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Proving verification theorems can be tricky for models with both optimal stopping and state constraints. We pose and solve
two alternative models of optimal consumption and investment with an optimal retirement date (optimal stopping) and various
wealth constraints (state constraints). The solutions are parametric in closed form up to at most a constant. We prove the
verification theorem for the main case with a nonnegative wealth constraint by combining the dynamic programming and
Slater condition approaches. One unique feature of the proof is the application of the comparison principle to the differential
equation solved by the proposed value function. In addition, we also obtain analytical comparative statics.
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1. Introduction. Retirement is one of the most important economic events in a worker’s life. This paper
contains a rigorous formulation and analysis of several models of life cycle consumption and investment with
voluntary or mandatory retirement and with or without a borrowing constraint against future labor income. In
these models, optimal consumption jumps at retirement and, if retirement is voluntary, the optimal portfolio
choice also jumps at retirement. If retirement is voluntary, the optimal retirement rule gives human capital a
negative beta if wages are uncorrelated with the stock market because retirement comes later when the market
is down. This leads to aggressive investment in the market, a result that is dampened when borrowing against
future labor income is prohibited and may be reversed when wages are positively correlated with market returns.
In the companion paper, Dybvig and Liu [1] focus on the economic intuitions for these results. In this paper,
we provide rigorous proofs.

The main results in this paper are explicit parametric solutions (up to some constants) with verification
theorems and analytical comparative statics. In particular, we combine the dual approach of Pliska [8], He and
Pagès [3], Karatzas and Shreve [5] and Karatzas and Wang [6] with an analysis of the boundary to obtain a
problem we can solve in a parametric form even if no known explicit solution exists in the primal problem.
Having an explicit dual solution allows us to derive analytically the impact of parameter changes and, more
importantly, allows us to prove a verification theorem showing that the first-order (Bellman equation) solution
is a true solution to the choice problem. Compared to the existing literature (e.g., Pliska [8], Karatzas and
Wang [6]), the no-borrowing constraint against future labor income significantly complicates the derivations and
the proof of the verification theorem. The proof is subtle because of (1) the nonconvexity introduced by the
retirement decision, (2) the market incompleteness (from the agent’s view) caused by the nonnegative wealth
constraint, and (3) the technical problems caused by utility unbounded above or below. Two common approaches
to proving a verification theorem are the dynamic programming (Fleming-Richel) approach and the separating
hyperplane (Slater condition) approach. Both approaches encounter difficulties in our setting so we use a hybrid
of the two (a separating hyperplane after retirement and dynamic programming before retirement). The two are
combined with optional sampling, where the continuation after retirement is replaced by the known value of the
optimal continuation. One of the most challenging tasks for proving a verification theorem for optimal stopping
problems is to show that the proposed value function satisfies certain inequality conditions so that it is indeed
optimal to stop at the proposed boundaries. One unique feature of our proof is that this is shown indirectly
by applying the comparison principle to the differential equations solved by the proposed value function. This
indirect method makes the proof simple and elegant. So far as we know, we are the first to use this approach to
prove a verification theorem for this type of control problem involving an optimal stopping time.

The rest of the paper is organized as follows. Section 2 presents the formal choice problems used in the paper.
Section 3 presents analytical solutions, comparative statics, and proofs. Section 4 closes the paper.
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2. Choice problems. We consider the optimal consumption and investment problem of an investor who can
continuously trade a risk-free asset and n risky assets. The risk-free asset pays a constant interest rate of r . The
risky asset price vector St evolves as

dSt
St

=�dt +�>dZt1

where Zt is a standard n dimensional Wiener process; � is an n×1 constant vector and � is an n×n invertible
constant matrix so that market is complete with no redundant assets; and the division is element by element.

The investor also earns labor income yt:

yt ≡ y0 exp
[(

�y −
�y

>�y

2

)

t +�y
>Zt

]

1 (1)

where y0 is the initial income from working and �y and �y are constants of appropriate dimensions. The investor
can choose to irreversibly retire at any point in time.

The arrival time �d of the investor’s mortality follows an independent Poisson process with constant intensity �.
The investor can purchase insurance coverage of Bt − Wt against mortality, where Wt is the financial wealth
of the investor at time t so that, if death occurs at t, the investor has a bequest of Wt + 4Bt −Wt5= Bt . To receive
the insurance coverage Bt −Wt at the time of mortality, the investor pays the insurer at a rate of �4Bt −Wt5,
i.e., insurance is assumed to be fairly priced at the mortality rate � per unit of coverage.

The investor derives utility from intertemporal consumption and bequest. The investor has a constant relative
risk aversion (CRRA), time additive utility function (2) with a subjective time discount rate �:

E

[

∫ �d

0
e−�t

(

41 −Rt5
c

1−�
t

1 −�
+Rt

4Kct5
1−�

1 −�

)

dt + e−��d
4kB�d

51−�

1 −�

]

1 (2)

where � > 0 is the relative risk aversion coefficient and � 6= 1,1 the constant K > 1 indicates preferences
for not working in the sense that the marginal utility of consumption is greater after retirement than before
retirement, the constant k > 0 measures the intensity of preference for leaving a large bequest, the limit k1−� → 0
implements the special case with no preference for bequest, and Rt is the right-continuous and nondecreasing
indicator of the retirement status at time t (which is 1 after retirement and 0 before retirement). The state variable
R0− is the retirement status at the beginning of the investment horizon.

Define

�4S5=

{

1 if statement S is true1

0 otherwise1

g4t5≡















(

1 − e−�14T−t5

�1

)+

if �1 6= 01

4T − t5+ if �1 = 01

(3)

where
�1 ≡ r + �−�y +�>

y �> 0 (4)

is the effective discount rate for labor income (assumed to be positive) and

�≡ 4�>�5−1�>4�− r15 (5)

is the price of risk. Below are the two choice problems we focus on in this paper.

Problem 1. Given initial wealth W0, initial income from working y0, and the deterministic time to retire-
ment T with associated retirement indicator function Rt = �4t ≥ T 5, choose adapted nonnegative consumption
8ct9, adapted portfolio 8�t9, and adapted nonnegative bequest 8Bt9 to maximize expected utility of lifetime
consumption and bequest

E

[

∫ �d

0
e−�t

(

41 −Rt5
c

1−�
t

1 −�
+Rt

4Kct5
1−�

1 −�

)

dt + e−��d
4kB�d

51−�

1 −�

]

1 � = 1 corresponds to the log utility case, which can be examined similarly. Most of our results in the paper apply to the log case by taking
� → 1.
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subject to the budget constraint

Wt =W0 +

∫ t

0
4rWs ds + �>

s 44�− r15ds +�>dZs5+ �4Ws −Bs5ds − cs ds + 41 −Rs5ys ds51 (6)

the labor income process (1), and the limited borrowing constraint

Wt ≥ −g4t5yt1 (7)

where g4t5yt is the market value at t of the future labor income.

Let C ∈ 80119 denote the type of borrowing constraints, with C= 1 for the limited borrowing type and C= 0
for the no-borrowing type. Problem 1 corresponds to Problem 1 of Dybvig and Liu [1], Problem 2 with C= 1
corresponds to Problem 2 of Dybvig and Liu [1], and Problem 2 with C = 0 corresponds to Problem 3 of
Dybvig and Liu [1].

Problem 2. Given initial wealth W0, initial income from working y0, initial retirement status R0−, and
borrowing constraint type C ∈ 80119, choose adapted nonnegative consumption 8ct9, adapted portfolio 8�t9,
adapted nonnegative bequest 8Bt9, and adapted nondecreasing retirement indicator 8Rt9 (i.e., a right-continuous
nondecreasing process taking values 0 and 1) to maximize the expected utility of lifetime consumption and
bequest (2) subject to the budget constraint (6), the labor income process before retirement (1), and the
borrowing constraint

Wt ≥ −C41 −Rt5
yt
�1

1 (8)

where 41 −Rt5yt/�1 is the market value at t of the subsequent labor income.

To summarize the differences across the problems, moving from Problem 1 to Problem 2, the fixed retirement
date T (Rt = �4t ≥ T 5) is replaced by free choice of retirement date (Rt , a choice variable) along with a technical
change in the calculation of the market value of future labor income g4t5yt to 41−Rt5yt/�1 when C= 1. When
C= 0, then the investor faces a no-borrowing constraint Wt ≥ 00
Remark. Because the time of mortality �d is independent of the Brownian motion, we have that the objective

function

E

[

∫ �d

0
e−�t

(

41 −Rt5
c

1−�
t

1 −�
+Rt

4Kct5
1−�

1 −�

)

dt + e−��d
4kB�d

51−�

1 −�

]

=E

[

∫ �

0
e−4�+�5t

(

41 −Rt5
c

1−�
t

1 −�
+Rt

4Kct5
1−�

1 −�
+ �

4kBt5
1−�

1 −�

)

dt

]

=E

[

∫ �

0
e−4�+�5t

(

4KRtct5
1−�

1 −�
+ �

4kBt5
1−�

1 −�

)

dt

]

0

We denote the value functions for Problems 1 and 2 by v4W1y1 t5 and V 4W1y1R1C5, respectively. Note that,
because both problems become the same after retirement, we have

v4W1y1T 5= V 4W1y11115= V 4W1y111050 (9)

3. The analytical solution and comparative statics. The general idea of solving Problems 1 and 2 is to
perform a change of variables into a dual variable, the marginal utility of consumption. The general advantage of
this dual approach (especially for Problem 2) is that it linearizes the nonlinear Hamilton-Jacobi-Bellman (HJB)
equation in the primal problem. This is consistent with the method of Pliska [8] of converting a dynamic budget
constraint into a static budget constraint.

Let
� ≡

�

�+ �− 41 −�54r + �+�>�/2�5
0 (10)

For our solutions, we will assume � > 0, which is also the condition for the corresponding Merton problem
(Merton [7]) to have a solution because, if � < 0, then an investor can achieve infinite utility by delaying
consumption.

Define the state price density process � by

�t ≡ e−4r+�+ 1
2 �

>�5t−�>Zt 0 (11)
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This is the usual state price density adjusted to be conditional on living, given the mortality rate � and fair
pricing of long and short positions in term life insurance.

Also, define

b ≡ 1 − 1/�1

f 4t5≡ 4�̂−�5 exp
(

−
1 + �k−b

�
4T − t5+

)

+�1

� ≡ 41 + �k−b5�1

and
�̂ ≡ 4K−b

+ �k−b5�0

The solution to Problem 1 can be stated as follows.

Theorem 3.1. Suppose � > 0 and that the limited borrowing constraint is satisfied with strict inequality at
the initial values

W0 >−g405y00 (12)

The solution to an investor’s Problem 1 can be written in terms of a dual variable x̂t (a normalized marginal
utility of consumption), where

x̂t ≡

(

W0 + g405y0

f 405

)−�

e4�+�5t�ty
�
t 0 (13)

Then, the optimal wealth process is
W ∗

t = f 4t5yt x̂
−1/�
t − g4t5yt1 (14)

the optimal consumption policy is
c∗

t =K−bRtyt x̂
−1/�
t 1 (15)

the optimal trading strategy is

�∗

t = yt

[

4�>�5−14�− r15
�

f 4t5x̂−1/�
t − 4�>�5−1�>�yg4t5

]

1

and the optimal bequest policy is
B∗

t = k−byt x̂
−1/�
t 0 (16)

Furthermore, the value function for the problem is

v4W1y1 t5= f 4t5�
4W + g4t5y51−�

1 −�
0

Proof. Because Problem 1 can be transformed into a standard dual problem with minor modifications (e.g.,
Pliska [8]), we omit the proof here. See Dybvig and Liu [1] for a sketch of the proof using a separating
hyperplane to separate preferred consumptions from the feasible consumptions. �

Unlike Problem 1, Problem 2 also requires one to solve for the optimal retirement decision. We conjecture that
it is optimal to retire when the wealth-to-income ratio is high enough, which corresponds to when a new dual
variable xt hits a lower bound x. Then, as in a typical optimal stopping problem, one imposes C1 condition for
the dual value function across x. In the presence of the no-borrowing constraint (i.e., C= 0), one also imposes
the no-risky-investment condition (i.e., the second derivative of the dual value function is 0) when wealth Wt

hits 0 (or, equivalently, when xt hits an upper bound x̄). After obtaining the solutions, we verify that all of our
conjectures are indeed correct.

Recall the definitions of � in (10) and �1 in (4). Define

�2 ≡ �+ �+ 1
2�41 −�5�>

y �y − 41 −�5�y1

�3 ≡ 4��y −�5>4��y −�51

�− ≡

�1 −�2 + 1
2�3 −

√

4�1 −�2 + 1
2�35

2 + 2�2�3

�3

1 (17)

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Dybvig and Liu: Verification Theorems for Models of Optimal Consumption and Investment
624 Mathematics of Operations Research 36(4), pp. 620–635, © 2011 INFORMS

�+ ≡

�1 −�2 + 1
2�3 +

√

4�1 −�2 + 1
2�35

2 + 2�2�3

�3

1 (18)

A− ≡ 41 −C5

(

�4b−�−5

�+4�+ −�−5
x̄b−�+ −

1 −�−

�+4�+ −�−5�1

x̄1−�+

)

1 (19)

A+ ≡C
1

�4b−�−5�1

x1−�− + 41 −C5

(

�4�+ − b5

�−4�+ −�−5
x̄b−�− −

�+ − 1
�−4�+ −�−5�1

x̄1−�−

)

1 (20)

x̄ ≡

(

444�− �̂5/b5�b−�− −�/�−54�+ − b5�1

4�1−�− − 1/�−54�+ − 15

)�

1 (21)

x ≡C

(

4�− �̂54b−�−5�1

b41 −�−5

)�

+ 41 −C5�x̄1 (22)

where � ∈ 40115 is the unique solution to q4�5= 02 and thus where

q4�5 ≡

(

1 −K−b

b41 + �k−b5
�b−�− −

1
�−

)(

�1−�+ −
1
�+

)

4�+ − b54�− − 15

−

(

1 −K−b

b41 + �k−b5
�b−�+ −

1
�+

)(

�1−�− −
1
�−

)

4�− − b54�+ − 150 (23)

Then, the solution to Problem 2 can be stated as follows.

Theorem 3.2. Suppose � > 0, �1 > 0, �2 > 0, �3 > 0 and that the borrowing constraint holds with strict
inequality at the initial condition:3

W0 >−C41 −R0−5
y0

�1

0 (24)

The solution to an investor’s Problem 2 can be written in terms of a dual variable xt , where

xt ≡Cx0e
4�+�5t�t

(

yt
y0

)�

+ 41 −C5
x0e

4�+�5t�t4yt/y05
�

max411 sup0≤s≤min4t1 �∗5 x0e
4�+�5s�s4ys/y05

�/x̄5

and where x0 solves

−y0�x4x01R0−1C5=W01 (25)

�∗
= 41 −R0−5 inf

{

t ≥ 02 x0e
4�+�5t�t

(

yt
y0

)�

≤ x

}

1 (26)

and

�4x1R1C5=



















−�̂
xb

b
if R= 1 or x ≤ x1

A+x
�− +A−x

�+ −�
xb

b
+

1
�1

x otherwise0

(27)

Then, the optimal consumption policy is

c∗

t =K−bR∗
t ytx

−1/�
t 1

the optimal trading strategy is

�∗

t = yt4�
>�5−164�− r15xt�xx4xt1R

∗

t 1C5−�>�y4�xt�xx4xt1R
∗

t 1C5+�x4xt1R
∗

t 1C5571

the optimal bequest policy is
B∗

t = k−bytx
−1/�
t 1

2 The existence and uniqueness of the solution to q4�5= 0 is shown in Lemma 3.4.
3 �1 > 0 is to ensure the finiteness of the labor income; �2 > 0 is to ensure the finiteness of the expected utility from working and consuming
labor income forever; and �3 > 0 is to avoid the degeneration of the dual process xt to a deterministic function of time. The razor edge case
where �3 = 0 is less interesting and needs a separate treatment.
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the optimal retirement policy is
R∗

t = �8t ≥ �∗91

the corresponding retirement wealth threshold is

W̄t = −yt�x4x101C51

and the optimal wealth is
W ∗

t = −yt�x4xt1R
∗

t 1C50 (28)

Furthermore, the value function is

V 4W1y1R1C5= y1−�4�4x1R1C5− x�x4x1R1C551 (29)

where x solves
− y�x4x1R1C5=W0 (30)

The investor’s problem can be associated with the dual optimal stopping problem, where the investor solves

�4xt1 yt1C5≡ max
�

Et

[

∫ �

t
e−4�+�54s−t5y1−�

s

(

− 41 + �k−b5
xb
s

b
+ xs

)

ds + e−4�+�54�−t5y1−�
�

(

− �̂
xb
�

b

)]

subject to (1),
dxt
xt

=�x dt +�>

x dZt1

and the borrowing constraint
−y�t �x4xt1 yt5≥ −C

yt
�1

1

where
�x ≡ −4r −�5− 1

2�41 −�5�>

y �y +��y −��>

y � (31)

and
�x ≡ ��y −�0 (32)

The transformed dual value function �4x101C5≡ y�−1�4x/y�1 y1C5 then satisfies a variational inequality4

L0� = 01 x < x <
x̄

1 −C
1

L0� < 01 0 < x < x1

�4x101C5 >−�̂
xb

b
1 x < x <

x̄

1 −C
1

�4x101C5= −�̂
xb

b
1 0 < x ≤ x1

�x4x101C5 < 01 0 < x <
x̄

1 −C
1

�xx4x101C5 > 01 0 < x <
x̄

1 −C
1 and x 6= x

with boundary conditions
�x4x̄10105= 0

and
�xx4x̄10105= 01

where

L0� ≡
1
2
�3x

2�xx − 4�1 −�25x�x −�2�− 41 + �k−b5
xb

b
+ x0

4 We do not prove that the duality gap is zero or even that the first-order solution of the dual problem is an actual solution. However, we do
not need these results because our verification theorem works with the primal objective function.
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When C= 1, Problem 2 can be transformed into one that has been studied by Karatzas and Wang (2000) with
minor modifications.5 Therefore, we will only present the proof for the case with the no-borrowing constraint,
i.e., C= 0. For notation simplicity, we use V 4W1y1R5 and �4x1R5 to represent V 4W1y1R105 and �4x1R105,
respectively. Let

�4x5≡A+x
�− +A−x

�+ −�
xb

b
+

1
�1

x (33)

and

�̂4x5≡ −�̂
xb

b
0 (34)

Then, by (27), (33), and (34), we have

�4x1R5=

{

�̂4x5 if R= 1 or x ≤ x1

�4x5 otherwise0

The following lemmas are useful for the proof of Theorem 3.2.

Lemma 3.1. Suppose C = 0, � > 0, �1 > 0, �2 > 0, and �3 > 0. Suppose there exists a solution � ∈ 40115
to Equation (23) (to be shown in Lemma 3.4). Then,

(i) �̂4x5 is strictly convex and strictly decreasing for x ≥ 00
(ii) ∀x ≤ x̄, we have �4x5≥ �̂4x5; ∀x ∈ 6x1 x̄7, we have �x4x5≥ �̂x4x5 and

x <

(

1 −K−b

b

)�

0 (35)

(iii)

A− < 01 A+ > 01 and x̄ >

(

41 −�−541 + �k−b5

b−�−

)�

0

(iv) �4x5 is strictly convex and strictly decreasing for x < x̄.
(v) Given W0 > 0, there exists a unique solution x0 > 0 to (25). In addition, W ∗

t defined in (28) satisfies the
borrowing constraint (8).

Proof of Lemma 3.1. (i) � > 0 implies that b = 1 − 1/� < 1. Then, because � > 0, direct differentiation
shows that �̂4x5 is strictly convex and strictly decreasing for x ≥ 0.

(ii) Let
h4x5≡ �4x5− �̂4x50

It can be easily verified that

1
2
�3x

2�̂xx4x5− 4�1 −�25x�̂x4x5−�2�̂4x5− 4K−b
+ �k−b5

xb

b
= 0 (36)

and
1
2
�3x

2�xx4x5− 4�1 −�25x�x4x5−�2�4x5− 41 + �k−b5
xb

b
+ x = 01 (37)

with

�4x5= �̂4x51 (38)

�x4x5= �̂x4x51 (39)

�x4x̄5= 01 (40)

and
�xx4x̄5= 00

5 One such transformation is

W̃t ≡
Wt

yt
1 �̃t ≡

�t
yt

−
Wt

yt
�−1�y1 B̃t ≡

Bt

yt
1 c̃t ≡

ct
yt
1 and Ṽ 4W̃ 1 y1R115≡ y�−1V 4yW̃ 1 y1R1150

We thank an anonymous referee for pointing this out.
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Then, by (36) and (37), h4x5 must satisfy

1
2
�3x

2h′′
− 4�1 −�25xh

′
−�2h=

1 −K−b

b
xb

− x0 (41)

By (38)–(40) and the fact that �̂4x5 is monotonically decreasing for x > 0, we have

h4x5= 01 h′4x5= 01 h′4x̄5 > 00 (42)

Differentiating (41) once, we obtain
1
2�3x

2h′′′
+ 4�3 −�1 +�25xh

′′
−�1h

′
= 41 −K−b5xb−1

− 10 (43)

We consider two possible cases.
Case 1. 41 − K−b5xb−1 − 1 < 0. In this case, the right-hand side of Equation (43) is negative. Because

�1 > 0, h′4x5 cannot have any interior nonpositive minimum. To see this, suppose x̂ ∈ 4x1 x̄5 achieves an interior
minimum with h′4x̂5≤ 0. Then, we would have h′′′4x̂5≥ 0 and h′′4x̂5= 0, which implies that the left-hand side
is positive. This is a contradiction. Because h′4x5 = 0, h′4x̄5 > 0, we must have h′4x5 > 0 for any x ∈ 4x1 x̄7;
otherwise, there would be an interior nonpositive minimum. Then, the fact that h4x5= 0 implies that h4x5 > 0
for any x ∈ 4x1 x̄7. Because h′4x5 > 0 for any x ∈ 4x1 x̄7 and h′4x5 = 0, we must have h′′4x5 ≥ 0. In addition,
if h′′4x5 were equal to 0, then we would have h′′′4x5 < 0 by (42) and (43) because 41 − K−b5xb−1 − 1 < 0.
However, this would contradict the fact that h′4x5 > 0 for any x ∈ 4x1 x̄7 and h′4x5= 0. Therefore, we must have
h′′4x5 > 0. Then, (41), (42), and h′′4x5 > 0 imply that

x <

(

1 −K−b

b

)�

0

Case 2. 41 − K−b5xb−1 − 1 ≥ 0. In this case, we must have 0 < b < 1 because K > 1. Therefore, x ≤

41 − K−b5� < 441 −K−b5/b5� . This implies that h′′4x5 > 0 by (41) and (42). There exists � > 0 such that
h′4x5 > 0 for any x ∈ 4x1 x + �7 because h′4x5 = 0. The right-hand side of Equation (43) is monotonically
decreasing in x. Let x∗ be such that the right-hand side of (43) is 0. Then, for any x ≤ x∗, the right-hand side is
nonnegative and thus h′4x5 cannot have any interior nonnegative (local) maximum in 6x1 x∗7 for similar reasons
to those in Case 1. There cannot exist any x̂ ∈ 4x+�1 x∗7 such that h′4x̂5≤ 0. If x∗ < x̄, then, for any x ∈ 4x∗1 x̄7,
the right-hand side is nonpositive and thus h′4x5 cannot have any interior nonpositive (local) minimum in 4x∗1 x̄7.
There cannot exist any x̂ ∈ 4x∗1 x̄7 such that h′4x̂5 ≤ 0. Therefore, there cannot exist any x̂ ∈ 4x1 x̄5 such that
h′4x̂5≤ 0 and thus we have h′4x5 > 0 and h4x5 > 0 for any x ∈ 4x1 x̄7.

Now, we show, for both cases, that h4x5 > 0 for any x < x. Equation (35) implies that the right-hand side
of (41) is positive for x < x and h cannot achieve an interior positive maximum for x < x. On the other hand,
h′′4x5 > 0, h′′4x5 is continuous at x and h′4x5= 0, which imply that there exists an � > 0 such that

∀x ∈ 6x− �1 x71 h′4x5 < 00

Thus, ∀x ∈ 6x−�1 x5, h4x5 > 0 and, therefore, ∀x < x, h4x5 > 0; otherwise, h would achieve an interior positive
maximum in 401 x5.

(iii) Recall that C= 0. It can be shown that

A+ =
4�− �̂54�+ − b5

b4�+ −�−5
xb−�− −

4�+ − 15
4�+ −�−5�1

x1−�−

and

� =
4�+ − 1541 −�−541 + �k−b5

4�+ − b54b−�−5�1

0

Equation (35) then implies that A+ > 0. Because we also have (20), x̄ must satisfy

x̄ >

(

�4�+ − b5�1

�+ − 1

)�

0

Because
�+ − b

�+ − 1
>

b−�−

1 −�−

1

we have

x̄ >

(

�4b−�−5�1

1 −�−

)�

1 (44)

which (by the definition (19)) implies that A− < 0.
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(iv) Differentiating (33) twice, we have, for x < x̄,

�xx4x5 =
(

A−�+4�+ − 15x�+−b
+A+�−4�− − 15x�−−b

−�4b− 15
)

xb−2

> �xx4x̄54x/x̄5
b−2

= 01 (45)

where the inequality follows from the fact that

d

dx
6A−�+4�+ − 15x�+−b

+A+�−4�− − 15x�−−b7 < 00

This is implied by A− < 0, A+ > 0, �+ > 1 > b > �−, and �− < 0, and the last equality in (45) follows from
�xx4x̄5 = 0. Thus, �4x5 is strictly convex ∀x < x̄. Because �x4x̄5 = 0 and ∀x < x̄, �xx4x5 > 0, we must also
have ∀x < x̄, �x4x5 < 0.

(v) By part (i), part (iv), and �x4x5 = �̂x4x5, �x4x1R5 is continuous and strictly increasing in x ∈ 401 x̄7.
By inspection of (33) and (34), �x4x1R5 takes on all nonpositive values. Because y0 > 0, there exists a unique
solution x0 > 0 to (25) for each W0 > 0. Also, because �x4x1R5≤ 0, (28) implies that W ∗

t ≥ 01 ∀ t ≥ 00 �
Though the dual approach yields almost explicit solutions, it is simpler to show the optimality of the candidate

policies in the primal for this combined optimal stopping and optimal control problem.
Define

Mt =

∫ t

0
e−4�+�5s

[

41 −Rs5

(

c1−�
s

1 −�
+ �

4kBs5
1−�

1 −�

)

ds +V 4Ws1 ys115dRs

]

+41 −Rt5e
−4�+�5tV 4Wt1 yt1050 (46)

The following lemma is a generalized dominated convergence theorem that is required for the proof of
Lemma 3.3.

Lemma 3.2. Suppose that a.s. convergent sequences of random variables Xn → X and Yn → Y satisfy 0 ≤

Xn ≤ Yn and E6Yn7→E6Y 7 <�. Then, E6Xn7→E6X7.

Proof of Lemma 3.2. Because 0≤Xn≤Yn, by Fatou’s lemma, liminfE6Xn7≥E6X7 and liminfE6Yn−Xn7≥
E6Y −X7. These inequalities imply that both limsupE6Xn7≥E6X7 and liminfE6Xn7≤E6X7 because E6Yn7→
E6Y 7<�. Therefore, we must have E6Xn7→E6X7. �
Lemma 3.3. Suppose C=0. Given the definitions for Theorem 3.2,
(i) Mt as defined in (46) is a supermartingale for any feasible policy and a martingale for the claimed

optimal policy.
(ii) For any feasible policy,

lim
t→�

E641−Rt5e
−4�+�5tV 4Wt1yt1057≥0 (47)

with equality for the claimed optimal policy.

Proof of Lemma 3.3. 1. Define W̄ =−y�x4x105. Then, for any W ≥0,

V 4W1y105≥V 4W1y115 (48)

with equality for W ≥W̄ . This can be shown as follows.
Let x and xR be such that −y�x4x105=W and −y�x4x

R115=W . Then, we have

�4x105−�4xR115≥�4x115−�4xR115≥�x4x
R1154x−xR5=x�x4x105−xR�x4x

R1151

where the first inequality follows from �4x105≥�4x115 by Lemma 3.1 and the second inequality follows from
the convexity of �4x115. After rearranging, we obtain (48).

Applying the generalized Itô’s lemma to Mt (see, e.g., Harrison [2, §4.7]), we have

Mt = M0 +

∫ t

0
41−Rs5

{

e−4�+�5s

(

c1−�
s

1−�
+�

4kBs5
1−�

1−�
+LV 4Ws1ys105

)}

ds

+

∫ t

0
e−4�+�5s4V 4Ws1ys115−V 4Ws1ys1055dRs

+

∫ t

0
41−Rs5e

−4�+�5s4VW 4Ws1ys105�
>

s �
>
+ysVy4Ws1ys105�

>

y 5dZs1 (49)
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where

LV = 1
2�

>

t �
>��tVWW +�>

t �
>�yytVWy+

1
2�

>

y �yy
2Vyy

+4rWt+�>

t 4�−r15+�4Wt−Bt5−ct+41−Rt5yt5VW +�yVy−4�+�5V 0

By the definitions of V , �, 4c∗1B∗1�∗1R∗1W ∗5, and the fact that �4x105 satisfies (36)–(39), we obtain that
the first integral is always nonpositive for any feasible policy 4c1B1�1R5 and is equal to zero for the claimed
optimal policy 4c∗1B∗1�∗1R∗5. By (48), the third term in (49) is always nonpositive for every feasible retirement
policy Rt and equal to zero for the claimed optimal policy R∗

t . In addition, using the expressions for the claimed
optimal �∗

t , V , B∗
t , and W ∗

t , we have that, under the claimed optimal policy, the stochastic integral is a martingale
because yt is a geometric Brownian motion; with C=0, xt is bounded between x and x̄ before retirement; and
xt is also a geometric Brownian motion after retirement. This shows that Mt is a local supermartingale for all
feasible policies and a martingale for the claimed optimal policy.

Next, we show that Mt is actually a supermartingale for all feasible policies. First, we show that
41−�5V 4W1y105≥0 for every feasible policy. By (29) and (30), VW 4W1y105=y−�x>0 and thus V 4W1y105
increases in W . If �<1, then V 4W1y105≥0 because V 4W1y105≥V 4W1y115≥0. If �>1, then V 4W1y105<0
because V 4W1y105≤V 4W̄ 1y105=V 4W̄ 1y115<00 Therefore, 41−�5V 4W1y105≥0 for every feasible policy.

If �<1, then V 4Wt1yt105>0 and the local supermartingale Mt is then always nonnegative and thus a super-
martingale.

Suppose �>1. By (49), there exists an increasing sequence of stopping times �n→� such that M0 ≥

E6M�n∧t
7, i.e.,

V 4W01y0105 ≥ E
∫ �n∧t

s
e−4�+�5s

[

41−Rs5

(

c1−�
s

1−�
+�

4kBs5
1−�

1−�

)

ds+V 4Ws1ys115dRs

]

+E641−R�n∧t
5e−4�+�54�n∧t5V 4W�n∧t

1y�n∧t10570 (50)

Because the integrand in the integral of (50) is always negative, this integral is monotonically decreasing in
time. In addition,

0 ≥ 41−Rt5e
−4�+�5tV 4Wt1yt105

≥ e−4�+�5tV 401yt105

= V 4011105e−4�+�5tyt
1−�

≥ V 4011105Nt1 (51)

where
Nt ≡e− 1

2 41−�52�2
y t+41−�5�yZt (52)

is a martingale with E6Nt7=1, the second inequality follows from V being negative and increasing in W and
Wt>0, the equality follows from the form of V as defined by (29) and (30), and the last inequality follows from
V 4011105<0 and �2>0. In addition, V 4011105>−�.

Therefore, taking n→� in (50), by the monotone convergence theorem for the first term and Lemma 3.2 for
the second term, we have

V 4W01y0105 ≥ E
∫ t

0
e−4�+�5s

[

41−Rs5

(

c1−�
s

1−�
+�

4kBs5
1−�

1−�

)

ds+V 4Ws1ys115dRs

]

+E641−Rt5e
−4�+�5tV 4Wt1yt10570

That is, M0 ≥E6Mt7 for any t≥0. Because this argument applies to any time s≤ t, we have Ms ≥Es6Mt7 for any
t≥s. Thus, Mt is a supermartingale for all feasible policies.

2. Because 41−�5V 4W1y105≥0 for every feasible policy, we have

0 ≤ lim
t→�

E641−Rt5e
−4�+�5t41−�5V 4Wt1yt1057

= lim
t→�

E641−Rt5e
−4�+�5ty1−�

t 41−�54�4xt105−xt�x4xt10557

≤ lim
t→�

E6L1e
−4�+�5ty1−�

t +�̂e−4�+�5t/��b
t 7

=0 (53)
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for some constant L1, where the second inequality follows from the fact that when C=0,xt , �4xt105, and
�x4xt105 are all bounded and Rt =1 for t>�∗. The last equality in (53) follows from the conditions that �>0
and �2>0.

Therefore, for the claimed optimal policy, we obtain

lim
t→�

E641−Rt5e
−4�+�5tV 4Wt1yt1057=00

For any feasible policy, if �<1, then V 4W1y101C5>0 and therefore (47) holds. If �>1, because �2>0,
we have limt→�E6e

−4�+�5tyt
1−�7=0. Therefore, taking the limit as t→� in (51), we have that (47) also holds.

This completes the proof. �
Lemma 3.4. Suppose �>0, �1>0, �2>0, and �3>0. Then, there exists a unique solution �∗ ∈40115 to

Equation (23) and

�∗<�̄=min
((

1−K−b

b41+�k−b5

)�

11
)

0

Proof of Lemma 3.4. Because �>0, �1>0, �2>0, and �3>0,

�+>1>b>�−1 �−<00

Next, because �b−�+ dominates �1−�+ as �→0, we have

lim
�→0

q4�5= lim
�→0

−
1−K−b

b41+�k−b5
4�−−b54�+−15�b−�+ =+�0

If �̄=1, it is easy to verify that

q4�̄5=−
4�+−154�−−154�+−�−54K

−b+�k−b5

�+�−41+�k−b5
<00

If �̄=441−K−b5/4b41+�k−b555�<1, then we have

1−K−b

b41+�k−b5
�̄b−�+ −

1
�+

= �̄1−�+ −
1
�+

1
1−K−b

b41+�k−b5
�̄b−�− −

1
�−

= �̄1−�− −
1
�−

1 and

�̄1−�+ >1>
1
�+

0

It follows that

q4�̄5=−
1
�

(

�̄1−�+ −
1
�+

)(

�̄1−�− −
1
�−

)

4�+−�−5<00

Then, by continuity of q, there exists a solution �∗ ∈401�̄5 such that q4�∗5=0. Suppose there exists another
solution �̂ ∈ 60115 such that q4�̂5=0. Let V 4W1y105 and W̄ be the value function and boundary, respectively,
corresponding to �∗ and let V̂ 4W 1y105 and ˆ̄W be the value function and boundary, respectively, corresponding
to �̂ . Without loss of generality, suppose W̄ > ˆ̄W . Because ˆ̄W is the retirement boundary, the value function
corresponding to �̂ for W̄ >W > ˆ̄W is equal to V 4W1y115. However, Lemma 3.1 implies that V 4W1y105>
V 4W1y115 for any W <W̄ . This implies that ˆ̄W cannot be the optimal retirement boundary, which contradicts
Theorem 3.2. Therefore, the solution to Equation (23) is unique. �

We are now ready to prove Theorem 3.2.
Proof of Theorem 3.2. If R0 =1, then Problem 2 is identical to Problem 1. Therefore, the optimality of

the claimed optimal strategy follows from Theorem 3.1. In addition, as noted in (9), we have

V 4W1y115=v4W1y1T 51

where v4W1y1T 5 (independent of T ) is the value function after retirement for Problem 1. From now on, we
assume w.l.o.g. that R0 =0. It is tedious but straightforward to use the generalized Itô’s lemma and Equa-
tions (17)–(23) and (27)–(28) to verify that the claimed optimal strategy W ∗

t , c∗
t , �∗

t , and R∗
t in Theorems 3.1

and 3.2 satisfy the budget constraint (6). In addition, by Lemma 3.1, x0 exists and is unique and W ∗
t satisfies

the borrowing constraint in each problem. Furthermore, by Lemma 3.4, there is a unique solution to (23).
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By Doob’s optional sampling theorem, we can restrict attention w.l.o.g. to the set of feasible policies that
implement the optimal policy stated in Theorem 1 after retirement. The utility function for such a strategy can
be written as

E
∫ �

0
e−4�+�5s

[

41−Rs5

(

c1−�
s

1−�
+�

4kBs5
1−�

1−�

)

ds+V 4Ws1ys115dRs

]

0

By Lemma 3.3, Mt is a supermartingale for any feasible policy 4c1B1�1R5 and a martingale for the claimed
optimal policy 4c∗1B∗1�∗1R∗5, which implies that M0 ≥E6Mt7, i.e.,

V 4W01y0105 ≥ E
∫ t

0
e−4�+�5s

[

41−Rs5

(

c1−�
s

1−�
+�

4kBs5
1−�

1−�

)

ds+V 4Ws1ys115dRs

]

+E641−Rt5e
−4�+�5tV 4Wt1yt571 (54)

with equality for the claimed optimal policy. In addition, by Lemma 3.3, we also have that

lim
t→�

E641−Rt5e
−4�+�5tV 4Wt1yt57≥0

with equality for the claimed optimal policy.
Therefore, taking the limit as t↑� in (54), we have

V 4W01y0105≥E
∫ �

0
e−4�+�5s

[

41−Rs5

(

c1−�
s

1−�
+�

4kBs5
1−�

1−�

)

ds+V 4Ws1ys115dRs

]

with equality for the claimed optimal policy 4c∗1B∗1�∗1R∗50 This completes the proof. �
Theorem 2 provides essentially complete solutions because the solution for x0, given W0, requires only a

one-dimensional monotone search to solve Equation (25) and, for � , one only needs to solve Equation (23).
We next provide results on computing the market value of human capital at any point in time, which is useful

for understanding much of the economics in the paper.

Proposition 3.1. Consider the optimal policies stated in Theorems 3.1–3.2. After retirement, the market
value of the human capital (i.e., the capitalized labor income) is zero. Before retirement, in Theorem 3.1, the
market value of the human capital is

H4yt1t5=g4t5yt1

where yt and g4t5 are given in (1) and (3). In Theorem 3.2, if C=1, then the market value of the human capital
is

H4xt1yt5=
yt
�1

4−x1−�−x
�−−1
t +15 and1

if C=0, then the market value of the human capital is

H4xt1yt5=
yt
�1

4Ax
�−−1
t +Bx

�+−1
t +151

where

A=
41−�+5x

1−�− x̄�+−�−

4�+−15x̄�+−�− −4�−−15x�+−�−

and

B=
4�−−15x1−�−

4�+−15x̄�+−�− −4�−−15x�+−�−

0

Proof. For Problem 1, by Itô’s lemma, (1), (3), (4), (11), and simple algebra,

d4�tg4t5yt5=−�t41−Rt5ytdt+�tg4t5yt4�y−�5>dZt0

Furthermore,

E
∫ t

0
4�sg4s5ys5

24�y−�5>4�y−�5ds<�

because �sys is a standard lognormal diffusion and the other factors are bounded for any t and zero for t>T .
Therefore, the local martingale

�tg4t5yt+
∫ t

0
�s41−Rs5ysds=g405y0 +

∫ t

s=0
�sg4s5ys4�y−�5>dZs (55)
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is a martingale that is constant for t>T . Picking any T>max4t1T 5, the definition of a martingale implies that

�tg4t5yt+
∫ t

0
�s41−Rs5ysds=Et

[

�Tg4T5yT+

∫ T

0
�s41−Rs5ysds

]

0

Now, T>max4t1T 5 implies that g4T5=0, and the integral on the left-hand side is known at t. Therefore, we
can subtract the integral from both sides and divide both sides by �t to conclude

g4t5yt =
1
�t
Et

[

∫ T

t
�s41−Rs5ysds

]

=
1
�t
Et

[

∫ �

t
�s41−Rs5ysds

]

1

where the second equality follows from the fact that Rs ≡1 for s>T.
For the cases with voluntary retirement, because there is no more labor income after retirement, the market

value of human capital after retirement is zero. We next prove the claims for after retirement. Using the expres-
sions of H and the dynamics of xt and yt , it can be verified that, for xt>x when C=1 and for x<xt<x̄ when
C=0, we have that the change in the market value of human capital plus the flow of labor income will be
given by

d
(

�tH4xt1yt5
)

+�tytdt = �t
(

1
2�3x

2
tHxx−4�1 −�2 −�35xtHx−�1H+yt

)

dt

+�t
(

xtHx�
>

x +H4�>

y −�>5
)

dZt0 (56)

The drift term in (56) is equal to zero after plugging in the expressions for H (if C=0, the additional local
time term at x̄ from applying the generalized Itô’s lemma is also equal to zero because it can be verified that
Hx4x̄1yt5=0). This implies that

Mt ≡�tH4xt1yt5+
∫ t

0
�sysds

is a local martingale. In addition, there exists a constant 0<L<� such that

��t4xtHx�
>

x +H4�>

y −�>55�<L�tyt

because �−<0 and xt>x if C=1 and x<xt ≤ x̄ if C=0. Because both �t and yt are geometric Brownian
motions, we have that Mt is actually a martingale. Recall the definition (26) of the optimal retirement time �∗.
For all t≤�∗ we have

�tH4xt1yt5+
∫ t

0
�sysds=Et

[

��∗H4x1y�∗5+
∫ �∗

0
�sysds

]

1

which implies that

H4xt1yt5=�−1
t Et

[

∫ �∗

t
�sysds

]

because it can be easily verified that H4x1y5=00 Therefore, H as specified in Proposition 3.1 is indeed the
market value of the future labor income. �

The following result shows that because of retirement flexibility, human capital may have a negative beta even
when labor income correlates positively with market risk.

Proposition 3.2. As an investor’s financial wealth W increases, the investor’s human capital H decreases
in Problem 2. Furthermore, if �y<�/�, then human capital has a negative beta measured relative to any locally
mean-variance–efficient risky portfolio.

The following lemma is useful for the proof of Propositions 3.2 and 3.4.

Lemma 3.5. Suppose C=1, �>0, �1>0, �2>0, and �3>0. Then,
(i) �̂4x5 is strictly decreasing and strictly convex.

(ii) �4x5 is strictly convex and �x4x5≤1/�1.
(iii) ∀x≥0, we have �4x5≥ �̂4x5 and ∀x≥x, we have �x4x5≥ �̂x4x50
(iv) Given (24), there exists a unique solution x0>0 to (25). In addition, W ∗

t defined in (28) satisfies the
borrowing constraint (8).
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Proof of Lemma 3.5. (i) This follows from direct differentiation because �̂>0 and b−1<0. (ii) First,
because �>0, �1>0, �2>0, and �3>0, it is straightforward to use the definitions of �+ and �− to show that

�+>1>b>�−1 �−<01 and A+>00

Then, the claimed results also follow from direct differentiation. (iii) This follows from a similar argument
to that of part (ii) of Lemma 3.1. (iv) By part (i), part (ii), and �x4x5= �̂x4x5, �

′4x1R1C5 is continuous and
strictly increasing in x. By an inspection of (33) and (34), �x4x1R1C5 takes on all values that are less than or
equal to 1/�1. Because y0>0, there exists a unique solution x0>0 to (25) for each W0 ≥−y0/�1. Also, because
�x4x1R1C5≤1/�1, (28) implies that W ∗

t >−41−Rt5yt/�11 ∀t≥00 �
Proof of Proposition 3.2. First, as shown in Lemmas 3.1 and 3.5, the dual value function � defined in

Theorem 3.2 is convex and thus the wealth level Wt defined in Theorem 2 decreases with the dual variable xt .
By Proposition 3.1, differentiating the expression for human capital with respect to xt for the case C=1 yields
that human capital is increasing in xt because �−<0. Therefore, human capital decreases with financial wealth
W for C=1 in Problem 2. For C=0 in Problem 2, differentiating human capital H with respect to x, we have
that, before retirement,

¡H4x1y5

¡x
=

y

�1

4A4�−−15x�−−1
+B4�+−15x�+−15

=
y

�1

4�+−1541−�−5x
1−�−x�+−2

4�+−15x̄�+−�− −4�−−15x�+−�−

((

x̄

x

)�+−�−

−1
)

>01 (57)

where the second equality follows from the expressions of A and B in Proposition 3.1 and the inequality follows
from the fact that �+>1>�− and x<x̄. Thus, human capital decreases with financial wealth W also for C=0.
Furthermore, because �x =��y−�, if �y<�/�, then, as the market risk Zt increases, xt decreases and therefore
human capital decreases by (57), i.e., human capital has a negative beta. �

The following result shows that retirement flexibility tends to increase stock investment.

Proposition 3.3. Suppose �y =0 and �>r1. Then, the fraction of total wealth W +H invested in the risky
asset in Problem 2 when C=1 is greater than that in Problem 1.

Proof. By Theorem 3.1, the fraction of total wealth W +H invested in the risky asset in Problem 1 is
constantly equal to 44�>�5−14�−r155/�.

With C=1, by Theorem 3.2 and Proposition 3.1, we have

�

W +H
=

4�>�5−14�−r15
�

�A+�−4�−−15x�−−1 +�xb−1

−A+�−x
�−−1 +�xb−1 −1/�1x

1−�−x�−−1
0

Plugging in the expressions for A+ and x and using the fact that �−<b, we have

�A+�−4�−−15x�−−1 +�xb−1

−A+�−x
�−−1 +�xb−1 −1/�1x

1−�−x�−−1
>10 �

A retirement decision is critical for an investor’s consumption and investment policies. The following propo-
sition shows that the presence of the no-borrowing constraint tends to make an investor retire earlier.

Proposition 3.4. In Problem 2, the retirement wealth threshold for C=1 is higher than for C=0.

Proof. Let A−, A+, and x be defined as in Theorem 3.2. To make the exposition clear, we now make their
dependence on C explicit, i.e., using A−4C5, A+4C5, and x4C5 instead:

h4x1C5=A+4C5x�− +A−4C5x�+ −�
xb

b
+

1
�1

x+�̂
xb

b
0

We prove by contradiction. Suppose x405≤x415. By Lemmas 3.1 and 3.5, we have h4x405105=hx4x405105
=0, h4x415115=hx4x415115=0. From the proof of Lemma 3.1, we have hx4x105>0 for all x∈4x4051x̄4057. By
(22) and (44), we have x415<x̄405. Therefore,

h4x415105≥0=h4x415115 and hx4x415105≥0=hx4x4151150 (58)
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The first equation of (58) implies that

A+405x415
�− +A−405x415

�+ ≥A+415x415
�−1

which, in turn, implies
A+405>A+415 (59)

because A−405<0 as shown in Lemma 3.1. On the other hand, the second equation of (58) implies that

A+405�−x415
�−−1

+A−405�+x415
�+−1

≥A+415�−x415
�−−11

which, in turn, implies
A+405<A+415 (60)

because A−405<0 and �+>0. Result (60) contradicts (59). This shows that we must have x405>x415. Because,
at retirement, the financial wealth is equal to −y�x4x4C5111C5 for Problem 2 and because −y�x4x4C5111C5=
�̂x4C5−1/� , we must have that the financial wealth level W at retirement for C=1 is higher than for C=0. �

One measure that is useful for examining the life cycle investment policy is the expected time to retirement.
The following proposition shows how to compute this measure.

Proposition 3.5. In Problem 2, suppose that an investor is not retired and that �x−
1
2�

2
x <0. Then, the

expected time to retirement for the optimal policy is

Et6�
∗
�xt =x7=

log4x/x5
1
2�

2
x −�x

1 ∀xt>x

for C=1 and

Et6�
∗
�xt =x7=

xm−xm

4 1
2�

2
x −�x5mx̄m

+
log4x/x5
1
2�

2
x −�x

1 ∀xt ∈ 6x1x̄7 (61)

for C=0, where

m=1−
2�x

�2
x

0

Proof of Proposition 3.5. First, we prove the result for C=1 in Theorem 3.2. Recall that

dxs =xs4�xds+�>

x dZs51

which implies that
xs =xt exp

[

4�x−
1
2�

2
x 54s−t5+�x4Zs−Zt5

]

0

Because xt>x and �x−
1
2�

2
x <0, we have �∗<� almost surely (see, for example, Karatzas and Shreve [4,

p. 349]). Let

f 4x5≡
log4x/x5

1
2�

>
x �x−�x

0

Then, by Itô’s lemma, for any stopping time T≥ t, we have

f 4xT5+
∫ T

t
1ds=f 4xt5+

∫ T

t

(

1
2
�>

x �xx
2
s fxx+�xxsfx+1

)

ds+
∫ T

t

�>
x

1
2�

>
x �x−�x

dZs1 (62)

which implies that f 4xT5+
∫ T

t
1ds is a martingale because it can be easily verified that the drift term is zero,

given the definition of f 4x5, and the stochastic integral is a scaled Brownian motion and thus a martingale.
Thus, taking T= t+�∗ and taking the expectation in (62), we get

f 4x5=Et6�
∗
�xt =x7

because xt+�∗ =x and f 4x5=0. A similar argument applies to the case C=0; note that whenevaluated at x= x̄,
the first derivative of the right-hand side of (61) with respect to x is zero and xt is bounded. This completes the
proof. �

The following proposition shows how the expected time to retirement is related to human capital and financial
wealth, which can help explain the graphical solutions presented in the previous section.

Proposition 3.6. Suppose that an investor is not retired and that 1
2�

2
x −�x>0. Then, as the expected time

to retirement increases, financial wealth decreases and human capital increases.

Proof. By Proposition 3.5, it can be easily verified that the expected time to retirement is increasing in x.
By (57), we have that human capital is increasing in x and Proposition 3.2 then implies that financial wealth is
decreasing in x. Therefore, the claim holds. �
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4. Conclusion. We examine the impact of retirement flexibility and borrowing constraints against future
labor income on optimal consumption and investment policies. We solve two alternative models almost explicitly
(at least parametrically up to at most a constant) and provide verification theorems that are proved using a
combination of the dual approach and an analysis of the boundary. In addition, we also obtain and prove some
interesting comparative statics.
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