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Market Risk Premium Expectation: Combining Option Theory
with Traditional Predictors

Abstract

The market risk premium is central in finance, and has been analyzed by numerous studies in the

time-series predictability literature and by growing studies in the options literature. In this paper,

we provide a novel link between the two literatures. Theoretically, we derive a lower bound on

the equity risk premium in terms of option prices and state variables. Empirically, we show that

combining information from both options and investor sentiment significantly improves the out-

of-sample predictability of the market risk premium versus using either type of information alone,

and that adding an economic upper bound raises predictability further.

Keywords: Out-of-sample predictability, equity risk premium, index options, sentiment, recovery
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1 Introduction

The expected equity market excess return, or the market risk premium, is one of the central

quantities in finance and macroeconomics. Going as far back as Dow (1920), the literature on

time-series predictability attempts to shed light on what economic and financial variables drive

the market risk premium. For example, Fama and French (1988, 1989), Campbell and Shiller

(1988a,b, 1998), and Huang, Jiang, Tu, and Zhou (2015) find that variables such as dividend-

price ratio, earnings-price ratio, and investor sentiment can predict market returns.1 Breaking new

ground, Martin (2017) shows that option prices prove useful on the future market return, sparking a

wealth of related research such as Kremens and Martin (2019); Martin and Wagner (2019); Kadan

and Tang (2020); Chabi-Yo and Loudis (2020); Back, Crotty, and Kazempour (2022). However,

the out-of-sample predictability uncovered by both strands of literature is still small.

In this paper, we provide the first study that combines two important lines of literature—time-

series predictability and option recovery theory—to predict the market risk premium. We derive

a new bound (a combined predictor) that incorporates the risk-neutral volatility computed from

option prices and the traditional financial and macroeconomic state variables. We show that the

new predictor performs well in out-of-sample forecasts and generates substantial economic gains

consistently over time. In particular, it outperforms substantially than those when the method of

each of the literature is used alone.

Theoretically, we follow Martin’s (2017) procedure but without explicitly assuming the

hypothesis of negative correlation condition (NCC). Instead, we incorporate the state variables into

informative bounds on the market excess return expected in the future. In contrast to all existing

extensions of Martin (2017), our study is the first to consider the role of state variables, making it

possible to link the bounds to the broad classic time-series predictability literature that identifies

various economic risks that impact the market.

Empirically, we construct the combined predictors using several sentiment indices in light

1Rapach and Zhou (2022) provide a recent survey of the literature.
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of behavioral finance. To gauge forecast performance, we calculate out-of-sample R2 statistics

(R2
OS) relative to the historical market mean, as suggested by Campbell and Thompson (2008). We

find that neither Martin’s (2017) bounds nor sentiment variables deliver consistent out-of-sample

outerperformance when utilized independently: the R2
OS statistics are mostly negative or positive

but insignificant based on Clark and West’s (2007) tests. Moreover, we find that the ‘bound +

past mean slackness’ strategy proposed by Back, Crotty, and Kazempour’s (2022) fails to improve

out-of-sample performance, either.

In contrast, by combining the sentiment variables with the option bounds, we observe a

substantial improvement in out-of-sample R2
OS statistics. The R2

OS statistics become mostly positive

and are statistically significant. For instance, combing Martin’s (2017) option bound with Rapach,

Ringgenberg, and Zhou’s (2016) short interest index generates a significant R2
OS statistic of 0.695%

compared with −1.450% for Martin’s (2017) bound and −0.776% for short interest index. We

further pool the individual forecasts from three combined predictors as Rapach, Strauss, and Zhou

(2010) argue that pooling can better regularize forecast variability. Indeed, we find that pooling

generates substantial forecasting gains with R2
OS statistics reaching 1.417%.

We next consider imposing economic priors to further improve the forecast. In the pre-

dictability literature, Campbell and Thompson (2008) and Pettenuzzo, Timmermann, and Valkanov

(2014) are the pioneering examples that incorporate economic constraints into the forecasts. Since

the option theory essential provides lower bounds, we hence examine upper bounds only. For

simplicity, based on MacKinlay (1995) and Cochrane and Saa-Requejo (2000), we impose an

upper bound on the Sharpe ratio varying from 0.6 to 1. This upper bound notably contributes to

further enhancing the predictability of the market risk premium, resulting in an R2
OS as high as

2.199%, about 55% increase from the R2
OS without the upper bound (which is around 1.417%).

The statistically superb performance by combining option theory with sentiment-based vari-

ables is also economically valuable. We show that the combined predictors, on average, generate

higher average returns, larger out-of-sample Sharpe ratios, and greater certainty equivalent returns.

By computing Fleming, Kirby, and Ostdiek’s (2001) performance fee, we find that a mean-variance
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investor would be willing to pay more than 300 basis points per year to switch from the historical

mean to acquire the forecast from the combined predictors. For example, relative to the historical

mean benchmark, the performance fees are around −442 and 189 basis points if Martin’s (2017)

option bound and Rapach, Ringgenberg, and Zhou’s (2016) short interest index are used separately,

but jump to 385 basis points if the two are combined.

We have conducted a series of robustness checks to validate our findings. Firstly, we present

consistent outperformance of our combined predictors over option bounds and investor sentiment

in both expansion and recession periods. Secondly, our results remain robust across longer-horizon

forecasts, alternative functional forms for state variables, and an extended sample period. For

instance, combining option and stock market information yields significantly positive R2
OS statistics

of 6.065%, 14.105%, and 26.975%, for 3-month, semi-annual, and annual return forecasts,

respectively. Finally, the forecast encompassing test and stabilization test lend additional support to

the notion that combining information from option prices and stock market variables significantly

enhances out-of-sample predictability compared to using either type of information in isolation.

Our paper makes a significant contribution to two important strands of literature on market risk

premium. The first line, with Martin (2017) as a notable example, investigates how elusive it is

to estimate the (conditional) expected return, which dates back to Merton (1980); Black (1993);

Elton (1999). The topic is cutting-edge and invigorates a sequence of research complementarities,

including Chabi-Yo and Loudis (2020) on the aggregate market; Martin and Wagner (2019); Kadan

and Tang (2020); Chabi-Yo, Dim, and Vilkov (2022) on individual stocks; Heston (2021) on

variance premium; Kremens and Martin (2019) on the foreign currency; Bakshi, Gao, and Xue

(2022) on the treasury market; and Liu, Tang, and Zhou (2022) on the Federal Open Market

Committee risk premium. The second line, as emphasized by Spiegel (2008) in The Review of

Financial Studies, challenges researchers on whether our empirical model forecasts the equity

premium any better than the historical mean. The studies in this line focus on the out-of-sample

predictability of the aggregate stock market return via extensions of the conventional predictive

regression approach, including Welch and Goyal (2008) on macroeconomic variables; Neely,

Rapach, Tu, and Zhou (2014) on technical indicators; Dong, Li, Rapach, and Zhou (2022) on
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long-short anomaly portfolio returns; and Engelberg, McLean, Pontiff, and Ringgenberg (2023)

on firm-level variables.

The rest of this paper is structured as follows: Section 2 presents the theory. In Section 3,

we discuss the empirical framework, followed by the out-of-sample test in Section 4. Robustness

checks are provided in Section 5. Finally, we conclude in Section 6.

2 Theory

In this section, based on Martin (2017), we provide the theoretical underpinnings for the

important role of state variables. To facilitate our discussion, we use the following notations,

where a discrete time subscript is denoted by t,

• ST = price of a stock market index (inclusive of dividends) at future time T ;

• RT ≡ ST
St

= gross market return over the period t to T . We assume that RT > 0;

• P= the real-world probability measure, and the information set at time t is Ft ;

• Q= the risk-neutral probability measure;

• MT = stochastic discount factor (SDF) with EP
t (MT RT ) = 1 holding;

• R f ,t =
1

EP
t (MT )

= EQ(RT ) = gross risk-free return over the period t to T (known at time t);

• EP
t (x) = conditional expectation of a random variable under P;

• CovPt (x,y) = conditional covariance between two random variables under P; and

• VarQt (x,y) = conditional variance under Q.

4



2.1 Negative correlation condition

Martin (2017) decomposes the market risk premium into two components

EP
t (RT )−R f ,t =

[
EP

t (MT R2
T )−R f ,t

]
−
[
EP

t (MT R2
T )−EP

t (RT )
]
,

=
1

R f ,t
VarQt (RT )−CovPt (MT RT ,RT ) . (1)

The first component, the risk-neutral variance, can be computed directly from time-t prices of index

options, as known from the work of Breeden and Litzenberger (1978). The second component is a

covariance term. We use the superscript P to highlight the fact that those quantities are under the

real-world probability measure. Henceforth, we drop the superscript and use Et(.) to represent the

mean conditional expectation under the P-measure.

Martin (2017) imposes a weak restriction that is termed negative correlation condition (NCC).

He further shows that NCC holds theoretically under mild conditions in a variety of asset pricing

settings, and it also holds empirically when a typical factor structure for the SDF is assumed.

Definition 1. The negative correlation condition (NCC) holds if

Covt (MT RT ,RT )≤ 0,

for all MT under the real-world probability measure.

By NCC, the risk-neutral variance can be viewed as a lower bound of the equity risk premium

(the expected market excess return), which is

Et (RT )−R f ,t ≥
1

R f ,t
VarQt (RT ) . (2)

Martin (2017) provides the first test on whether the implied risk-neutral volatility bounds could

be related directly to the equity premium, going beyond early related studies by Merton (1980);

Black (1993); Elton (1999). However, the academic study on the lower bound of the equity
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premium remains controversial due to the fact that the NCC is pivotal to obtaining the lower bound

and yet there is no direct quantification of the premise of the NCC. For instance, Bakshi, Crosby,

Gao, and Zhou (2021) exploits theoretical and empirical constructions to challenge the hypothesis

of the NCC. They use options on the S&P 500 index and STOXX 50 equity index and conclude

that the overall tests favor the rejection.

Back, Crotty, and Kazempour (2022) recently test those lower bounds at different horizons

conditionally and reject the hypothesis that they are tight for market risk premium. Therefore,

using the lower bounds as forecasts of market risk premium appears insufficient in many cases

due to their high slackness. Goyal, Welch, and Zafirov (2021) also examine those option bounds

and demonstrate that the out-of-sample performance is never statistically significant. As a result,

Back, Crotty, and Kazempour (2022) propose to add past mean slackness to Martin’s (2017)

option bounds as a potential solution but are impeded by the lack of enough data to estimate

mean slackness. However, they stress that 150 years of data is necessary for the ‘bound + mean

slackness’ strategy to achieve a substantial improvement in out-of-sample performance.

2.2 A Generalization of Martin (2017) Bound

The significant slackness in the lower bound derived by Martin (2017) results in the limited

importance of the bound. We generalize Martin (2017) bound for an economy where asset prices

depend on a vector xt of state variables (possibly non-fundamentals such as sentiment (e.g. Asriyan,

Fuchs, and Green, 2019; Hore, 2015)). In such an economy, for any security with a return process

Rt (not just the market portfolio), in equilibrium we have E[RT ] = f (x), for some function f (.) and

that E[MT R2
T ] = g(x), for some function g(.). Therefore, we have

E[RT ] = k(x)E(MT R2
T ), (3)

where k(x) ≡ f (x)/g(x). It is straightforward to show that the NCC assumption in Martin (2017)

(and thus Martin’s lower bound) is equivalent to assuming k(x)≥ 1.
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It follows from Equation (3) that we can obtain a new relation for the market risk premium:

Et (RT )−R f ,t = k(x)
(

1
R f ,t

VarQt (RT )+R f ,t

)
−R f ,t , (4)

which links the risk-neutral option bound to the state variable vector. When k(x)≥ 1, Equation (4)

reduces to Martin’s bound.

Equation (4) essentially combines the forward-looking feature (option prices) and backward-

looking feature (state variables). The function form for k(xt) can be either linear or non-linear.

Compared with Back, Crotty, and Kazempour (2022), instead of adding the past mean values

as a correction for slackness, here we use the state variables as a real-time correction to the

option bounds. In the next section, we will empirically test the efficacy of Equation (4) in out-

of-sample forecasting of market risk premium. We also compare both the statistical and economic

performances with those using option bounds and traditional predictors alone.

3 Econometric Methodology

In this section, we first discuss three categories of predictors used to forecast the market return,

including option bounds, traditional predictors, and the predictors that combine the first two. We

next discuss the forecast construction and the criteria used to evaluate the out-of-sample forecasts.

3.1 Predictors

We consider three categories of predictors used for market risk premium forecast, namely,

option bounds, stock market predictors, and the combined predictors that incorporate the stock

market predictor into the risk-neutral option bounds.
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3.1.1 Option bounds

We follow Martin (2017) to compute the option bounds of different horizons T − t,

bt ≡
1

R f ,t
VarQt (RT ) = (T − t)R f ,tSVIX2

t→T , (5)

where SVIX2
t→T is defined via the formula,

SVIX2
t→T =

2
(T − t)R f ,tS2

t

[∫ Ft,T

0
putt,T (K)dK +

∫
∞

Ft,T

callt,T (K)dK
]
, (6)

where putt,T (K) (callt,T (K)) denotes the market price of a put (call) option with strike K and

maturity T − t, and Ft,T is the forward price of the underlying.

We also consider Back, Crotty, and Kazempour (2022) and compute the slackness-adjusted

option bounds

bt +mean slackness, (7)

where the slackness is simply the realized market excess return minus the Martin’s (2017) bound.

We use option price data from OptionMetrics to construct time series of option bounds at

time horizons T − t = 1,3,6, and 12 months, from January 4, 1996 to December 31, 2020. We

interpolate the bound linearly to match maturities of 30, 90, 180, and 360 days. To compute the

slackness-adjusted bounds, we follow Back, Crotty, and Kazempour (2022) by matching these

option bounds with realized market excess returns on the S&P 500 index compounded over the 21,

63, 126, and 252 trading days. The daily return data for the S&P 500 are obtained from CRSP.

3.1.2 Stock market predictors

Studies investigating the time-series return predictability attempt to shed light on a variety of

economic and financial variables that can affect the market risk premium. However, Welch and

Goyal (2008) found that most macro variables fail to outperform the historical mean benchmark
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in out-of-sample tests, including the dividend-to-price ratio, book-to-market ratio, inflation, and

others.

In the spirit of behavioral finance, we consider three sentiment-related variables as potential

predictors since investor sentiment can generate return predictability (see, for example, De Long,

Shleifer, Summers, and Waldmann, 1990). Rapach and Zhou (2022) provide a recent survey on

the use of sentiment in return prediction. Specifically, we consider the sentiment index by Baker

and Wurgler (2006), the sentiment index by Huang et al. (2015), and the short interest index by

Rapach, Ringgenberg, and Zhou (2016).

3.1.3 Combined predictors

Following Equations (4) and (5), we construct a combined predictor such that,

bt [k(xt)] = k(xt)

[
(T − t)R f ,tSVIX2

t→T +R f ,t

]
−R f ,t , (8)

where k(xt) = exp(a+bxt), and xt denotes one of the three sentiment-based predictors above. We

consider alternative function forms for k(.) in Section 5.

One thing to note is that option bounds with maturities of 30, 90, 180, and 360 days are

computed at a daily frequency, whereas the stock market predictor variables are at a monthly

frequency. We merge the stock market predictors with the option bounds computed at the last

trading day of each month, resulting in a time series of combined predictors at a monthly frequency.

Taken together, we have three categories of predictors. In the next step, we will test whether

these predictors can successfully predict the market excess returns out of sample.

3.2 Forecast construction

We employ the out-of-sample tests since such tests provide the most rigorous and relevant

evidence regarding stock return predictability (Welch and Goyal, 2008; Martin and Nagel, 2022;
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Dong et al., 2022). Because of the horizon-matching feature in Martin’s (2017) theory, we cannot

focus on monthly, quarterly, or annual regressions as is common in the conventional literature (See

Goyal, Welch, and Zafirov, 2021). Instead, our main results are based on market risk premium

forecast over the next 21 trading days horizon, thus with the 30-day option bound. This approach

is also adopted by Back, Crotty, and Kazempour (2022). For brevity, we refer to it as the 1-month

forecast. We will consider longer-horizon forecasts in Section 5.

For stock market predictors and combined predictors, we begin with a standard predictive

regression model,

rt+1 = αt +βtZi,t + εt+1, (9)

where rt+1 is the market excess return over 21 trading days, Zi,t is a predictor, and εt+1 is a

disturbance term. As in Welch and Goyal (2008); Campbell and Thompson (2008); Rapach,

Strauss, and Zhou (2010), we generate out-of-sample forecasts using a recursive estimation

window and obtain the one-step ahead forecast at time t as

r̂t+1 = α̂t + β̂tZi,t , (10)

where {α̂t , β̂t} are ordinary least squares (OLS) estimates using the data up to time t.

For option bounds, according to the theory by Martin (2017), those bounds are already

meaningful expected market returns. Therefore, we directly use them as forecasts. The same

argument can be applied to the slackness-adjusted option bound by Back, Crotty, and Kazempour

(2022). Thus, we have

r̂t+1 = bt , or r̂t+1 = bt +mean slackness. (11)

Despite the theoretical framework above, we can still treat the option bound, bt , as a predictor and

run a predictive regression to obtain the forecasted return as in Equation (10),

r̂t+1 = α̂t + β̂tbt . (12)
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We assess the forecast accuracy with an out-of-sample R2 statistic, namely, R2
OS, relative to

the prevailing historical average.2 Given T forecasts in the out-of-sample evaluation period, R2
OS

statistic essentially measures the relative reduction in mean square prediction error (MSPE),

R2
OS = 1− ∑

T
t=1(rt − r̂t)

2

∑
T
t=1(rt − r̄HA

t )2
. (13)

where r̄HA
t and r̂t denote the predicated market excess returns based on the historical mean and a

competing model, respectively. When R2
OS > 0, the r̂t forecast generates a lower MSPE than the

prevailing mean forecast, delivering out-of-sample evidence of return predictability.

To assess the statistical significance of R2
OS, we use the Clark and West’s (2007) MSPE-adjusted

statistic. Traditional predictors typically perform poorly in out-of-sample forecasts with negative

R2
OS values, suggesting that beating the historical average forecast is difficult (Welch and Goyal,

2008). Additionally, because market excess return consists of a large unpredictable component,

R2
OS is usually small. Notwithstanding, Campbell and Thompson (2008) suggest that a monthly

R2
OS statistic of 0.5% is the threshold for economic significance for a mean-variance investor. In

Section 4.4, we will assess the economic values of various market risk premium predictors by

measuring their economic values to an investor.

Our sample spans from January 1996 to December 2020 due to the option data availability.

We consider three different out-of-sample forecast evaluation periods: (i) 2001:01–2020:12 with

an initial estimation window of 5 years; (ii) 2006:01–2020:12 with an initial estimation window

of 10 years; and (iii) 2011:01–2020:12 with an initial estimation window of 15 years. Overall,

considering multiple out-of-sample periods helps provide us with a good sense of the robustness

of the out-of-sample forecasting results.

2The historical average of market risk premium is constructed from the daily return series of the S&P 500 index,
starting from July 3, 1962 on CRSP.

11



4 Out-of-Sample Results

In this section, we present our main out-of-sample results, the efficacy of imposing economic

restrictions, possible statistical explanations, and finally the economic values of combining option

prices with traditional variables.

4.1 Statistical gains

Table 1 reports the monthly R2
OS statistics (in percentage) for forecasting future 1-month market

excess returns for the three evaluation periods. Panels A, B, and C present the results of option

bounds, sentiment-based predictors, and the combined predictors that incorporates option prices

into each of the three sentiment-based measures, respectively.

In Panel A, we find that option bounds perform poorly in out-of-sample tests. Using Martin’s

(2017) option bound directly as a forecast of future market risk premium produces either a negative

or positive but insignificant R2
OS statistics. For example, we find that option bound delivers a

monthly R2
OS of −1.450% during the evaluation periods between 2001 and 2020. Moreover, using

option bounds as regression predictors lead to much worse out-of-sample results. For instance,

we find that R2
OS becomes −8.445% once we run the forecast in an OLS regression. Adding

the past mean slackness as a bound correction does not improve the out-of-sample performance.

For instance, during the out-of-sample period of 2001–2020, the R2
OS statistic is −2.533%. As

argued by Back, Crotty, and Kazempour (2022), the improvement from adding past mean slackness

is limited due to the lack of available slackness data.3 For instance, for the evaluation periods

between 2011 and 2020, the R2
OS statistics jump from 0.741% for Martin’s (2017) option bound to

2.227% for the Back, Crotty, and Kazempour (2022) adjusted bound, though neither is statistically

significant.

Panel B, Table 1 reports the results of time-series predictors. In most cases, these predictors

3Back, Crotty, and Kazempour (2022) argue that to achieve a significantly positive R2
OS, researchers need at least

150 years of data to estimate the past mean slackness.
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perform poorly with negative R2
OS statistics. For example, the two investor sentiment indices,

ISBW and ISHJT Z , and the short interest index, SSI all have negative R2
OS statistics of −1.443%,

−0.268%, and −0.776%, respectively, in the out-of-sample period between 2001 and 2020. We

only observe a significantly positive R2
OS statistic for SSI in the evaluation period 2006–2020, and

a marginally significant positive R2
OS for ISBW in the period 2011–2020. In other words, the out-of-

sample predictability of traditional predictors is not robust. The lack of consistent out-of-sample

evidence indicates the need for the refinement of those stock market predictors.

Panel C, Table 1, reports the forecasting results of the combined predictors that incorporate both

option market information and stock market information. Compared with Martin’s (2017) options

bounds in Panel A, the combined predictors show much stronger out-of-sample evidence that the

market return is predictable. For instance, for the period 2001–2020, combining option prices

with ISHJT Z and SII yields out-of-sample R2
OS statistics of 0.809% and 0.695%, both significant at

the 5% level. In the last row of Panel C, Table 1, we aggregate the individual forecasts from the

three combined predictors by taking an arithmetic mean. Rapach, Strauss, and Zhou (2010) show

that a simple combination forecast exerts a strong shrinkage effect and generally achieves better

forecasting performance. Indeed, we find that pooling generates substantial forecasting gains with

significantly positive R2
OS statistics in all evaluation periods, ranging from 0.649% to 1.649%. As

pointed out by Campbell and Thompson (2008), an R2
OS of 0.5% for monthly data can signal an

economically meaningful degree of return predictability in terms of increased annual portfolio

returns for a mean-variance investor. Therefore, the combination of stock market information with

option market information consistently produces economically significant gains over time.

To gain a better understanding of these forecasts, Figure 1 illustrates the out-of-sample

forecasts for the 2001–2020 evaluation period. The blue line in each panel represents the historical

mean benchmark forecast. Both the option-bound forecast (Panel A) and the short interest

index forecast (Panel B) exhibit significantly higher volatility and suggest implausibly negative

or unrealistically large values for numerous months during the out-of-sample testing period. In

contrast, the combined predictor (Panel C) generates forecasts that are relatively less volatile, and

the pooling approach (Panel D) further reduces forecast variability. It appears that combining
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information from both markets better regulates forecast variability. We will conduct additional

statistical tests shortly.

In summary, we demonstrate that combining information from both the derivative market and

the stock market significantly improves market risk premium forecasts compared to using either

type of information alone.

4.2 Upper bounds

In this subsection, following Campbell and Thompson (2008); Pettenuzzo, Timmermann, and

Valkanov (2014), we consider imposing a simple economic upper bound on our forecasts. The

Sharpe ratio reported in the previous section corresponds to the ex-post measure of the realized

portfolio returns in the out-of-sample period. In contrast, we delve into the concept of the ex-ante

Sharpe ratio, which reflects the perspective of an investor at time t

SR j,t =
r̂ j,t+1

σ̂t+1
, (14)

where r̂ j,t+1 is the forecasted excess return on the S&P 500 index based on strategy j at time t, and

σ̂t+1 is the forecasted volatility computed from historical return using a 5-year rolling window.

Figure 2 presents the distribution of the ex-ante Sharpe ratios from the Martin’s (2017) bound,

the combined bound with the aggregate short interest index (SII), and the pooling approach. On

average, the ex-ante annualized Sharpe ratio is approximately 0.2 for the Martin (2017) bound,

0.75 for pooling, and 1 for the combined predictor of the bound and SII. These notably high

Sharpe ratios from our combined predictors and pooling forecasts suggest the possibility of an

enhancement through the imposition of an upper bound on the Sharpe ratio.

Hence, based on MacKinlay (1995) and Cochrane and Saa-Requejo (2000), we use a value

varying from 0.6 to 1 to constrain the above Sharpe ratio, yielding a new and economically

constrained forecast. Next, we repeat our out-of-sample one-month market risk premium forecasts

for the combined predictors presented in Table 1 using both 0.6 and 1 as the maximum Sharpe ratio.
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Specifically, we truncate the forecast if the ratio of the forecasted return to forecasted volatility

(annualized) surpasses the chosen upper bound value, thereby ensuring a Sharpe ratio within the

set limit.

Panel A of Table 2 reports the out-of-sample R2
OS for our combined predictors with a maximum

Sharpe ratio upper bound of 0.6 across various evaluation periods. Compared to the results without

the imposition of upper bounds, we observe notably improved results with larger R2
OS statistics in

all evaluation periods. For instance, during the evaluation period spanning from 2001 to 2020,

the R2
OS statistic rises from 0.809% (0.695%) in Table 1 to 2.383% (2.148%) when combining

ISHJT Z (SII) with option bounds. Additionally, the Pooling approach yields an out-of-sample R2

statistic as high as 2.199%, a marked improvement from the 1.417% in Table 1 when no economic

restrictions are applied. Similar trends are observed in other out-of-sample testing periods.

Panel B of Table 2 reports the results of the out-of-sample forecasts with an upper bound of 1

for the Sharpe ratio. We also observe an improvement in out-of-sample forecasts in each evaluation

period. For example, the new forecast of combing SII with option bounds yields an R2
OS of 1.718%

relative to 0.695% in Table 1 for the evaluation periods between 2001 and 2020. Collectively, we

show a significant improvement in the out-of-sample performance by imposing an economically

reasonable upper bound on the maximum Sharpe ratio.

4.3 Statistical explanation

In this subsection, we offer explanations for the exceptional out-of-sample performance

achieved through the combination of options prices and traditional stock market predictors from a

statistical perspective.

4.3.1 Forecast stabilization

We initiate our analysis by conducting a bias-variance assessment. Given that the R2
OS

statistic essentially involves a comparison of mean squared prediction errors (MSPEs) between two
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forecasting methods as shown in Equation (13), we adopt the decomposition of MSPE proposed

by Theil (1966):

MSPE =
( ¯̂e
)2

+Var(ê), (15)

where ê signifies the forecast error,
( ¯̂e
)2 is the squared forecast bias, and Var(ê) is the forecast

variance. Consequently, the reduction in forecast variance resulting from the combination of

forecasts can contribute to a decrease in MSPE, thus potentially leading to an enhancement in

the out-of-sample R2
OS statistics as long as the process of combining forecasts doesn’t lead to a

substantial increase in bias.

Figure 3 presents three scatterplots illustrating the forecast variance and the squared forecast

bias for the out-of-sample forecasts based on the historical mean, option bounds, stock market

predictors, and combined predictors for the period 2001–2020. In Panel A, the forecasts derived

from option bounds consistently exhibit significantly higher forecast variance compared to the

historical average benchmark. In Panel B, compared with the historical mean forecast, investor

sentiment displays both higher forecast variance and a higher squared forecast bias. Although the

use of the short interest index slightly reduces the forecast variance, the corresponding squared

forecast bias increases eightfold relative to the benchmark. As a result, neither option bounds nor

stock market predictors generate smaller Mean Squared Prediction Errors (MSPEs) relative to the

benchmark, leading to negative R2
OS values in Table 1.

Panel C presents the bias-variance decomposition for the three combined predictors and the

pooled forecasts of the three individual predictors. We find that combining option bounds with

either ISHJT Z or ISSII results in much lower forecast variance relative to the benchmark. Despite

a larger squared forecast bias, the reduction in forecast variance outweighs the increase in squared

forecast bias. As a result, they both yield good out-of-sample performance relative to the historical

mean forecast. Interestingly, we also find that pooling the individual forecasts reduces both squared

forecast bias and forecast variance, resulting in a much smaller MSPE and thereby much larger R2
OS

statistics. This finding is consistent with Rapach, Strauss, and Zhou (2010), which suggests that

pooling can effectively regularize forecast variability, thereby consistently generating substantial
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forecasting gains over time. In summary, combining information on option bounds and investor

sentiment reduces forecast variance, ultimately improving out-of-sample forecasts.

4.3.2 Encompassing test

We proceed to compare the information content of different forecasts using the forecast

encompassing tests developed by Chong and Hendry (1986); Fair and Shiller (1990). The forecast

encompassing test provides a formal way to determine whether one forecast is statistically better

at explaining the variation in future returns than another. It can help us understand whether

the combined predictor significantly improves forecasting performance compared to individual

predictors or historical benchmarks.

Let’s consider an optimal composite forecast of rt+1, which is a convex combination of

forecasts from two models, labeled as i and j,

r̂⋆t+1 = (1−λ )r̂i,t+1 +λ r̂ j,t+1, 0 ≤ λ ≤ 1. (16)

If λ = 0, this suggests that model j does not carry any useful information and thus its forecast is

encompassed by model i. Conversely, if λ > 0, the forecast of model i does not encompass the

model j forecast because of useful information contained in model j. Thus, forecast encompassing

tests indicate that it is useful to combine forecasts from models i and j compared with using solely

model i if we reject the null hypothesis of encompassing.

To test the null hypothesis that model i encompasses j (H0 : λ = 0), against the one-sided

alternative hypothesis that the model i does not encompass j (H1 : λ > 0), we follow Harvey,

Leybourne, and Newbold (1998) to compute the modified HLN-statistic over the out-of-sample

evaluation period of T0. Define dt+1 = (êi,t+1 − ê j,t+1)êi,t+1, where êi,t+1 = rt+1 − r̂i,t+1 and

ê j,t+1 = rt+1 − r̂ j,t+1. Let d̄ = 1
T0

∑k dk, and we compute

MHLN =
T0 −1

T0

([
V̂ (d̄)

]− 1
2 d̄
)
∼ tT0−1, (17)

17



where V̂ (d̄) = 1
T0

φ̂0 and φ̂0 =
1
T0

∑k(dk − d̄)2.

Table 3 reports the Harvey, Leybourne, and Newbold’s (1998) MHLN statistic p-values applied

to the evaluation periods between 2001 and 2020. Each entry in the table corresponds to the null

hypothesis that the forecast estimated in the row heading is encompassed by the forecast based

on the column heading. We reject the null hypothesis that the option bound forecasts encompass

the combined predictors’ forecasts. For example, in the third column, the p-value of “Bound &

ISHJT Z” is 0.03 and statistically significant. We also observe highly significant results for “bound

+ slackness” and “Bound (OLS)” forecasts. Additionally, we can reject the null hypothesis that the

traditional predictors’ forecasts encompass the combined predictors’ forecasts at the 5% level. By

contrast, we can not reject the null hypothesis that the combined predictors’ forecasts encompass

either option bounds’ forecasts or traditional predictors’ forecasts.

In summary, the forecast encompassing tests justify the use of information from both the option

market and the stock market in equity risk premium forecasts.

4.4 Economic values

Apart from the statistical accuracy, we next compare the benchmark and competing forecasts

in terms of their economic values to an investor. Specifically, consider a mean-variance investor

who allocates across equities and a risk-free asset (the Treasury bill) each month. At the end of

month t, the investor faces the following objective function

argω̂t+1
ω̂t+1r̂t+1 −

γ

2
ω̂

2
t+1σ̂

2
t+1, (18)

where γ denotes the coefficient of relative risk aversion, {ω̂t+1,1− ω̂t+1} are allocation weights

to the market portfolio and the risk-free asset at month t + 1, r̂t+1 is the investor’s market excess

return forecast, and σ̂2
t+1 is the investor’s forecast of the variance of the market excess return. The
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optimal mean-variance portfolio weight on the market can be computed as

ω̂
⋆
t+1 =

(
1
γ

)(
r̂t+1

σ̂2
t+1

)
. (19)

We follow Campbell and Thompson (2008) to set γ to be 3 and to constrain the portfolio weight

on stocks to lie between [0,1.5] each month in Equation (19). Over the out-of-sample periods, we

compute four quantities (performance measures), based on the mean µ̂ j and standard deviation

σ̂ j of the out-of-sample realized returns by a forecasting method j. First, we measure the out-of-

sample Sharpe ratio (SRatio)

ŝ j =
µ̂ j

σ̂ j
. (20)

To test whether the Sharpe ratios of the two strategies are statistically distinguishable, we follow

DeMiguel, Garlappi, and Uppal (2009) to compute the p-value of their difference.

Second, we compute the certainty-equivalent return (CER) of each strategy,

ˆCER j = µ̂ j −
γ

2
σ̂

2
j . (21)

Relative to a benchmark, we also compute the CER difference, which is known as the utility gain

in the forecasting literature (see, e.g., Rapach and Zhou, 2022).

Next, we compute DeMiguel, Garlappi, and Uppal’s (2009) return-loss value with respect to

Rapach, Strauss, and Zhou’s (2010) simple pooling. Precisely, suppose {µ̂b, σ̂b} are the monthly

out-of-sample mean and volatility of the excess returns from the benchmark, the return-loss from

the competing forecast j is

return-loss j =

(
µ̂b

σ̂b

)
× σ̂ j − µ̂ j. (22)

In other words, the return-loss is the additional return needed for strategy j to perform as well as

the benchmark. Therefore, a negative return-loss value indicates that the method j outperforms the

simple pooling in terms of the Sharpe ratio.

Lastly, we compute the performance fee suggested in Fleming, Kirby, and Ostdiek (2001). It
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can be interpreted as the maximum fee that a quadratic-utility investor would be willing to pay

to switch from the benchmark to the alternative. To estimate this fee, we find the value of ∆ that

solves

∑
t

[(
R j,t −∆

)
− γ

2(1+ γ)

(
R j,t −∆

)2
]
= ∑

t

[
Rb,t −

γ

2(1+ γ)
R2

b,t

]
, (23)

where R j,t and Rb,t denote the out-of-sample realized returns by the competing forecast j and the

benchmark, respectively. We report the estimate of ∆ as annualized fees in basis points.

Figure 4 plots log cumulative excess returns for portfolios using market excess return forecasts

based on option bound, short interest index, and the combined predictor. The figure also depicts

the cumulative excess return for the portfolio based on the historical average benchmark. Figure

4 reveals that the portfolio relying solely on option bounds underperforms the portfolio based

on the historical mean benchmark, suffering significant losses during the financial crisis in

2008/09. Conversely, the portfolio that relies exclusively on the short interest index outperforms

the benchmark. Remarkably, the portfolio that integrates information from both options and the

short interest index demonstrates even better performance. Furthermore, pooling across individual

forecasts from the combined predictors offers better resilience against downside risk during market

stress while maintaining potential for upside gains.

Table 4 reports the above performance measures for returns over the period 2001–2020, all

annualized. In Panel A, benchmark values are reported when using the historical average forecast,

including average excess return, standard deviation, Sharpe ratio, and certainty equivalent return.

It is observed in Panel B that forecasts based on Martin (2017) option bound and Back, Crotty, and

Kazempour (2022) slackness-adjusted bound result in standard deviations twice the benchmark

magnitude, leading to a significantly smaller Sharpe ratio and negative CER. Positive return-

loss values and negative performance fees both indicate a strong preference of investors for the

historical average benchmark over the option bound forecast. This aligns with the negative out-of-

sample R2
OS statistics detailed in Table 1.

Panel C and D of Table 4 present the performance measures based on forecasts from stock

market predictors and combined predictors. It is observed that utilizing stock market predictors
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alone yields reasonably substantial economic values relative to the benchmark, with larger Sharpe

ratios, larger CERs, negative return-loss values, and positive performance fees. Additionally,

combining information from both stock and option markets generates even greater forecasting

improvements compared to using either type of information in isolation. For instance, relative to

the Sharpe ratio of 0.212 from the historical mean benchmark, the short interest index yields a

Sharpe ratio of 0.435—twice the magnitude, with the difference being marginally significant at the

10% level. Furthermore, combining the short interest index with option bounds results in a Sharpe

ratio of 0.525—a 20% increase over the short interest index alone. This difference relative to the

benchmark becomes more significant at the 5% level. Moreover, performance fees rise from 189

bps to 385 bps as we transition from using the short interest index alone to using the combined

predictor. The substantial performance fee suggests investors are willing to pay approximately

385 bps per annum to access information from both markets. These results hold up well under a

proportional transaction cost.

In conclusion, Table 4 emphasizes the value of combining forward-looking (option data) and

backward-looking (sentiment variables) attributes for forecasting the market risk premium.

5 Robustness

In this section, we perform robustness checks for our out-of-sample tests. We begin by

conducting separate out-of-sample forecasts based on NBER-dated business cycles. Additionally,

we delve into long-horizon return forecasts. Finally, we present the results using alternative

functional forms and an extended data sample.

5.1 Business cycles

To provide a visual representation of the consistency in forecast construction across various

market conditions, we proceed to present time-series plots depicting the forecasting error in

conjunction with the NBER-dated business cycles. In particular, we calculate the cumulative
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differences in squared forecast errors between the historical average benchmark and each

alternative forecast, spanning the period 2001-2020 (Welch and Goyal, 2008; Rapach, Strauss,

and Zhou, 2010),

square error difference = (rt − r̄HA
t|t−1)

2 − (rt − r̂t|t−1)
2, (24)

where r̄HA
t|t−1 is the historical average (HA), rt is the realized market excess return, and r̂|t−1 is the

forecast based on a competing model.

The cumulative differences, as depicted in Figure 5, offer a straightforward approach to

determine whether a competing forecast outperforms the benchmark within any given subsample.

By comparing the curve’s height at the subsample’s commencement and conclusion, such

determination becomes readily achievable. An elevated (reduced) curve at the conclusion indicates

that the competing forecast displays a lower (higher) Mean Squared Forecast Error (MSFE) relative

to the benchmark throughout the specified period. A predominantly positively sloped curve denotes

consistent out-of-sample enhancements from the competing forecast, while a sharply negatively

sloped segment suggests a period of considerable underperformance. Notably, forecasts solely

grounded in the option bound or the short interest index in Figure 5 do not consistently exhibit gains

in accuracy over time. However, when combining the option bound with the short interest index,

accuracy gains improve, as evident from the curve turning positive around 2010. Moreover, pooling

individual forecasts from combined predictors results in significantly higher accuracy gains, with

the cumulative curve consistently staying above zero after 2009 and concluding at a higher point

by the end of the testing period.

Notably, the failure of the option bound proposed by Martin (2017) is primarily attributed to

the NBER-dated recessions surrounding the 2008/09 global financial crisis. During this period,

the option bound significantly underperforms the historical average benchmark. A plausible

explanation is that the effectiveness of the Martin (2017) bound is contingent on the NCC

assumption. However, we observe frequent violations of the NCC during the evaluation period

spanning from 2001 to 2020, as depicted in Figure 6. These violations are concentrated either in
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periods of high investment sentiment or during market recessions, such as the crisis in 2008/09.

This can be attributed to an increased demand for options as hedging instruments during severe

market conditions, leading to substantial increases in option prices. Since the option bound is

essentially a weighted average of market prices of index options, its usage as a ”meaningful

expected return,” as in Martin (2017), can result in unrealistic positive forecasts during periods

of stock market stress when option prices skyrocket.

To formally assess out-of-sample forecasting across different market periods, we calculate

separate R2
OS statistics for NBER-dated expansions and recessions within the out-of-sample testing

intervals. In total, three recessions occurred during the out-of-sample period spanning from

January 2001 to December 2020, corresponding to business-cycle peaks in 2001:03, 2007:12,

and 2020:02, and troughs in 2001:11, 2009:06, and 2020:04. Given the limited sample size

during recessions (approximately 30 observations), we solely evaluate the statistical significance

of positive R2
OS statistics within expansions.

Consistent with the preceding argument, we observe that the R2
OS statistics using the option

bound are more negative in recessions than in expansions in Panel A, Table 5. This discrepancy

suggests considerably poorer predictability of the option bound during recessionary periods, which

also accounts for the negative R2
OS statistics calculated for the entire sample period. Moving to

Panel B, it becomes evident that sentiment-based predictors perform inadequately, yielding notably

negative R2
OS statistics during recessions, while generally exhibiting positive and significant R2

OS

during expansions. Consequently, the R2
OS statistics for the entire sample period turn negative. For

instance, ISHJT Z generates a slightly significant R2
OS statistic of 0.307% during expansions, but a

negative R2
OS of −1.332% during recessions. In Panel C, it is noticeable that combined predictors

and pooling both yield positive R2
OS statistics during both expansion and recession periods (except

for an exception for SSI). As an illustration, upon combining the option bound with ISHJT Z , the

R2
OS statistics amount to 0.814% and 0.800% for expansions and recessions, ultimately culminating

in a significantly positive R2
OS of 0.809% for the entire out-of-sample period.

To summarize, the combination of option bounds with stock market predictors is more likely to
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restore market risk premium predictability during both expansion and recession periods, ultimately

surpassing the historical average benchmark across the board.

5.2 Long-horizon forecasts

In this subsection, we repeat the out-of-sample tests using various long horizons. As previously

discussed, we diverge from the common monthly, quarterly, or annual regressions found in the

literature due to the horizon-matching characteristic inherent in Martin (2017)’s theory. Given the

feasibility of computing option bounds for various horizons via option maturities alignment, we

examine the out-of-sample performances over 3-month, 6-month, and 12-month horizons.

Table 6 reports the out-of-sample R2
OS statistics for the evaluation period spanning from 2001

to 2020. For the 3-month horizon forecast, option bounds fail to surpass the historical average

forecast, resulting in R2
OS statistics that are either negative or positive yet insignificant. In contrast,

stock market predictors begin to outperform the historical mean benchmark forecast, displaying

notably positive and significant R2
OS values, ranging from 1.181% to 3.471%. Additionally,

the combined predictors of ISHJT Z, SSI, and pooling generate even more robust out-of-sample

performance relative to the benchmark forecast. For the 3-month horizon forecasts, this combined

approach yields notably positive R2
OS statistics, ranging from 2.435% to 6.065%.

In general, the performance of out-of-sample forecasting improves as the forecast horizon

lengthens. For semi-annual and annual forecasting, both option bounds and traditional predictors

yield positive and significant R2
OS statistics. This outcome is expected given the overall upward

trend observed in the market over the long term. Similar results are obtained by Campbell

and Thompson (2008) when they forecast annual market return using macro variables (Panel

B, Table 2, in their paper). Despite this enhanced performance, the combination of the two

information sets continues to yield superior outcomes, particularly evident with the application of

the pooling method. To illustrate, pooling results in notably high R2
OS statistics, reaching 14.105%

and 26.975% for the semi-annual and annual horizons, respectively. In summary, our combined

predictors consistently demonstrate superior performance compared to using either information set
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alone across various forecast horizons.

5.3 Alternative function forms

So far, we have demonstrated that the generalization of Martin (2017) bound by integrating

sentiment-based variables generates superior out-of-sample forecasting gains. In Equation (8), we

have employed an exponential form for the function k(.). In this subsection, we consider two

alternative function forms k(xt). Subsequently, we replicate the out-of-sample forecasts across 1-,

3-, 6- and 12-month horizons, using these new combined predictors.

Case 1: Exponential form with individual terms. Equation (8) only scales and operates through

interaction. We modify k(xt) to incorporate both interaction and individual terms4

bt [k(xt)] =

[
exp(axt +b)+ c︸ ︷︷ ︸

k(xt)

]
×
[
(T − t)R f ,tSVIX2

t→T +R f ,t

]
−R f ,t . (25)

Case 2: Linear form. We consider a linear function form for k(xt) = axt +b so that

bt [k(xt)] =

[
a+bxt︸ ︷︷ ︸

k(xt)

]
×
[
(T − t)R f ,tSVIX2

t→T +R f ,t

]
−R f ,t . (26)

The results are presented in Table 7. We find consistent results as the results observed in Tables

1 and 6. These alternative combined predictors consistently exhibit substantial outperformance in

comparison to the historical mean forecast across diverse horizons. In most instances, the out-

of-sample R2 statistics are statistically significant at the 5% level or better. For example, after

incorporating the short interest index into option bounds, we obtain R2
OS statistics of 0.448%,

3.575%, 8.764%, and 14.387% for the 1-, 3-, 6-, and 12-month horizons, respectively. Moreover,

the pooling forecasts consistently outperform the prevailing mean at various horizons with R2
OS

statistics, ranging from 1.325% to 26.456%.

4We thank Tyler Beason for this great suggestion.
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5.4 Extended sample period

Our sample begins in 1996 due to the availability of option data. Both the option bounds and

our combined predictors hinge on constructing SVIX from market prices of index options. Given

the acknowledged strong correlation between SVIX and the publicly traded VIX index (with a

correlation coefficient as high as 0.99), we collect the VIX data from CBOE starting from 1990.

Subsequently, we reconstruct the combined predictor as follows,

bt [k(xt)] =


k(xt)

[
(T − t)R f ,tSVIX2

t→T +R f ,t

]
−R f ,t , if t ≥ 1996,

k(xt)

[
(T − t)R f ,tVIX2

t→T +R f ,t

]
−R f ,t , if t < 1996

(27)

Recall that,

SVIX2
t→T =

2
(T − t)R f ,tS2

t

[∫ Ft,T

0
putt,T (K)dK +

∫
∞

Ft,T

callt,T (K)dK
]
. (28)

Similarly, we can formulate the equation for VIX based on index option prices,

VIX2
t→T =

2R f ,t

(T − t)

[∫ Ft,T

0

1
K2 putt,T (K)dK +

∫
∞

Ft,T

1
K2 callt,T (K)dK

]
. (29)

VIX and SVIX both capture important aspects of market return, and and their disparity can be

minimal under certain conditions, such as log-normality (see Martin, 2017). Figure 7 depicts the

30-day SVIX index and the CBOE VIX index. Both indices showcase nearly identical patterns.

While SVIX gauges risk-neutral volatility, VIX measures risk-neutral entropy, thus portraying a

slight variation in their definitions.

V IX2
t→t+T =

2
T

LQ
t

(
Rt→t+T

R f ,t→t+T

)
, (30)

where LQ
t (X)≡ logEQ

t X −EQ
t logX .
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We extend the full sample to encompass the period from January 1990 to December 2020 and

subsequently re-run our out-of-sample forecasts using the same evaluation periods as outlined in

Table 1. The resulting R2
OS statistics are presented in Table 8. We find even stronger results than

those in Table 1. For example, during the evaluation period between 2001 and 2020, all combined

predictors, except for the Baker and Wurgler’s (2006) sentiment index, outperform both option

bounds and standalone time-series predictors. The R2
OS statistics are as follows: 1.625% for the

combined predictor involving Huang et al. (2015)’s investor sentiment index, 1.498% for Rapach,

Ringgenberg, and Zhou (2016)’s short interest index, and 1.686% for the pooling approach.

Additionally, these R2
OS statistics are all statistically significant at the 5% level. Collectively, we

demonstrate the robustness of the out-of-sample forecasts when employing the extended sample.

6 Conclusion

Predicting the market risk premium, or expected market excess return, is one of the funda-

mental challenges in finance because the market risk premium is a pivotal determinant of the

required rate of returns for investors to hold assets in asset pricing models. Despite the numerous

studies on time-series predictability in the literature, the out-of-sample predictability continues to

exhibit limited effectiveness. Recent developments by Martin (2017) and others shed light on the

expected market excess return from options prices, nevertheless, empirical performance remains

unsatisfactory.

In this paper, we provide the first study on combining two lines of literature on market

risk premium. We theoretically derive a new bound on the market risk premium by combining

risk-neutral variance with sentiment-based state variables. We further show that the new

combined predictor performs well empirically and the improvement in out-of-sample forecasting

is economically substantial. Collectively, our paper provides new insights into the market risk

premium by drawing perspectives from both the time-series return predictability literature and the

option literature.

27



References

Asriyan, V., Fuchs, W., Green, B., 2019. Liquidity sentiments. American Economic Review 109,
3813–3848.

Back, K., Crotty, K., Kazempour, S. M., 2022. Validity, tightness, and forecasting power of risk
premium bounds. Journal of Financial Economics 144, 732–760.

Baker, M., Wurgler, J., 2006. Investor sentiment and the cross-section of stock returns. The Journal
of Finance 61, 1645–1680.

Bakshi, G., Crosby, J., Gao, X., Zhou, W., 2021. Negative correlation condition and the dark matter
property of asset pricing models. Working paper.

Bakshi, G., Gao, X., Xue, J., 2022. Recovery with applications to forecasting equity disaster
probability and testing the spanning hypothesis in the treasury market. Journal of Financial and
Quantitative Analysis 58, 1808–1842.

Black, F., 1993. Estimating expected return. Financial Analysts Journal 49, 36–38.

Breeden, D. T., Litzenberger, R. H., 1978. Prices of state-contingent claims implicit in option
prices. Journal of Business 51, 621–651.

Campbell, J. Y., Shiller, R. J., 1988a. The dividend-price ratio and expectations of future dividends
and discount factors. The Review of Financial Studies 1, 195–228.

Campbell, J. Y., Shiller, R. J., 1988b. Stock prices, earnings, and expected dividends. The Journal
of Finance 43, 661–676.

Campbell, J. Y., Shiller, R. J., 1998. Valuation ratios and the long-run stock market outlook. The
Journal of Portfolio Management 24, 11–26.

Campbell, J. Y., Thompson, S. B., 2008. Predicting excess stock returns out of sample: Can
anything beat the historical average? The Review of Financial Studies 21, 1509–1531.

Chabi-Yo, F., Dim, C., Vilkov, G., 2022. Generalized bounds on the conditional expected excess
return on individual stocks. Management Science .

Chabi-Yo, F., Loudis, J., 2020. The conditional expected market return. Journal of Financial
Economics 137, 752–786.

28



Chong, Y. Y., Hendry, D. F., 1986. Econometric evaluation of linear macro-economic models. The
Review of Economic Studies 53, 671–690.

Clark, T. E., West, K. D., 2007. Approximately normal tests for equal predictive accuracy in nested
models. Journal of Econometrics 138, 291–311.

Cochrane, J. H., Saa-Requejo, J., 2000. Beyond arbitrage: Good-deal asset price bounds in
incomplete markets. Journal of Political Economy 108, 79–119.

De Long, J. B., Shleifer, A., Summers, L. H., Waldmann, R. J., 1990. Noise trader risk in financial
markets. Journal of Political Economy 98, 703–738.

DeMiguel, V., Garlappi, L., Uppal, R., 2009. Optimal versus naive diversification: How inefficient
is the 1/n portfolio strategy? The Review of Financial studies 22, 1915–1953.

Dong, X., Li, Y., Rapach, D. E., Zhou, G., 2022. Anomalies and the expected market return. The
Journal of Finance 77, 639–681.

Dow, C. H., 1920. Scientific stock speculation. Magazine of Wall Street.

Elton, E. J., 1999. Presidential address: Expected return, realized return, and asset pricing tests.
The Journal of Finance 54, 1199–1220.

Engelberg, J., McLean, R. D., Pontiff, J., Ringgenberg, M. C., 2023. Do cross-sectional predictors
contain systematic information? Journal of Financial and Quantitative Analysis 58, 1172–1201.

Fair, R. C., Shiller, R. J., 1990. Comparing information in forecasts from econometric models. The
American Economic Review 80, 375–389.

Fama, E. F., French, K. R., 1988. Dividend yields and expected stock returns. Journal of Financial
Economics 22, 3–25.

Fama, E. F., French, K. R., 1989. Business conditions and expected returns on stocks and bonds.
Journal of Financial Economics 25, 23–49.

Fleming, J., Kirby, C., Ostdiek, B., 2001. The economic value of volatility timing. The Journal of
Finance 56, 329–352.

Goyal, A., Welch, I., Zafirov, A., 2021. A comprehensive look at the empirical performance of
equity premium prediction ii. Working paper.

Harvey, D. I., Leybourne, S. J., Newbold, P., 1998. Tests for forecast encompassing. Journal of
Business & Economic Statistics 16, 254–259.

29



Heston, S. L., 2021. Recovering the variance premium. Working paper.

Hore, S., 2015. Equilibrium predictability, term structure of equity premia, and other return
characteristics. Review of Finance 19, 423–466.

Huang, D., Jiang, F., Tu, J., Zhou, G., 2015. Investor sentiment aligned: A powerful predictor of
stock returns. The Review of Financial Studies 28, 791–837.

Kadan, O., Tang, X., 2020. A bound on expected stock returns. The Review of Financial Studies
33, 1565–1617.

Kremens, L., Martin, I., 2019. The quanto theory of exchange rates. American Economic Review
109, 810–43.

Liu, H., Tang, X., Zhou, G., 2022. Recovering the fomc risk premium. Journal of Financial
Economics 145, 45–68.

MacKinlay, A. C., 1995. Multifactor models do not explain deviations from the capm. Journal of
Financial Economics 38, 3–28.

Martin, I., 2017. What is the expected return on the market? The Quarterly Journal of Economics
132, 367–433.

Martin, I. W., Nagel, S., 2022. Market efficiency in the age of big data. Journal of Financial
Economics 145, 154–177.

Martin, I. W., Wagner, C., 2019. What is the expected return on a stock? The Journal of Finance
74, 1887–1929.

Merton, R. C., 1980. On estimating the expected return on the market: An exploratory
investigation. Journal of Financial Economics 8, 323–361.

Neely, C. J., Rapach, D. E., Tu, J., Zhou, G., 2014. Forecasting the equity risk premium: the role
of technical indicators. Management Science 60, 1772–1791.

Pettenuzzo, D., Timmermann, A., Valkanov, R., 2014. Forecasting stock returns under economic
constraints. Journal of Financial Economics 114, 517–553.

Rapach, D., Zhou, G., 2022. Asset pricing: Time-series predictability. Oxford Research
Encyclopedia of Economics and Finance pp. 1–34.

Rapach, D. E., Ringgenberg, M. C., Zhou, G., 2016. Short interest and aggregate stock returns.
Journal of Financial Economics 121, 46–65.

30



Rapach, D. E., Strauss, J. K., Zhou, G., 2010. Out-of-sample equity premium prediction:
Combination forecasts and links to the real economy. The Review of Financial Studies 23, 821–
862.

Spiegel, M., 2008. Forecasting the equity premium: Where we stand today. The Review of
Financial Studies 21, 1453–1454.

Theil, H., 1966. Applied economic forecasting. Amsterdam: North-Holland.

Welch, I., Goyal, A., 2008. A comprehensive look at the empirical performance of equity premium
prediction. The Review of Financial Studies 21, 1455–1508.

31



Table 1: R2
OS statistics (in percent) for 1-month market risk premium forecast

This table reports out-of-sample R2 statistics (R2
OS) in percent for 1-month market excess return forecasts

based on option bounds, time-series (stock market) predictors, and combined predictors. The formulation
of the combined predictor is as follows:

bt [k(xt)] = k(xt)

[
(T − t)R f ,tSVIX2

t→T +R f ,t

]
−R f ,t ,

where R f ,t is the gross return on an risk-free asset, SVIX2
t→T is computed from market prices of index

options as in Martin (2017), xt is one of time-series variables, and k(xt) = exp(a+bxt). In the last row, we
pool the individual forecasts from the combined predictors by taking an arithmetic mean.

Panel A: Option bounds are represented when k(xt) = 1. The bound is employed directly as a measure
of market excess return. Additionally, we use the bound as a predictor in predictive regression, termed as
”Bound (OLS)”. Furthermore, the past mean slackness, which is the realized market excess return minus
the bound, is utilized as a correction to the bound, as suggested by Back, Crotty, and Kazempour (2022).

Panel B: Traditional time-series predictors are depicted when bt [k(xt)] = xt . Specifically, we utilize
sentiment indices including Baker and Wurgler (2006)’s sentiment index (ISBW ), Huang et al. (2015)’s
sentiment index (ISHJT Z), and Rapach, Ringgenberg, and Zhou (2016)’s short interest index (SSI).

The out-of-sample periods are 2001:01–2020:12, 2006:01–2020:12, and 2011:01–2020:12, as indicated in
the column headings. Using the Clark and West (2007) test, asterisks (*) and double asterisks (**) denote
significance at the 10% and 5% levels for positive R2

OS, respectively.

Out-of-sample periods 2001−2020 2006−2020 2011−2020

Panel A: Option bounds

Bound −1.450 −2.214 0.741
Bound + Slackness −2.533 −2.439 2.227
Bound (OLS) −8.445 −9.519 −3.206

Panel B: Traditional predictors

xt = ISBW −1.443 −0.401 1.869*
xt = ISHJT Z −0.268 0.085 0.860
xt = SSI −0.776 1.520** −0.553

Panel C: Combined predictors
xt = ISBW −0.788 −0.481 1.717*
xt = ISHJT Z 0.809** −0.632 1.504*
xt = SSI 0.695** 1.822** 0.186*
Pooling 1.417** 0.649* 1.649*
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Table 2: R2
OS statistics (in percent) with upper bounds

This table reports out-of-sample R2 statistics (R2
OS) in percent for 1-month market excess return based on the

combined predictor such that

bt [k(xt)] = k(xt)

[
(T − t)R f ,tSVIX2

t→T +R f ,t

]
−R f ,t ,

where SVIX2
t→T is computed from market prices of index options as in Martin (2017), xt is one of three

sentiment variables, and k(xt) = exp(a+ bxt). We consider two Sharpe ratio values as upper bounds, as
indicated in panel headings. In the last row of each panel, we pool the individual forecasts by taking an
arithmetic mean. Based on the Clark and West’s (2007) test, *, ** and *** indicate significance at the 10%,
5% and 1% levels for the positive R2

OS, respectively.

Out-of-sample periods 2001–2020 2006–2020 2011–2020

Panel A: Maximum Sharpe ratio of 0.6
xt = ISBW 0.231 0.36 1.905**
xt = ISHJT Z 2.383** 0.532 1.776*
xt = SSI 2.148** 2.413** 1.497*
Pooling 2.199** 1.198** 1.795*

Panel B: Maximum Sharpe ratio of 1.0
xt = ISBW −0.627 −0.325 1.705*
xt = ISHJT Z 1.282** −0.121 1.576*
xt = SSI 1.718** 2.347** 1.009*
Pooling 1.774** 0.955* 1.802*
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Table 3: Forecast encompassing test results, MHLN statistic p-values
This table reports p-values for the Harvey, Leybourne, and Newbold’s (1998) MHLN statistic for the out-
of-sample forecasting. The forecasts are derived from option bounds, traditional predictors, and combined
predictors. The statistic corresponds to an upper-tail test of the null hypothesis that the forecast given in the
column heading encompasses the forecast given in the row heading against the alternative hypothesis that
the forecast given in the column heading does not encompass the forecast given in the row heading. The
out-of-sample period is 2001:01–2020:12.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
HA Bound Bound Bound ISBW ISHJT Z SSI Bound Bound Bound Pooling

+ Slackness (OLS) + ISBW + ISHJT Z + SSI

HA 0.154 0.059 0.020 0.031 0.055 0.021 0.075 0.177 0.098 0.323

Bound 0.743 0.038 0.024 0.104 0.178 0.070 0.150 0.310 0.218 0.490

Bound + Slackness 0.797 0.686 0.036 0.325 0.463 0.324 0.288 0.588 0.568 0.794

Bound (OLS) 0.791 0.651 0.608 0.536 0.614 0.568 0.479 0.685 0.667 0.760

ISBW 0.292 0.092 0.077 0.011 0.692 0.120 0.502 0.823 0.270 0.960

ISHJT Z 0.088 0.038 0.043 0.009 0.090 0.045 0.182 0.759 0.125 0.746

SSI 0.077 0.024 0.029 0.018 0.051 0.078 0.071 0.174 0.888 0.496

Bound + ISBW 0.161 0.069 0.062 0.009 0.176 0.352 0.067 0.644 0.142 0.804

Bound + ISHJT Z 0.050 0.030 0.034 0.007 0.046 0.124 0.030 0.072 0.076 0.517

Bound + SSI 0.029 0.016 0.023 0.015 0.021 0.028 0.067 0.035 0.073 0.256

Pooling 0.028 0.017 0.021 0.008 0.007 0.033 0.030 0.030 0.127 0.100
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Table 4: Economic values
This table provides various economic metrics for a mean-variance investor characterized by a relative risk
aversion coefficient of three. The investor reallocates between equities and risk-free bills on a monthly
basis during the out-of-sample period from 2001:01 to 2020:12. The allocation weights depend on the
return forecasts as indicated by panel headings. The computed performance measures encompass out-
of-sample average excess return, standard deviation, Sharpe ratio (SRatio), certainty equivalent return
(CER), DeMiguel, Garlappi, and Uppal (2009) return-loss value, and Fleming, Kirby, and Ostdiek (2001)
performance fee (Fee). For both SRatio and CER, we additionally calculate the disparity between various
competing models and the historical mean benchmark. All results are annualized. *, ** and *** indicate
significance at the 10%, 5% and 1% levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Avg. Ret (%) S.D. (%) SRatio CER (%) SRatio diff CER diff Ret-loss (%) Fee (bps)

Panel A: Prevailing mean benchmark

HA 1.994 9.390 0.212 0.672

Panel B: Option bounds

Bound 0.007 15.790 0.000 −3.733 −0.212 −4.408 3.346 −442.558
Bound + Avg slackness 1.310 20.796 0.063 −5.177 −0.149 −5.841 3.106 −589.686
Bound (OLS) 2.701 18.569 0.145 −2.471 −0.067 −3.132 1.243 −316.664

Panel C: Traditional predictors
xt = ISBW 5.651 20.548 0.275 −0.683 0.063 −1.348 −1.287 −140.101
xt = ISHJT Z 7.509 18.459 0.407 2.398 0.194* 1.732 −3.589 169.751
xt = SSI 8.961 20.608 0.435 2.590 0.222* 1.946 −4.584 189.232

Panel D: Combined predictors
xt = ISBW 7.503 19.281 0.389 1.926 0.177 1.260 −3.408 121.886
xt = ISHJT Z 8.403 19.470 0.432 2.717 0.219* 2.049 −4.268 200.599
xt = SSI 10.154 19.342 0.525 4.543 0.313** 3.896 −6.047 385.479
Pooling 9.121 18.737 0.487 3.855 0.274** 3.194 −5.142 315.806
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Table 5: R2
OS statistics (in percent) for NBER-dated business cycles

This table presents out-of-sample R2 statistics (R2
OS) as percentages for 1-month market excess return

forecasts derived from option bounds, time-series predictors, and combined predictors. Additionally,
we provide distinct R2

OS values for NBER-dated expansions and recessions. The out-of-sample period
considered spans from 2001:01 to 2020:12. In the last row of Panel C, we pool the individual forecasts
from combined predictors by taking an arithmetic mean. Based on the Clark and West’s (2007) test, * and
** indicate significance at the 10% and 5% levels for the positive R2

OS, respectively.

Sub-periods Overall Expansions Recessions

Panel A: Option bounds
Bound −1.450 0.768 −5.560
Bound + Avg slackness −2.533 0.162 −7.527
Bound (OLS) −8.445 −5.219 −14.425

Panel B: Traditional predictors
xt = ISBW −1.443 2.000** −7.825
xt = ISHJT Z −0.268 0.307* −1.332
xt = SSI −0.776 −0.146 −1.944

Panel C: Combined predictors
xt = ISBW −0.788 2.321** −6.549
xt = ISHJT Z 0.809** 0.814* 0.800
xt = SSI 0.695** −0.084 2.139
Pooling 1.417** 2.135** 0.088
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Table 6: R2
OS statistics (in percent) for longer-horizon forecasts

This table displays out-of-sample R2 statistics (R2
OS) as percentages for 3-, 6-, and 12-month market excess

return forecasts utilizing option bounds, stock market predictors, and combined predictors. In the last row
of Panel C, we pool three individual forecasts from three combined predictors by taking an arithmetic mean.
The out-of-sample period is 2001:01–2020:12. Based on the Clark and West’s (2007) test, ** and ***
indicate significance at the 5% and 1% levels for the positive R2

OS, respectively.

Horizons 3-month 6-month 12-month

Panel A: Option bounds

Bound 0.799 5.582*** 7.329***
Bound + Slackness −2.693 −2.107 −13.936
Bound (OLS) −7.572 8.250*** 2.229**

Panel B: Traditional predictors

xt = ISBW 1.181*** 6.227*** 13.252***
xt = ISHJT Z 2.300*** 5.861*** 12.594***
xt = SSI 3.471*** 9.445*** 12.671***

Panel C: Combined predictors
xt = ISBW −1.136 2.341*** 8.478***
xt = ISHJT Z 2.435*** 6.421*** 11.907***
xt = SSI 4.055*** 9.430*** 15.711***
Pooling 6.065*** 14.105*** 26.975***
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Table 7: R2
OS statistics (in percent) for alternative function forms of k(xt)

This table reports out-of-sample R2 statistics (R2
OS) in percent for 1-, 3-, 6-, and 12-month market excess

return forecasts based on the combined predictors such that

bt [k(xt)] = k(xt)

[
(T − t)R f ,tSVIX2

t→T +R f ,t

]
−R f ,t ,

where R f ,t is the gross return on an risk-free asset, SVIX2
t→T is computed from market prices of index

options as in Martin (2017), and xt is one of the sentiment variables. We consider two alternative forms for
k(xt) as indicated by the panel headings. In the last row of each panel, we pool the individual forecasts from
combined predictors by taking an arithmetic mean. The out-of-sample period is 2001:01–2020:12. Based
on the Clark and West’s (2007) test, *, ** and *** indicate significance at the 10%, 5% and 1% levels for
the positive R2

OS, respectively.

Horizons 1-month 3-month 6-month 12-month

Panel A: Exponential form k(xt) = exp(a+bxt)+ c

xt = ISBW −0.879 −1.282 2.043*** 8.041***
xt = ISHJT Z 0.883** 2.348*** 5.885*** 11.297***
xt = SSI 0.768** 3.360*** 8.528*** 15.465***
Pooling 1.443** 5.783*** 13.489*** 26.456***

Panel B: Linear form k(xt) = (a+bxt)

xt = ISBW −0.285 1.585*** 6.087*** 14.390***
xt = ISHJT Z 0.875** 2.690*** 5.880*** 13.904***
xt = SSI 0.448** 3.575*** 8.764*** 14.387***
Pooling 1.325** 6.245*** 13.746*** 26.065***
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Table 8: R2
OS statistics (in percent) by using both SVIX and VIX

This table reports out-of-sample R2 statistics (R2
OS) in percent for 1-month market excess return based on the

combined predictor. The combined predictor takes the form such that,

bt [k(xt)] =


k(xt)

[
(T − t)R f ,tSVIX2

t→T +R f ,t

]
−R f ,t , if t ≥ 1996

k(xt)

[
(T − t)R f ,tVIX2

t→T +R f ,t

]
−R f ,t , if t < 1996

,

where R f ,t is the gross return on an risk-free asset, SVIXt→T is computed from market prices of index options
as in Martin (2017), VIXt→T is CBOE VIX index, xt is one of the three sentiment variables including Baker
and Wurgler’s (2006) sentiment index (ISBW ), Huang et al.’s (2015) sentiment index (ISHJT Z) and Rapach,
Ringgenberg, and Zhou’s (2016) short interest index (SSI); and k(xt) = exp(a+bxt). In the last row of Panel
C, we pool the individual forecasts from combined predictors by taking an arithmetic mean. The full sample
spans from 1990 to 2020, and we consider four out-of-sample testing periods as indicated by the column
headings below. Based on the Clark and West’s (2007) test, *, ** and *** indicate significance at the 10%,
5% and 1% levels for the positive R2

OS, respectively.

Out-of-sample periods 2001−2020 2006−2020 2011−2020

Panel A: Option bounds by SVIX and VIX

Bound −1.450 −2.214 0.741
Bound + Slackness −2.024 −2.268 2.436
Bound (OLS) −6.761 −8.018 −2.277

Panel B: Traditional predictors

xt = ISBW −0.513 −0.128 1.979*
xt = ISHJT Z 0.730* 0.525 0.87
xt = SSI 0.303** 1.798** 0.749*

Panel C: Combined predictors

xt = ISBW −0.061 −0.176 1.822*
xt = ISHJT Z 1.625** −0.103 1.528*
xt = SSI 1.498** 2.027** 1.279*
Pooling 1.686** 0.825* 1.872*
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Figure 1: Out-of-sample forecasts of market excess return
This figure illustrates out-of-sample market excess return forecasts (expressed as percentages) for the period
2001:01 to 2020:12. The forecasts are generated using the predictor (or method) specified in the respective
panel heading, along with the historical average benchmark. The term ”Pooling” refers to the aggregation
of three individual forecasts from three combined predictors using an arithmetic mean. Vertical lines denote
NBER-dated business-cycle peaks (P) and troughs (T).
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Figure 2: Distribution of ex-ante Sharpe ratios
This figure plots the ex-ante Sharpe ratio perceived by the investor at time t when forecasting the return for
the subsequent period within the span of 2001:01 to 2020:12 . The formula for calculating the Sharpe ratio
is as follows:

SR j,t =
r̂ j,t+1

σ̂t+1
,

where r̂ j,t+1 is the forecasted excess return on the S&P 500 index at time t based on either Martin
(2017), combining bound and short interest index, or by pooling three individual forecasts from combined
predictors. σ̂t is the forecasted volatility, computed from historical return using a 5-year rolling window.
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Figure 3: Bias-Variance decomposition
This figure presents the bias-variance decomposition of the Mean Squared Prediction Error (MSPE) using
forecasts derived from option bounds, stock market predictors, and combined predictors during the out-of-
sample period from 2001:01 to 2020:12.
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Figure 4: Log cumulative excess returns for portfolios out-of-sample
Each panel depicts the log cumulative excess return for a portfolio constructed using the market excess
return forecast in the panel heading and the historical mean benchmark forecast for the period 2001–2020.
Vertical lines indicate NBER-dated business-cycle peaks (P) and troughs (T).
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Figure 5: Cumulative error difference relative to historical average
This figure plots the cumulative square prediction error for 2001:01–2020:12 such that

square error difference = (rt − r̄HA
t|t−1)

2 − (rt − r̂t|t−1)
2,

where r̄HA
t|t−1 is the historical average (HA), rt is the realized market excess return, and r̂|t−1 denotes the

forecast derived from either an option bound, a time-series (stock market) predictor, or a combined predictor.
Pooling denotes the aggregation of the three individual forecasts from the three combined predictors using
an arithmetic mean. Vertical lines indicate NBER-dated business-cycle peaks (P) and troughs (T).
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Figure 6: Violation of the lower bound by Martin (2017)
This figure plots the violation of the inequality in Martin (2017) for 2001:01–2020:12 such that

Et (RT )−R f ,t ≥
1

R f ,t
VarQt (RT ) .

The red bar signifies the violation of the above inequality, while the blue bar indicates its non-violation. The
green line represents investor sentiment by Baker and Wurgler (2006), which has been normalized to 1 unit.
Vertical lines denote NBER-dated business-cycle peaks (P) and troughs (T).

45



Figure 7: CBOE VIX and SVIX (in percent)
This figure illustrates the CBOE VIX index and Martin (2017) SVIX index (both expressed as percentages)
from January 1990 to December 2020. Vertical lines are used to indicate NBER-dated business-cycle peaks
(P) and troughs (T).
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