̄) is increasing with b̄.

It remains to prove Parts (2) and (3). We only prove Part (2) because the proof of Part (3) is
similar. As in the proof of Proposition 2, we can still derive the boundary condition (A.19)–(A.21)
at π = 0. So, v(π, t;b, b̄) in {π � 0} is determined by the double obstacle problem restricted
in {π < 0} with the boundary condition (A.19)–(A.21) at π = 0. The boundary condition at
b = b̄ > 0 will not affect the solution in {π � 0}. This yields the desired result. �
A.6. Proof of Proposition 5

If one of θ and α is 0, the HJB equation (20) remains valid and so does the double obstacle
problem (A.14). Then we can use the same argument as in the proof of Proposition 3 to show
that (21) and (22) remain valid. In the following, we will prove Part (3) only because the proof
of Part (2) is similar.
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If θ > 0 and α = 0, the corresponding double obstacle problem becomes

max

{
min{−vt − Lv, v}, v − θ

1 + θπ

}
= 0,

in (b, b̄) × [0, T ), with the terminal condition v(π,T ) = 0 and the boundary conditions

v(b, t) = θ

1 + θπ
, v(b̄, t) = 0.

Now the lower obstacle is 0, i.e., v � 0 for any (π, t), which gives vt |t=T � 0. Applying the
comparison principle then leads to

vt � 0 for any (π, t). (A.22)

To prove that the sell boundary π̄ c(t;b, b̄) is decreasing in t, it suffices to show that if (π, t1) ∈
SRc

π , i.e., v(π, t1) = 0, then (π, t2) ∈ SRc
π for any t2 > t1. By (A.22), we have

v(π, t2) � v(π, t1) = 0.

On the other hand v(π, t2) � 0 because the lower obstacle is 0. We then deduce v(π, t2) = 0, the
desired result. Similarly we can obtain the monotonicity of πc(t;b, b̄).

It remains to prove (3)(b). Using the same argument as in the proof of Proposition 3,
we can obtain πc(T −;b, b̄) = b. Now we prove π̄ c(T −;b, b̄) = max(min(πM, b̄), b). Sup-
pose not, then we must have π̄ c(T −;b, b̄) > max(min(πM, b̄), b) because of π̄ c(T −;b, b̄) �
max(min(πM, b̄), b). Clearly π̄ c(T −;b, b̄) � b̄, then it follows

πM < b̄. (A.23)

Noticing πc(T −;b, b̄) = b, we then infer that for any

π ∈ (
min

(
max

(
πM,b

)
, b̄

)
, π̄ c

(
T −;b, b̄

))
,

the equation vt + Lv = 0 holds as t goes to T . So we can apply the equation at t = T and π ∈
(min(max(πM,b), b̄), π̄ c(T −;b, b̄)) to get

vt |t=T = −Lv|t=T = −β2 + γβ1π.

Due to (A.22), we deduce −β2 + γβ1π � 0, namely,

π � β2

γβ1
= πM.

Combining with (A.23), we get

π � min
(
πM, b̄

)
,

which contradicts π ∈ (min(max(πM,b), b̄), π̄ c(T −;b, b̄)). The proof is complete. �
A.7. Proof of Proposition 6

As before, we make a transformation:

w(π, t) = 1

1 − γ
log

[
(1 − γ )ϕ(π, t)

]
.

Then w(π, t) satisfies

max

{
wt + Lr

2w,− α

1 − απ
− wπ,wπ − θ

1 + θπ

}
= 0,
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where

Lr
2w =

[
1

2
σ 2

I (1 − π)2 + 1

2
σ 2

Lg2 − ρσIσL(1 − π)g

]
π2[wππ + (1 − γ )w2

π

]
+ [(−γ σ 2

I π + μI − r
)
(1 − π)

+ (
γ σ 2

Lg + 2γρσIσLπ − μL + r − γρσIσL

)
g
]
πwπ

− 1

2
γ
(
σ 2

I π2 + σ 2
Lg2) + (μI − r − γρσIσLg)π + (μL − r)g + r

with

g(π) = min

(
(μL − r − γρσIσL)(πwπ − 1)

σ 2
L[−γ + 2γπwπ + π2(wππ + (1 − γ )w2

π )] + ρσIσL(1 − π)

σ 2
L

,1 − π

)
≡ min

(
h(π;wπ),1 − π

)
.

Denote v(π, t) = wπ(π, t). It can be verified that

∂

∂π

(Lr
2w

) = Lrv ≡
{ L if h(π;v) < 1 − π,

L̃ if h(π;v) � 1 − π,
(A.24)

where L is as given before and

L̃v = 1

2
β̃1π

2(1 − π)2vππ + [
β̃1 + β̃2 − (2 + γ )β̃1π

]
π(1 − π)vπ

+ [
β̃2 − 2(β̃2 + γ β̃1)π + 3γ β̃1π

2]v
+ (1 − γ )β̃1π(1 − π)v

[
(1 − 2π)v + π(1 − π)vπ

] + β̃2 − γ β̃1π

with

β̃1 = σ 2
I + σ 2

L − 2ρσIσL, β̃2 = μI − μL + γ σL(σL − ρσI ), β̃3 = μL − 1

2
γ σ 2

L.

In the same way, we can consider the following double obstacle problem:

max

{
min

{
−vt − Lrv, v + α

1 − απ

}
, v − θ

1 + θπ

}
= 0, (A.25)

in (b, b̄) × [0, T ), with the terminal condition v(π,T ) = 0 and the boundary conditions

v(b, t) = θ

1 + θπ
, v(b̄, t) = − α

1 − απ
.

It should be pointed out that the differential operator Lr involved in (A.25) is rather compli-
cated and it is nontrivial to prove the existence of a solution to the associated double obstacle
problem. We will assume that the problem has a solution. In addition, we assume the comparison
principle holds for the differential operator Lr .

Now let us prove Part (1). From (A.25), we can see that if v(π, t) = θ
1+θπ

, then

−Lr

(
θ

1 + θπ

)
� 0.

Note that

h

(
π; θ

1 + θπ

)
= (μL − r − γρσIσL)(θπ + 1)

γ σ 2
L

+ ρσIσL(1 − π)

σ 2
L

.
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We then deduce that

Lr =
{ L if π ∈ Π(θ),

L̃ if π /∈ Π(θ).

We have seen in the proof of Proposition 3 that −L( θ
1+θπ

) � 0 leads to

π � πM

1 + θ(1 − πM)
.

In the same way, we can verify that −L̃( θ
1+θπ

) � 0 yields

π �
πM

0

1 + θ(1 − πM
0 )

.

(24)–(25) then follow. Similarly we can obtain the result for the sell boundary. Using the same
argument as in the proof of Proposition 3, we can prove π̄ c(T −;b, b̄) = b̄ and πc(T −;b, b̄) = b.

To show Part (2), we note that

h(0;v) = μL − r − γρσIσL

γ σ 2
L

+ ρσIσL

σ 2
L

= μL − r

γ σ 2
L

.

Then at π = 0 the double obstacle problem reduces to

max
{
min{−vt − β2v − β2, v + α}, v − θ

}∣∣
π=0 = 0 when

μL − r

γ σ 2
L

< 1

or

max
{
min{−vt − β̃2v − β̃2, v + α}, v − θ

}∣∣
π=0 = 0 when

μL − r

γ σ 2
L

� 1

with v(0, T ) = 0. It follows that

v(0, t) =
⎧⎨⎩

max(min(eβ2(T −t) − 1, θ),−α) when μL−r

γ σ 2
L

< 1,

max(min(eβ̃2(T −t) − 1, θ),−α) when μL−r

γ σ 2
L

� 1.

As a consequence, the double obstacle problem can be solved in {π < 0} and in {π > 0} inde-
pendently. The remaining arguments are the same as those in the proof of Proposition 4 and the
comparison principle associated with Lr is used.

It remains to show Part (3). Notice that

h(π;0) = μL − r − γρσIσL

γ σ 2
L

+ ρσIσL(1 − π)

σ 2
L

.

Then h(π;0) < 1 − π if and only if π ∈ Π(0). By virtue of (A.24) and the same argument as in
the proof of Proposition 5, we can obtain the desired results. �
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