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Circuit breakers based on indices are commonly imposed in financial markets to reduce
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with multiple stocks to study how circuit breakers affect joint stock price dynamics and

cross-stock contagion. We show that circuit breakers can cause crash contagion, volatility

contagion, and high correlations among otherwise independent stocks, especially in bad

times. Our analysis suggests that circuit breakers rules might have exacerbated the

market plunges and extreme volatility triggered by the COVID-19 pandemic. We propose

an alternative circuit breaker approach that does not cause cross-stock contagion.
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1. Introduction

Circuit breakers in financial markets based on indices are widely implemented in many

countries (e.g., the United States, France, Canada, and China) as one of the measures

aimed at stabilizing market prices in bad times. In most cases, when the percentage

decline in a market index reaches a regulatory threshold, the circuit breaker is triggered

and trading is halted for a period of time for the entire market. Recent COVID-19

fears triggered circuit breakers multiple times across many countries including the United

States, Japan, and South Korea. For example, circuit breakers on the S&P 500 were

triggered twice during the week of March 9, 2020 and plunged almost 10% on March 12,

2020. In a dramatic move, Chinese regulators removed a four-day-old circuit breakers

rule after it was triggered twice in the week of January 7, 2016. One open question

in the existing literature on circuit breakers (e.g., Chen, Petukhov, and Wang (2017),

Greenwald and Stein (1991), Subrahmanyam (1994)) is how circuit breakers affect the

systemic risk caused by stock return correlations and market-wide contagion in bad times.

In this paper, we develop a continuous-time asset pricing equilibrium model to shed some

light on this important issue.

Contrary to regulatory goals, we show that in bad times, circuit breakers can cause

crash contagion, volatility contagion, and high correlations among otherwise independent

stocks, and can significantly accelerate market decline and increase market volatility.

Our analysis suggests that the circuit breakers rules might have significantly exacerbated

the international market plunges and extreme volatility triggered by the COVID-19 pan-

demic, because of the contagion effect. Our analysis can also help explain the concurrence

of the implementation of the circuit breakers rule and the significant market tumble in

the week of January 7, 2016 in Chinese stock markets. Our model suggests that market-

wide circuit breakers may be a source of financial contagion and a channel through which

idiosyncratic risks become systemic risks. We propose an alternative circuit breaker

approach based on individual stocks, rather than an index, that does not cause either

correlation or any contagion.1

In our model, investors can invest in one risk-free asset and two risky assets (“stocks”)

with independent jump diffusion dividend processes to maximize their expected utility

from their final wealth at time T . Investors have heterogeneous beliefs about the drift

1Needless to say, circuit breakers may play a positive role in stabilizing markets. For example, they
may reduce the effect of overreaction, panic, and herding on stock prices. Our model does not consider
some potential benefits of market closure that can potentially justify the imposition of circuit breakers
and is designed to shed light on some potential costs of circuit breakers.
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of a dividend process and the disagreement between two types of investors is stochastic.

To highlight the role of circuit breakers, we assume that the investors have exponential

preferences so that, in the absence of circuit breakers, the equilibrium stock returns are

independent. The stock market is subject to a market-wide circuit breaker rule in the

sense that if the sum of the two stock prices (the index) reaches a threshold, the entire

stock market is closed until T .

The intuition for our main results that circuit breakers increase return correlations,

cause contagion of crash and volatility, accelerate market decline, and raise market volatil-

ity is as follows. After the circuit breaker is triggered, the market is closed, and thus risk

sharing is reduced, which in turn causes stock prices to be likely lower than those without

market closure. Therefore, when an idiosyncratic negative shock to the price of one stock

occurs, the sum of stock prices (in general, the index of the market) gets smaller, the

probability of reaching the circuit breaker threshold increases, and thus the price of the

other stock may also decrease in anticipation of the more likely market closure. This link

through the circuit breaker induces the positive return correlation, even though stocks

are independent in the absence of the circuit breaker. When the idiosyncratic shock is

large, and thus the index becomes close to the circuit breaker, this increase in the cor-

relation is even greater because the likelihood of market closure is much higher. In the

extreme case where one stock crashes and the circuit breaker is triggered, the price of

the other stock must jump down to the after-market-closure level. This results in crash

contagion. Because, after some stocks fall in prices, the index gets closer to the circuit

breaker threshold, other stock prices also fall due to the fear of market closure, which in

turn drives the index even closer to the threshold, and so on. It is this vicious cycle that

may increase market volatility. In addition, as one stock becomes more volatile (e.g., due

to an increase in the volatility of its dividend), the likelihood of triggering the circuit

breaker becomes greater, and thus the prices of other stocks also become more volatile.

This explains why a crash of one stock may cause another stock to crash and volatility

can transmit across stocks even though stocks are independent in the absence of circuit

breakers. These contagion effects may transform idiosyncratic risks into systemic risks.

Our results suggest that to reduce the contagion effects and the systemic risks, it is

better to impose circuit breakers on individual stocks. In this alternative approach, the

threshold is based on individual stock returns: when a stock’s circuit breaker is triggered,

only trading in this single stock is halted. This alternative approach does not increase

correlations or cause any form of contagion. We show that with this alternative approach,

stock prices are generally higher, a market-wide large decline is less likely, and systemic
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risk is lower, compared to those with circuit breakers imposed on an index.

In the model, we assume there are only two stocks in the index on which the circuit

breakers are based. One possible concern is that in practice indices typically consist of

hundreds of stocks (if not more) and therefore it is unlikely that one stock’s fall would

trigger the fall of many other stocks. On the other hand, in bad times, markets typically

focus on a small number of key factors such as Federal Reserve decisions and major

economic news. Each of the two stocks in our model represent a large group of stocks

that are significantly exposed to a common risk factor in bad times. When there is a bad

shock in the risk factor, the prices of the large group of stocks go down, which can drag

down another large group of stocks through the circuit breakers connection even though

the latter group of stocks is not exposed to the risk factor.

Our paper is motivated by the seminal paper Chen, Petukhov, and Wang (2017).

Using a dynamic asset pricing model with a single stock, Chen, Petukhov, and Wang

(2017) are the first to show in a dynamic equilibrium setting that, contrary to some of

the main goals of regulators, a downside circuit breaker may lower stock price, increase

market volatility, and accelerate market decline (which they call the “magnet effect”).

Our analysis is an extension of their model to a dynamic equilibrium model with multiple

stocks to examine the cross-stock contagion effect of circuit breaker rules. We show that

the magnet effect they find is robust to a setting with multiple stocks and becomes

even stronger because of the contagion effect. An important difference from their model

is that we incorporate a jump risk, which can be significant in bad times. Because

of the jump risk, circuit breakers have a possible price limit effect (i.e., stock prices

cannot fall below the circuit breaker threshold level) and the market can crash. We

show that, in the presence of jump risk, a crash in one stock can cause a crash in an

otherwise independent stock, and circuit breakers can reduce market volatility in some

states due to the price limit effect. In addition, in Chen, Petukhov, and Wang (2017) the

main mechanism through which circuit breakers affect price dynamics is the difference

in leverage before and after market closure. Before market closure, investors face no

constraints on leverage, but after market closure they cannot lever at all to ensure solvency

during the closure. As a result, investors need to completely unlever when the circuit

breaker is triggered, which magnifies the effect of market closure. In this paper, there is

no constraint on leverage either before or after market closure. Our results suggest that,

even in the absence of leverage constraints, the magnet effect is still present and circuit

breakers can still have a large impact on price dynamics.

Among other theoretical work related to circuit breakers, Greenwald and Stein (1991)
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show that in a market with limited participation, circuit breakers can help coordinate

trading for market participants. Subrahmanyam (1994) demonstrates that circuit break-

ers can increase price volatility because investors may shift their trades to earlier periods

with a lower liquidity supply if there is information asymmetry. Hong and Wang (2000)

examine the impact of periodic exogenous market closure on asset prices and show that

their model produces rich patterns of trading and returns consistent with empirical find-

ings.

Many empirical studies find evidence against advocates of circuit breakers (including

market-wide circuit breakers, price limits, and trading pauses). For example, exploiting

Nasdaq order book data, Hautsch and Horvath (2019) show that trading pauses cause

extra volatility and reduce price stability and liquidity after the pause, but enhance

price discovery during the break. Kim and Rhee (1997) find evidence from Tokyo Stock

Exchange data suggesting that the price limit system may be ineffective in the sense that

price limits may cause higher volatility levels, prevent prices from efficiently reaching their

equilibrium level, and interfere with trading. Lauterbach and Ben-Zion (1993) examine

the behavior of the Israeli stock market to study the performance of circuit breakers

during the October 1987 crash. They find that circuit breakers reduced the next-day

opening order imbalance and the initial price loss; however, they had no effect on the

long-run response. Lee, Ready, and Seguin (1994) examine the effect of firm-specific New

York Stock Exchange (NYSE) trading halts and find that trading halts do not reduce

either volume or price volatility during the post-halt period. Goldstein and Kavajecz

(2004) focus on the NYSE during the October 1997 market break and demonstrate the

magnet effect, that is, an acceleration of activity approaching the market-wide circuit

breaker.2

Unlike the existing literature, this paper studies impacts of market-wide circuit break-

ers on the dynamic interactions among multiple stocks. Even though circuit breakers are

designed exclusively to stabilize markets in bad states, we find that market-wide cir-

cuit breakers can have significant crash and volatility contagion effects, especially in bad

states. To the best of our knowledge, this prediction is new to both the theoretical and

2A few other studies on market halts focus on other related issues. For example,
Ackert, Church, and Jayaraman (2001) conduct an experimental study to analyze the effects of man-
dated market closures and temporary halts on market behavior. Corwin and Lipson (2000) study order
submission strategies of traders around market halts, providing a detailed description of the mechanics
of trading halts and identifying traders who provide liquidity. Christie, Corwin, and Harris (2002) study
the impact on post-halt market prices of Nasdaq’s alternative halt and reopening procedures. Their re-
sults are consistent with the hypothesis that increased information transmission during the halt reduces
post-halt uncertainty.
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the empirical literature on circuit breakers.

The rest of this paper is organized as follows. In Section 2, we formulate the basic

market model. In Section 3, we solve the market equilibrium in the absence of circuit

breakers. In Section 4, we study the market equilibrium when there are circuit breakers.

In Section 5, we quantitatively examine the impact of circuit breakers on equilibrium

prices and their correlation. Section 6 concludes. All proofs are provided in the Appendix.

2. The Model

We consider a continuous-time exchange economy over the finite time interval [0, T ].

Investors can trade two stocks, Stock 1 and Stock 2, and one risk-free asset. Each of the

two stocks in our model represents a group of stocks that share the same significant risk

exposure in bad times. The risk-free asset has a net supply of zero and the interest rate

can be normalized to zero because there is no intertemporal consumption in our model.

The total supply of each stock is one and each stock pays only a terminal dividend at

time T . The dividend processes are exogenous and publicly observed. Uncertainty about

dividends is represented by a standard Brownian motion Zt and an independent standard

Poisson process Nt defined on a complete probability space (Ω,F ,P). An augmented

filtration {Ft}t≥0 is generated by Zt and Nt.

There is a continuum of investors of Types A and B in the economy, with a mass of

1 for each type. For i = A,B and j = 1, 2, Type i investors are initially endowed with

θij0 shares of Stock j but no risk-free asset, with 0 ≤ θij0 ≤ 1 and θAj0 + θBj0 = 1. For Type

A investors, the probability measure is PA, which is the same as the physical probability

measure P. Under Type A’s probability measure, Stock 1’s dividend process evolves as:

dD1,t = µA
1 dt+ σdZt, (1)

and Stock 2’s dividend process follows a jump process with drift:

dD2,t = µ2dt + µJdNt, (2)

with Dj,0 = 1 for j = 1, 2. Stock 1’s dividend growth rate µA
1 , Stock 1’s dividend volatility

σ, and Stock 2’s dividend growth rate µ2 are all constants. The Poisson process Nt has

a constant jump intensity of κ and a constant jump size of µJ .

Relative to Type A investors, Type B investors have different beliefs about the divi-
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dend process D1,t and employ a different probability measure PB, under which the divi-

dend process D1,t evolves as

dD1,t = µB
1,tdt+ σdZB

t , (3)

where ZB
t is a Brownian motion under measure PB, and µB

1,t ≡ µA
1 + δt for a stochastic

process δt that measures the disagreement between Type A and Type B investors about

the growth rate of the dividend process D1,t. The Radon-Nikodym derivative between

the two probability measures is therefore defined as follows.

ηT =
dPB

dPA
|FT

= e
∫ T

0
δt
σ
dZt−

∫ T

0

δ2t
2σ2 dt. (4)

For the disagreement process δt, we assume that under the probability measure PA:

dδt = −k(δt − δ̄)dt+ νdZt, (5)

where δ̄ is the constant long-time average of the disagreement (which could be zero), k

measures the speed of mean reversion, and ν is the volatility of the disagreement.3

For simplicity and without loss of the main economic insights, we assume that there is

no disagreement about the dividend process D2,t between Type A and Type B investors.4

Circuit breakers have two direct effects: The first is themarket closure effect, i.e., investors

cannot trade for a period of time after circuit breakers are triggered; the second is the

price limit effect, i.e., stock prices cannot fall below the circuit-breaker threshold levels.

As we show later, without a jump in a dividend process, the price limit effect would

be absent because prices move continuously to the levels implied by the fundamentals.

Without stochastic disagreement, the market closure effect would be absent in our model

because investors would not trade after time zero even without circuit breakers. Thus

we propose the above two dividend processes to capture these two direct effects in the

simplest way.5

It follows from (1) and (3) that ZB
t = Zt −

δt
σ
dt and is thus independent of Nt.

3In the Appendix, we show that this δt process is consistent with Kalman filtering when Type B
investors do not know the expected growth rate of Stock 1’s dividend.

4In a previous version of the paper, we also allowed disagreement on the stochastic process followed
by Dividend 2. However, this more complicated model did not provide new insight into the effects of
circuit breakers. Another alternative, assuming disagreement about the dividend process D2,t but no
disagreement about the dividend process D1,t, also yields the same qualitative conclusions, but is more
complex. We therefore simply assume there is no disagreement about the dividend process D2,t in order
to focus on the main ideas.

5Using a jump diffusion dividend process for both stocks would not change our conclusions, but
complicates analysis.
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Hereafter, we use the convention E
i[·] to denote the expectation under the probability

measure Pi for i ∈ {A,B}.

To isolate the impact of circuit breakers on stock return correlations, we assume that,

for i ∈ {A,B}, Type i investors have constant absolute risk averse (CARA) preferences

over the terminal wealth W i
T at time T :

u(W i
T ) = − exp(−γW i

T ),

where γ > 0 is the absolute risk aversion coefficient. With CARA preferences, there is

no wealth effect and therefore in the absence of circuit breakers, it can be shown that

returns of the two stocks would be independent.

Trading in the stocks is subject to a market-wide circuit breaker rule as explained next.

Let Sj,t denote the price of Stock j = 1, 2 at time t ≤ T and the index St = S1,t + S2,t

denote the sum of the two prices.6 Define the circuit breaker trigger time

τ = inf{t : St ≤ h, t ∈ [0, T )},

where h is the circuit breaker threshold (hurdle). At the circuit breaker trigger time τ ,

the market is closed until T ,7 which results in the market closure effect, and the index

S1,t + S2,t of stock prices cannot go below h, which leads to the price limit effect. In

practice, the circuit breaker threshold h is typically equal to a percentage of the previous

day’s closing level. In this paper, we set h = (1 − α)S0 for a constant α (e.g., α = 0.07

for the level 2 market closure in the Chinese stock markets and for the level 1 market

closure in the U.S. market).

3. Equilibrium without Circuit Breakers

As a benchmark case, we first solve for the equilibrium stock prices when there is no

circuit breaker in place in the market. To do so, it is convenient to solve the planner’s

6Using a different form of the combination of the stock prices as the index would not change our main
results, as long as the index is increasing in both stock prices.

7Assuming that markets can reopen after being halted for a period of time would not change the
qualitative results on contagion. Quantitatively, the results are close in very bad times, because the fear
of market closure is similar whether the closure is long or relatively short in very bad times.
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problem:

max
WA

T ,WB
T

E
A
0 [u(W

A
T ) + ξηTu(W

B
T )], (6)

subject to the budget constraint WA
T +WB

T = D1,T+D2,T , where ξ is a constant depending

on the initial wealth weights of the two types of investors.

From the first order conditions, we obtain:

WA
T =

1

2γ
log(

1

ξηT
) +

1

2
(D1,T +D2,T ), (7)

WB
T = −

1

2γ
log(

1

ξηT
) +

1

2
(D1,T +D2,T ). (8)

Given the utility function u(x) = −e−γx, the state price density under Type A investors’

beliefs is

πA
t = E

A
t [ζu

′(WA
T )] = E

A
t [γζe

−γWA
T ] = γζξ

1
2E

A
t [η

1
2
T · e−

γ
2
(D1,T+D2,T )], (9)

for some constant ζ . Therefore, the stock price in equilibrium is given by

Ŝj,t =
E
A
t

[

πA
TDj,T

]

E
A
t [π

A
T ]

= Dj,t +
E
A
t

[

πA
T (Dj,T −Dj,t)

]

E
A
t [π

A
T ]

, j = 1, 2. (10)

Since the two dividend processes are independent, Equation (10) can be simplified into

Ŝ1,t =
E
A
t [π

A
1,TD1,T ]

E
A
t [π

A
1,T ]

, Ŝ2,t =
E
A
t [π

A
2,TD2,T ]

E
A
t [π

A
2,T ]

, (11)

where πA
1,t = E

A
t [η

1/2
T · e−

γ
2
D1,T ], πA

2,t = E
A
t [η

1/2
T e−

γ
2
D2,T ]. Thus, the two prices can be

computed separately when there are no circuit breakers, which implies that stock returns

are independent.

Next, we derive the equilibrium prices in closed form for the two stocks. Then,

we examine the impact of the jump and the stochastic disagreement on the market

equilibrium.

For Stock 1, the disagreement process is governed by the mean-reverting process (5).

The formula of equilibrium price Ŝ1,t can be derived analytically and is presented in the

following proposition.

PROPOSITION 1. When there are no circuit breakers, the equilibrium price of Stock
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1 is:

Ŝ1,t = D1,t + µA
1 (T − t)− 2

(

dA(t; γ)

dγ
+

dC(t; γ)

dγ
δt

)

, (12)

where A(t; γ) and C(t; γ) are given in Appendix A.

Proposition 1 shows that, in addition to the dividend payment, disagreement also

affects the price of Stock 1. As a result, the instantaneous volatility of the stock price

Ŝ1,t is not the same as that of the dividend process.

To show the importance of stochastic disagreement, we next show what would happen

if the disagreement were constant, that is, δt = δ0 for all t ∈ [0, T ]. In this case, the

equilibrium price would simplify to

Ŝ1,t = D1,t +
µA
1 + µB

1

2
(T − t)−

γ

2
σ2(T − t).

Thus, the equilibrium price of Stock 1 would be determined by the average beliefs of

Type A and B investors on the growth rate of the dividend and the volatility of the stock

price would be the same as the volatility of its dividend. Moreover, by applying Ito’s

lemma to the wealth process WA
t =

E
A
t [πA

T WA
T ]

E
A
t [πA

T ]
, we can find that the equilibrium number

of shares of Stock 1 held by Type A investors would be equal to

θ̂A1,t =
1

2
−

1

2γ

δ0
σ2

, (13)

which implies that the equilibrium number of shares of Stock 1 held by Type B investors

would be equal to

θ̂B1,t =
1

2
+

1

2γ

δ0
σ2

. (14)

Because the number of shares held by investors in the equilibrium would be constant

over time if the disagreement were constant, market closure would not have any impact

on the equilibrium price in the case of constant disagreement. This result implies that

stochastic disagreement is necessary for circuit breakers to have any impact through the

market closure channel.

For Stock 2, the equilibrium price is obtained by evaluating the second formula of

(11) directly. The result is presented in the following proposition.
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PROPOSITION 2. When there are no circuit breakers, the equilibrium price of Stock

2 is:

Ŝ2,t = D2,t + µ2(T − t) + κµJ(T − t)e−
γ
2
µJ . (15)

Proposition 2 shows that the instantaneous volatility (square root of instantaneous

variance) of the equilibrium price of Stock 2 is the same as that of the dividend process

because the rest of the terms in (15) are deterministic.8

Let θ̂Ai,t be the optimal shares of Stock i held by Type A investors. Then dWA
t =

θ̂A1,tdŜ1,t + θ̂A2,tdŜ2,t. We can obtain the optimal share holding of Stock 2 for Type A

investors as

θ̂A2,t =
1

2
,

which is a constant. This indicates that in the absence of circuit breakers, the equilibrium

trading strategy in Stock 2 for all investors is to buy and hold (similar to Stock 1 when

the disagreement is constant). Therefore, in the presence of circuit breakers, there is no

market closure effect for Stock 2.

4. Equilibrium with Circuit Breakers

In this section, we study equilibrium prices when the circuit breaker rule is imposed in

the market. We first solve for the indirect utility functions at the circuit breaker trigger

time τ by maximizing investors’ expected utility at τ ≤ T :

max
θi1,τ ,θ

i
2,τ

E
i[u(W i

τ + θi1,τ (S1,T − S1,τ ) + θi2,τ (S2,T − S2,τ ))], i ∈ {A,B}, (16)

with the market clearing condition θAj,τ + θBj,τ = 1 and the terminal condition Sj,T = Dj,T ,

where θij,τ is the optimal number of shares of Stock j held by Type i investors at time τ ,

for i ∈ {A,B} and j = 1, 2.

If the circuit breaker is triggered by a continuous decline in Stock 1’s price, then

the after-closure prices of both stocks will reflect their respective fundamental values.

If the circuit breaker is triggered by a jump in Stock 2 price, we assume that investors

can trade the stocks one more time, and in addition, Stock 1 can trade to reach its

fundamental value, but Stock 2’s price may be limited by the circuit breaker threshold.

8If there were stochastic disagreement on Stock 2’s dividend, then the volatility of the equilibrium
price of Stock 2 would be different from that of the dividend process.
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The rationale behind this assumption is that the jump can be viewed as an approximation

of a deterministic steep decline (less than but very close to a 90-degree drop) and during

the fast decline, Stock 1 can trade freely instantly and thus reach its fundamental value

before Stock 2’s price is limited by the circuit breaker threshold.9

Exploiting the dynamics of Dj,t and evaluating the expectation in the above optimiza-

tion problems, we reach a system of equations that determine θij,τ for i ∈ {A,B}, j = 1, 2.

Then the equilibrium prices are obtained through market clearing conditions. We sum-

marize the result in the following proposition.

PROPOSITION 3. Suppose that the market is halted at a stopping time τ < T .

(1) For Stock 1, the market clearing price at τ is given by

Sc
1,τ = D1,τ + µA

1 (T − τ)− γθA1,τσ
2(T − τ),

where the optimal share holding of Type A investors is

θA1,τ =
− 1

k̃
(1− ek̃(τ−T ))δτ −

kδ̄
k̃
(T − τ − 1−ek̃(t−T )

k̃
) + Iτ

Iτ + γσ2(T − τ)
, (17)

with k̃ = k − ν
σ
and

Iτ = −γσ2(τ−T )+
2νσγ

k̃
(T−τ−

1− ek̃(τ−T )

k̃
)+

ν2γ

k̃2
(T−τ−2

1− ek̃(τ−T )

k̃
+
1− e2k̃(τ−T )

2k̃
).

If k̃ = 0, the optimal share holding is simplified into:10

θA1,τ =
1

γ

(

γσ2 − γνσ(τ − T ) + 1
2
kδ̄(τ − T ) + ν2γ

3
(τ − T )2 − δτ

−νσ(τ − T ) + ν3

3
(τ − T )2 + 2σ2

)

.

(2) For Stock 2, the market clearing price is given by

Sc
2,τ = D∗

2,τ + µ2(T − τ) + κµJe
−

γ
2
µJ (T − τ),

where D∗
2,τ ∈ [D2,τ , D2,τ−) is such that Sc

1,τ +Sc
2,τ = h. The optimal share holding of Type

A investors at τ is specified in Section 4.1.

9Using another way of dividing the price limit effect does not produce qualitatively different results
on contagion.

10It can be verified that as τ → T−, θA
1,τ → 1

2
− δT

2γσ2 , which coincides with the optimal share holding
of Stock 1 by Type A in the case of constant disagreement.
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The proofs are collected in Appendix B.

By the definition of D∗
2,τ , we see that Sc

2,τ ≥ Ŝ2,τ , that is, the market clearing price

of Stock 2 is not less than the equilibrium price in the absence of circuit breakers. This

is because the circuit breaker prevents the price from falling beyond the threshold. As

a consequence, we show at the end of Appendix B that if there is only Stock 2 in the

market, its equilibrium price S2,t in the presence of circuit breakers should not be less

than Ŝ2,t, the equilibrium price in the absence of circuit breakers. The difference S2,t−Ŝ2,t

reflects the price limit effect.

If the circuit breaker is triggered by a decline in the price of a stock with a continuous

dividend process, investors can continuously adjust the valuation to reflect the funda-

mentals represented by the dividend process, and thus the price limit effect is zero. In

contrast, when the circuit breaker is triggered by a jump in the price of a stock caused

by a jump in its dividend, the price is stopped at the threshold level, and thus there is a

strictly positive price limit effect almost surely.

In contrast, depending on parameter values, Stock 1’s price at τ may be higher or

lower than that without circuit breakers. Intuitively, (1) circuit breakers do not have a

price limit effect on Stock 1 because Stock 1’s dividend does not jump; and (2) the market

closure effect of circuit breakers can increase or decrease the stock price compared to the

case without circuit breakers, because market closure may reduce expected net sales or

expected net purchases depending on the distribution of the disagreement and the share

holdings at the trigger time.

4.1 Optimal Share Holding of Stock 2 at τ

At τ , the equilibrium share holding for Stock 1 is exactly given by Prop. 3, because

circuit breakers do not cause any price distortion in Stock 1’s price due to the continuity

of Stock 1’s dividend, even when circuit breakers are triggered by a jump in the price of

Stock 2. For Stock 2, if it is the diffusion of Stock 1 that triggers a circuit breaker, the

share holding for Stock 2 at τ is the same as θ̂2,τ (= 1
2
, the share holding in the case of no

circuit breakers), as derived in Appendix B.2. However, if the market closure is caused

by a jump in Stock 2’s dividend, because of the price limit effect of the circuit breakers,

Stock 2’s price may not fall by the full amount that reflects the fundamentals. In other

words, the circuit breaker rule distorts Stock 2’s price and the equilibrium share holding

of Stock 2 is a corner solution.

What makes it complicated is that, for Stock 2, there is almost surely no equilibrium
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where both Type A and Type B investors maximize their individual utilities and the

market clears, because of the potential price limit effect of the circuit breakers. We

introduce a mechanism to determine the equilibrium share holding of Stock 2 when the

price limit effect is strictly positive as a result of a jump in Stock 2’s dividend.

Let θ̃i2,τ denote the share holding that would maximize the individual utility of Type

i at τ (the expression of θ̃i2,τ is given by (B.10) in Appendix B) and θi2,t denote the

equilibrium share holding at t ≤ τ , i = A,B. Then, if Type i investors would like to

sell/buy more than other investors would like to buy/sell respectively, the equilibrium

trading amount at τ is equal to the smaller amount that other investors would like to

buy/sell. If, on the other hand, all investors would like to trade in the same direction,

then no one can trade. More precisely, the equilibrium share holding of Stock 2 at τ is

determined by the following rule:11

• If (θA2,τ− − θ̃A2,τ ) · (θ
B
2,τ− − θ̃B2,τ ) > 0, then θi2,τ = θi2,τ−, i ∈ {A,B};

• otherwise

– If |θA2,τ− − θ̃A2,τ | ≤ |θB2,τ− − θ̃B2,τ |, then θA2,τ = θ̃A2,τ and θB2,τ = 1− θ̃A2,τ .

– If |θA2,τ− − θ̃A2,τ | > |θB2,τ− − θ̃B2,τ |, then θA2,τ = 1− θ̃B2,τ and θB2,τ = θ̃B2,τ .

Having obtained the market clearing prices and the optimal share holdings at the

circuit breaker trigger time τ , we now characterize the circuit breaker trigger time τ .

4.2 Circuit Breaker Trigger Time τ

The circuit breaker trigger time τ can be characterized using the dividend values. Because

the market is closed when the sum of prices reaches the threshold h, we have

h = Sc
1,τ + Sc

2,τ

= D1,τ +D∗
2,τ +

(

µA
1 + µ2 − γσ2θA1,τ + κµJe

−γµJ/2
)

(T − τ)

≥ D1,τ +D2,τ +
(

µA
1 + µ2 − γσ2θA1,τ + κµJe

−γµJ/2
)

(T − τ).

It follows that we may define the stopping time τ using the dividend processes as follows.

11As an alternative mechanism, we may assume that the price jump occurs so quickly that nobody
can adjust their holdings before the market is halted and thus θi

2,τ = θi
2,τ−, i ∈ {A,B}. In our numerical

analysis, we find that the results are qualitatively the same and quantitatively very close under these
two mechanisms. We discuss this issue extensively in Appendix F.
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PROPOSITION 4. Let h be the threshold. Define a stopping time

τ = inf{t ≥ 0 : D1,t +D2,t ≤ D(t)},

where

D(t) = h−
(

µA
1 + µ2 − γσ2θA1,t + κµJe

−γµJ/2
)

(T − t).

Then the circuit breaker is triggered at time τ when τ < T .

Note that D1,t +D2,t is a jump diffusion process; thus, the trigger time τ is the first

time the jump-diffusion process hits D(t).

4.3 Equilibrium Prices before τ

After obtaining the market clearing prices and the optimal portfolios at τ , we now study

the equilibrium stock prices at t < τ ∧ T . For i ∈ {A,B}, let

Gi
τ (θ

i
1,τ , θ

i
2,τ ) = Gi

1,τ +Gi
2,τ ,

where Gi
1,τ and Gi

2,τ are given by (B.5),(B.6), and (B.11) in Appendix B. It can be shown

that the indirect utility function of Type i ∈ {A,B} at τ can be written as follows:

V i(W i
τ , τ) = max

θi1,τ ,θ
i
2,τ

E
i[u(W i

τ + θi1,τ (S1,T −S1,τ )+ θi2,τ (S2,T −S2,τ ))] = −e−γ(W i
τ+Gi

τ (θ
i
1,τ ,θ

i
2,τ )).

Then we are ready to solve the planner’s problem:

max
WA

T∧τ ,W
B
T∧τ

E
A
0 [V

A(WA
T∧τ , T ∧ τ) + ξηT∧τV

B(WB
T∧τ , T ∧ τ)], (18)

subject to the wealth constraint WA
T∧τ +WB

T∧τ = S1,T∧τ + S2,T∧τ .

Similar to the case without circuit breakers, it follows from the first order conditions

and the wealth constraint that

WA
T∧τ =

1

2γ
log(

1

ξηT∧τ
) +

1

2
(S1,T∧τ + S2,T∧τ ) +

GB
T∧τ −GA

T∧τ

2
, (19)

WB
T∧τ = −

1

2γ
log(

1

ξηT∧τ
) +

1

2
(S1,T∧τ + S2,T∧τ ) +

GA
T∧τ −GB

T∧τ

2
. (20)
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In addition, the state price density under Type A investors’ beliefs is

πA
t = E

A
t [ζ(V

A(WA
T∧τ , T ∧ τ))′] = E

A
t [γζe

−γ(WA
T∧τ+GA

T∧τ )]

= γζEA
t [η

1/2
T∧τ · e

−
γ
2
(S1,T∧τ+S2,T∧τ+GB

T∧τ+GA
T∧τ )], (21)

for some constant ζ , where (V A(WA
T∧τ , T ∧ τ))′ denotes the marginal utility of wealth.

Thus, the stock price at t < T ∧ τ in equilibrium is given by

Sj,t =
E
A
t [π

A
T∧τSj,T∧τ ]

EA
t [π

A
T∧τ ]

, j = 1, 2, (22)

with

Sj,T∧τ =

{

Dj,T , if τ ≥ T,

Sc
j,τ , if τ < T.

(23)

In Equation (22), because the stopping time τ depends on the circuit breaker threshold

h, the equilibrium prices S1,t and S2,t also depend on h. On the other hand, in practice,

h depends on the initial stock prices S1,0 and S2,0, because h = (1− α)(S1,0 + S2,0) (e.g.,

α = 0.07 for China). Therefore, to obtain the equilibrium prices S1,t and S2,t, we need to

solve the following fixed point problem S1,0 and S2,0:

Sj,0 =
E
A
0 [π

A
T∧τSj,T∧τ ]

E
A
0 [π

A
T∧τ ]

, j = 1, 2, (24)

where the right hand side is a function of the initial stock prices S1,0 and S2,0.

In addition, the wealth process of Type A investors is

WA
t =

E
A
t [π

A
T∧τW

A
T∧τ ]

EA
t [π

A
T∧τ ]

, t < T ∧ τ . (25)

Suppose that

dWA
t = θ̄A1,tdS1,t + θ̄A2,tdS2,t,

where θ̄A1,t and θ̄A2,t are share holdings of Type A for Stock 1 and Stock 2, respectively. We

can recover the share holdings of Stock j at t by calculating quantities of EA
t [dW

A
t ·dSj,t],

E
A
t [dS1,t · dS2,t], and E

A
t [(dSj,t)

2], for j = 1, 2.

The following proposition guarantees the existence and uniqueness of a solution to

the above fixed point problem.

PROPOSITION 5. If the initial equilibrium index value Ŝ1,0 + Ŝ2,0 is positive in the
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absence of circuit breakers, there exists a unique solution to the fixed point problem (24)

in the presence of circuit breakers.

We leave the proof to Appendix D.

In the next section, we numerically compute the equilibrium prices and analyze the

impact of circuit breakers.

5. Impact of Circuit Breakers

In this section, we examine the impact of circuit breakers on the dynamics of the market.

The default parameter values for numerical analysis are set as follows, where daily growth

rates and volatilities are used.

µA
1 = 0.10/250, σ = 0.03, ν = 0.12,

k = 4, δ0 = −0.12, δ̄ = −0.12,

µ2 = 0.10/250, µJ = −0.1, κ = 0.25,

γ = 1, α = 0.07, T = 1.

Given these parameter values, the disagreement δt evolves as a random walk with constant

drift under Type B investors’ probability measure. Because δ0 < 0, Type B investors

initially under-estimate the growth rate of Dividend 1. Since our main goal is to examine

the impact of circuit breakers in bad times when the market is volatile and the crash

probability of some stocks is high (e.g., the U.S. market in the week of March 9, 2020

and the Chinese stock market in early January of 2016), we set the jump frequency high

and the jump size large, along with a high volatility of Stock 1’s dividend. Because of

the CARA preferences, the initial share endowment of the investors does not affect the

equilibrium. The circuit breaker is triggered when the sum of two prices (i.e., the index)

first reaches the threshold (1− α)(S1,0 + S2,0), i.e., drops 7% from the initial value.

One alternative to the market-wide circuit breakers is to impose a circuit breaker sep-

arately on each stock (instead of on an index). With this separate circuit breaker on each

stock, if a circuit breaker for a stock is triggered, only the trading in the corresponding

stock is halted. For example, when the circuit breaker of Stock 1 is triggered, only the

trading of Stock 1 is halted, but trading in Stock 2 is unaffected. Obviously, with separate

circuit breakers, equilibrium prices remain independent, in sharp contrast to the case of

market-wide circuit breakers. Let Ssep
j,t , j = 1, 2 denote the equilibrium prices of Stock j

in this benchmark. We compare the impact of circuit breakers on the stock prices when
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they are on an index and when they are on individual stocks.

5.1 Equilibrium Prices

By Prop. 1 and Prop. 2, we obtain the initial equilibrium prices Ŝ1,0 = 0.9717, Ŝ2,0 =

0.9741 in the absence of circuit breakers. When there are separate circuit breakers on

individual stocks, the equilibrium prices are Ssep
1,0 = 0.9711, Ssep

2,0 = 0.9800. The price

of Stock 1 at time 0 with circuit breakers is lower than that without circuit breakers,

because market closure prevents efficient risk sharing. On the other hand, Stock 2’s price

with a separate circuit breaker (i.e., Ssep
2,0 ) is always higher than the one without a circuit

breaker (i.e., Ŝ2,0) because the price limit effect of a circuit breaker prevents the price

from falling to the full extent after a jump of the dividend.

By solving the fixed point problem numerically, in the presence of market-wide circuit

breakers, we obtain the equilibrium prices S1,0 = 0.9715, S2,0 = 0.9745. Compared with

the prices without circuit breakers, Stock 1 price is lower and Stock price 2 is higher,

and the opposite is true compared with the prices with separate circuit breakers. This is

because the market closure effect for Stock 1 and the price limit effect for Stock 2 spill

over to the other stock in equilibrium.

5.2 Crash Contagion

Because the circuit breaker based on a stock index is triggered when the index reaches a

threshold, a crash in a group of stocks (e.g., from a downward jump in their dividends)

may trigger the circuit breaker and cause the entire market to be closed down. As a result,

the prices of otherwise independent stocks may also jump down because of the sudden

market closure. This pattern of cross-stock serial crashes is called crash contagion.

Figure 1 presents the sum of stock prices generated by the same sample path of divi-

dends under different circuit breaker implementations. In this sample path, the market-

wide circuit breaker is triggered by a jump in Stock 2’s price S2 as a result of a jump in

the dividend process D2. The sum of prices without circuit breakers (Ŝt, green dash line)

jumps down to a value below the circuit breaker threshold (h, dot line). Because of the

price limit effect, the sum of prices with market-wide circuit breakers (St, red sold line)

stops at the threshold. This shows that circuit breakers do have the function of price

support in bad times. As a result, the index level with circuit breakers is higher than

that without any circuit breakers. However, compared to the separate circuit breakers

rule, the net price limit effect is smaller. This is because with separate circuit breakers,
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Figure 1. A sample path of the sum of prices. The market is halted early at the time when the solid red line (the
sum) touches the threshold at the red cross. In this sample path, the breaker is triggered by a sudden jump occurring in
the dividend of Stock 2.

the price limit effect of circuit breakers is kept, while the market-wide closure effect is

avoided.

Figure 2 separates out the two individual stock prices using the same sample path as

in Figure 1. For Stock 2, its price jumps down toward to the market clearing price Sc
2,τ

(the red cross point). For Stock 1, even though there is no jump in its dividend process,

its price also jumps down because the price functions in the dividend before the jump

and after the jump are different. This figure illustrates that market-wide circuit breakers

can cause crash contagion across otherwise independent stocks.

Figures 1 and 2 use a particular sample path to illustrate the possibility of crash

contagion. In Figure 3, we plot the distribution of Stock 1’s price change conditional on

a jump in Stock 2’s price that triggers the circuit breaker and holding Stock 1’s dividend

constant at the crash time (red line) and the distribution of Stock 1’s price change with

no circuit breaker in place (green line). Figure 3 shows that without a circuit breaker,

the price change of Stock 1, which is independent of Stock 2, is normally distributed with

mean zero. In contrast, in the presence of circuit breakers, after a crash of Stock 2 that

triggers the circuit breaker, Stock 1’s price always goes down and the magnitude of the
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Figure 2. The two individual prices. Using the sample path as in Figure 1, the circuit breaker is triggered by a jump
occurring in the price S2,t (the right panel).

drop can be significant. Note that this change is clearly caused by the crash of Stock

2 because Stock 1’s dividend is held constant when the crash occurs. Therefore, this

distribution represents the distribution of the crash magnitudes in Stock 1 caused by the

crash in Stock 2.12

Our findings are consistent with what happened in March 2020 in the U.S. stock

market. The circuit breaker of the U.S. market was triggered four times in March 2020.

The first one occurred at 9:34:13 am on March 9th, less than five minutes after the

market opened. The second occurred at 9:35:43 on March 12th. Four days later, the

market lasted only one second on March 16th before the circuit breaker was triggered.

The fourth time occurred at 12:56:17 pm on March 18th. To illustrate that our results

are consistent with what happened around the circuit breaker trigger time, we use high-

frequency prices of the components of the S&P 500 index during the 10 minutes before

the circuit breaker was triggered on March 18th, 2020 and sort components by their total

dollar trading volumes. Simple regression of the return of the top 25%–50% of stocks

inside the S&P 500 index on the lagged return of the top 25% of stocks suggests that, in

12Because a crash in Stock 2 occurs randomly, the crash in Stock 1 caused by Stock 2’s crash is also
random, even though Stock 1’s dividend is kept constant when the crash occurs.
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Figure 3. Distribution of changes in Stock 1’s price when the circuit breaker is triggered by a jump in Stock 2’s
price. In the presence of a circuit breaker, the distribution is skewed negatively. Results for two methods of measuring the
changes are presented. Meanwhile, in the absence of circuit breakers the price changes follows a normal distribution.

the market crash of March 18th, 2020, the crash of the top 25%–50% of stocks followed

that of the top 25% of stocks. Figure 4 depicts how returns of S&P 500 component stocks

moved during the 10 minute period right before the market was halted.

Let Rtt and Rbt be the time t returns of the top 25% of stocks and the top 25%–50%

of stocks, respectively. We obtain the regression result as follows.

Rbt =− 0.01 + 0.5Rtt−∆t + 0.1Rtt + ǫt,

t-stat : (−9) (10.8) (2.2)

where ∆t equals one second. The regression result indicates that those stocks with

relatively low trading volumes followed the moves of those with high trading volumes.

While this does not prove the causal relationship, it suggests a pattern that is consistent

with cross-stock contagion.

A similar illustration is shown in Figure 5 for stocks in the China Securities Index

(CSI) 300 index on January 4th, 2016 when the Chinese stock market crashed. Simple

regression of the return of the top 25%-50% of stocks inside the CSI 300 index on the
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Figure 4. Evidence of contagion in real markets: the United States.

lagged return of the top 25% of stocks yields

Rbt =10−4 + 0.78Rtt−∆t + 0.25Rtt + ǫt,

t-stat : (0.67) (2.85) (0.92)

where ∆t equals 3 seconds. This result suggests that, in the market crash of January 4th,

2016, the crash of the top 25%–50% of stocks followed that of the top 25% of stocks.

5.3 Increased Correlations

With circuit breakers based on indices, a discrete jump (crash) in a stock is not necessary

to adversely affect otherwise independent stocks. Intuitively, even after a small decline

in the price of a stock, the index gets closer to the circuit breaker threshold and thus the

market is more likely to be closed early, which may lower the prices of otherwise indepen-

dent stocks, which in turn makes the index even closer to the circuit breaker threshold,

entering into a vicious circle. This contagion magnitude is typically smaller than that

caused by a crash in a stock in normal times, but can become much more significant and

create strong correlations when the circuit breaker is close to being triggered because of

the magnified vicious circle effect. We next show that a gradual change in the price of

a stock can indeed affect the price of another stock and can also cause high correlations
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Figure 5. Evidence of contagion in real markets: China.

among otherwise independent stocks when close to the circuit breaker threshold.

Figures 6 and 7 show how the same variables as those in Figures 1 and 2 change

along a different sample path, where the circuit breaker is triggered by a small change

in Stock 1’s price due to a decline in its dividend. Unlike the sample paths illustrated

in Figures 1 and 2, prices do not jump in Figures 6 and 7 because there is no jump in

dividends. On the other hand, as the right sub-figure of Figure 7 shows, Stock 2’s price is

adversely affected by the decline in Stock 1’s price. Figures 1–7 suggest that they become

positively correlated when the circuit breakers are close to being triggered, even though

the two stocks are independent in the absence of circuit breakers. As in the case of a

jump–triggered market closure, the prices under the separate circuit breakers rule (black

dot-dash lines) are higher than those with market-wide circuit breakers.

Consistent with our intuition, Figure 8 shows that the correlation between the two

prices with circuit breakers increases significantly as the index gets very close to the

threshold.13 When the index is far from the threshold, the correlation becomes close

13In the figure, “distance from threshold” is defined as the value of the index in exceed of the threshold.
Because the equilibrium index level is determined jointly by the dividend levels of the two stocks, the
way to vary the distance is not unique. In all the figures in this paper that plot against the distance to
threshold we fix D1,t and vary D2,t. We also used alternative ways such as fixing D1,t and varying D2,t

and find similar results.
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Figure 6. A sample path of the sum of prices along which the circuit breaker is triggered by Stock 1.

to zero, because the correlation without circuit breakers is zero. In addition, when the

potential market closure duration is large (T−t is large), the impact of the circuit breakers

on the correlation is even greater, because the fear of a market closure is stronger when

the potential market closure duration is longer. For example, conditional on the same

distance of 0.02 from the threshold, if it is later in the day at t = 0.75, then the correlation

is 0.2, while it is around 0.55 if it is early in the day at t = 0.

Surprisingly, Figure 8 shows that the correlation can become negative when the dis-

tance from the threshold is greater, before it approaches zero eventually. This negative

correlation is due to the price limit effect of the circuit breaker. To help explain this

channel, we plot stock price and the index in Figure 9 against changes in Stock 1’s divi-

dend. As Stock 1’s dividend increases, the price of Stock 1 increases (blue starred line),

as expected. However, the price of Stock 2 changes non-monotonically (red starred line).

When Stock 1’s dividend is very low such that a small change in either stock price would

trigger the circuit breaker, the likelihood of the circuit breaker being triggered by a jump

in Stock 2’s dividend is relatively small because the probability of a jump is low. Recall

that the price limit effect is strictly positive only when the circuit breaker is triggered

by a jump in Stock 2’s dividend. This implies that the present value of the price limit
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Figure 7. The individual stock prices along the same sample path as in the previous figure.

effect of the circuit breaker is small. As Stock 1’s dividend increases, the price of Stock

1 increases, and thus the distance from the circuit breaker threshold is increased. It be-

comes more likely that only a jump in Stock 2’s dividend can trigger the circuit breaker.

Therefore, the price limit effect increases, which in turn increases the price of Stock 2.

However, when Stock 1’s dividend is too large, the index moves far away from the thresh-

old and thus even a jump in Stock 2’s dividend would not trigger the circuit breaker.

Therefore, the price limit effect eventually approaches zero when D1 is high enough. This

explains the nonmonotonicity of the price of Stock 2 in D1, which in turn implies that

the correlation is positive when the index is close to the threshold, turns negative when

the index is further away, and converges to zero when the index is far enough, as shown

in Figure 8.

5.4 Acceleration of Market Decline: The Magnet Effect

Circuit breakers are implemented to protect the market from a fast decline. Con-

trary to this intention, Chen, Petukhov, and Wang (2017) show in a single-stock set-

ting that circuit breakers can accelerate a stock price decline compared to the case

without circuit breakers. This acceleration is what is called the “magnet effect” by
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Chen, Petukhov, and Wang (2017). However, it is not clear how the presence of multiple

stocks affects this magnet effect. Our following results suggest that, in the presence of

circuit breakers on stock indices, the probability of falling to the index threshold com-

pared to the case without circuit breakers is also increased, so the magnet effect found by

Chen, Petukhov, and Wang (2017) is robust to a multiple-stock setting and the absence

of leverage constraints after market closure. On the other hand, with separate circuit

breakers, such a probability may be reduced in some cases.

Figure 10 shows the probabilities of reaching the circuit breaker index threshold in

a given time interval with circuit breakers on the index, with separate circuit breakers

on individual stocks, and without circuit breakers. It suggests that the probability of

falling to the index threshold when there is a circuit breaker on the index (red dash-dot

lines) is higher than that without any circuit breakers (blue solid lines), which is in turn

higher than that when circuit breakers are on individual stocks (black dash lines). This

is because with circuit breakers on indices, when one stock goes down, the distance to the

circuit breaker threshold is shorter and the likelihood of an early market closure is greater.

As a result, other stock prices tend to go down, which in turn drags the index further

downward, resulting in a downward accelerating vicious circle, contrary to regulators’
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Figure 9. This figure illustrates why the correlation is positive when the threshold is close and why it becomes
positive when the distance is larger. Eventually, S2,t approaches a constant and the correlation becomes almost zero.

intention. Because of the contagion effect across stocks, the magnet effect in a model

with multiple stocks like ours can be stronger than that found in the single-stock setting

of Chen, Petukhov, and Wang (2017), ceteris paribus. In addition, when the potential

market closure duration is longer (e.g., at t = 0), this magnet effect is even stronger.

The main driving force for the magnet effect in Chen, Petukhov, and Wang (2017) is the

fear that one has to liquidate a levered position at the market closure time because after

market closure, leverage is prohibited by the solvency requirement. In contrast, in this

paper there is no change in the leverage level allowed before and after market closure.

Our results show that circuit breakers on indices can accelerate a market decline even

without the de-leverage channel.

In contrast, if circuit breakers are imposed on individual stocks, the probability of

falling to the index threshold can be lower than that without circuit breakers. This is

because individual circuit breakers prevent corresponding stock prices from falling below

their individual stock price thresholds and thus can decrease the probability of falling to

the index threshold compared to the case without circuit breakers. These results suggest

that separate circuit breakers can potentially slow down a market-wide decline, while

circuit breakers on indices tend to do the opposite.

Another measure of the magnet effect is how fast stock prices go down as the index
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Figure 10. This figure shows the probability that prices will reach the threshold with or without a circuit breaker.

gets close to the circuit breaker threshold. In Figure 11, we plot the average prices against

the time to market closure using simulated sample paths. More specifically, we simulate

a large number of sample paths of dividends, compute the corresponding stock prices,

and identify the circuit breaker trigger times for each sample path. Then we calculate the

average stock prices across all the sample paths at a given time prior to market closure.

The downward-concave shapes displayed in Figure 11 imply that as the index gets closer

to the threshold, stock prices fall faster. Figure 12 plots the average time it takes for

the index to fall by 1% against the distance to the threshold. It implies that the falling

speed increases as the index gets closer to the threshold. These patterns are consistent

with those observed in real markets, such as the U.S. market in the week of March 12th,

2020 and the January 2016 Chinese market when circuit breakers were first implemented

and then abandoned after four days.

5.5 Volatility Contagion

One of the regulatory goals of the circuit breaker is to reduce market volatility. We next

examine the circuit breaker’s impact on stock volatility and volatility contagion.

In Figure 13, we plot the ratios of the volatility with circuit breakers to that without

circuit breakers against the index’s distance from the circuit breaker’s threshold at two
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Figure 11. This figure shows average stock prices during a short period immediately prior to the early closure of the
market caused by Stock 1.

different time points t = 0 and t = 0.5. The figure suggests that, contrary to the

regulatory goal, circuit breakers can increase stock volatility. In addition, we find that

if the time to the end of the day is longer (i.e., the potential market closure duration is

greater), volatilities are even larger. When the distance from the threshold is sufficiently

large, instantaneous volatilities approach the corresponding levels in the absence of circuit

breakers.

Unlike Chen, Petukhov, and Wang (2017), however, as shown in Figure 13, circuit

breakers can reduce Stock 1 volatility when the index is sufficiently close to the thresh-

old. For Stock 2, its volatility is reduced for a wider range.14 This reduction is due to

the price limit effect, which is absent in Chen, Petukhov, and Wang (2017). Intuitively,

circuit breakers can limit the price drop and thus reduce price fluctuation. This volatility

reduction effect in some states is consistent with the conventional wisdom for imposing

circuit breakers: trading halts can reduce market volatility.

Next, we show that circuit breakers can also cause volatility contagion, i.e., an increase

in the volatility of one stock can cause an increase in that of another. Figure 14 plots

the volatility of Stock 1 against that of Stock 2 as we change the volatility of Stock 1’s

dividend for three levels of distance to the threshold. Figure 14 indicates that, indeed,

14Recall that the volatility when the distance is large is close to that in the absence of circuit breakers.
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Figure 12. This figure shows the average time spent for the sum of prices dropping 2% at various distances from the
threshold.

a higher volatility of Stock 1’s dividend causes a higher volatility of Stock 2, and in

addition, this increase in the volatility of Stock 2 gets magnified when the distance to the

threshold is shorter. This volatility contagion can amplify market-wide volatility, which

is contrary to the purpose of circuit breakers.

6. Correlated Dividends

In the preceding sections, the dividend processes are assumed to be uncorrelated and

we show that a strong correlation of the stock prices can emerge due to circuit break-

ers. One may suspect that, if the dividend processes are already correlated, then the

additional correlation caused by the circuit breakers may be small and thus the effect of

circuit breakers in increasing correlation is small in practice. To address this concern,

we now briefly discuss an extended model where the dividend processes are correlated

(the detailed derivation can be found in Appendix E) by assuming a diffusion term in the

dynamics of Stock 2’s dividend:

dD2,t = µ2dt+ σ2dZt + µJdNt.
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Figure 13. This figure plot the ratios of volatility with circuit breakers to that without circuit breakers against the
distance from the circuit breaker threshold.

Then the two dividend processes are correlated with correlation (suppose σ1 > 0)

ρD =
σ2

√

σ2
2 + κµ2

J

. (26)

Figure 15 compares correlations of stock prices for different correlation coefficients ρD of

the dividend processes.

The figure suggests that even when the dividends are correlated, the presence of circuit

breakers can significantly increase the correlation of stock prices. For example, when the

dividends’ correlation coefficient is 0.2, the increase in the correlation is still as high as

0.6. Furthermore, the presence of circuit breakers can even make negatively correlated

stocks in the absence of circuit breakers (σ1 < 0, σ2 < 0) become positively correlated.

This reversal is because as the index gets close to the threshold, the common fear for

market closure offsets the effect of the negatively correlated dividends and as a result the

correlation turns positive.
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7. Conclusion

Circuit breakers based on indices are commonly imposed in financial markets to prevent

market crashes and reduce volatility in bad times. We develop a continuous-time equi-

librium model with multiple stocks to study how circuit breakers affect joint stock price

dynamics, cross-stock contagion, and market volatility. Contrary to regulatory goals, we

show that in bad times, circuit breakers can cause crash contagion, volatility contagion,

and high correlations among otherwise independent stocks, and can significantly increase

volatility and accelerate market decline. Our analysis suggests that international mar-

ket plunges triggered by the COVID-19 pandemic may have been exacerbated by circuit

breakers rules because of the contagion effect of these circuit breakers. Our model shows

that market-wide circuit breakers may be a source of financial contagion and a channel

through which idiosyncratic risks become systemic risks, especially in bad times. An

alternative circuit breaker approach based on individual stock returns instead of indices

would alleviate such problems.
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Äıt-Sahalia, Y., T.R. Hurd, 2016. Portfolio choice in markets with contagion. Journal of

Financial Econometrics 14, 1-28.
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Appendix

A Price of Stock 1: Without Circuit Breakers

We assume that the disagreement process δt is stochastic and follows Equation (5). When

there are no circuit breakers, the equilibrium price of Stock 1 is independent of Stock

2 because of independent dividend processes. The price of Stock 1 can be obtained in

closed-form as follows.

We first evaluate E
A
t [π

A
1,T ]. Ignoring constants, we need to calculate

E
A
t [η

1/2
1,T e

−
γ
2
D1,T ] = E

A
t [e

Y1,T ] · f(t),

where f(t) is a deterministic function and,

Y1,T =

∫ T

0

(
δs
2σ

−
γσ

2
)dZs +

∫ T

0

(−
δ2s
4σ2

)ds.

Conjecture F (t, y, δ, δ2) = eA(t)+B(t)y+C(t)δ+H(t)
2

δ2 = E
A[eYT |Yt = y, δt = δ], with

A(T ) = C(T ) = H(T ) = 0 and B(T ) = 1. Substituting the conjecture into the mo-

ment generating function of the process (Yt, δt) and collecting the coefficients of y, δ, δ2

and constants, we obtain four ordinary different equations:

A′(t) +
1

8
γ2σ2B(t)2 + kδ̄C(t) +

ν2

2
(C(t)2 +H(t))−

γσν

2
B(t)C(t) = 0,

B′(t) = 0,

C ′(t)−
γ

4
B(t)2 + kδ̄H(t)− kC(t) + C(t)H(t)ν2 +

ν

2σ
B(t)C(t)−

γσν

2
B(t)H(t) = 0,

H ′(t)

2
−

1

4σ2
B(t) +

B(t)2

8σ2
− kH(t) +

ν2

2
H(t)2 +

νB(t)H(t)

2σ
= 0.

36



The solution of the ODE system is obtained as follows.

B(t) = 1,

H(t) =
e(D

+−D−)v2(t−T ) − 1

e(D+−D−)v2(t−T )D− −D+
D+D−,

C(t) =

∫ T

t

e
∫ s
t
f(x)dsg(s)ds =

1

∆(D− −D+e2∆(T−t))

·
(

−
γ

4
((D+ +D−)e∆(T−t) −D+e2∆(T−t) −D−)− (kδ̄ −

σνγ

2
)D+D−(e∆(T−t) − 1)2

)

,

A(t) =

∫ t

T

(−
1

8
γ2σ2 − kδ̄C(s)−

v2

2
(C(s)2 +H(s)) +

γ

2
vσC(s))ds,

where

∆ =

√

k2 +
v2

2σ2
−

vk

σ
,

D± =
k − v

2σ
±
√

k2 + v2

2σ2 −
vk
σ

v2
,

f(t) =− k + v2H(t) +
v

2σ
,

g(t) =−
γ

4
+ kδ̄H(t)−

γσv

2
H(t).

Then

E
A
t [e

YT ] = F (t, y, δ, δ2; γ) = eA(t)+B(t)y+C(t)δ+
H(t)

2
δ2 .

Next, we consider the first derivative of F with respect to γ to obtain E
A
t [e

YTZT ]. We

define

A(t; γ) = A(t), C(t; γ) = C(t).

Note that

dB(t)

dγ
=
dH(t)

dγ
= 0,

dC(t; γ)

dγ
=

∫ T

t

e
∫ s

t
f(x)dx[−

1

4
−

σv

2
H(s)]ds,

dA(t; γ)

dγ
=

∫ t

T

(
−σ2γ

4
− kδ̄

dC(s; γ)

dγ
− v2C(s; γ)

dC(s; γ)

dγ
+

vσ

2
C(s; γ) +

γvσ

2

dC(s; γ)

dγ
)ds.

Hence

E
A
t [e

YTZT ] = −
2

σ

d

dγ
E
A
t [e

YT ] = −
2

σ

d

dγ
F (t, y, δ, δ2; γ).
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Finally, the stock price in the equilibrium is given by

Ŝ1,t =
E
A
t [π

A
1,TD1,T ]

EA
t [π

A
1,T ]

=
E
A
t [π

A
1,TD1,T ]

F
= D1,0 + µA

1 T − 2

dF
dγ

F

= D0 + µAT − 2(
dA(t; γ)

dγ
+

dy

dγ
+

dC(t; γ)

dγ
δt)

= D1,0 + µA
1 T − 2(

dA(t; γ)

dγ
−

σ

2
Zt +

dC(t; γ)

dγ
δt).

The last equality above holds because Yt =
∫ t

0
( δs
2σ

− γσ
2
)dZs+

∫ t

0
(− δ2s

4σ2 )ds and Yt = y yield

dy/dγ = −1/2σZt. By D1,t = D1,0 + µA
1 t + σZt (µ

A
1 is constant), we obtain

Ŝ1,t =D1,t + µA
1 (T − t)− 2(

dA(t; γ)

dγ
+

dC(t; γ)

dγ
δt). (A.1)

In case δt is constant, i.e., v = k = 0 and δt ≡ δ0, we find that dA(t)/dγ = −σ2γ/4(t−

T ) and dC(t; γ)/dγ = −1/4(T − t). Thus, Ŝ1,t = D1,t+µA
1 (T − t)+(δ0/2−σ2γ/2)(T − t).

This is the equilibrium price of Stock 1 in the case of constant disagreement.

Since H(t) → 0 as t → T , we see that dC(t; γ)/dγ is negative when T − t is small.

Thus, it follows (A.1) that the instantaneous volatility of the stock price σŜ = σ−2dC(t)
dγ

ν

is greater than the dividend volatility σ when T − t is small, given ν is positive.

B Market Clearing Prices

B.1 Stock 1: Stochastic Disagreement

In the presence of circuit breakers, we cannot obtain the equilibrium price of Stock 1

directly. In this section, we derive the market clearing price of Stock 1 when a circuit

breaker is triggered and the market is closed early. Because the two dividend processes

are independent and we assume no leverage constraints when the market is halted, the

market clearing prices for the two stocks are independent of each other.

The disagreement δt is stochastic following (5), therefore µB
1,t = δt + µA

1 is stochastic

as well. In the presence of a circuit breaker, we solve for the market clearing price when

the market is halted. To do so, we solve the utility maximization problem

max
θA1,τ

E
A
τ [−e−γWA

T ],
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subject to WA
T = θAτ (D1,T − S1,τ ) +WA

τ , where WA
t is the wealth of Type A investors at

time t.

Using the dynamics D1,T = D1,τ + µA
1 (T − τ) + σ(ZT − Zτ), we obtain the optimal

portfolio of agent A as follows.

θA1,τ =
D1,τ − S2,τ + µA

1 (T − τ)

γσ2(T − τ)
. (B.1)

Next, we study the utility maximization problem of agent B:

max
θB1,τ

E
B
τ [−e−γ(WB

τ +θB1,τ (D1,T−S1,τ ))].

We first prove the following lemma.

Lemma B1. Suppose θ is a constant, then

E
B
t [e

−γθD1,T ] = eA(t,θ)+B(t,θ)D1,t+C(t,θ)δt ,

where

A(t, θ) = γθµA
1 (t− T )−

σ2

2
γ2θ2(t− T ) +

1

k̃
(−γθkδ̄ + νσγ2θ2)(T − t−

1− ek̃(t−T )

k̃
)

+
ν2γ2θ2

2k̃2
(T − t− 2

1− ek̃(t−T )

k̃
+

1− e2k̃(t−T )

2k̃
),

B(t, θ) = −γθ,

C(t, θ) =
−γθ

k̃
(1− ek̃(t−T )),

with k̃ = k − ν/σ. In particular, if k̃ = 0, then

A(t, θ) = γθµA
1 (t− T )−

σ2

2
γ2θ2(t− T ) +

1

2
(−γθkδ̄ + γ2θ2νσ)(t− T )2 −

ν2γ2θ2

6
(t− T )3,

B(t, θ) = −γθ,

C(t, θ) = γθ(t− T ).

Lemma B1 can be proved by using the moment generating function of process D1,t and

δt and solving an ODE system. Detailed deviations are omitted here.
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By the lemma,

E
B
τ [−e−γ(WB

τ +θB1,τ (D1,T−S1,τ ))] = −e−γWB
τ eA(t,θB1,τ )+C(t,θB1,τ )δτ e−γθB1,τ (D1,τ−S1,τ ).

Then the FOC with respect to θB1,τ yields that

γS1,τ − γD1,τ +
∂A(τ, θB1,τ )

∂θB1,τ
+

∂C(τ, θB1,τ )

∂θB1,τ
δτ = 0

or

S1,τ −D1,τ + µA
1 (τ − T )−

1

k̃
(1− ek̃(τ−T ))δτ − δ̄

k

k̃
(T − τ −

1− ek̃(τ−T )

k̃
) + θB1,τI(τ) = 0,

(B.2)

where

I(t) = −γσ2(t−T )+
2νσγ

k̃
(T −t−

1− ek̃(t−T )

k̃
)+

ν2γ

k̃2
(T −t−2

1 − ek̃(t−T )

k̃
+
1− e2k̃(t−T )

2k̃
).

It follows (B.1) that

S1,τ = D1,τ + µA
1 (T − τ)− θA1,τγσ

2(T − τ). (B.3)

Together with (B.2) and the market clearing condition θA1,τ + θB1,τ = 1, we obtain the

optimal share holding of Type A for Stock 1 at the time of market closure.

θA1,τ =
− 1

k̃
(1− ek̃(τ−T ))δτ − δ̄ k

k̃
(T − t− 1−ek̃(τ−T )

k̃
) + I(τ)

I(τ) + γσ2(T − t)
. (B.4)

Therefore, we find the market clearing price S1,τ by (B.3) where θA1,τ is given by (B.4).

In particular, in the case k̃ = 0 (or k = ν/σ),

θA1,τ =
1

γ

(

γσ2 − γνσ(τ − T ) + 1
2
kδ̄(τ − T ) + ν2γ

3
(τ − T )2 − δτ

−νσ(τ − T ) + ν2

3
(τ − T )2 + 2σ2

)

,
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and substituting it into (B.1), it follows that

S1,τ = D1,τ + µA
1 (T − τ)

+
γσ2 − γνσ(τ − T ) + 1

2
kδ̄(τ − T ) + ν2γ

3
(τ − T )2 − δτ

−νσ(τ − T ) + ν2

3
(τ − T )2 + 2σ2

σ2(τ − T ).

Finally, it is worthy mentioning that S1,τ may not be larger than Ŝ1,τ (the equilibrium

price in the absence of circuit breakers at time τ). In fact, for a relative large positive

δ0 and small ν (say, less than half of the volatility σ), the coefficient of δt in (B.3) can

always be less than the coefficient of δt in the formula of Ŝ1,τ . Thus, along with a small

γ, we can always have S1,τ < Ŝ1,τ . Under these conditions, the market clearing price with

circuit breakers can always be smaller than the price without circuit breakers at time τ .

Denote the market clearing price of Stock 1 by Sc
1,τ . Then by (B.3),

Sc
1,τ = D1,τ + µA

1 (T − τ)− γθA1,τσ
2(T − τ).

In addition, we obtain the value function of Type B investors:

V B
1 (τ,WB

τ ) = max
θB1,τ

E
B
τ [e

−γ(WB
τ +θB1,τ (D1,T−S1,τ ))] = e−γWB

τ e−γGB
1,τ ,

where −γGB
1,τ = −γθB1,τ (D1,τ − S2,τ ) + A(τ, θB1,τ ) + C(τ, θB1,τ )δτ , or

GB
1,τ = θB1,τ (D1,τ − S2,τ )−

1

γ
A(τ, θB1,τ )−

1

γ
C(τ, θB1,τ )δτ , (B.5)

and the value function of Type A investors:

V A
1 (τ,WA

τ ) = max
θA1,τ

E
A
τ [e

−γ(WA
τ +θA1τ (D1,T−S1,τ ))] = e−γWA

τ e−γGA
1,τ ,

where −γGA
1,τ = −γθA1,τ (D1,τ−S1,τ )−γθA1,τµ

A
1 (T−τ)+

γ2(θA1,τ )
2

2
σ2(T−τ) = −

γ2(θA1,τ )
2

2
σ2(T−

τ), or

GA
1,τ = θA1,τ (D1,τ − S1,τ ) + θA1,τµ

A
1 (T − τ)−

γ(θA1,τ )
2

2
σ2(T − τ) =

γ(θA1,τ )
2

2
σ2(T − τ).

(B.6)
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B.2 Stock 2: Jump

Note that for Stock 2 there is no disagreement on the dynamics of dividend process D2,t,

which follows

D2,t = D2,0 + µ2t+ µJdN2,t. (B.7)

In the text, the equilibrium price Ŝ2,t has been derived when there are no circuit breakers.

In this Appendix, we derive the market clearing price when a circuit breaker is triggered.

Suppose that the circuit breaker is triggered at τ < T . The individual optimization

problem of Type i ∈ {A,B} investors at τ is:

V i
2 (W

i
τ , τ) = max

θi2,τ

E
i
τ [− exp(−γ(W i

τ + θi2,τ (D2,T − S2,τ )))], (B.8)

subject to the market clearing condition θA2,τ + θB2,τ = 1, where W i
τ is the wealth owned

by Type i investors at time τ . It follows that

E
i
τ [u(W

i
τ + θij,τ(D2,T − S2,τ ))] = E

i
τ [u(W

i
τ + θi2,τ (D2,T −D2,τ ) + θi2,τ (D2,τ − S2,τ ))]

= −e−γW i
τ e−γθi2,τµ2(T−τ)−γθi2,τ (D2,τ−S2,τ )+κ(T−τ)(e

−γθi2,τ µJ−1).

The first order conditions with respect to θi2,τ for j ∈ {1, 2}, i ∈ {A,B} and the market

clearing conditions yield that

0 = D2,τ − S2,τ + µ2(T − τ) + κµJ(T − τ)e−γθA2,τµJ . (B.9)

Along with the market clearing condition: θA2,τ + θB2,τ = 1, we find θA2,τ = θB2,τ = 1
2
. This

is the same as the optimal share holding of Stock 2 of agent A in the absence of circuit

breakers.

Then it follows (B.9) that

S2,τ = D2,τ + µ2(T − τ) + κµJ(T − τ)e−
γ
2
µJ .

There may be a jump of D2,t occurring at t = τ . For such a case, the price of Stock

2 is limited by the threshold h and S2,τ = h− S1,τ . We define D∗
2,τ ∈ [D2,τ , D2,τ−), such

that

D∗
2,τ = h− S1,τ − µ2(T − τ)− κµJ(T − τ)e−

γ
2
µJ .
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Thus, in general the market clearing price of Stock 2 is

Sc
2,τ := h− S1,τ = D∗

2,τ + µ2(T − τ) + κµJ(T − τ)e−
γ
2
µJ .

When the stock price is Sc
2,τ , the first order condition (B.9) cannot be satisfied in

general. In other words, the individual utility cannot be maximized at θi2,τ = 1
2
. Define

θ̃i2,τ =
−1

γµJ
log

(

Sc
2,τ −D2,τ − µ2(T − τ)

κµJ(T − τ)

)

, (B.10)

which maximizes the individual utility function of Type i investors, i = A,B. It follows

the facts of D∗
2,τ ≥ D2,τ and no disagreement on D2,t that θ̃

A
2,τ = θ̃B2,τ ≤ 1

2
. In other words,

due to the threshold, the price of Stock 2 cannot drop to a correct level corresponding to

the true value of its dividend right after a jump. Thus, the investors would like to hold

fewer shares of the stock.

In addition, define

Gi
2,τ =max

θi2,τ

E
i
τ [− exp(−γ + θi2,τ (D2,T − S2,τ ))]

= θi2,τµ2(T − τ) + θi2,τ (D2,τ − Sc
2,τ )−

κ

γ
(T − τ)(e−γθi2,τµJ − 1). (B.11)

Then, the value function of Type i investors at τ can be expressed in terms of W i
2,τ and

Gi
2,τ as follows.

V i
2 (W

i
τ , τ) = −e−γW i

τ e−γGi
2,τ , i ∈ {A,B}.

By the expressions of GA
2,τ and GB

2,τ , it is easy to see that

Sc
2,τ +GA

2,τ +GB
2,τ = µ2(T − τ) +D2,τ −

κ

γ
(T − τ)(e−γµJ θ

A
2,τ + e−γµJθ

B
2,τ − 2),

which does not depend on Sc
2,τ directly. The quantity depends on the optimal share

holdings at τ : θA2,τ and θB2,τ , which are determined by the mechanism introduced in Section

4.1.

We consider a case where there is only Stock 2 in the market. Since there is no

disagreement on the dividend process D2,τ , the optimal share holding of Type A or B must

be 1/2 at any time t < τ . According to the mechanism, at τ both of the optimal share

holdings are 1/2 as well (nobody can sell or buy when the circuit breaker is triggered).
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On the one hand, the state price density for t < τ is

πA
2,t = E

A
t [ζ(V

A
2 (WA

T∧τ , T ∧ τ))′] = E
A
t [γζe

−γ(WA
T∧τ+GA

T∧τ )] = γζEA
t [e

−
γ
2
(S2,T∧τ+GB

T∧τ+GA
T∧τ )],

where ζ is a constant, is the same as the state price density π̂2,t in the absence of circuit

breakers, given θA2,τ = θB2,τ = 1/2. On the other hand, due to the the threshold, the

market clearing price Sc
2,τ is not less than Ŝ2,τ . Therefore, at t < τ the equilibrium price

S2,t in the presence of circuit breakers is greater than or equal to the equilibrium price

Ŝ2,τ in the absence of circuit breakers. This indicates the price limit effect.

C Learning and Heterogeneous Beliefs

Suppose

dDt = µtdt+ σdZ̄t.

The dividend Dt is observable but the growth rate µt is not. Agents A and B infer the

value of µt through the information from the dividend. Assume that

dµt = −k(µt − µ̄)dt+ σµdZ̄t,

and µ0 ∼ N(a0, b0), a normal distribution with mean a0 and standard deviation b0.

Agent i ∈ {A,B} believes k = ki, µ̄ = µ̄i, σµ = σi
µ, a0 = ai0, b0 = bi0. Both of them learn

µt through {Ds}
t
s=0. Let µ

A
t = E

A[µt|{Ds}
t
s=0] and µB

t = E
B[µt|{Ds}

t
s=0]. Then following

the standard filtering results, we have (under the assumption: µt|{Ds}
t
s=0 ∼ N(µ̂, ν))

dµA
t = −kA(µA

t − µ̄A)dt+ νAdZA
t ,

dµB
t = −kB(µB

t − µ̄B)dt+ νBdZB
t ,

where dZ i
t =

1
σ
(dDt − µi

tdt), i = A,B. Then

dDt = µA
t dt+ σdZA

t , dDt = µB
t dt+ σdZB

t .

Therefore, ZB
t + δt

σt
t is equal to ZA

t almost surely, where δt = µB
t − µA

t . In other words,

ZB
t + δt

σt
t is a standard Brownian motion under agent A’s probability measure PA.

Thus,

dµB
t = −kB(µB

t − µ̄B)dt−
νB

σ
δtdt+ νBdZA

t .
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So we can obtain the general dynamics of the stochastic disagreement δt under learn-

ing. To validate the setting adopted in this paper, we let νA = 0, kA = 0, and µA
t = µA.

That is, we assume that Type A investors take the long-time mean of the growth rate as

the estimation and impose no learning. Then it follows that

dδt = d(µB
t − µA) = −(kB +

νB

σ
)δtdt− kB(µA − µ̄B)dt+ νBdZA

t

= −kBδtdt+ kB(µ̄B − µA)dt+ νBdZB
t .

Further, let kB + νB/σ = k, νB = ν and (µ̄B − µA)/k = δ̄/κB; we have reached the

mean-reverting disagreement process assumed in the paper.

D The Fixed Point Problem

We prove the existence and uniqueness of a solution to the fixed point problem. First

of all, based on the explicit expressions of the prices, we restrict the model parameters

and the initial conditions (e.g., D1,0, D2,0) and assume that both Ŝj,0 (the price without

circuit breakers) and Sc
j,0 (the market clearing price) are positive for each j = 1, 2.

Recall that S1,0, S2,0 impact valuation of the expectations through the sum S1,0+S2,0

only. When the initial stock prices are S1,0 and S2,0, the threshold h is (S1,0+S2,0)(1−α).

So, we define

fj(S1,0 + S2,0) =
E
A
0 [π

A
T∧τSj,T∧τ ]

πA
0

, j = 1, 2.

and define a function f : R → R2 such that f(S1,0 + S2,0) = (f1(S1,0 + S2,0), f2(S1,0 +

S2,0))
⊤, where ⊤ denotes the transpose of a vector. Then the fixed point problem is

expressed as follows.

(S1,0, S2,0)
⊤ = f(S1,0 + S2,0).

Define g(x) = f1(x) + f2(x) − x, where x ∈ R. When the threshold is zero, the

circuit breaker is hardly triggered. Thus the equilibrium prices are close to the prices

Ŝ0,1 and Ŝ2,0 respectively in the absence of circuit breakers. Given positive Ŝ0,1 and Ŝ2,0,

we can obtain (specifically, for a sufficiently small volatility of D1,t and jump intensity

of D2,t): g(0) = f1(0) + f2(0) > 0. On the other hand, if the threshold is the sum of the

market clearing prices Sc
1,0+Sc

2,0, the market is stopped immediately and the equilibrium

prices must be the market clearing prices exactly. Thus, g(
Sc
1,0+Sc

2,0

1−α
) = f1(

Sc
1,0+Sc

2,0

1−α
) +

f2(
Sc
1,0+Sc

2,0

1−α
) −

Sc
1,0+Sc

2,0

1−α
= Sc

1,0 + Sc
2,0 −

Sc
1,0+Sc

2,0

1−α
< 0. It can be shown that g(x) is a
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continuous function. Hence, there exists x∗ ∈ (0,
Sc
1,0+Sc

2,0

1−α
), such that g(x∗) = 0. Thus

f1(x
∗) + f2(x

∗) = x∗.

Now define (S∗
1,0, S

∗
2,0)

⊤ = f(x∗). Then x∗ = f1(x
∗) + f2(x

∗) = S∗
1,0 + S∗

2,0 and

(S∗
1,0, S

∗
2,0)

⊤ = f(x∗) = f(S∗
1,0 + S∗

2,0).

Thus (S∗
1,0, S

∗
2,0)

⊤ ∈ R2 is a solution to the fixed problem. The existence is proved.

Next, we show that the solution is unique. To do so, it is sufficient to show that g(x) is

monotonic. For the sake of notional simplicity, we ignore super-script “A” of expectations

and πA
t below.

Let D0 = D1,0+D2,0. Given an exogenous threshold h and initial dividend sum value

D0, let S
h,D0
t = Sc

1,t + Sc
2,t, where Sc

1,t and Sc
2,t are the market clearing prices; let τ(h,D0)

denote the stopping time; and let πh,D0
t be the state price density, i.e.

πh,D0
t = (ηt)

1/2e−
γ
2
S
h,D0
t · e

GA
t +GB

t
2 .

We redefine

g(x) = g(x;D0) =
E[πτ(h,D0)∧TS

h,D0

τ(h,D0)∧T
]

E[πA
τ(h,D0)∧T

]
− x,

where h = x(1 − α). Observe that τ(h,D0) = τ(0, D0 − h) because the stopping time is

determined byDt and δt only. Then the market clearing (sum) price Sh,D0

τ(h,D0)
= S0,D0−h

τ(0,D0−h)+

h by the expressions of Sc
j,τ , j = 1, 2. In addition, by the definition of Gi

τ , we see that

Gi
τ(h,D0)

= Gi
τ(0,D0−h), i = A,B. Therefore

πh,D0

τ(h,D0)
= e−

γ
2
h · π0,D0−h

τ(0,D0−h). (D.1)

Thus,

g(x;D0) =
E[πh,D0

τ(h,D0)∧T
· (Sh,D0

τ(h,D0)∧T
− x)]

E[πh,D0

τ(h,D0)∧T
]

=
E[π0,D0−h

τ(0,D0−h)∧T · (S0,D0−h
τ(0,D0−h)∧T − x+ h)]

E[π0,D0−h
τ(0,D0−h)∧T ]

= g(0;D0 − h)− x+ h = g(0;D0 − h)− αx.
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Given h1 < h2, we have τ(0, D0 − h1) ≥ τ(0, D0 − h2). Then,

E[π0,D0−h1

τ(0,D0−h1)
] = E[E[π0,D0−h1

τ(0,D0−h1)
|τ(0, D0 − h2)]] = E[π0,D0−h1

τ(0,D0−h2)
]

= E[(ητ(0,D0−h2)∧T )
1/2e

−
γ
2
S
0,D0−h1
τ(0,D0−h2)∧T · e

GA
τ(0,D0−h2)∧T

+GB
τ(0,D0−h2)∧T

2 ]

= E[(ητ(0,D0−h2)∧T )
1/2e

−
γ
2
S
0,D0−h2
τ(0,D0−h2)∧T · e

GA
τ(0,D0−h2)∧T

+GB
τ(0,D0−h2)∧T

2 · e−γ/2(h2−h1)]

= E[π0,D0−h2

0,D0−h2
]e−γ/2(h2−h1).

Similarly,

E[π0,D0−h1

τ(0,D0−h1)
· S0,D0−h1

τ(0,D0−h1)
] = E[E[π0,D0−h1

τ(0,D0−h1)
· S0,D0−h1

τ(0,D0−h1)
|τ(0, D0 − h2)]]

= E[π0,D0−h1

τ(0,D0−h2)
· S0,D0−h1

τ(0,D0−h2)
]e−γ/2(h2−h1)

≥ E[π0,D0−h2

τ(0,D0−h2)
· S0,D0−h2

τ(0,D0−h2)
]e−γ/2(h2−h1).

Finally, let x1 < x2 and h1 = x1(1− α), h2 = x2(1− α). It follows that

g(x1;D0) = g(0;D0 − x1)− αx1 =
E[π0,D0−h1

τ(0,D0−h1)∧T
· S0,D0−h1

τ(0,D0−h1)∧T
]

E[π0,D0−h1

τ(0,D0−h1)∧T
]

− αx1

≥
E[π0,D0−h2

τ(0,D0−h2)∧T
· S0,D0−h2

τ(0,D0−h2)∧T
]

E[π0,D0−h2

τ(0,D0−h2)∧T
]

− αx1

= g(0;D0 − h2) = g(x2;D0) + αx2 − αx1 > g(x2;D0).

Thus, g(·, D0) is monotonic. This completes the proof of uniqueness.

E The Case of Correlated Dividend Processes

To impose a correlation between dividend processes, we assume that: under PA,

dD1,t = µA
1 dt+ σ1dZt, (E.1)

dD2,t = µ2dt+ σ2dZt + µJdNt, (E.2)
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and under PB:

dD1,t = µB
1 dt+ σ1dZ

B
t , (E.3)

dD2,t = µ2dt+
σ2

σ1
δtdt+ σ2dZ

B
t + µJdNt, (E.4)

where µB
1 = µA

1 + δt and

dδt = −k(δt − δ̄)dt+ νdZt,

or

dδt = −k(δt − δ̄)dt+
ν

σ1
δtdt+ νdZB

t .

Then the two dividend processes are correlated with instantaneous correlation

ρ =
σ2

√

σ2
2 + κµ2

J

.

E.1 The Equilibrium Prices without Circuit Breakers

The pricing formula has the same expression as that in the uncorrelated case.

Ŝj,t = E
A
t

[

πA
TDj,T

E
A
t [π

A
T ]

]

, j = 1, 2,

where πA
T = γζEA

t [η
1/2
T · e−

γ
2
(D1,T+D2,T )]. However, the two prices cannot be evaluated

separately anymore because the two dividend processes are correlated (σ2 6= 0). Similar

to the case of ρ = 0, the equilibrium prices in closed form can be derived.

E.2 The Equilibrium Prices with Circuit Breakers

We derive the market clearing prices when the market is closed early due to the circuit

breaker.

Type A investors need to maximize the individual utility function

max
θA1,τ ,θ

A
2,τ

E
A
t [−e−γ(θA1,τ (D1,T−S1,τ )+θA2,τ (D2,T−S2,τ ))].
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It results in first order conditions:

−γ(D1,τ − S1,τ )− γµA
1 (T − τ) + γ2(θA1,τσ1 + θA2,τσ2)σ1(T − τ) = 0,

(E.5)

−γ(D2,τ − S2,τ )− γµ2(T − τ) + γ2(θA1,τσ1 + θA2,τσ2)σ2(T − τ)− γµJκ
Ae−γθA2 µJ = 0.

(E.6)

For Type B investors, the optimization problem is

max
θB1,τ ,θ

B
2,τ

E
B
t [−e−γ(θB1,τ (D1,T−S1,τ )+θB2,τ (D2,T−S2,τ ))].

We first obtain an expression for the following expectation for any real numbers x and y:

E
B
t [e

x
∫ T

t
δsds+y(ZB

T −ZB
t )] = eA(t;x,y)+C(t;x)δt ,

where

A(t; x, y) =
y2

2
(T − τ) + kδ̄

∫ T

t

C(s; x)ds+
ν2

2

∫ T

t

C(s; x)2ds+ yν

∫ T

t

C(s; x)ds,

C(t; x) =
x

k − ν
σ1

(1− e
(k− ν

σ1
)(τ−T )

).

Then let y = −γ(θB1,τσ1 + θB2,τσ2) and x = −γ(θB1,τ + θB2,τ
σ2

σ1
); we obtain the first order

conditions for the maximization problem of Type B:

−γ(D1,τ − S1,τ )− γµA
1 (T − τ) +

dA(t; x, y)

dθB1,τ
+

dC(t; x)

dθB1,τ
δt = 0,

(E.7)

−γ(D2,τ − S2,τ )− γµ2(T − τ)− γκµJ(T − τ)e−γθB2,τµJ +
dA(t; x, y)

dθB2,τ
+

dC(t; x)

dθB2,τ
δt = 0.

(E.8)

Along with the market clearing condition θAj,τ + θBj,τ = 1, j = 1, 2, the four first order

conditions determine the solution S∗
1,τ , S

∗
2,τ , (θ

A
1,τ )

∗, (θA2,τ )
∗, that is the market clearing

prices and the share holdings at the market early closure time τ , respectively.

Next, as in the case of uncorrected dividend processes, we obtain the indirect utility

functions for Type A and Type B investors and the state price density. The equilibrium

stock prices at t < τ can be evaluated numerically by solving a fixed point problem
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similar to (24).

F The Issue of Share Holding at τ

In the text, a mechanism is introduced to determine the share holding of Stock 2 at time

τ because the two types of agents cannot optimize both of their utilities while making

the market clear due to the price limit effect of circuit breakers. By the mechanism, the

share holding of Stock 2 at time τ depends on the information at τ−. As a result, the

indirect utility or the state price density in the pricing formula is dependent on the share

holding at τ−. Since stock prices at any time t before τ are given by the formula (22), it

turns out that we have to solve a functional fixed point problem as follows.

Let θA2,t = f(D1,t, D2,t, t) denote the share holding of Stock 2 at any time t < τ . By

the scheme, we can find the share holding at τ , which can be written as

θA2,τ = g(θA2,τ−, D1,τ , D2,τ ) = g(f(D1,τ−, D2,τ−, τ−), D1,τ , D2,2τ ),

where the function g(·, ·, ·) is known according to the scheme. Then we need to find the

expression of f(·, ·, ·) such that, the stock prices obtained by (22) and the wealth processes

obtained by (25) ensure that the share holding is exactly given by θA2,t = f(D1,t, D2,t, t) for

t ≤ τ−.

Undoubtedly, it is difficult to solve this functional fixed point problem in general. In

practice, we consider a linear approximation

f(D1, D2, t) = a(t) + b(t)D1 + c(t)D2,

where a(t), b(t) and c(t) are deterministic coefficients. In addition, we adopt an algorithm

for numerical approaches as follows.

• Step 1. At t=T −∆t, we set θA1,t = θ̂A1,t, θ
A
2,t = θ̂2,t =

1
2
, because it is shown that, as

t → T−, the two share holdings approach the same values as those in the absence

of circuit breakers.

• Step 2. Calculate θA1,t and θA2,t for t = T − 2∆t, T − 3∆t,...,0 sequentially. For each

t, we use Monte Carlo simulations to calculate E[∆WA
t ∆Si,t] and E[∆Si,t∆Sj,t],

where ∆Si,t = Si,t+∆t − Si,t and ∆WA
t = WA

t+∆t − WA
t , for i, j = 1, 2 Then, we
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calculate the share holdings at t by the formula

(

θA1,t
θA2,t

)

=

(

E[∆S1,t∆S1,t] E[∆S2,t∆S1,t]

E[∆S1,t∆S2,t] E[∆S2,t∆S2,t]

)−1(

E[∆WA
t ∆S1,t]

E[∆WA
t ∆S2,t]

)

.

We repeat this procedure for a set of D1,t, D2,t and obtain a set of share holdings.

Then a linear regression gives us coefficients of the linear dependence a(t), b(t), c(t).

The above numerical algorithm is applied for a given threshold h. To find the initial

stock price S0, the whole procedure is iterated to solve the fixed point problem (24).

Applying the mechanism and algorithm introduced above, we find that the optimal

share holding of Stock 2 at t < τ is not far away from 1/2, and thus so is the optimal

share holding at τ . Besides, a jump occurs in one day at a relatively low frequency. As a

consequence, we do not find the equilibrium prices determined by the above mechanism to

be significantly different from that obtained by the simple rule (θA2,τ = 1
2
). The difference

is actually in the order of 10−4. In contrast, the price limit effect that prevents the

price of Stock 2 from dropping too much impacts the equilibrium price significantly and

usually makes a difference at the first decimal digit (10−1) of the equilibrium stock price,

compared to that in the absence of circuit breakers.

For fast simulations, in the numerical analysis of the text, we assume the simple rule

that the shares held by Type A agents at τ are 1/2. This is equivalent to assuming that

when a price jump triggers the circuit breaker, both types of agents agree to hold the

optimal share holdings (1/2) as if the price had jumped to the equilibrium level in the

absence of circuit breakers, although the price is kept at the threshold and the half-half

share holdings are not optimal for both types of agents.
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