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A Rational Theory for Disposition Effects

Abstract

Extant theories on the disposition effect are largely silent on most of the disposition-

effect related trading patterns, including the V-shaped probabilities of buying and selling

against unrealized profit. On the other hand, portfolio rebalancing and learning have been

shown to be important, even for retail investors. We show that rational rebalancing with

transaction costs and unknown expected returns can generate many disposition-effect-

related trading patterns, including the V-shape results. Our paper complements the

extant theories by suggesting that portfolio rebalancing may also constitute a significant

driving force behind the disposition effect and the related patterns.
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1 Introduction

The disposition effect, which is the tendency of investors to sell winners while holding

onto losers, has been widely documented in the empirical literature. For example, using

data containing 10,000 stock investment accounts in a U.S. discount brokerage from 1987

to 1993, Odean conducts a set of tests of the disposition effect hypothesis in his seminal

work of Odean (1998). He concludes that the disposition effect exists across years and

investors.1 Closely related to the disposition effect, Ben-David and Hirshleifer (2012)

show that the plots of the probabilities of selling and of buying more of some existing

shares against unrealized profit both exhibit V-shape patterns, i.e., as the magnitudes

of unrealized profits/losses increase, these probabilities also increase. Theories based on

prospect theory, mental accounting, regret aversion, and gain/loss realization utility to

explain the disposition effect have dominated the literature.2 However, it is difficult for

extant theories to explain the V-shape patterns. In addition, as far as we know, there

have been no theoretical models proposed to explain other well-documented disposition

effect-related patterns, such as: 1) investors may sell winners that subsequently outper-

form losers that they hold (Odean (1998)); 2) the disposition effect is stronger for less

sophisticated investors (Dhar and Zhu (2006)); 3) the disposition effect may increase

with return volatility (Kumar (2009)); and 4) investors are reluctant to repurchase stocks

previously sold for a loss, as well as stocks that have appreciated in price subsequent to

a prior sale (Strahilevitz, Odean, and Barber (2011)).

Another strand of literature documents that portfolio rebalancing is an important

1 See also, Shefrin and Statman (1985), Grinblatt and Keloharju (2001), Kumar (2009), Ivković and
Weisbenner (2009), and Engelberg, Henriksson, and Williams (2018).

2 See, for example, Shefrin and Statman (1985), Odean (1998), Barberis and Xiong (2009), Ingersoll
and Jin (2013), Chang, Solomon, and Westerfield (2016), and Frydman, Hartzmark, and Solomon (2018).
While these theories do seem to offer a promising framework for understanding the disposition effect,
the possible link has almost always been discussed in informal terms, with one notable exception. Using
a rigorous model, Barberis and Xiong (2009) demonstrate that assuming prospect theory utility on
realized gains/losses can potentially predict a disposition effect. However, by examining a realization
utility model with adaptive reference points, He and Yang (2019) cast doubt on whether realization
utility is the driving force behind the disposition effect. Moreover, from a behavioral perspective, it can
be puzzling that even the professional traders still display the disposition effect at no economic cost (e.g.
Frino, Johnstone, and Zheng (2004)), as these traders are believed to be less prone to behavioral bias.
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driver behind even retail investors’ trading.3 For example, Calvet, Campbell, and Sodini

(2009) find strong household-level evidence of active rebalancing by retail investors who

typically hold a small number of stocks. Using a sample of Japanese retail investors

from 2013 to 2016, Komai, Koyano, and Miyakawa (2018) find that investors tend to

conduct contrarian trades, as predicted by standard portfolio rebalancing models. In

addition, trading patterns consistent with rational learning by investors have been widely

documented. For example, Grinblatt and Keloharju (2001) report that past returns

and historical price patterns affect trading decisions in ways that are consistent with

rational learning. Kandel, Ofer, and Sarig (1993) and Banerjee (2011) provide evidence

that investors learn about information contained in asset prices and revise their trading

strategy accordingly. Furthermore, even though transaction costs have declined in recent

years, bid-ask spreads and other trading costs (e.g., brokerage fees and time costs) remain

significant, especially for retail investors. As a result, investors do not trade continuously

(e.g., Davis and Norman (1990), Liu (2004)).

As extant literature has shown (e.g., Odean (1998)), portfolio rebalancing without any

market friction cannot explain the disposition effect. Based on the aforementioned empir-

ical evidence on the importance of portfolio rebalancing, learning, and transaction costs,

we develop an optimal portfolio rebalancing model with transaction costs and incomplete

information (in the form of unknown expected returns) to examine whether rational port-

folio rebalancing in the presence of these frictions can help explain the disposition effect

and related trading patterns of retail investors. We show that, indeed, in the presence

of these frictions, portfolio rebalancing can lead to the disposition effect and many of

the related patterns, including the V-shape patterns. While we believe that behavioral

types of explanations are essential in understanding the disposition effect and the related

trading patterns, our finding suggests that portfolio rebalancing may also constitute a

significant driving force behind these results and thus complement the extant theories.

More specifically, we consider a portfolio rebalancing model in which a small retail

3 In our analysis, we refer to trading of individual stocks to achieve the optimal portfolio determined
by the risk-return tradeoff as portfolio rebalancing.
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investor (i.e., one who has no price impact) can trade a risk-free asset and multiple risky

assets (“stocks”) to maximize the expected utility from the final wealth at a finite hori-

zon.4 The stocks’ expected returns are unknown and the investor updates the conditional

distributions of the expected returns after observing past returns. Trading the stocks is

subject to proportional transaction costs.

To make our expositions as clear as possible, we consider two sets of model parameters.

We begin with a case where stocks have homogeneous return-risk profiles and uncorrelated

returns. This is a clean setting to illustrate the main working mechanisms. Then, we

show that these mechanisms continue to work with calibrated parameter values with

heterogeneous risk-return profiles and correlated returns.

We show that the optimal rebalancing strategy implied by our model can exhibit a

disposition effect. For example, for a reasonable set of parameter values, the ratio of the

number of realized gains to the number of all gains (realized gains plus paper gains), i.e.,

PGR, is 0.331, while the ratio of the number of realized losses to the number of all losses

(realized losses plus paper losses), i.e., PLR, is 0.168. These results indicate that the

investor exhibits greater propensity of realizing gains than losses.

The main driving force for the disposition effect displayed in our model is the “ex-

posure effect.” Intuitively, for a risk-averse utility maximizing investor, it is optimal to

keep the exposure to a stock within an upper bound and a lower bound to trade off risks

and returns. A rise in the price of a stock results in a gain and increases the investor’s

risk exposure to this stock. If the exposure increases above the upper bound, then it

is optimal to sell and thus realize a gain. A fall in the stock price results in a loss and

decreases the investor’s risk exposure. If the exposure decreases below the lower bound,

then it is optimal to buy, not sell, additional shares. It is this asymmetry (i.e., selling

with a large gain, but buying with a large loss) due to the exposure effect that makes

investors realize gains more often than losses. On the other hand, if the exposure after

4 As in the existing literature on the disposition effect (e.g., Shefrin and Statman (1985), Barberis
and Xiong (2009), and Ingersoll and Jin (2013)), we use a partial equilibrium setting because most of
the empirical studies on the disposition effect and the related trading patterns focus on retail investors,
whose trading unlikely affects market prices.
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a gain or loss is still within the bounds, the investor does not trade, due to the presence

of transaction costs. Because selling a stock with a loss requires the upper bound of

the risk exposure to be reached after a decline in the stock price and buying additional

shares after a loss requires the lower bound to be reached, investors hold onto losers after

small losses. Thus, the combination of the exposure effect and the presence of transaction

costs makes investors tend to sell winners and hold onto losers, consistent with existing

empirical findings. Because the exposure effect exists for any risk-averse utility maximiz-

ing investors, the above qualitative results apply to all risk-averse preferences, such as

CRRA, CARA, and Epstein-Zin preferences.5

It is empirically found that past returns also significantly affect investors’ trading

behavior. Using a data set containing all common stock trades of Finnish household

investors from 1995 to 2000, Kaustia (2010) provides the first evidence that the investors’

selling propensities increase in the magnitude of gains. Ben-David and Hirshleifer (2012)

further demonstrate that the probability of buying more and of selling are both greater

for positions with larger paper gains or larger paper losses.6 Theories based on the static

prospect theory, or regret aversion, predict that the larger the loss, the less likely it is for

investors to sell, and the larger the gain, the less likely it is for investors to buy, which

is opposite of the V-shape pattern. Ben-David and Hirshleifer (2012) argue that the V-

shape pattern can be consistent with change of perceptions and faiths (belief revision).

Assuming that an investor can obtain a burst of reference-dependent utility from a sale

in a dynamic prospect theory setting, Ingersoll and Jin (2013) demonstrate that the

probability of selling can increase with the magnitude of losses because there is a benefit

of realizing losses to reset references in this dynamic setting.7 Peng (2017) attributes the

5 For example, for CARA preferences, it is optimal to keep the dollar amount in a stock in a range,
and for CRRA preferences and some Epstein-Zin preferences, it is optimal to keep the fraction of wealth
in a stock in a range as in our model. For all of these preferences, it is optimal to sell when the stock
price rises sufficiently, and to buy when the stock price decreases sufficiently.

6 Note that the evidence that the probability of selling increases with loss magnitudes is not contra-
dictory to the disposition effect, because the unconditional probability of selling losers is still smaller
than that of selling winners. An (2016) and An and Argyle (2016) find that stocks with both large
unrealized gains and large unrealized losses outperform others in the following month. This finding may
be consistent with V-shape trading patterns.

7 For a discussion of realization utility theory, see also Barberis and Xiong (2012).
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V-shaped selling pattern to irrational extrapolation of past returns.

We show that the V-shape patterns for both the purchase probability and the sale

probability are consistent with the optimal trading strategy in our portfolio rebalancing

model. Intuitively, two opposing forces exist in our model: the “exposure effect” and the

“learning effect.” As previously explained, the exposure effect tends to make investors sell

after a large gain but buy after a large loss (“buy low, sell high”), exhibiting a contrarian

trading strategy. In contrast, the learning effect tends to make investors buy after a large

gain and sell after a large loss (“buy high, sell low”), exhibiting a momentum trading

strategy. This is because investors revise upward their estimate of expected returns after

gains and do the opposite after losses. The patterns of the probability of selling increasing

with the magnitude of gains and the probability of buying increasing with the magnitude

of losses are driven by the exposure effect. On the other hand, because there is a greater

increase (decrease) in the estimate of the expected return after observing a large gain

(loss), the probability of buying more (selling) is greater for a large gain (loss) than for a

small gain (loss).8 Thus, the patterns of the probability of buying more increasing with

the magnitude of gains and the probability of selling increasing with the magnitude of

losses are driven by the learning effect. The relative strength of the two effects determines

the trading direction. In our model, it is the coexistence of the exposure effect and the

learning effect that drives the V-shape patterns.

Moreover, in contrast to the existing literature, our model can generate many other

disposition effect-related patterns documented in empirical studies, such as those four

stated at the end of the first paragraph. As in the previous results, the driving forces

behind these results are also the presence of, and the interaction between, the exposure

effect and the learning effect. For example, less sophisticated investors may have less

learning capability than more sophisticated investors. As a result, the learning effect

may be smaller and the disposition effect may be stronger for less sophisticated investors.

For ease of reference, we summarize the main results and driving mechanisms in Table

8 The conditional volatility of the expected return deterministically decreases over time. Its impact
is largely dominated by the impact of the change in the estimate of the expected return, especially when
there are large return shocks. See Section 3 for more detailed discussions.
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Table 1: Main results and driving mechanisms

This table summarizes the main patterns predicted by our model and the driving mechanisms.

Trading pattern Driving mechanism

Disposition effect-related
Disposition effect (for sales) Exposure effect
Reverse disposition effect (for purchases) Exposure effect
Ex-post return pattern Exposure effect
Volatility pattern Exposure effect

V-shape results
For selling (right branch) Exposure effect
For selling (left branch) Learning effect
For buying (left branch) Exposure effect
For buying (right branch) Learning effect

Repurchase patterns
For winners/lossers at the time of sales Learning effect
For winners/lossers since last sale Exposure effect

Table 2: Comparison with existing papers

This table reports a comparison between the trading patterns examined in our paper and in
behavioral models in the literature.

DE RDE Volatility pattern V-shape Repurchase

Barberis and Xiong (2009) Yes No No No No
Ingersoll and Jin (2013) Yes No No Yes No
Peng (2017) Yes No No Yes No
This paper Yes Yes Yes Yes Yes

1, and a comparison between our paper and some existing papers in Table 2.

It is well known that, with capital gains tax, realizing losses sooner and deferring

capital gains can provide significant benefits (e.g., Constantinides (1983)). This force

acts against the disposition effect. We demonstrate that, consistent with the empirical

findings of Lakonishok and Smidt (1986), the disposition effect can still arise in an optimal

portfolio rebalancing model with capital gains tax and transaction costs. Intuitively,

when a stock’s price appreciates sufficiently, the investor’s risk exposure to this stock can

become too high, and the benefit of lowering the exposure by a sale can dominate the

benefit of deferring the realization of gains. In addition, with transaction costs, realizing

losses immediately is no longer optimal, and deferring even large capital losses may be
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optimal. This is because the extra time value obtained from realizing losses sooner can

be outweighed by the transaction cost payment, even when the transaction cost is small.

Our model offers some new empirically testable predictions for future studies. For

example, our model predicts that: (1) conditional on return volatility, the magnitude

of the disposition effect is greater for stocks for which there is more public information,

because for these stocks much is already known, and thus the learning effect is smaller;

(2) investors with a more diversified portfolio or a better hedged portfolio have a weaker

disposition effect, because for these portfolios the exposure effect is smaller; and (3) the

V-shaped trading patterns are more pronounced for stocks with less public information,

because the learning effect is stronger for these stocks.

Although we consider a small investor whose trades have no price impact and thus

adopt a partial equilibrium approach, the disposition effect can arise in equilibrium (e.g.,

Basak (2005), Dorn and Strobl (2009)). For example, Dorn and Strobl (2009) demon-

strate that, in the presence of information asymmetry, the less informed become con-

trarians while the more informed become momentum traders in equilibrium. The less

informed investors in their model trade in the same way as the investor in our model, and

thus displays the disposition effect in equilibrium. The fact that in equilibrium for each

investor who sells there must be a counterparty who buys does not imply that there is no

disposition effect on average. This is because it is possible that a greater number of retail

investors with a stronger disposition effect trade with a small number of institutional

investors, for example, and most of the studies of the disposition effect and the related

trading patterns focus on retail investors.

The remainder of the paper proceeds as follows. In the next section, we present the

main model and theoretical analysis. In Section 3, we numerically solve the model and

conduct simulations to illustrate that our model can generate most of the disposition-

effect related patterns. We also show that the disposition effect can exist even with capital

gains tax. We conclude with Section 4, and all proofs are provided in the Appendix.
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2 The Model

In this section, we describe the main ingredients of our model. We extend the model of

Cvitanić, Lazrak, Martellini, and Zapatero (2006) to incorporate transaction costs. As

we have discussed in the Introduction, the inclusion of transaction costs is necessary to

generate some disposition effect-related patterns. Moreover, incorporating transaction

costs in a multi-stock model is a highly challenging task.

2.1 Economic setting

We consider the optimal investment problem of a small retail investor (i.e., a price taker)

who maximizes the expected constant relative risk-averse (CRRA) utility from the final

wealth at some finite time T > 0.9 The investor can invest in one risk-free asset (“bond”)

and N ≥ 1 risky assets (“stocks”). The bond offers a constant interest rate r ≥ 0. For

i = 1, ..., N , we assume that the price of Stock i evolves as follows:

dSi(t) = Si(t)

[
µidt+

N∑
j=1

σijdBjt

]
, (1)

where µi and σij are constants, and Bt = (B1t, ..., BNt) is an N -dimensional standard

Brownian motion process.10 We assume the return volatilities (i.e., σij) are known, while

the expected returns (i.e., µi) may be unobservable. This reflects the fact that the

expected returns of stocks are difficult to estimate from a finite sample. According to

(1), Stock i’s total return volatility is σi =
√∑N

j=1 σ
2
ij.

We denote by σ = ((σij) : 1 ≤ i, j ≤ N) the volatility matrix, µ = (µ1, ..., µN) the

vector of expected returns, and 1 = (1, ..., 1) ∈ RN an N -dimensional vector of ones.

9 Including intertemporal consumption would not qualitatively change our results because, as will
become clear later, the main driving forces of our results remain the same even with intertemporal
consumptions.

10 If the expected returns were stochastic, the uncertainty of the underlying asset would not dissipate
over time and the learning effect would be smaller and more persistent, because there would be more
noise. As a result, we expect that the results counteracted against by the learning effect (e.g., the
disposition effect) would be stronger and the results driven by the learning effect (e.g., the V-shape
patterns) would be weaker, but would still hold because investors can still learn.
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Assuming σ is nonsingular, we define the vector of risk premia as follows:

ξ ≡ σ−1(µ− r · 1). (2)

Learning about the expected return vector µ is equivalent to learning about the

risk premium vector ξ. We assume the investor’s prior on ξ is a Gaussian distribu-

tion that is independent of Bt. We denote by m = (m1, ...,mN) the vector of mean

and ∆ the positive definite variance-covariance matrix of this prior distribution. Let

FSt = σ ((S1(u), ..., SN(u)) ; 0 ≤ u ≤ t) be the filtration process, and denote

ξ̄(t) = E[ξ|FSt ] (3)

as the conditional estimate of the risk premium vector. We also denote the N -dimensional

risk-neutral Brownian motion by B∗t = Bt + ξt. Then, the stock prices follow

dSi(t) = Si(t)

[
rdt+

N∑
j=1

σijdB
∗
jt

]
, i = 1, ..., N. (4)

Applying the standard filtering theory (e.g., Lipster and Shiryayev (2001)), we can infer

that the following innovation process

B̂t = B∗t −
∫ t

0

ξ̄(s)ds (5)

is an observable standard Brownian motion given the investor’s information. Substituting

(5) into (4) yields the following stock price dynamics:

dSi(t) = Si(t)

[
(r +

N∑
j=1

σij · ξ̄j(t))dt+
N∑
j=1

σijdB̂jt

]
, i = 1, ..., N. (6)

Next, we describe how ξ̄(t) defined in (3) evolves over time. Following Cvitanić et.

al. (2006), we can decompose the variance-covariance matrix ∆ into

∆ = P ′DP, (7)
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where P is an orthogonal matrix and D is a diagonal matrix with its ith entry being

denoted by di. We further define

δi(t) =
di

1 + dit
. (8)

Then, we have

ξ̄(t) = P ′D̄(t)
{
PB∗(t) + [D̄(0)]−1Pm

}
, (9)

where m = ξ̄(0) and D̄(t) is a diagonal matrix with its ith entry being denoted by δi(t).

Furthermore, ξ̄(t) has a conditional variance-covariance matrix of P ′D̄(t)P . As a result,

we can rewrite (6) as follows

dSi(t) = Si(t)
[
(r + σi · ξ̄(t))dt+ σi · dB̂t

]
, i = 1, ..., N, (10)

where σi is the ith row of the volatility matrix σ. We can also derive from (9) that

dξ̄(t) = −P ′D̄(t)P ξ̄(t)dt+ P ′D̄(t)PdB∗t = P ′D̄(t)PdB̂t. (11)

2.2 The investor’s problem

Different from Cvitanić et. al. (2006), we assume trading stocks is subject to transaction

costs. For i = 1, 2, ..., N , the investor can buy Stock i at the ask price SAi (t) = (1+θi)Si(t)

and sell the stock at the bid price SBi (t) = (1 − αi)Si(t), where θi ≥ 0 and 0 ≤ αi < 1

represent the proportional transaction cost rates for trading Stock i.

Let Yit be the dollar amount invested in Stock i for i = 1, 2, ..., N , Xt be the dollar

amount invested in the bond, and Lit and Iit with Li0− = Ii0− = 0 be nondecreasing,

right continuous adapted processes that represent the cumulative dollar amount of sale

and purchase of Stock i, respectively. Then, we have the following budget constraints:

dXt = rXtdt+
N∑
i=1

(1− αi)dLit −
N∑
i=1

(1 + θi)dIit, (12)

dYit = Yit(r + σi · ξ̄(t))dt+ Yitσ
i · dB̂t + dIit − dLit, i = 1, ..., N. (13)
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In addition, since short-sales are either too costly or too risky for most retail investors,

we assume that the investor cannot short-sell,11 i.e.:

Yit ≥ 0, i = 1, ..., N. (14)

The investor’s problem is to choose her optimal policy {(Lit, Iit) : i = 1, ..., N} among

all of the admissible policies to maximize her expected CRRA utility from the terminal

net wealth at time T , i.e.:

E

[
W 1−γ
T

1− γ

]
, (15)

subject to Equations (11), (12), and (13) and the short-sale constraint (14), as well as

the solvency condition:

Wt ≥ 0, (16)

where γ > 0 and γ 6= 1 is the investor’s constant relative risk aversion coefficient, and:

Wt = Xt +
N∑
i=1

(1− αi)Yit (17)

is the investor’s net after-liquidation wealth level at time t.

3 Analysis of the Trading Policy and the Disposition

Effect-related Patterns

In this section, we provide a comprehensive numerical analysis of the model. Specifically,

we examine the investor’s trading strategy and its implications for various disposition

effect-related patterns.

To clearly identify the main mechanisms of our model, we begin with a case where

stocks have homogeneous return-risk profiles and uncorrelated returns. We also assume

11 Consistent with this high cost or high risk, investors rarely short-sell. For example, the results
of Boehmer, Jones, and Zhang (2008) imply that only approximately 1.5% of short-sales come from
individual investors.
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the priors for the stock risk premia are also uncorrelated. This case helps us disentangle

the confounding effects resulted from stock-level heterogeneity and correlations. Then,

we show that our main results continue to hold in a calibrated model where the stocks

have heterogeneous risk-return profiles and correlated returns and priors.

In both cases, we assume the number of stocks in the investor’s portfolio is N = 4,

which is the median stock holding number in Odean (1998)’s sample.12 The investor

is assumed to have a relative risk aversion level of γ = 3, which is a commonly used

value in the literature (e.g., Brennan and Xia, 2002; Dammon, Spatt, and Zhang, 2004).

Furthermore, we assume that the investor is able to form unbiased prior estimates of

the risk premia, i.e., ξ̄(0) = ξ. The true values of expected returns are used only for

simulations, but as assumed in the model, the investor may not know these values. The

covariances of the priors are obtained by dividing the stock return covariances by the

number of sampling years, which is assumed to be 20.

3.1 The case with uncorrelated returns and priors

In this case, we have σij = 0 and ∆ij = 0 whenever i 6= j. For 1 ≤ i ≤ N , we set µi = 0.1

and σi = 0.3, which lead to Vi(0) = 0.32/20 = 0.0045. The proportional transaction cost

rate for both purchase and sale is set at 1 percent for all stocks, i.e., αi = θi = 0.01 for

i = 1, ..., N (see, e.g., Abdi and Ranaldo (2017)). In addition, we set the risk-free rate to

r = 0.04 and the investment horizon to T = 5 years.13

3.1.1 Rebalancing strategy

Using the numerical method presented in Appendix A.1, we are able to obtain an intuitive

rebalancing strategy for each stock.14 In this subsection, we briefly illustrate the main

12 The relatively small number of stocks held by the median investor in Odean (1998)’s sample indicates
that these investors tend to under-diversify. On the other hand, as shown in the existing literature,
underdiversification may be a result of optimal portfolio choice due to ambiguity aversion or high fixed
trading costs for some stocks or consumption commitment (e.g., Liu, 2014), and more importantly, even
with a small number of stocks held, investors optimally rebalance (e.g., Calvet et. al. (2009)).

13 As shown later, our main results are not sensitive to the choice of investment horizon.
14 We emphasize that although this strategy is not optimal, it is a good approximation of the optimal

strategy when the transaction cost rates are small. It should be noted that, although we solve for the
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Figure 1: Optimal trading policy.
This figure shows the optimal trading policy at time t = 2.5 years. Parameter values:
T = 5, γ = 3, r = 0.04, N = 4; µi = 0.1, σi = 0.3, Vi(0) = 0.0045, and αi = θi = 0.01 for
i = 1, ..., N . The blue (red, respectively) dot is the optimal selling (buying, respectively)
boundary when the expected returns are observable.

features of such a strategy.

It is well-known that, in the presence of transaction costs, it is optimal for the investor

to maintain the weight of each stock (as a fraction of the total wealth) within a proper

range.15 We plot in Figure 1 the boundaries that represent such ranges, at time t = 2.5

years, as a function of the conditional mean of the expected return µi (denoted as zit).

When a stock’s weight in the portfolio enters the Sell Region due to fluctuations in prices,

the investor sells an amount of this stock necessary for its weight in the portfolio to be

pushed down to the No-Trade Region (e.g., A to B). When a stock’s weight enters the

Buy Region, the investor buys additional shares of this stock required for its weight in the

optimal fraction of wealth invested in a stock using the one-stock model for each stock, fluctuations in
other stocks’ prices do influence the trading decision of a particular stock, because these fluctuations will
change the total wealth, and thus change the optimal dollar amount that should be invested in the stock.
For example, consider a scenario in which there are only two stocks and each has an optimal weight of
40% in the total wealth. After a drop in the price of Stock 1, the fraction of wealth invested in Stock 2 is
now higher than 40%, and thus Stock 2 may need be sold to rebalance. This is different from the model
with a CARA preference and uncorrelated stocks as studied in Liu (2002), who shows that the optimal
dollar amount invested in a stock is independent of other stocks.

15 See, for example, Davis and Norman (1990), Shreve and Soner (1994), and Liu and Loewenstein
(2002).
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portfolio to be pushed up to the No-Trade Region (e.g., C to D). When the stock’s weight

is inside the No-Trade Region, it is optimal not to trade. In addition, as the investor’s

conditional estimate of expected return increases, she desires a larger exposure to this

stock, and thus the No-Trade Region shifts upward.

Furthermore, Figure 1 suggests that selling can occur after either a gain (e.g., E to

G) or a loss (e.g., E to F). Similarly, buying more shares can take place after either a

loss (e.g., E to H) or a gain (e.g., E to I). As the sell (buy) boundary is more likely to be

reached after a rise (drop) in a stock’s price, an asymmetry exists between the trading

direction after a gain (i.e., more likely to sell) versus the trading direction after a loss

(i.e., more likely to buy).16 Intuitively, it is optimal for the investor to keep the exposure

to a stock within a range. As the price rises, the exposure increases and thus the investor

has an incentive to sell. In contrast, as the price drops, the exposure decreases and thus

the investor has an incentive to buy more. We term this asymmetric effect of keeping

an optimal exposure on the trading direction as the “exposure effect.” As we will later

demonstrate, in our model it is the exposure effect that drives the disposition effect. On

the other hand, because of transaction costs, the investor does not sell immediately after

a stock becomes a winner or buy immediately after a stock becomes a loser. Instead, she

holds a winner or a loser for a period of time until the gain or loss is sufficiently high.

This is consistent with the empirical finding that investors usually do not realize small

gains and hold onto losers without purchasing more shares immediately (Odean (1998)).

Figure 1 also shows the optimal trading boundary when the expected returns are

observable. In this case, the optimal trading boundary can be represented by two points

at zit = µi for any t ∈ [0, T ] and any 1 ≤ i ≤ N . In particular, the blue dot represents

the sell boundary, while the red dot denotes the buy boundary. Unlike in the case with

unobservable expected returns where sales and purchases of a stock can occur after either

a gain or a loss in this stock, a sale of a stock in the observable case cannot occur after

a loss in this stock, and a purchase of a stock cannot occur after a gain in this stock,

16 The investor sells with a loss only if after a drop in the stock price, there is a significant decrease in
the conditional mean zit such that the sell boundary becomes much lower.
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if there is no change in the price of another stock. In the observable case, a sale of a

stock can occur after a loss only if the loss is from a different stock (which pushes the

fraction of wealth invested in the first stock high enough to reach the sell boundary),

and similarly a purchase of a stock can occur after a gain only if there is a gain from a

different stock. This suggests an even stronger asymmetry between the trading directions

for winners and losers, and thus a stronger disposition effect in the observable case, as

we show later.

3.1.2 The disposition effect and related patterns

In this subsection, we examine in details our model’s predictions on various disposition

effect-related patterns.

The disposition effect in the full sample. To determine whether the widely

documented disposition effect is consistent with the trading strategies implied by our

model, we conduct simulations of these trading strategies, keeping track of quantities,

such as purchase prices, sale prices, and transaction times. Following Odean (1998), each

day that a sale takes place, we compare the selling price for each stock sold to its average

purchase price to determine whether that stock is sold for a gain or a loss. Each stock

that is in that portfolio at the beginning of that day, but is not sold, is counted as a

paper (unrealized) gain or loss, or neither. This is determined by comparing the stock’s

highest and lowest prices for that day to its average purchase price. If its daily low is

above its average purchase price, it is counted as a paper gain; if its daily high is below

its average purchase price, it is counted as a paper loss; and if its average purchase price

lies between the high and the low, neither a gain nor a loss is counted. On days when no

sales take place, no gains or losses (realized or paper) are counted.17

For each simulated path of the stocks and on each day, using the above definitions, we

compute the number of realized gains/losses (# Realized Gains/Losses) and the number

17 As in Odean (1998), when a sale occurs, we assume that the average purchasing price of the remain-
ing shares does not change. For a robustness check, we also use alternative counting methods, such as
first-in-first-out, last-in-first-out, and highest-purchase-price-first-out for the purpose of computing the
average purchasing price for the current position. We find that the results are similar.
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Table 3: Disposition effect measures

This table shows the disposition effect measures for the observable and the unobservable cases:
A1 and A2 for the full sample of sales; B1 and B2 for the subsample of sales in which there
is no new purchase in the following three weeks; and C1 and C2 for the subsample of sales in
which there is at least one stock being completely sold. The results are obtained from 10,000
simulated paths for each stock. DE ≡ PGR − PLR and DER ≡ PGR/PLR. Parameter
values: T = 5, γ = 3, r = 0.04, N = 4; µi = 0.1, σi = 0.3, zi0 = E[µi] = 0.1, Vi(0) = 0.0045,
and αi = θi = 0.01, for i = 1, ..., 4. Vi(0) = 0 for i = 1, ..., 4 for the observable case. The symbol
*** indicates a statistical-significance level of 1%.

Observable case
A1: Full sample B1: No-new purchase C1: Complete sale

PGR 0.348 0.343 N.A.
PLR 0.079 0.081 N.A.
DE 0.269*** 0.261*** N.A.
DER 4.427*** 4.211*** N.A.

Unobservable case
A2: Full sample B2: No-new purchase C2: Complete sale

PGR 0.331 0.330 0.123
PLR 0.168 0.171 0.417
DE 0.163*** 0.159*** -0.294***
DER 1.971*** 1.933*** 0.294***

Odean (1998)’s measure
A3: Full sample B3: No-new purchase C3: Complete sale

PGR 0.148 0.449 0.233
PLR 0.098 0.281 0.155
DE 0.050*** 0.168*** 0.078***
DER 1.510*** 1.598*** 1.503***

of paper gains/losses (# Paper Gains/Losses) for the optimal trading strategy. Then, we

sum these numbers across all simulated paths to calculate the following ratios,18 as used

by Odean (1998):

PGR =
#Realized Gains

#Realized Gains + #Paper Gains
,

PLR =
#Realized Losses

#Realized Losses + #Paper Losses
.

We report these values in Parts A1 and A2 of Table 3 for the observable expected

return and the unobservable expected return cases, respectively. These values suggest

18 Similar to Barberis and Xiong (2009), we assume that each sample path is corresponding to the
realization in a trading account.
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that the disposition effect documented in the existing literature is consistent with the

optimal portfolio rebalancing strategy implied by our model. For example, Table I of

Odean (1998) reports a PLR of 0.098 and a PGR of 0.148. In comparison, our model

with four stocks implies a PLR of 0.168 and a PGR of 0.331, with small standard errors

that have been omitted from the table. The disposition effect measure DE ≡ PGR−PLR

is equal to 0.163 and is statistically significant at 1%.19 We also report an alternative

disposition effect measure DER ≡ PGR/PLR, which uses the ratio of the two fractions.

As shown in Table 3, the results are qualitatively similar.20

The main intuition for our results is as follows. The disposition effect in our model is

driven by the exposure effect, i.e., the effect of the need to keep stock risk exposure within

a certain range. If the risk exposure increases beyond the range after an increase in a

stock price, the investor sells with a gain. If the risk exposure decreases beyond the range

after a decrease in a stock price, however, the investor buys additional shares instead of

selling. Thus, the exposure effect makes the investor sell after a sufficient increase in

stock price, but buy after a sufficient decrease in stock price. This asymmetry in trading

directions for winners and losers implies one aspect of the disposition effect, i.e., investors

sell winners more frequently than losers. The other aspect of the disposition effect, i.e.,

investors tend to hold onto losers (rather than buying more), follows from the presence

of transaction costs, which makes it costly to buy immediately after a stock becomes a

loser.

As an alternative way of explaining the disposition effect result, note that selling a

stock with a loss requires that the sell boundary be reached after a drop in the stock

19 In our base case, we set the number of stocks to the median number of stocks held by investors
in Odean (1998)’s sample, which is four. It can be easily shown that, in a model with four stocks, at
least one of the percentage of gains realized (PGR) or the percentage of losses realized (PLR) will be
no less than 1/4 (the proof of a general result is presented in Appendix A.4). This suggests that the
empirical magnitude of the disposition effect (e.g., a PGR of 0.15 as found by Odean (1998)) must be
from investors who hold a larger number of stocks. In fact, if we increase the number of stocks in our
model to eight, our model predicts a PGR of 0.166 and a PLR of 0.081, implying a disposition effect
measure of DE = 0.085, which is close to the empirical magnitude reported in Odean (1998).

20 We have also calculated these ratios for alternative values of the investor’s risk aversion coefficient
and investment horizon. For example, PGR and PLR equal to 0.283 and 0.221 (0.331 and 0.149 resp.)
when we set the investor’s risk aversion coefficient to 1 (5 resp.); they equal to 0.380 and 0.196 (0.315
and 0.138 resp.) when we set the investment horizon to 2 (10 resp.) years.
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price. However, ceteris paribus, after a decrease in the stock price, the fraction of wealth

invested in this stock goes down, and thus the (higher) sell boundary is less likely to

be reached than the (lower) buy boundary, whereas after an increase in the stock price,

the opposite is true. In addition, because stocks that are bought have positive expected

returns, gains occur more often than losses do. Consequently, the investor sells more

often to realize gains than to realize losses, which is consistent with the disposition effect.

If the expected returns are unobservable, then a learning effect, i.e., the effect of the

investor’s revision of the conditional distribution of the expected return after a change

in the stock price, is also at work. If the stock price goes up (down), the investor re-

vises upward (downward) the estimate of the expected return. The conditional variance

of the expected return decreases deterministically and monotonically with time. Thus,

the learning effect tends to make the investor buy after a stock price increase and tends

to make the investor sell after a stock price decrease if the decrease in the conditional

expected return dominates the decrease in the conditional variance. Therefore, the learn-

ing effect can counteract against the exposure effect. Indeed, as shown in Parts A1 and

A2, the disposition effect is stronger in the observable case because the counteracting

learning effect is absent in this case. Because learning about means is slow, the learning

effect is on average much smaller than the exposure effect, the exposure effect dominates

unconditionally, and thus the disposition effect is still strongly significant, even in the

unobservable case.21

The above finding that the learning effect tends to decrease the disposition effect

may shed some light on the empirical evidence that the disposition effect is stronger

among less sophisticated investors (e.g., Dhar and Zhu (2006)). This is because less

sophisticated investors may learn more slowly about the true expected returns through

past returns than more sophisticated investors, and thus the learning effect is weaker and

the disposition effect is stronger for less sophisticated investors. For naive investors who

do not learn at all, the disposition effect is the greatest, whether they happen to have

the correct estimate of the expected return or not.

21 As we show later, the learning effect can dominate in some states.
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The disposition effect in sales not followed by purchase. Odean (1998) demon-

strates that, among the sales after which there were no purchases of another stock in three

weeks, the disposition effect still appears. Because in most of the existing portfolio re-

balancing models (e.g., Merton (1971)) selling a stock without immediately purchasing

others is unlikely to be optimal, Odean (1998) concludes that portfolio rebalancing is

unlikely to explain the disposition effect in this subsample. While it is true that an in-

vestor always immediately buys another stock after a sale of a stock in the absence of

transaction costs, in the presence of transaction costs, however, it can be optimal for an

investor to sell a stock without purchasing another for an extended period of time. This

is because, as long as other stock positions are inside their no-transaction regions, it is

not optimal for the investor to buy any additional amount of these stocks, even after a

sale of another stock.

To determine if our model could generate the disposition effect in the subsample with

no immediate purchases of other stocks after selling one, we computed the PLR and PGR

ratios when restricted to this subsample. Parts B1 and B2 of Table 3 display the results,

which are similar to those obtained for the full sample. For example, Panel B2 of Table 3

demonstrates that, across all sample paths without a new purchase in three weeks after a

sale, PGR is equal to 0.330, PLR is equal to 0.171, and DE is equal to 0.159 with high

statistical significance. As in the full sample case, the results in the observable case are

stronger. These results suggest that the disposition effect found in the no-new-purchase

subsamples that Odean (1998) considers can be consistent with the portfolio rebalancing

strategies implied by a rational model such as ours.

The disposition effect in complete sales. Odean (1998) demonstrates that, in

the subsample in which the investor sells the entire position of at least one stock, the

disposition effect still appears. Because in most of the existing portfolio rebalancing

models (e.g., Merton (1971)) selling the entire position of a stock is not optimal, Odean

(1998) concludes that portfolio rebalancing is unlikely to explain the disposition effect in

this subsample. A similar analysis is conducted, and the same conclusion is reached by

Engelberg, Henriksson, and Williams (2018).
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Indeed, our baseline case does not generate the disposition effect in this subsample,

as shown by Panel C2 of Table 3. The reason is that complete sales occur only when

the price of a stock declines so much that its conditional expected return turns negative.

As a result, complete sales more likely follow a loss if all stocks have constant expected

returns.22 However, if there is a stock with a mean-reverting expected return in the

investor’s portfolio, then we are able to generate the disposition effect in this subsample.23

For this stock, with a large positive shock on price, its instantaneous expected return can

be driven below the risk-free rate. This is consistent with the evidence for stock-level

mean-reversion, conditional on large price changes (e.g., Zawadowski, Andor, and Kertesz

(2006), Dunis, Laws, and Rudy (2010)). As a result, completely liquidating this stock can

also be driven by a large stock price increase (in addition to learning about the expected

return after a large price drop). With a reasonable set of parameter values for this

stock and the same parameter values for the other four stocks, we obtain PGR = 0.221,

PLR = 0.183, and thus DE = 0.038 among the subsample with complete sales of at

least one stock. As before, in this subsample, the disposition effect is still driven by the

exposure effect.24

The reverse disposition effect. Odean (1998) also documents a reverse disposition

effect, i.e., relative to winning stocks, investors have a higher tendency to purchase addi-

tional shares of losing stocks. This is clearly consistent with portfolio rebalancing, which

22 In the case with observable expected returns, it is never optimal to liquidate the entire position on
a stock due to its known positive risk premium. As a result, we put N.A. in Part C1.

23 For this stock, the price dynamics is given as follows:

dSi(t)

Si(t)
= (µi + ηi(t))dt+ σidBit, (18)

where ηi(t) follows an Ornstein-Uhlenbeck process with zero mean (without loss of generality), i.e.:

dηi(t) = −giηi(t)dt+ νidB
η
it. (19)

We assume that the Brownian motions (Bit, B
η
it) are correlated with coefficient ρi, and they are inde-

pendent of all other Brownian motions in the model.
24 We note that a mean-reverting expected return is not necessary for the disposition effect within a

sample with complete sales. For example, in a previous version of the paper, we show that the disposition
effect is consistent with investors’ trading pattern in the presence of committed consumption (as in Liu
(2014)). To conserve space, we do not include this alternative model or its results in this paper, but they
are available from the authors.
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Table 4: Reverse disposition effect measures

This table shows the reverse disposition effect. The results are obtained from 10,000 simulated
paths for each stock. Parameter values: T = 5, γ = 3, r = 0.04, N = 4; µi = 0.1, σi = 0.3,
zi0 = E[µi] = 0.1, Vi(0) = 0.0045, and αi = θi = 0.01 for i = 1, ..., 4. Vi(0) = 0 for i = 1, ..., 4
for the observable case. The symbol *** indicates a statistical-significance level of 1%.

Observable case Unobservable case Odean (1998)’s measure
PLPA 0.415 0.299 0.135
PGPA 0.122 0.228 0.094
RDE 0.293*** 0.071*** 0.041***

predicts that, after a drop in price, an investor is more likely to buy the stock to in-

crease risk exposure. To confirm this intuition, we calculate the two measures PLPA

and PGPA used by Odean (1998):

PGPA =
#Gains Purchased Again

#Gains Purchased Again + #Gains Potentially Purchased Again
,

PLPA =
#Losses Purchased Again

#Losses Purchased Again + #Losses Potentially Purchased Again
.

These measures are similar to PGR and PLR, except that they are computed at the time

when a purchase, instead of a sale, is made. For example, #Gains Purchased Again is the

number of times when a purchase is made on a stock that has a gain as of the purchasing

time, and #Gains Potentially Purchased Again is the number of other stocks that have a

paper gain, but are not purchased again at the aforementioned purchasing time. Odean

(1998) reports PLPA = 0.135 and PGPA = 0.094. We obtain PLPA = 0.299, and

PGPA = 0.228 for the case with unobservable expected returns (reported in Part A2 of

Table 4). The reverse disposition effect is stronger in the observable case as shown in

Part A1 of the same table, because of the absence of the learning effect. This suggests

that the reverse disposition effect is also consistent with optimal portfolio rebalancing.

The impact of higher volatility on the disposition effect. Kumar (2009) inves-

tigates stock-level determinants of the disposition effect and finds that the disposition
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Table 5: The disposition effect and volatility

This table shows the disposition effect measures for two return volatility levels. The results are
obtained from 10,000 simulated price paths for each stock. Parameter values: T = 5, γ = 3,
r = 0.04, N = 4; µi = 0.1, zi0 = E[µi] = 0.1, Vi(0) = 0.0045 and αi = θi = 0.01, for i = 1, ..., 4.
The symbol *** indicates a statistical-significance level of 1%.

Base case (σ = 0.3) Higher volatility (σ = 0.35)
Average time from buy to sell 2.095 1.952
PGR 0.331 0.395
PLR 0.168 0.050
DE 0.163*** 0.345***
∆(DE) 0.182***

effect is stronger for stocks with higher volatility.25 Kumar argues that this is consistent

with behavioral biases being stronger for more volatile stocks. We next demonstrate that

this pattern can also be a result of portfolio rebalancing. For this purpose, we calculate

the disposition effect measures when we increase the return volatilities to 35% and report

the results in Table 5. Consistent with Kumar (2009), we find a stronger disposition

effect when stock returns are more volatile.

The main driving force behind the above result is the greater exposure effect for a

more volatile stock. As volatility increases, the sell boundary is reached more frequently,

as indicated by the shorter average duration from buy to sell. Consequently, gains are

realized more often. Because losses are more likely followed by purchases, this implies a

greater exposure effect and thus a stronger disposition effect for more volatile stocks.

When investors need to learn about the expected returns, the learning effect is also

at work. As indicated by Equation (A-16), the strength of the learning effect can be

measured by σiVi(0)

σ2
i +Vi(0) t

, i.e., the sensitivity of the revision of the conditional expected return

dzit to the realized shock dB̂S
it. For typical values of the stock return volatility σi (e.g.

ranging over 15% - 50%), the strength of learning effect weakens as volatility increases.

Because learning effect tends to reduce the disposition effect, our model predicts a stronger

disposition effect for more volatile stocks due to weaker learning effect.

The empirical studies conducted by Kumar (2009) are on the stock level. Based on

25 To the extent that mutual funds have less volatile returns than individual stocks do, this is consistent
with the finding that trading in mutual funds exhibits a weaker disposition effect.
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Table 6: Ex-post returns

This table shows the average ex-post returns of the stocks sold as winners and of the stocks held
as losers. The results are obtained from 10,000 simulated paths. Parameter values: T = 5, γ =
3, r = 0.04, N = 4; µi = 0.1, σi = 0.3, zi0 = E[µi] = 0.1, Vi(0) = 0.0045, and αi = θi = 0.01,
for i = 1, 2; and µi = 0.15, σi = 0.3, zi0 = E[µi] = 0.15, Vi(0) = 0.0045, and αi = θi = 0.01, for
i = 3, 4. The symbol *** indicates a statistical-significance level of 1%. The quantities reported
in parentheses are the excess returns reported in Odean (1998).

Over the next 84 trading days Over the next 252 trading days
Stocks sold as winners 4.93% (0.47%) 14.82% (2.35%)
Stocks held as losers 4.16% (-0.56%) 12.83% (-1.06%)
Difference 0.77%*** (1.03%) 1.99%*** (3.41%)

the above discussions, our model offers a new prediction: investors with a more diversified

portfolio or a better hedged portfolio have a weaker disposition effect. This is because

a more diversified portfolio or a better hedged portfolio tends to have a lower volatility,

and thus a weaker exposure effect.

Ex-post return pattern. Studies such as Odean (1998) have found that investors

tend to sell winners that subsequently outperform losers that they continue to hold, which

could indicate that investors sell winners too soon and hold onto losers too long. The

existing literature has interpreted this evidence as supporting the argument that display-

ing the disposition effect is costly to investors.26 We next demonstrate that, for portfolio

rebalancing purposes, it can be optimal for investors to sell winners that subsequently

outperform losers that they have kept.

For this purpose, we increase the expected returns of Stocks 3 and 4 by 5% and keep

everything else unchanged. Then we solve for the investor’s optimal trading strategy and

perform simulations again. We report in Table 6 the average ex-post returns of stocks

sold as winners and of those held as losers in simulations of our model. The table shows

that selling winners whose future expected returns are greater than those of the losers

held can be optimal. For example, over the next 84 days after a sale, the average return

of the winners sold is 0.77% higher than the losers held. Over the next 252 days, the

26 However, some other studies, e.g., Locke and Mann (2005), do not find such pattern on ex-post
returns among professional traders exhibiting the disposition effect.
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return gap grows to 1.99%. This result is due to a straightforward mechanism at work:

stocks with higher expected returns (i.e., Stocks 3-4 in this case) are more likely to be

sold as winners because it is more often that the exposure in these stocks exceeds the sell

boundary as a result of the faster expected growth in their prices; in contrast, stocks with

lower expected returns (i.e., Stocks 1-2 in this case) are more likely to become losers to

be held onto than those with higher expected returns. This mechanism implies that the

average ex-post returns of the sold winners can exceed those of the held losers, because

holding onto the stocks with lower expected returns provides diversification benefits and

selling stocks with higher expected returns reduces risk exposure to these stocks.

3.1.3 The V-shaped trading patterns and distribution of realized returns

Ben-David and Hirshleifer (2012) demonstrate that the probability of selling and of buying

more are both greater for positions with larger unrealized gains and larger unrealized

losses, i.e., the plots of these probabilities against paper profit exhibit V-shaped patterns.

In contrast, extant theories based on the static prospect theory and regret aversion predict

that the larger the loss, the less likely investors are to sell, and the larger the gain, the

less likely they are to buy, which are both opposite to the V-shape patterns. Ben-

David and Hirshleifer (2012) argue that the V-shape pattern can be consistent with

belief-based trading behavior. Assuming that an investor can obtain a burst of reference-

dependent utility from a sale in a dynamic-prospect-theory setting, Ingersoll and Jin

(2013) demonstrate that the probability of selling may increase with the magnitude of

losses. The driving force in their model is that realizing large losses resets the reference

points to lower levels, which can potentially increase the reference-dependent utility. In

contrast, Frydman, Hartzmark, and Solomon (2018) find convincing empirical evidence

that investors do not reset their reference points after sales if they buy new assets shortly

after the sales. In addition, Ingersoll and Jin (2013) cannot explain why the probability

of buying more increases with the magnitude of gains.

We next demonstrate that the V-shape patterns can also be consistent with the opti-

mal trading strategy in our model because of the interactions between the exposure effect
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10-3 A1: Selling, unobservable case
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10-3 A2: Selling, observable case
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10-3 B1: Buying, unobservable case
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10-3 B2: Buying, observable case

Figure 2: Probability of selling or of buying shares.
This figure shows the probability of selling or of buying shares against the up-to-date
annualized return. Parameter values: T = 5, γ = 3, r = 0.04, N = 4; µi = 0.1, σi = 0.3,
zi0 = E[µi] = 0.1, Vi(0) = 0.0045, and αi = θi = 0.01, for i = 1, ..., 4. Vi(0) = 0 for
i = 1, ..., 4 for the observable case.

and the learning effect. To illustrate, we plot the probability of selling and the probability

of buying more as a function of past annualized returns obtained from holding shares in

Figure 2 for both the observable and the unobservable cases.27 This figure demonstrates

that, if the expected returns are unobservable, then both the selling probability and the

buying probability against past returns implied by our model can display V-shape pat-

terns, consistent with the empirical evidence in Ben-David and Hirshleifer (2012).28 In

Figure 3, we show that the V-shape patterns remain present under various alternative

values for parameters, such as the mean and variance of the investor’s prior on the stocks’

expected returns and the return volatility.

As we discussed previously, there are two possibly opposing effects at work in our

model with unobservable expected returns. The first one is the exposure effect, which

tends to make the investor sell (buy) after an increase (a decrease) in exposure following

27 See Section A.5 for details on how we calculate the probabilities of selling and buying given the
magnitude of paper gains or losses.

28 Note that Figure 2 is also consistent with the disposition effect, because the unconditional probability
of selling is lower for a loss compared to that for a gain of the same magnitude.
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a positive (negative) return. The second one is the learning effect, which counteracts

against the exposure effect.29 The intuition behind the V-shape pattern results is as

follows:30

1. When there is a gain. With a gain, the learning effect increases the probability

of buying, while the exposure effect increases the probability of selling. As the

magnitude of the gain increases, both the learning effect and the exposure effect

increase, which in turn implies that both the probability of buying and the proba-

bility of selling increase (which implies the probability of no action decreases). This

mechanism generates the right-half of the V-shapes for selling and for buying.

2. When there is a loss. With a loss, the learning effect increases the probability of

selling, while the exposure effect increases the probability of buying. As the magni-

tude of the loss increases, both the learning effect and the exposure effect increase,

which in turn implies that both the probability of buying and the probability of

selling increase. This mechanism generates the left-half of the V-shapes for selling

and for buying.

3. The slope asymmetry between the right and left parts of the V-Shape results follows

from the speed of the learning process. If, as the return magnitude changes, the

learning effect changes relatively slowly compared to the exposure effect, then the

right (left) part of the V-shape for selling (buying) will be steeper.

Consistent with the above intuition, the two subfigures at the bottom of Figure 2

show that if the expected returns are observable, then the V-shape patterns disappear.

This is because, in this case, there is no learning effect, and therefore the exposure effect

makes the probability of selling increase monotonically and the probability of buying

more decrease monotonically with the past returns. This highlights the importance of

learning in understanding the V-shape patterns. Our model thus offers another new

29 To have an idea about the magnitude of the learning effect, assume that the stock price experiences
a 10% drop in five consecutive days. This would result in an approximately 2% drop in the estimate of
the expected return.

30 A quantitative discussion of the learning effect is presented in Appendix A.2.
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prediction: the V-shaped trading patterns are less pronounced for stocks with more

public information, such as S&P 500 stocks, because for these stocks much is already

known and as a result the learning effect is weaker.

Ben-David and Hirshleifer (2012) also find that the empirical distribution of realized

returns is hump-shaped with a maximal value in the domain of gains (see Figure 4 in

the Appendix of Ben-David and Hirshleifer (2012)). We plot in Figure 4 the distribution

of realized returns generated by our model via 10,000 simulated sample paths. Figure 4

shows that the distribution of realized returns implied by our model is also hump-shaped,

consistent with the empirical finding of Ben-David and Hirshleifer (2012). The reason for

the hump-shape in our model is that the investor optimally keeps her risk exposure in a

certain range, and thus sales are most likely to occur when the magnitude of a gain is just

large enough to push her risk exposure out of the optimal range. Therefore, more realized

returns concentrate around this critical magnitude and the rest have lower probability

density, which implies that the distribution of realized returns exhibits a humped shape.

3.1.4 The repurchase pattern

Strahilevitz, Odean, and Barber (2011) find that investors are reluctant to repurchase

stocks previously sold for a loss and stocks that have appreciated in price subsequent to

a prior sale. Strahilevitz, Odean, and Barber (2011) attribute this repurchase pattern to

the emotional impact of past trading activities.

Following the approach outlined in Strahilevitz, Odean, and Barber (2011), we sim-

ulate our model to compute the proportion of prior losers repurchased (PLRP ), the

proportion of prior winners repurchased (PWRP ), the proportion of stocks that have

gone up in prices since the last sale at the time of the repurchase (PUR), and the

proportion of stocks that have gone down in price since the last sale at the time of the

repurchase (PDR).31 Strahilevitz, Odean, and Barber (2011) find that PLPR < PWPR

and PUR < PDR. In Table 7, we report these repurchase measures from the simulation

31 We use the notation PLRP to denote the proportion of prior losers repurchased to distinguish from
the disposition effect-related measure PLR.
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Figure 3: V-shapes for alternative parameter values.
This figure shows the probability of selling or of buying shares against the up-to-date
annualized return, for various alternative parameter values in the model. Baseline pa-
rameter values: T = 5, γ = 3, r = 0.04, N = 4; µi = 0.1, σi = 0.3, zi0 = E[µi] = 0.1,
and Vi(0) = 0.0045, and αi = θi = 0.01, for i = 1, ..., N . For the two subfigures on the
top, “Overestimate” is the case with zi0 = µi + 0.01, i = 1, ..., N , and “Underestimate” is
the case with zi0 = µi − 0.01, i = 1, ..., N . For the two subfigures in the middle, “Large
prior uncertainty” is the case in which Vi(0) = 0.005 for i = 1, ..., N , and “Small prior
uncertainty” is the case in which Vi(0) = 0.004 for i = 1, ..., N . For the two subfigures at
the bottom, “Large return volatility” is the case in which σi = 0.35 for i = 1, ..., N , and
“Small return volatility” is the case in which σi = 0.25 for i = 1, ..., N .
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Figure 4: Distribution of realized returns.
This figure presents the distribution of realized returns predicted by our model. Param-
eter values: T = 5, γ = 3, r = 0.04, N = 4; µi = 0.1, σi = 0.3, zi0 = E[µi] = 0.1,
Vi(0) = 0.0045, and αi = θi = 0.01, for i = 1, ..., N .

using the baseline parameter values. Overall, we find that these measures from our model

agree with the empirical findings of Strahilevitz, Odean, and Barber (2011).

The intuition is as follows. Selling a loser is typically triggered by a substantial

decrease in the investor’s estimate of the stock’s expected return, while selling a winner

is more often driven by a price increase. Because changes in the estimate of expected

return are slow, it takes a longer time to repurchase a loser sold. This implies that

PLPR < PWPR.

On the other hand, the previous sales are more likely due to too much exposure if the

sales were not made. Repurchasing is optimal only when the exposure becomes too low

after a drop in stock prices. Therefore, the investor is more likely to repurchase stocks

that have depreciated in value since the last sale. This is why our model predicts that

PUR < PDR.

We report in Panel A2 and B2 of Table 7 the repurchase effect measures in the

observable case. In this case, the difference between PDR and PUR becomes much larger,

while the difference between PWPR and PLPR becomes much smaller and insignificant.

This further confirms that in our model with unobservable expected returns, the result
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Table 7: Repurchase effect measures

This table shows the repurchase effect measures. The results are obtained from 10,000 simulated
paths for each stock. Parameter values: T = 5, γ = 3, r = 0.04, N = 4; µi = 0.1, σi = 0.3,
zi0 = E[µi] = 0.1, Vi(0) = 0.0045, and αi = θi = 0.01, for i = 1, ..., 4. The symbol *** indicates
a statistical-significance level of 1%.

Unobservable case
A1: Previous winners or losers B1: Winners or losers since last sale
PLRP 0.336 PDR 0.461
PWRP 0.399 PUR 0.326
Difference -0.063*** Difference 0.135***

Observable case
A2: Previous winners or losers B2: Winners or losers since last sale
PLRP 0.299 PDR 0.456
PWRP 0.310 PUR 0.011
Difference -0.011 Difference 0.445***

that PLPR < PWPR is due to the learning effect, and that PUR < PDR is due to the

exposure effect.

3.2 The case with correlated returns and priors

Although the uncorrelated return case provides a clean setting to illustrate the main

mechanisms of our model, it is important to show that these mechanisms are robust

when correlations are allowed, solutions are not approximated, and parameter values

are calibrated to real data. In this subsection, we show this robustness and practical

relevance.

3.2.1 Model calibration

Because most empirical studies on the disposition effect-related patterns use trading

data from 1986 to 1996, we use data from 1950 to 1985 (post-war but before 1986) to

estimate the model parameters as the priors.32 During this sample period, the estimated

risk-free rate is 4.9%. Because it is difficult to precisely determine the stocks held in

32We conduct the same analysis using data from January 2000 to December 2019 and find the same
qualitative results.
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Table 8: Parameter estimates

This table reports the expected return, return volatility, average bid-ask spread, and return
correlations of the four sample stocks.

Panel A: Return moments and BAS
PEP X MHP BA

Expected return 0.170 0.114 0.214 0.245
Return volatility 0.251 0.245 0.301 0.340
Standard deviation of prior 0.042 0.041 0.050 0.057
Average bid-ask spread (%) 1.81 1.86 1.87 2.57

Panel B: Correlations
PEP X MHP BA

PEP 1
X 0.260 1
MHP 0.175 0.165 1
BA 0.236 0.294 0.165 1

a representative investor’s portfolio, to illustrate our main results, we choose four well-

known stocks from different sectors that were widely held during that period of time:

Pepsi Co, Inc. (PEP), United States Steel Corp. (X), McGraw Hill Publishing, Inc.

(MHP), and Boeing Corp. (BA). The estimates of average returns, return volatilities,

and bid-ask spreads are reported in Panel A of Table 8. The standard deviations of priors

are obtained by dividing the return volatilities by
√

36.33 The pairwise return correlations

are reported in Panel B of Table 8, and we use the same correlation parameters for the

priors.

In the presence of transaction cost and parameter uncertainty, solving a portfolio

rebalancing model with correlated stocks is highly challenging. Our numerical method

for solving this case is based on the deep neural network (DNN) technique, which is

explained in Appendix A.3.34

33 Note that 36 is the number of years in the sample.
34 In the numerical analysis, we confine ourselves to an investment horizon of one year with twenty

interim periods. Using the uncorrelated return case in Section 3.1 as a benchmark, we have confirmed
that the DNN method is able to produce reliable results. Specifically, the DNN algorithm generates
PGR = 0.329 and PLR = 0.177, which are close to the results reported in Panel A2 of Table 3.
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Table 9: Disposition effect and reverse disposition effect measures

This table shows the disposition effect measures and reverse disposition effect measures for
the case with correlated returns and priors. The results are obtained from 10,000 simulated
paths for each stock. DE ≡ PGR − PLR, DER ≡ PGR/PLR, RDE ≡ PLPA − PGPA,
RDER ≡ PLPA/PGPA. The expected returns, volatilities, correlations, standard deviation
of priors, and transaction cost rates are as those reported in Table 8. The symbol *** indicates
a statistical-significance level of 1%.

A: Disposition effect (DE) B: DE in no-new purchase subsample C: Reverse DE
PGR 0.312 PGR 0.313 PLPA 0.658
PLR 0.272 PLR 0.275 PGPA 0.720
DE 0.040*** DE 0.038*** RDE 0.062***
DER 1.147*** DER 1.138*** RDER 1.094***

3.2.2 Simulation results

Using the same approach as in the previous case, we calculate the disposition effect and

reverse disposition effect measures, the ex-post returns of sold winners and of held losers,

the probability of selling/purchasing as a function of past returns, the distribution of

realized returns in this case, and the repurchase effect measures. Unless otherwise stated,

we will focus our discussions on the case with unobservable expected returns.

Disposition effect and reverse disposition effect. We report in Table 9 the dispo-

sition effect measures and reverse disposition effect measures we obtain in the correlated

return case. It suggests that the disposition effect still exists in this case. For example,

Panel A reports that PGR equals 0.312 and PLR equals 0.272, implying a disposition

effect measure of DE = 0.040. For the subsample of sales which are not followed by

purchases in the next three weeks, the measures are quantitatively similar to those ob-

tained from the full sample and are reported in Panel B. Specifically, in this subsample,

we obtain PGR = 0.313 and PLR = 0.275, implying a disposition effect measure of

DE = 0.038. Similarly, by examining the sample of purchases, we find that the reverse

disposition effect still exists in this model, as shown by the results reported in Panel C.

Even when the stocks’ returns are correlated, the exposure effect still exists, and the

investor tends to reduce risk exposures after gains and increase risk exposures after losses

on average. The disposition effect and reverse disposition effect are still driven by such
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Table 10: Ex-post returns

This table shows the average ex-post returns of the stocks sold as winners and of the stocks
held as losers for the case with correlated returns and priors. The results are obtained from
10,000 simulated paths. The expected returns, volatilities, correlations, standard deviation of
priors, and transaction cost rates are as those reported in Table 8. The symbol *** indicates a
statistical-significance level of 1%.

Over the next 2 periods Over the next 4 periods
Stocks sold as winners 3.11% 4.09%
Stocks held as losers 0.10% 2.47%
Difference 3.01%*** 1.62%***

exposure effect.

Ex-post return pattern. In Table 10, we report the ex-post returns of sold winners

and of held losers, respectively. Due to the shorter investment horizon we consider,

we calculate these ex-post returns in the next 2 and 4 trading periods. Similar to the

uncorrelated return case, we find that the sold winners typically exhibit higher ex-post

returns than held losers. This is also because the stocks with higher average returns tend

to appreciate in value more quickly, which indicates that they have a higher chance to

enter the sell regions and become sold winners.

V-shaped trading patterns and distribution of realized returns. In Figure 5, we

plot the probability of selling/purchasing shares as a function of past returns. The results

indicate that these probabilities can still both increase as the sizes of gains/losses become

larger. Moreover, the left (right) branch of the V-shape for selling (buying) disappears

when there is no parameter uncertainty (i.e., no learning effect), as shown by Panel A2

(B2).

Intuitively, even when stock returns are correlated, the basic driving force that the

investor should decrease (increase) her estimates of expected returns after large negative

(positive) price moves is still present. Thus, the probability of selling shares (of purchasing

additional shares) can still increase as the past return become more negative (positive).35

35 Note that the probabilities plotted in Figure 5 are generally greater in magnitude than those in
Figure 2. This is because we assume a smaller number of intermediate periods per year when we numer-
ically solve the model with correlated returns (20 v.s. 250 specifically), which increases the likelihood of

34



-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Annulized return

0.16

0.18

0.2

0.22

0.24

0.26

P
ro

ba
bi

lit
y

A1: Selling, Unobservable case

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Annulized return

0.3

0.32

0.34

0.36

0.38

0.4

P
ro

ba
bi

lit
y

B1: Buying, Unobservable case

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Annulized return

0.165

0.17

0.175

0.18

0.185

0.19

P
ro

ba
bi

lit
y

A2: Selling, observable case

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Annulized return

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y

B2: Buying, observable case

Figure 5: Probability of selling or of buying shares.
This figure shows the probability of selling or of buying shares against the up-to-date
annualized return for the case with correlated returns and priors. The expected returns,
volatilities, correlations, standard deviation of priors, and transaction cost rates are as
those reported in Table 8.

In the uncorrelated return case, we have shown that the distribution of realized returns

has a humped shape, with more observations in the domain of gains. In Figure 6, we

show the distribution of realized returns in the correlated return case, which suggests

that the distribution exhibits similar patterns in this case. The reason is the same as

before: the investor optimally keeps her risk exposure in a certain range, and thus sales

are most likely to occur when the magnitude of a gain is just large enough to push her

risk exposure out of the optimal range.

Repurchase effect. In Table 11, we report the repurchase effect measures obtained

from simulations. The results suggest that the investor is still reluctant to repurchase

stocks previously sold for a loss and stocks that have appreciated in price subsequent to

a prior sale. Hence, these repurchase patterns are still consistent with that reported in

Strahilevitz, Odean, and Barber (2011).

trading on each time node.
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Figure 6: Distribution of realized returns.
This figure presents the distribution of realized returns for the case with correlated returns
and priors. The expected returns, volatilities, correlations, standard deviation of priors,
and transaction cost rates are as those reported in Table 8.

Table 11: Repurchase effect measures

This table shows the repurchase effect measures for the case with correlated returns and priors.
The results are obtained from 10,000 simulated paths for each stock. The expected returns,
volatilities, correlations, standard deviation of priors, and transaction cost rates are as those
reported in Table 8. The symbol *** indicates a statistical-significance level of 1%.

A: Previous winners or losers B: Winners or losers since last sale
PLRP 0.198 PDR 0.209
PWRP 0.304 PUR 0.076
Difference -0.106*** Difference 0.133***

4 Further Discussions

4.1 Disposition effect in the presence of capital gains tax

It is well known that, with capital gains tax and full capital loss tax rebate, loss realization

is beneficial while gains realization becomes more costly (Constantinides (1983)). As a

result, the disposition effect will be reduced if one takes capital gains tax into account.

We have also examined the effect of capital gains tax on the disposition effect. We

focus on the uncorrelated return case and use the same stock-by-stock approximation
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Table 12: Capital gains tax and disposition effect measures

This table reports the disposition effect measure DE = PGR−PLR with/without capital gains
tax rates. Parameter values: T = 5, γ = 3, r = 0.026(= 0.04 ∗ (1 − 0.36)), N = 4; µi = 0.1,
σi = 0.3, zi0 = 0.1, Vi(0) = 0.0045, and αi = θi = 0.01, for i = 1, ..., N . The symbol ***
indicates a statistical-significance level of 1%.

No capital gains tax 10% capital gains tax 20% capital gains tax
PGR 0.356 0.320 0.282
PLR 0.143 0.182 0.224
DE 0.213*** 0.138*** 0.058***
DER 2.494*** 1.762*** 1.258***

approach as previously.36

In Table 12, we report the disposition effect measures obtained in the presence of

capital gains tax. As anticipated, the presence of capital gains tax increases the investor’s

propensity to realize losses and decreases her propensity to realize gains, thus reducing

the disposition effect. However, a significant disposition effect still exists, even with

capital gains tax. For example, with a capital gains tax rate of 20%, the disposition

effect measure DE = 0.058, which is still statistically significant. Meanwhile, our finding

that the disposition effect measure decreases in tax rate can be consistent with Dhar and

Zhu (2006)’s finding that investors with higher income are less prone to the disposition

effect, because these investors are subject to a higher capital gains tax rate.

It should be noted that we assume that the capital losses are fully rebatable to simplify

our analysis. In practice, however, the U.S. tax code stipulates a limited tax rebate of

up to $3,000 in losses per year. This feature would reduce the benefit of realizing losses,

and thus would increase the magnitude of the disposition effect significantly.

To summarize, although capital gains tax tends to reduce the disposition effect, the

disposition effect is still significant even with capital gains tax. The main intuition is that

the exposure effect is still present and in the presence of transaction costs, it is optimal to

defer even some large capital losses even when capital losses are fully rebatable. Therefore,

36 To keep the conciseness of the exposition, we relegate to Appendix A.6 the details of the model
with capital gains tax. Portfolio choice problems with multiple stocks are difficult to solve because of
the significant increase in the number state variables even after simplifying approximations such average
basis and full rebate for capital losses (see, e.g., Gallmeyer, Kaniel, and Tompaidis (2006)). Meanwhile,
it can be expected that the stock-by-stock approximation is less accurate in the presence of capital gains
taxes.

37



the disposition effect is still present, although the magnitude of the disposition effect is

reduced due to the additional benefit of realizing losses and deferring gains.

4.2 A discussion of prospect theory models with learning and

transaction costs

In the existing literature, researchers often use prospect theory preferences (often with

transaction costs) to explain certain investor behaviors including the disposition effect

(e.g., Ingersoll and Jin (2013), Barberis and Xiong (2009)). We next discuss the pos-

sible implications of such a model if it is combined with the learning effect induced by

parameter uncertainty.

A decrease in stock price motivates the investor to sell the stock to reset the reference

point. In addition, the learning effect makes the stock less attractive since the estimate

of expected return decreases. Combining these two effects, such a model would predict

that after a decrease in the stock price, the investor tends to sell the stock and buy back

immediately a smaller amount of the stock to maintain an optimal risk exposure. Since

a fall in the price results in a loss more likely, this implication is against the disposition

effect.

If investors also derive utility from realizing gains (e.g., Ingersoll and Jin (2013),

Barberis and Xiong (2009)), an increase in the stock price motivates the investor to sell

the stock to obtain realization utilities. On the other hand, the learning effect makes

the stock more attractive since her estimate of the expected return increases. Combining

these two effects, such a model would predict that after an increase in the stock price,

the investor tends to sell the stock and then repurchase a larger amount of the stock

immediately. Since an increase in the price results in a gain more likely, this implication

is consistent with the disposition effect.

In both cases, the predictions are different from those of our portfolio rebalancing

model, which implies that the investor will either sell or buy some stock shares, but

not both, depending on the relative strength of the exposure effect versus the learning

effect. In addition, after a decrease in the stock price, the learning effect in our model is
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counteracted against by another effect (i.e., the exposure effect), while the learning effect

in a prospect utility model is magnified by the reference point resetting effect.

5 Conclusions

The disposition effect, i.e., the tendency of investors to sell winners while holding onto

losers, has been widely documented. Most of the existing theories that attempt to explain

the disposition effect (mostly based on prospect theory, mental accounting, and regret

aversion) cannot explain why the plots of the probabilities of buying more and of selling

against paper profit both exhibit V-shape patterns, as shown by Ben-David and Hirsh-

leifer (2012). In addition, they are largely silent on other well-documented disposition-

effect related patterns, such as investors selling winners that subsequently outperform

losers that they hold, the disposition effect being greater for stocks with greater volatili-

ties, and the disposition effect being stronger for less sophisticated investors.

Based on the empirical evidence on the relevance of portfolio rebalancing, learning,

and transaction costs for retail investors who typically hold a small number of stocks,

we propose an optimal portfolio rebalancing model with learning and transaction costs

to show that the disposition effect and many of the related patterns, including the V-

shaped trading patterns, are consistent with the optimal trading strategies implied by

our model. Our finding suggests portfolio rebalancing may complement existing theories

in understanding the disposition effect and the related patterns.

In addition to matching most of the disposition-effect related findings in the literature,

our model also offers some new testable predictions. For example, our model predicts that:

(1) conditional on return volatility, the magnitude of the disposition effect is greater for

stocks for which there is more public information; (2) investors with a more diversified

portfolio or a better hedged portfolio have a weaker disposition effect; and (3) the V-

shaped trading patterns are more pronounced for stocks with less public information.

Our central message is that, although various types of behavioral biases are likely to

exist among some investors, there can well be a rational component in the disposition-
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effect and the related trading patterns. How to separate the rational portfolio rebalancing

and behavioral components of the disposition effect and its related findings constitutes

an interesting empirical question for future studies.
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Ivković, Z., and S. Weisbenner, 2009, Individual investor mutual fund flows, Journal of

Financial Economics 92, 223–237.

Kandel, S., A. R. Ofer, and O. Sarig, 1993, Learning from trading, Review of Financial

Studies 6, 507–526.

Kaustia, M., 2010, Prospect theory and the disposition effect, Journal of Financial and

Quantitative Analysis 45, 791–812.

Komai, H., R. Koyano, and D. Miyakawa, 2018, Contrarian trades and disposition effect:

Evidence from online trade data, Working paper.

Kumar, A., 2009, Hard-to-value stocks, behavioral biases, and informed trading, Journal

of Financial and Quantitative Analysis 44, 1375–1401.

Lakonishok, J., and S. Smidt, 1986, Volume for winners and losers: Taxation and other

motives for stock trading, Journal of Finance 41, 951–74.

Lipster, R. S., and Shiryayev, A. N., 2001, Statistics of Random Processes I, Springer-

Verlag, New York, NY.

Liu, H., 2004, Optimal consumption and investment with transaction costs and multiple

risky assets, Journal of Finance 59, 289–338.

Liu, H., 2014, Solvency constraint, underdiversification, and idiosyncratic risks, Journal

of Financial and Quantitative Analysis 49, 409–430.

Liu, H., and M. Loewenstein, 2002, Optimal portfolio selection with transaction costs

and finite horizons, Review of Financial Studies 15, 805–835.

Locke, P., and S. Mann, 2005, Professional trader discipline and trade disposition, Journal

43



of Financial Economics 76, 401–414.

Merton, R., 1971, Optimum consumption and portfolio rules in a continuous-time model,

Journal of Economic Theory 3, 373–413.

Odean, T., 1998, Are investors reluctant to realize their losses? Journal of Finance 53,

1775–1798.

Peng, C., 2017, Investor behavior under the law of small numbers, Working Paper, Yale

University.

Shefrin, H., and M. Statman, 1985, The disposition to sell winners too early and ride

losers too long: Theory and evidence, Journal of Finance 40, 777–790.

Shreve, S., and H. Soner, 1994, Optimal investment and consumption with transaction

costs, Annals of Applied Probability 4, 609–692.

Strahilevitz, M. A., T. Odean, and B. M. Barber, 2011, Once burned,twice shy: How

naive learning, counterfactuals, and regret affect the repurchase of stocks previously sold,

Journal of Marketing Research 48, S102–S120.

Zawadowski, A. G., G. Andor, and J. Kertész, 2006, Short-term market reaction after

extreme price changes of liquid stocks, Quantitative Finance 6, 283–295.

Zhang, W and C. Zhou, 2019, Deep learning algorithm to solve portfolio management with

proportional transaction cost, 2019 IEEE Conference on Computational Intelligence for

Financial Engineering & Economics (CIFEr), 1–10, doi: 10.1109/CIFEr.2019.8759056.

44



Appendix

The contents of this appendix are arranged as follows. In Section A.1, we describe the

numerical method for solving the case with uncorrelated returns and priors. In Section

A.2, we provide a quantitative discussion of the learning effect in the uncorrelated case.

In Section A.3, we describe the numerical method for solving the case with correlated

returns and priors. In Section A.4, we show that a model with only four stocks (the

median stockholding number in Odean (1998)’s sample) is not able to generate disposition

effect measures close to the empirical magnitude. In Section A.5, we provide details for

the calculation of the probabilities of selling and buying. In Section A.6, we present the

model with capital gains tax.

A.1 Numerical Method for the Case with Uncorre-

lated Returns and Priors

When stock returns and priors for risk premia are all uncorrelated, we design a trading

strategy which is economically intuitive and is a good approximation to the optimal.

First, in this case, the volatility matrix is σ = diag(σ1, ..., σN) and the covariance matrix

of priors is ∆ = diag(V1(0), ..., VN(0)). Thus, we have P = I (identity matrix) and

di = Vi(0), which implies δi(t) = Vi(0)
1+Vi(0)t

. Let zit = E[µi|Ft] = r + ξ̄i(t)σi and Vi(t) =

E[(µi − zit)2|Ft], then it is easy to show that

dzit = σzi(t)dB̂it, (A-1)

where σzi(t) = Vi(t)
σi

, Vi(t) satisfies:

dVi(t)

dt
= −

(
Vi(t)

σi

)2

, (A-2)
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and B̂it is defined as follows:

dB̂it =
1

σi
(µi − zit)dt+ dBit. (A-3)

To illustrate the approximation idea, we first show that, under the independence

assumption, the optimal position in each stock can be independently solved when the

transaction cost is absent.

Proposition 1: (Decomposition of risk exposure in the absence of transaction cost) Sup-

pose that there is no transaction cost for any stock, i.e., αi = θi = 0 for i = 1, 2, ..., N .

Then, the optimal fraction of total wealth Wt invested in Stock i in the model with N

stocks equals the optimal fraction when the investor can only invest in the risk-free asset

and Stock i.

Proof. In the absence of transaction cost, we can choose the investor’s wealth Wt, instead

of (Xt, Y1t, ..., YNt), as a state variable. The budget constraint on Wt is given by:

dWt = Wt

(
rdt+

N∑
i=1

πit(zit − r)dt+ πitσidB̂it

)
, (A-4)

where πit is the fraction of total wealth invested in Stock i at time t, satisfying πit ≥ 0

due to the short-sale constraint. Let Φ(W, z1, ..., zN , t) be the value function, then the

associated HJB equation is:

sup
πi≥0,1≤i≤N

{
∂Φ

∂t
+ (r +

N∑
i=1

(zi − r)πi)W
∂Φ

∂W
+

1

2

N∑
i=1

π2
i σ

2
iW

2 ∂
2Φ

∂W 2

+
1

2

N∑
i=1

σzi(t)
2∂

2Φ

∂z2
i

+W

N∑
i=1

πiσiσzi(t)
∂2Φ

∂W∂zi

}
= 0, (A-5)

with the following terminal condition:

Φ(W, z1, ..., zN , T ) =
1

1− γ
W 1−γ. (A-6)
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Due to the homogeneity property of the CRRA preference and the linearity of Equation

(A-4), there exists a function h(z1, ..., zN , t), such that:

Φ(W, z1, ..., zN , t) =
W 1−γ

1− γ
e(1−γ)(r(T−t)+h(z1,...,zN ,t)). (A-7)

By substitution, it is straightforward to show that h(z1, ..., zN , t) satisfies the following

equation:

sup
πi≥0,1≤i≤N

{
∂h

∂t
+

N∑
i=1

(
(zi − r)πi −

γ

2
π2
i σ

2
i

)
+

N∑
i=1

(πiσiσzi(t)(1− γ))
∂h

∂zi

+
1

2

N∑
i=1

σzi(t)
2

(
∂2h

∂z2
i

+ (1− γ)

(
∂h

∂zi

)2
)}

= 0, (A-8)

with a terminal condition:

h(z1, ..., zN , T ) = 0. (A-9)

Now, suppose there are N functions hi(zi), i = 1, ..., N , satisfying the following equation:

sup
πi≥0

{
∂hi

∂t
+ (zi − r)πi −

γ

2
π2
i σ

2
i + (πiσiσzi(t)(1− γ))

∂hi

∂zi

+
1

2
σzi(t)

2

(
∂2hi

∂z2
i

+ (1− γ)

(
∂hi

∂zi

)2
)}

= 0, (A-10)

with a terminal condition:

hi(zi, T ) = 0. (A-11)

DefineH(z1, ..., zN , t) =
∑N

i=1 h
i(zi, t), then it is easy to verify that H(z1, ..., zN , t) satisfies

Equation (A-8), and hence we have:

h(z1, ..., zN , t) =
N∑
i=1

hi(zi, t). (A-12)
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Therefore, the optimal allocation to Stock i is given by:

πi(t, zit) =

(
zi − r + (1− γ)σiσzi(t)

∂hi

∂zi
(zit, t)

γσ2
i

)+

, (A-13)

which only depends on the instantaneous estimate of Stock i’s expected return, i.e., zit,

and the calendar time t.

Proposition 1 suggests that, in the absence of transaction cost, if the stocks’ return

processes and priors for risk premia are all independent, then we can decompose the

optimal investment problem with N stocks into N optimal investment problems with a

single stock. This result makes it feasible and reliable to solve for the optimal trading

strategy for a large number of stocks. Motivated by this result, we perform the same

decomposition in the presence of small transaction costs. More specifically, for any stock,

we solve a model with this particular stock and one risk-free asset to compute the in-

vestor’s optimal fraction of wealth invested in this stock in the presence of transaction

cost. We use the obtained optimal fraction in this one-stock model to approximate the

optimal fraction of total wealth in the N -stock model. Although the optimal fraction

obtained in the one-stock model is suboptimal for the N -stock model, it is nevertheless

a good approximation when the transaction cost rates are reasonably small.37

A.2 Learning with Uncorrelated Returns and Priors

In this section, we provide a quantitative discussion of the learning effect in the case

with uncorrelated returns and priors. Note that Equation (A-3) implies the following

37 In an earlier version of the paper, we solved the optimal trading strategy for the same model, but with
CARA preferences. We obtained the same qualitative and similar quantitative results on the disposition
effect-related patterns, because the key driving forces remain the same. We have also computed the
optimal trading strategy in a two-stock case, in which one stock has an observable constant expected
return, and found that the results obtained from the approximately optimal strategy are indeed close
to those obtained from the optimal strategy. We do not report these calculations in the paper to save
space. They are, however, available from the authors upon request.
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stock-price process observed in the investor’s filter:

dSit
Sit

= zitdt+ σidB̂it. (A-14)

The solution to Equation (A-2) is:

Vi(t) =
σ2
i Vi(0)

σ2
i + Vi(0) t

, (A-15)

hence, Equation (A-1) becomes:

dzit =
σiVi(0)

σ2
i + Vi(0) t

dB̂it, (A-16)

which is equivalent to:

dzit =
Vi(0)

σ2
i + Vi(0) t

(
dSit
Sit
− zitdt

)
. (A-17)

Since Vi(0)

σ2
i +Vi(0)t

> 0, Equation (A-17) suggests that the changes in zit (i.e., the investor’s

conditional expectation of µi) are driven by the instantaneous realized return dSit/Sit in

excess of the current estimate of the expected return zitdt. In particular, the investor will

increase her estimate of the stock’s expected return if and only if:

dSit
Sit

> zitdt. (A-18)

In other words, a realized return that is better (worse) than the expected return makes

the investor increase (decrease) her estimated expected return.
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A.3 Numerical Method for the Case with Correlated

Returns and Priors

Our numerical algorithm for this case is based on the deep neural network (DNN) tech-

nique (see, e.g., Han and E (2016), Zhang and Zhou (2019)). Specifically, we extend the

existing algorithm to incorporate parameter uncertainty.

We first present a discrete time version of our model. To do so, we discretize the time

horizon [0, T ] into M subperiods by 0 = t0 < t1 < t2 < · · · < tM = T . We denote the

time length between two time points by h = T
M

.

Implementing the deep learning method for the investor’s problem in our model in-

volves two steps at every time point ti. First, we apply the feedforward neutral networks

method to determine the optimal vector of dollar values that the investor should trade

for each stock (the method of calculating this vector is presented shortly). Denoting this

vector by ati ∈ RN , we can write down the following portfolio rebalancing equation:

Xti+ = Xti− −
∑N

j=1(1 + θj) (ati)
+
j +

∑N
j=1(1− αj) (ati)

−
j ,

Yti+ = Yti− + ati ,

ξ̄(ti+) = ξ̄(ti−),

(A-19)

where ti− (ti+) denotes the time before (after) rebalancing at time ti, (ati)j denotes the

jth element of the trading amount vector ati , and a+ = max{0, a} (a− = max{0,−a})

denotes the positive (negative) part of a.

After the rebalancing step, we apply the Euler-Maruyama scheme to implement the

dynamics of (11), (12) and (13). From time ti+ to ti+1−, we have the dynamics

Xti+1
= Xti+ + rhXti+,

(Yti+1−)j = (Yti+)j + (Yti+)j

[
rh+ σj · ξ̄(ti+)h+ σj ·∆B̂ti

]
,

ξ̄(ti+1−) = ξ̄(ti+) + P ′D̄(ti)P∆B̂ti .

(A-20)
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Combining (A-19) and (A-20) yields the dynamics of the state variables in our model.

At each time point, we set an independent neural network with one input layer, three

hidden layers and one output layer. Our input vector is an N + 1 dimensional vector

including the initial positions in bond and N stocks. Hidden layer one is regarded as a

map to transform the input vector from RN+1 to Rd1 , where d1 is the dimension of the

hidden layer one. The explicit form of hidden layer one is

H1 = f1(X) = ReLu(W1 ·X + b1), (A-21)

where X ∈ RN+1 denotes the input vector, W1 ∈ Rd1×(N+1), b1 ∈ Rd1 are trainable

weights in this layer, and ReLu(x) = x+ is the activation function. Similarly, we specify

the form of the hidden layer two as follows:

H2 = f2(H1) = ReLu(W2 ·H1 + b2), (A-22)

where W2 ∈ Rd2×d1 and b2 ∈ Rd2 . In the hidden layer three, we have the following

structure:

H3 = f3 (H2) = ReLu (W3 ·H2 + b3) , (A-23)

where W3 ∈ Rd3×d2 and b3 ∈ Rd3 . In the output layer, we remove the ReLu function so

that the network can sell stocks as well. Therefore, the output layer can be characterized

by

ati = f4 (H3) = W4 ·H3 + b4, (A-24)

where W4 ∈ RN×d3 and b4 ∈ RN . The structure of a single deep neural network is shown

in Figure 7.

The whole computational graph of deep neural networks is shown in Figure 8. After

obtaining the result from the (M − 1)th network, we can then define the following loss
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Figure 7: Structure of a single deep neural network.

Figure 8: Computational graph of deep neural networks.
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function of the deep neural networks:

L(Θ) = − 1

m

m∑
k=1

u

(
XΘ
T,k +

N∑
j=1

(
(1− αj)Y j,Θ

T,k

))
, (A-25)

where Θ denotes the set of all the patameters in this neural networks model, m denotes

the size of our training batch, and u is the investor’s CRRA utility function. We can

update the estimate of Θ by minimizing the loss function. The whole process can be

summarized in Algorithm 1 below.

Algorithm 1 Deep learning algorithm for solving for the optimal strategy

Input: X0, Y0

Require: m, M
% Build the innovation process and initialize the neural networks.
for i in 0, 1, · · · ,M − 1 do

for j in 1, 2, · · · ,m do
Simulate the innovation process (a standard Brownian motion) B̂t.

end for
Obtain trading strategy through the i−th neural networks.
Rebalance the portfolio using (A-19).
Update Xti+1

, Yti+1
, ξ̄(ti+1) using (A-20).

end for
Calculate the loss function L(Θ).
Update the parameter set Θ.
Output: (XT , YT ) and optimal trading strategies {ati}M−1

i=0

A.4 Number of Stocks and Disposition Effect Mea-

sures

In this section, we show that using a model (either rational or behavioral) with four

stocks, one cannot obtain disposition effect measures which are close in magnitude to

those reported in Odean (1998), even though four stocks is the median stock holding in

Odean (1998)’s sample. For this purpose, we establish the following proposition:

Proposition 2: (Bounds on the disposition effect measures) Suppose every investor holds

N stocks in her portfolio, then at least one of PGR and PLR is no less than 1
N

.
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Proof. First recall that paper gains, realized gains, paper losses, and realized losses will

only be counted on days when at least one stock is sold. On these days, with probability

one, a sale will be either a realized gain or a realized loss. This is because the set that

selling price exactly equals purchase price has a measure of zero. In addition, there can

be at most N − 1 stocks with unrealized paper gains or paper losses when at least one

stock is sold. Thus, we have

#Paper Gains+#Paper Losses ≤ (N−1)(#Realized Gains+#Realized Losses). (A-26)

We prove our statement by contradiction. Suppose that

PGR =
#Realized Gains

#Realized Gains + #Paper Gains
<

1

N

and that

PLR =
#Realized Losses

#Realized Losses + #Paper Losses
<

1

N
,

then we have

#Paper Gains > (N − 1)#Realized Gains,

and

#Paper Losses > (N − 1)#Realized Losses.

Adding the above two inequalities leads to

#Paper Gains+#Paper Losses > (N−1)(#Realized Gains+#Realized Losses), (A-27)

which contradicts (A-26).

According to Proposition 2, in a model with four stocks, at least one of PGR and

PLR will be no less than 0.25. Thus Odean (1998)’s finding that PGR = 0.148 and
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PLR = 0.098 cannot be matched.

A.5 Calculation of Probability of Selling and Buying

To calculate the probability of selling or buying shares of any stock within certain ranges

of realized return, we first choose a realized return bracket [Rmin, Rmax] and divide it into

equally spaced subintervals, so that Rmin = R0 < R1 < ... < Rn = Rmax. We simulate

daily price data for each stock, and perform the following calculations: along each sample

path ω, for each day t when a particular stock i is in the investor’s portfolio, we compute

the annualized continuously compounded return, Retit(ω), obtained by holding this stock

by:

Retit(ω) =
1

Hit(ω)
log

(
Sit(ω)

Ait(ω)

)
,

where Sit(ω) is the spot price of this stock, Ait(ω) is the average purchase price of this

stock, and Hit(ω) is the average holding time of this stock, all up to day t.38

We define three indicator functions for the corresponding events as follows:

sjit(ω) = 1{Stock i is sold on day t and Rj≤Retit(ω)<Rj+1},

bjit(ω) = 1{More of Stock i is bought on day t and Rj≤Retit(ω)<Rj+1}

and:

Rj
it(ω) = 1{Rj≤Retit(ω)<Rj+1}.

38 Because multiple purchases and sales of the same stock can occur along a sample path, we use
the average holding time to annualize the returns to make them more comparable. To understand the
mechanism of the average holding time system, consider the following simple example: assume on day 1,
the investor purchases 10 shares; on day 11, the investor purchases five more shares. Then, the average
holding time of each share is (10 × (11 − 1) + 5 × 0)/(10 + 5) = 6.67 days on day 11. Assume that the
investor does not make any transaction between day 12 and 15, then on day 15, the average holding time
is (10× (15− 1) + 5× (15− 11))/(10 + 5) = 10.67 days.
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We then calculate the frequency:

fSj =

∑
i,t,ω s

j
it(ω)∑

i,t,ω R
j
it(ω)

(A-28)

as the probability that a sale takes place with the realized return in the jth bracket, and

similarly:

fBj =

∑
i,t,ω b

j
it(ω)∑

i,t,ω R
j
it(ω)

, (A-29)

as the probability that a purchase takes place with the realized return in the jth bracket.

A.6 A Model with Capital Gains Taxes

In the presence of (fully rebatable) capital gains tax, we need to keep tracking the total

costs of purchasing each stock. Let Kit be the total costs of purchasing Stock i up to

time t, the investor’s budget constraints then read:

dXt = rXtdt+
N∑
i=1

f(Yit−, Kit−)
dLit
Yit−

−
N∑
i=1

(1 + θi)dIit, (A-30)

dYit = Yit(r + σi · ξ̄(t))dt+ Yitσ
i · dB̂t + dIit − dLit, (A-31)

dKit = (1 + θi)dIit −Kit−
dLit
Yit−

. (A-32)

where:

f(Yit, Kit) = (1− αi)Yit − τ [((1− αi)Yit −Kit)] (A-33)

is the total proceeds that the investor would obtain if she sold the entire position on

Stock i at time t, and τ is the capital gains tax rate. Therefore, the investor’s time t net

wealth is:

Wt = Xt +
N∑
i=1

f(Yit, Kit). (A-34)

The investor’s problem is again to choose her optimal policy {(Lit, Iit) : i = 1, ..., N}
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Figure 9: Trading strategy with capital gains tax.
This figure shows a snapshot of the trading boundaries at time t = 2.5 years in the
presence of capital gains tax with fully rebatable capital losses. The region labeled
“WSR” is the wash-sale region. Parameter values: T = 5, γ = 3, r = 0.026(= 0.04×0.64),
µ1 = 0.1, σ1 = 0.3, V1(0) = 0.0045, and α1 = θ1 = 0.01. The conditional estimate of the
return predictor is set at z1 = 0.1, and the capital gains tax rate is τ = 0.2.

among all of the admissible policies to maximize her expected CRRA utility from the

terminal net wealth at some finite time T , i.e.:

E

[
W 1−γ
T

1− γ

]
, (A-35)

subject to Equations (11), (A-30), and (A-31), and (A-32), and the short-sale constraint

as well as the solvency condition.

Trading strategy. We plot the trading boundaries for Stock 1 against the basis-price

ratio k1
(1−α1)y1

in Figure 9, where k1 is the total cost basis of Stock 1, fixing the estimate

of the expected return at its true value z1 = µ1 and assuming a capital gains tax rate of

15%.39 Note that there is a gain after liquidation if and only if k1
(1−α1)y1

< 1. As in the

case without capital gains tax, the investor should maintain the stock exposure within a

certain range, as suggested by the Sell Region (SR) above the sell boundary and the Buy

39 In fact, this plot applies to each stock because they are assumed to have same parameter values.
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Region (BR) below the buy boundary.

In contrast to the case with capital gains tax but without transaction costs (as con-

sidered by the existing literature, e.g., Constantinides (1983)), Figure 9 shows that it

can be optimal to defer the realization of even large capital losses, as indicated by the

no-transaction region (NTR) to the right of the vertical line at k1
(1−α1)y1

= 1. In addition,

even when it is optimal to realize capital losses, the optimal realization can be only a

fraction of the losses, e.g., point A to point B. This is because the time value of the tax

rebate can be smaller than the transaction costs required, and realizing only part of the

losses can avoid the transaction costs needed for buying back shares. Only when the

capital losses are large enough does the investor immediately realize all losses and buy

back some shares to achieve the optimal risk exposure (e.g., point C to point D, and then

to point E).

Due to the presence of transaction costs, when the investor has capital losses, it can

be optimal to purchase more without first realizing losses (e.g., from F to G). This is

because capital loss on a stock reduces the exposure to this stock, and selling first to

realize losses and then buying back some to achieve the desired exposure would incur

too much transaction cost. In such a case, the investor purchases shares to maintain a

desirable exposure to the stock without engaging in any loss selling.
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