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1. Introduction

Circuit breakers based on market indices are widely implemented in many countries,

including the United States, France, Canada, and China, as a measure to stabilize market

prices during challenging times. When a predetermined percentage decline in a market

index occurs, the circuit breaker is triggered, leading to a temporary halt in trading

for the entire market. Recent events such as the COVID-19 pandemic triggered circuit

breakers multiple times across various countries, including the United States, Japan, and

South Korea. Notably, Chinese regulators removed a four-day-old circuit breaker rule

after it was triggered twice during the week of January 4, 2016. Existing literature on

circuit breakers, such as studies by Chen et al. (2023), Greenwald and Stein (1991), and

Subrahmanyam (1994), has primarily focused on examining the impact of circuit breakers

on the overall return and volatility of stock indices. However, a crucial question remains

unanswered: can circuit breakers have adverse effects on return contagion and volatility

contagion across individual stocks, thereby increasing systemic risk, particularly during

periods of market distress, precisely when circuit breakers are intended to be helpful?

In this paper, we develop a continuous-time equilibrium model to shed light on this

important question. In our model, investors can invest in a risk-free asset and two

groups of risky assets (stocks) with independent dividend processes to maximize expected

utility from their final wealth at time T . Investors have stochastically heterogeneous

beliefs about the expected growth rates of the dividends. To cleanly identify the role of

circuit breakers in causing contagion and correlations, we assume that the investors have

exponential preferences: As a result, in the absence of circuit breakers, the equilibrium

stock returns would be independent. The stock market is subject to a market-wide circuit

breaker rule, where if the sum of two stock prices (the index) reaches a threshold, the

entire stock market is closed until T .

Contrary to regulatory goals, our findings demonstrate that while circuit breakers can
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be beneficial in normal market conditions by reducing market volatility,1 they can also

result in crash contagion, volatility contagion, greater volatilities, and higher correlations

among otherwise independent stocks during periods of market stress. Our model suggests

that market-wide circuit breakers may contribute to financial contagion and serve as a

channel through which idiosyncratic risks transform into systemic risks. To mitigate these

issues, we propose an alternative circuit breaker approach based on individual stocks

rather than the entire index. This alternative approach has no contagion or correlations

effects.

The intuitions for our main results are as follows. When the circuit breaker is trig-

gered and the market is closed, risk sharing is reduced, resulting in lower stock prices in

general. Before the circuit breaker is triggered, if an idiosyncratic negative shock hits a

group of stocks in an index, the index level declines, increasing the probability of reaching

the circuit breaker threshold. Consequently, the prices of other group stocks may also

decrease in anticipation of a likely market closure, leading to positive return correlation,

even though stocks would be independent in the absence of the circuit breaker. When

the idiosyncratic shock is significant and the index approaches the circuit breaker thresh-

old, the correlation increases further due to the higher likelihood of an imminent market

closure. In extreme cases where one group of stocks experiences a crash and triggers the

circuit breaker, the prices of the other group of stocks (whose prices are otherwise contin-

uous) must jump down to after-market-closure levels, causing crash contagion. In general,

as stock prices decline, the index moves closer to the circuit breaker threshold, causing

other stock prices to fall due to the fear of an impending market closure, thus creating

a vicious cycle that increases market volatility and cross-stock contagion. Additionally,

as some stocks become more volatile (e.g., due to increases in dividend volatilities), the

likelihood of triggering the circuit breaker rises, leading to volatility contagion. There-

1Other benefits of circuit breakers may include the dampening effect on overreaction, panic, and
herding on stock prices.
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fore, circuit breakers can transmit crash and volatility effects across stocks, even though

stocks would be independent in their absence. These contagion effects can transform

idiosyncratic risks into systemic risks.

Our findings suggest that to mitigate contagion effects and systemic risks, it is more

effective to impose circuit breakers on individual stocks rather than on the entire market

index. In this alternative approach, the circuit breaker threshold is based on individual

stock returns, triggering a halt in trading for that specific stock only. This approach

avoids increasing correlations and preventing any form of contagion. We demonstrate

that with individual stock-based circuit breakers, stock prices tend to be higher, and the

likelihood of a market-wide large decline is reduced is lower compared to circuit breakers

imposed on the index.

While our model considers only two stocks in the index, we acknowledge that real-

world indices typically consist of hundreds of stocks. However, during periods of market

distress, markets often focus on a small number of key factors such as Federal Reserve

decisions and major economic news that can impact a large group of stocks. In our

model, each stock represents a significant portion of stocks exposed to a common risk

factor during bad times. Therefore, a negative shock in the risk factor can cause the

prices of a large group of stocks to decline together, potentially affecting another group

of stocks through the circuit breaker connection, even if they are not directly exposed to

the shock.

To test our model’s main prediction that circuit breakers exacerbate market contagion

during bad times, we leverage a unique policy experiment that occurred in China in

early 2016. The introduction of market-wide circuit breakers by the China Securities

Regulation Commission (CSRC) on January 1, 2016, followed by their suspension after

triggering twice in four days, provides an opportunity to compare market contagion with

and without circuit breakers, free from many confounding factors.
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Measuring market contagion poses challenges, and while prior studies have focused

on cross-country contagion (see, e.g., King and Wadhwani, 1990; Calvo and Reinhart,

1995; Forbes and Rigobon, 2001; Bae, Karolyi, and Stulz, 2003; Bekaet, Harvey, and

Ng, 2005; Diebold and Yilmaz, 2009), we adapt their approach to our setting. In our

analysis, we examine whether circuit breakers induce a significant increase in simultaneous

co-movements and lead-lag propagation across stocks. We particularly focus on utility

stocks, known for their low comovements with stocks in other industries during normal

times (Chan, Lakonishok, and Swaminathan, 2007), to capture additional co-movements

exceeding normal levels as evidence of increased market contagion.

In the Chinese market, the market-wide circuit breaker was triggered on January

4, 2016, the first trading day since the introduction of the circuit breaker policy. To

assess the impact of circuit breakers, we compare the events of January 4 with several

similar days that did not have circuit breakers in place. Specifically, we use December

31, 2015, the last trading day before the policy was implemented, January 8, 2016, the

first trading day after the suspension of the policy, and eight other days when the stock

market experienced a significant drop that would have triggered the circuit breaker, had

it been active, as control groups. Our analysis reveals that on January 4, both the

simultaneous co-movements and the lead-lag relations between utility stocks and other

stocks were significantly higher. Additionally, intra-day analysis demonstrates that cross-

stock contagion became more severe as the market approaches the trading halt on January

4.

To determine whether our findings are specific to the Chinese market, we examine the

more recent experiences with circuit breakers in the United States during the COVID-19

pandemic. In March 2020, the S&P 500 index triggered market-wide circuit breakers

four times, resulting in 15-minute trading halts during the opening hour on March 9,

12, and 16, as well as in the early afternoon on March 18. Applying the same empirical
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methods to the U.S. data, we find that on the day when the circuit breaker was triggered,

and especially during the period leading up to the trading halt, declines in other stocks

readily spread to utility stocks. This evidence of cross-stock contagion strongly supports

the predictions of our model.

Our paper draws motivation from the seminal work of Chen et al. (2023). While Chen

et al. (2023) focus on a single stock (index) and demonstrated in a dynamic equilibrium

setting that downside circuit breakers could lower stock prices, increase market volatility,

and accelerate market decline (referred to as the “magnet effect”), our study focuses

on the cross-stock contagion effect of circuit breaker rules using a dynamic equilibrium

model with multiple stocks and potentially discontinuous stock dividend streams. We

show that, in the presence of jump risk, a crash in one stock can cause a crash in an

otherwise independent stock. Furthermore, unlike Chen et al. (2023), our analysis does

not involve leverage constraints before or after market closure. Instead, we highlight the

circuit breakers’ contagion effect as the primary economic mechanism driving our results.

This suggests that circuit breakers can have a significant impact on price dynamics, even

without any changes in leverage constraints.

Several other theoretical studies have explored circuit breakers in different contexts.

For instance, Greenwald and Stein (1991) demonstrate how circuit breakers can aid in

coordinating trading for market participants in a market with limited participation. Sub-

rahmanyam (1994) show that circuit breakers can increase price volatility due to investors

shifting trades to periods with lower liquidity supply when information asymmetry exists.

Hong and Wang (2000) examine the impact of periodic exogenous market closure on asset

prices and highlight the rich patterns of trading and returns produced by their model,

consistent with empirical findings.

Numerous empirical studies have challenged the efficacy of circuit breakers, including

market-wide circuit breakers, price limits, and trading pauses. For example, using Nasdaq
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order book data, Hautsch and Horvath (2019) find that trading pauses increase volatility,

reduce price stability and liquidity after the pause, while enhancing price discovery during

the break. Kim and Rhee (1997), analyzing Tokyo Stock Exchange data, conclude that

price limit mechanisms in the exchange are ineffective, leading to higher volatility levels,

interference with efficient price equilibrium, and disruption of trading. Examining the

behavior of the Israeli stock market during the October 1987 crash, Lauterbach and Ben-

Zion (1993) find that circuit breakers reduce initial price losses and next-day opening

order imbalances but have no long-run effect. Similarly, Lee, Ready, and Seguin (1994)

investigate the impact of firm-specific New York Stock Exchange (NYSE) trading halts

and find that they do not reduce volume or price volatility in the post-halt period. In the

context of the October 1997 market crash, Goldstein and Kavajecz (2004) observe the

magnet effect, indicating an acceleration of activity approaching the market-wide circuit

breaker.2

In contrast to the existing literature, our study focuses on the dynamic interactions

among stocks and examines the cross-stock contagion behavior caused by market-wide

circuit breakers. To the best of our knowledge, this is the first theoretical and empirical

analysis capturing and analyzing such contagion effects. The use of the sudden adoption

and suspension of circuit breaker policy in China provides a unique approach to isolate

the effects of circuit breakers. Although circuit breakers aim to stabilize markets during

bad times, our findings indicate that market-wide circuit breakers can have significant

crash and volatility contagion effects, exacerbating market volatility during downturns.

2A few other studies on market halts focus on other related issues. For example, Ackert, Church, and
Jayaraman (2001) conduct an experimental study to analyze the effects of mandated market closures
and temporary halts on market behavior. Corwin and Lipson (2000) study order submission strategies
of traders around market halts, providing a detailed description of the mechanics of trading halts and
identifying traders who provide liquidity. Christie, Corwin, and Harris (2002) study the impact on post-
halt market prices of Nasdaq’s alternative halt and reopening procedures. Their results are consistent
with the hypothesis that increased information transmission during the halt reduces post-halt uncertainty.
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2. The Model

We consider a continuous-time exchange economy over a finite time interval [0, T ]. In-

vestors can trade two risky assets, Stock 1 and Stock 2, and one risk-free asset. Each of

the two stocks in our model represents a group of stocks that share the same significant

risk exposure in bad times. The risk-free asset has a net supply of zero and the interest

rate can be normalized to zero because there is no intertemporal consumption in our

model. The total supply of each stock is one share and every stock pays only a termi-

nal dividend at time T . The dividend processes are exogenous and publicly observed.

Uncertainty about dividends is represented by a standard Brownian motion Zt and an

independent standard Poisson process Nt with jump intensity κ and jump size ν defined

on a complete probability space (Ω,F ,P). An augmented filtration {Ft}t≥0 is generated

by Zt and Nt.

There is a continuum of investors of Types A and B in the economy, with a mass of

1 for each type. For i = A,B and j = 1, 2, Type i investors are initially endowed with

θij0 shares of Stock j but no risk-free asset, with 0 ≤ θij0 ≤ 1 and θAj0 + θBj0 = 1. The

probability measure Type A investors use is PA, which is the same as the true probability

measure P. Under Type A’s probability measure, Stock 1’s dividend process evolves as:

dD1,t = µA
1 dt+ σdZt, (1)

and Stock 2’s dividend process follows a jump process with drift:

dD2,t = µA
2 dt+ ν(dNt − κAdt), (2)

where Stock 1’s expected dividend growth rate µA
1 , Stock 1’s dividend volatility σ, Stock

2’s expected dividend growth rate µA
2 , jump size ν, and jump intensity κA = κ are all
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constants, the compensated Poisson process Nt − κAt is a martingale under PA, and

Dj,0 = 1 for j = 1, 2.

Relative to Type A investors, Type B investors have different beliefs about the divi-

dend process D1,t and employ a different probability measure PB, under which the divi-

dend process D1,t evolves as

dD1,t = µB
1,tdt+ σdZB

t , (3)

where ZB
t is a Brownian motion under measure PB, and µB

1,t = µA
1 + δ1,t for a stochastic

process δ1,t (specified below) that measures the disagreement between Type A and Type

B investors about the growth rate of the dividend process D1,t. Under P
B, the dividend

process D2,t evolves as

dD2,t = µB
2,tdt+ ν(dNB

t − κB
t dt), (4)

where under measure PB, NB
t is a non-homogeneous Poisson process with jump intensity

κB
t and jump size ν, and µB

2,t is Stock 2’s expected dividend growth rate. For simplicity of

exposition, we assume κB
t = κAδ2,t, where δ2,t (specified below) measures the disagreement

between Type A and Type B investors about the jump intensity of process D2,t. Similar

to D1,t, we assume that Type A and Type B investors also disagree on the expected

growth rate of D2,t. For simplicity, we assume that this disagreement only stems from

the disagreement on the jump intensity. In other words, conditional on no jumps, Type

A and B investors agree on Stock 2’s expected growth rate, i.e., µB
2,t − νκB

t = µA
2 − νκA.

The Radon-Nikodym derivative between the two probability measures can therefore

be written as.

ηT =
dPB

dPA
|FT

= η1,Tη2,T , (5)
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where

η1,T = e
∫ T
0

δ1,t
σ

dZt−
∫ T
0

δ21,t

2σ2 dt, η2,T = eκ
A
∫ T
0 (1−δ2,t)dt

NT∏
i=1

δ2,ti ,

and ti, i = 1, 2, ... are jump times before T .

For the disagreement process δ1,t, we assume that under the probability measure PA:

dδ1,t = −k1(δ1,t − δ̄1)dt+ σδdZt, (6)

where δ̄1 is the constant long-time average of the disagreement (which could be zero),

k1 > 0 measures the speed of mean reversion in the disagreement, and σδ is the volatility

of the disagreement.3

For the disagreement process δ2,t, we assume that under the probability measure PA:

dδ2,t = −k2(δ2,t − δ̄2)dt+ νδdNt, (7)

where δ̄2 is the constant long-time average, k2 > 0 is the speed of mean reversion, and

νδ > 0 is a constant jump size of the disagreement process.4

In this paper we focus on the market closure effect of circuit breakers, i.e., investors

cannot trade for a period of time after circuit breakers are triggered. As we show later,

stochastic disagreement is necessary for the presence of the market closure effect, because

in the absence of stochastic disagreement, investors would not trade after time zero even

when the market is always open and thus market closure would not have any impact on

asset prices. To capture the market crash risk, the fundamentals of a group of stocks

must jump down with a positive probability.5 Therefore, we assume these two features

3In the Appendix, we show that this δ1,t process is consistent with Kalman filtering when Type B
investors do not know the expected growth rate of Stock 1’s dividend.

4With the specialized dynamics of κB
t , N

B
t is a Hawkes process in general. See Aı̈t-Sahalia, Cacho-

Diaz, and Laeven (2015) and Aı̈t-Sahalia and Hurd (2016) for applications of Hawkes processes in finance.
5In the previous version, we show that when dividend D2,t is not a jump but a diffusion process with

continuous paths, similar to D1,t, our main results still hold such as increased correlations, volatility
contagion and magnet effects in the presence of circuit breakers. The only exception is crash contagion,
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in our model.

Hereafter, we use the notation Ei[·] to denote the expectation under the probability

measure Pi for i ∈ {A,B}.

To isolate the impact of circuit breakers on stock return correlations, we assume that,

for i ∈ {A,B}, Type i investors have constant absolute risk averse (CARA) preferences

over the terminal wealth W i
T at time T :

u(W i
T ) = − exp(−γW i

T ),

where γ > 0 is the absolute risk aversion coefficient. With CARA preferences, there is

no wealth effect and therefore in the absence of circuit breakers, it can be shown that

returns of the two stocks would be independent.

Trading in the stocks is subject to a market-wide circuit breaker rule as explained next.

Let Sj,t denote the price of Stock j = 1, 2 at time t ≤ T and the index St = S1,t + S2,t

denote the sum of the two prices (equivalent to an equally weighted index).6 Define the

circuit breaker trigger time

τ = inf{t : St ≤ h, t ∈ [0, T )},

where h is the circuit breaker threshold (hurdle). At the circuit breaker trigger time τ ,

the market is closed until T ,7 which results in the market closure effect. In practice, the

circuit breaker threshold h is typically equal to a percentage of the previous day’s closing

level. In this paper, we set h = (1 − α)S0 for a constant α (e.g., α = 0.07 for Level 2

since no crash (a discrete change in a short time period) occurs in continuous changes of D1,t or D2,t.
To save space, we do not include these results in this version, but they are available from the authors.

6Using a different form of the combination of the stock prices as the index would not change our main
results, as long as the index is increasing in both stock prices.

7Assuming that markets can reopen after being halted for a period of time would not change the
qualitative results on contagion. Quantitatively, the results are close in very bad times, because the fear
of market closure is similar whether the closure is long or relatively short in very bad times.
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market closure in the Chinese stock markets and for Level 1 market closure in the U.S.

market).

3. Equilibrium without Circuit Breakers

As a benchmark case, we first solve for the equilibrium stock prices when there is no

circuit breaker in place in the market. Because the market is complete in this case, it is

convenient to solve the planner’s problem:

max
WA

T ,WB
T

EA
0 [u(W

A
T ) + ξηTu(W

B
T )], (8)

subject to the budget constraintWA
T +WB

T = D1,T+D2,T , where ξ is a constant depending

on the initial wealth weights of the two types of investors.

From the first order conditions, we obtain:

WA
T =

1

2γ
log(

1

ξηT
) +

1

2
(D1,T +D2,T ), (9)

WB
T = − 1

2γ
log(

1

ξηT
) +

1

2
(D1,T +D2,T ). (10)

Given the utility function u(x) = −e−γx, the state price density under Type A investors’

beliefs is

πA
t = EA

t [ζu
′(WA

T )] = EA
t [γζe

−γWA
T ] = γζξ

1
2EA

t [η
1
2
T · e−

γ
2
(D1,T+D2,T )], (11)

for some constant ζ. Therefore, the stock price in equilibrium is given by

Ŝj,t =
EA

t

[
πA
TDj,T

]
EA

t [π
A
T ]

= Dj,t +
EA

t

[
πA
T (Dj,T −Dj,t)

]
EA

t [π
A
T ]

, j = 1, 2. (12)
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Since the two dividend processes are independent, Equation (12) can be simplified into

Ŝ1,t =
EA

t [π
A
1,TD1,T ]

EA
t [π

A
1,T ]

, Ŝ2,t =
EA

t [π
A
2,TD2,T ]

EA
t [π

A
2,T ]

, (13)

where πA
1,t = EA

t [η
1/2
1,T · e− γ

2
D1,T ], πA

2,t = EA
t [η

1/2
2,T e

− γ
2
D2,T ]. Thus, the two prices can be

computed separately when there are no circuit breakers, which implies that stock returns

are independent.

Next, we derive the equilibrium prices in closed form for the two stocks and examine

the impact of the jump and the stochastic disagreement on the market equilibrium.

For Stock 1, the disagreement process is governed by the mean-reverting process (6).

The formula of equilibrium price Ŝ1,t can be derived analytically and is presented in the

following proposition.

PROPOSITION 1. When there are no circuit breakers, the equilibrium price of Stock

1 is:

Ŝ1,t = D1,t + µA
1 (T − t)− 2

(
dA(t; γ)

dγ
+

dC(t; γ)

dγ
δ1,t

)
, (14)

where A(t; γ) and C(t; γ) are given in Appendix A.

Proposition 1 shows that, in addition to the dividend payment, disagreement also

affects the price of Stock 1. As a result, the instantaneous volatility of the stock price

Ŝ1,t is different from that of the dividend process.8

To show the importance of disagreement being stochastic, we next show what would

happen if the disagreement were constant, that is, δ1,t = δ1,0 for all t ∈ [0, T ]. In this

8It can be shown that the instantaneous volatility of the equilibrium price Ŝ1,t is greater than the
volatility of the dividend process D1,t when T − t is small.
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case, the equilibrium price would simplify to

Ŝ1,t = D1,t +
µA
1 + µB

1,t

2
(T − t)− γ

2
σ2(T − t).

Thus, the equilibrium price of Stock 1 would be determined by the average beliefs of

Type A and B investors on the expected growth rate of the dividend and the volatility of

the stock price would be the same as the volatility of its dividend. Moreover, by applying

Ito’s lemma to the wealth process WA
t =

EA
t [πA

T WA
T ]

EA
t [πA

T ]
, we can find that the equilibrium

number of shares of Stock 1 held by Type A investors would be equal to

θ̂A1,t =
1

2
− 1

2γ

δ1,0
σ2

, (15)

which implies that the equilibrium number of shares of Stock 1 held by Type B investors

would be equal to

θ̂B1,t =
1

2
+

1

2γ

δ1,0
σ2

. (16)

Because the number of shares held by investors in the equilibrium would be constant

over time if the disagreement were constant, market closure would not have any impact

on the equilibrium price in the case of constant disagreement. This result implies that

stochastic disagreement is necessary for circuit breakers to have any impact through the

market closure channel.

For Stock 2, an analytical expression of the equilibrium price in the case of stochastic

disagreement can unlikely be obtained. However, it can be shown that if the disagreement

δ2,t = δ2 is a constant, then

EA
t [π

A
2,TD2,T ] =EA

t [η
1/2
2,T e

−γD2,T /2] ·
(
D2,t + (µA

2 − κAν)(T − t) + κA
√
δ2ν(T − t)e−

γ
2
ν
)
.
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Then by Equation (13), we have the equilibrium price of Stock 2 as in the following

proposition.

PROPOSITION 2. When there are no circuit breakers and δ2,t = δ2 (i.e., constant

disagreement on the jump intensity), the equilibrium price of Stock 2 is:

Ŝ2,t = D2,t + (µA
2 − κAν)(T − t) + κA

√
δ2ν(T − t)e−

γ
2
ν . (17)

Proposition 2 shows that the equilibrium price is affected by the heterogenous beliefs

through the geometric average of beliefs of Type A and Type B investors on the jump

intensity. In addition, the instantaneous volatility (square root of instantaneous variance)

of the equilibrium price under PA is the same as that of the dividend process because

the rest of the terms in (17) are deterministic.

Let θ̂Aj,t be the optimal shares of Stock i held by Type A investors. Then dWA
t =

θ̂A1,tdŜ1,t + θ̂A2,tdŜ2,t. Applying Ito’s formula to WA
t = EA

t [π
A
TW

A
T ]/π

A
t and collecting the

coefficients of stochastic terms, we obtain the optimal shares holding of Stock 2 for Type

A investors as follows.

θ̂A2,t =
1

2
− 1

2γν
log δ2. (18)

This shows that in the absence of circuit breakers, if the disagreement were constant,

then the equilibrium trading strategy in Stock 2 for all investors would be to buy and

hold and thus market closure would not have any impact on Stock 2 price. Therefore, as

for Stock 1, stochastic disagreement is also important for Stock 2 to capture the market

closure effect.
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4. Equilibrium with Circuit Breakers

In this section, we study equilibrium prices when the circuit breaker rule is imposed in

the market. We first solve for the indirect utility functions at the circuit breaker trigger

time τ by maximizing investors’ expected utility at τ ≤ T :

max
θi1,τ ,θ

i
2,τ

Ei
τ [u(W

i
τ + θi1,τ (S1,T − S1,τ ) + θi2,τ (S2,T − S2,τ ))], i ∈ {A,B}, (19)

with the market clearing condition θAj,τ + θBj,τ = 1 and the terminal condition Sj,T = Dj,T ,

where θij,τ is the optimal number of shares of Stock j held by Type i investors at time τ ,

for i ∈ {A,B} and j = 1, 2.

If the circuit breaker is triggered by a continuous decline in Stock 1’s dividend, then the

after-closure prices of both stocks will reflect their respective fundamental values because

both dividends are continuous at the trigger time and investors can trade continuously.

If there is a jump in Stock 2’s dividend, then the index level corresponding to the after-

jump dividend levels may fall strictly below the circuit breaker threshold h. To resolve

this technical issue, as what is done in practice, we assume that investors can trade both

stocks one more time to reflect the after-jump dividend levels after the circuit breaker is

triggered by a jump in Stock 2’s price caused by a jump in its dividend. 9 Therefore,

at the market closure time, both stocks can reach their fundamental values regardless of

which stock triggered the circuit breaker.

Exploiting the dynamics of Dj,t and evaluating the expectation in the above optimiza-

tion problems, we obtain a system of equations that determine θij,τ for i ∈ {A,B}, j = 1, 2.

Then the equilibrium prices are obtained through market clearing conditions. We sum-

marize the result in the following proposition.

9An alternative justification is that the jump can be viewed as an approximation of a deterministic
steep decline (less than but very close to a 90-degree drop) and during the fast decline, Stock 1 or Stock
2 can trade freely and reach their fundamental values.

16



PROPOSITION 3. Suppose that the market is halted at a stopping time τ < T .

(1) For Stock 1, the market clearing price at τ is given by

Sc
1,τ = D1,τ + µA

1 (T − τ)− γθA1,τσ
2(T − τ),

where the optimal share holding of Type A investors is

θA1,τ =
− 1

k̃1
(1− ek̃1(τ−T ))δ1,τ − k1δ̄1

k̃1
(T − τ − 1−ek̃1(t−T )

k̃1
) + Iτ

Iτ + γσ2(T − τ)
, (20)

with k̃1 = k1 − σδ

σ
and

Iτ = −γσ2(τ−T )+
2σδσγ

k̃1
(T−τ−1− ek̃1(τ−T )

k̃1
)+

σ2
δγ

k̃2
1

(T−τ−2
1− ek̃1(τ−T )

k̃1
+
1− e2k̃1(τ−T )

2k̃1
).

If k̃1 = 0, the optimal share holding is simplified into:10

θA1,τ =
1

γ

(
γσ2 − γσδσ(τ − T ) + 1

2
k1δ̄1(τ − T ) +

σ2
δγ

3
(τ − T )2 − δ1,τ

−σδσ(τ − T ) +
σ3
δ

3
(τ − T )2 + 2σ2

)
.

(2) For Stock 2, the market clearing price is given by

Sc
2,τ := D2,τ + (µA

2 − κAν)(T − τ) + κAν(T − τ)e−γθA2,τν .

The optimal share holding θA2,τ of Type A investors at τ is specified in Appendix B.2.

As in the case of no circuit breakers, because dividend processes are independent and

investors have CARA preferences, the price of a stock only depends on its own dividend

process at the circuit breaker trigger time.

10It can be verified that as τ → T−, θA1,τ → 1
2 − δ1,T

2γσ2 , which coincides with the optimal share holding
of Stock 1 by Type A in the case of constant disagreement.
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4.1 Circuit Breaker Trigger Time τ

The circuit breaker trigger time τ can be characterized using the dividend values. Because

the market is closed when the sum of prices falls below (or reaches) the threshold h, we

have

h ≥ Sc
1,τ + Sc

2,τ

= D1,τ +D2,τ +
(
µA
1 − γσ2θA1,τ + (µA

2 − κAν) + κAνe−γθA2,τν
)
(T − τ).

It follows that we may define the stopping time τ using the dividend processes as follows.

PROPOSITION 4. Let h be the threshold. Define a stopping time

τ = inf{t ≥ 0 : D1,t +D2,t ≤ D(t)},

where

D(t) = h−
(
µA
1 − γσ2θA1,τ + (µA

2 − κAν) + κAνe−γθA2,τν
)
(T − τ).

Then the circuit breaker is triggered at time τ when τ < T .

Note that D1,t +D2,t is a jump diffusion process; thus, the trigger time τ is the first

time the jump-diffusion process hits or goes below D(t).

4.2 Equilibrium Prices before τ

After obtaining the market clearing prices and the optimal portfolios at τ , we now study

the equilibrium stock prices for t < τ ∧ T . For i ∈ {A,B}, let

Gi
τ (θ

i,∗
1,τ , θ

i,∗
2,τ ) = Gi

1,τ +Gi
2,τ ,
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where Gi
1,τ and Gi

2,τ are given by (B.5),(B.6), and (B.16) in Appendix B. It can be shown

that the indirect utility function of Type i ∈ {A,B} at τ can be written as follows:

V i(W i
τ , τ) = max

θi1,τ ,θ
i
2,τ

Ei
τ [u(W

i
τ +θi1,τ (S1,T −S1,τ )+θi2,τ (S2,T −S2,τ ))] = −e−γ(W i

τ+Gi
τ (θ

i,∗
1,τ ,θ

i,∗
2,τ )).

Then we are ready to solve the planner’s problem at time t < T ∧ τ :

max
WA

T∧τ ,W
B
T∧τ

EA
t [V

A(WA
T∧τ , T ∧ τ) + ξηT∧τV

B(WB
T∧τ , T ∧ τ)], (21)

subject to the wealth constraint WA
T∧τ +WB

T∧τ = S1,T∧τ + S2,T∧τ .

Similar to the case without circuit breakers, it follows from the first order conditions

and the wealth constraint that

WA
T∧τ =

1

2γ
log(

1

ξηT∧τ
) +

1

2
(S1,T∧τ + S2,T∧τ ) +

GB
T∧τ −GA

T∧τ
2

, (22)

WB
T∧τ = − 1

2γ
log(

1

ξηT∧τ
) +

1

2
(S1,T∧τ + S2,T∧τ ) +

GA
T∧τ −GB

T∧τ
2

. (23)

In addition, the state price density under Type A investors’ beliefs is

πA
t = EA

t [ζ(V
A(WA

T∧τ , T ∧ τ))′] = EA
t [γζe

−γ(WA
T∧τ+GA

T∧τ )]

= γζEA
t [η

1/2
T∧τ · e

− γ
2
(S1,T∧τ+S2,T∧τ+GB

T∧τ+GA
T∧τ )], (24)

for some constant ζ, where (V A(WA
T∧τ , T ∧ τ))′ denotes the marginal utility of wealth.

Thus, the stock price at t < T ∧ τ in equilibrium is given by

Sj,t =
EA

t [π
A
T∧τSj,T∧τ ]

EA
t [π

A
T∧τ ]

, j = 1, 2, (25)
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with

Sj,T∧τ =

 Dj,T , if τ ≥ T,

Sc
j,τ , if τ < T.

(26)

In Equation (25), because the stopping time τ depends on the circuit breaker threshold

h, the equilibrium prices S1,t and S2,t also depend on h. On the other hand, in practice,

h depends on the initial stock prices S1,0 and S2,0, because h = (1− α)(S1,0 + S2,0) (e.g.,

α = 0.07 for Chinese markets). Therefore, to obtain the equilibrium prices S1,t and S2,t,

we need to solve the following fixed point problem in S1,0 and S2,0:

Sj,0 =
EA

0 [π
A
T∧τSj,T∧τ ]

EA
0 [π

A
T∧τ ]

, j = 1, 2, (27)

where the right hand side is implicitly a function of the initial stock prices S1,0 and S2,0.

The following proposition guarantees the existence and uniqueness of a solution to the

above fixed point problem.

PROPOSITION 5. If the initial equilibrium index value Ŝ1,0 + Ŝ2,0 is positive in the

absence of circuit breakers, there exists a unique solution to the fixed point problem (27)

in the presence of circuit breakers.

We can then compute the trading strategies as follows. The wealth process of Type

A investors is

WA
t =

EA
t [π

A
T∧τW

A
T∧τ ]

EA
t [π

A
T∧τ ]

, t < T ∧ τ . (28)

From the budget constraint we have

dWA
t = θ̄A1,tdS1,t + θ̄A2,tdS2,t,

where θ̄A1,t and θ̄A2,t are share holdings of Type A for Stock 1 and Stock 2, respectively.
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For j = 1, 2, we can recover the share holdings of Stock j at t by calculating quantities

of EA
t [dW

A
t · dSj,t], EA

t [dS1,t · dS2,t], and EA
t [(dSj,t)

2] through simulations.

In the next section, we numerically compute the equilibrium prices and analyze the

impact of circuit breakers.

5. Impact of Circuit Breakers

In this section, we examine the impact of circuit breakers on the dynamics of the market.

The default parameter values for numerical analysis are set as follows, where daily growth

rates and volatilities are used.11 The algorithms used for the numerical analysis are

presented in Appendix F.

µA
1 = 0.10/250, σ = 0.4, σδ = 0.5,

k1 = 0.1, δ1,0 = 0, δ̄1 = 0,

µA
2 = 0.10/250, ν = −0.25, κA = 1,

k2 = 0.1, δ2,0 = 1, δ̄2 = 1, νδ = 0.5,

γ = 1, α = 0.07, T = 1 (day).

Because δ1,0 = 0 and δ2,0 = 1, Type B investors initially correctly estimate the

expected growth rate of Dividend 1 and the jump intensity of Stock 2’s dividend. Since

our main goal is to examine the impact of circuit breakers in bad times when the market

is volatile and the crash probability of some stocks is high (e.g., the U.S. market in the

week of March 9, 2020 and the Chinese stock market in early January of 2016), we set

the jump frequency high and the jump size large, along with a high volatility of Stock 1’s

dividend. Because of the CARA preferences, the initial share endowment of the investors

does not affect the equilibrium. The circuit breaker is triggered when the sum of the two

11We have analyzed the impact using a wide range of parameter valuee and have obtained the same
qualitative results.
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prices (i.e., the index) first goes below the threshold (1 − α)(S1,0 + S2,0), i.e., drops 7%

from the initial value.

One alternative to the market-wide circuit breakers is to impose a circuit breaker sep-

arately on each stock (instead of on an index). With this separate circuit breaker on each

stock, if a circuit breaker for a stock is triggered, only the trading in the corresponding

stock is halted. For example, when the circuit breaker of Stock 1 is triggered, only the

trading of Stock 1 is halted, but trading in Stock 2 is unaffected. Obviously, with separate

circuit breakers, equilibrium prices remain independent, in sharp contrast to the case of

market-wide circuit breakers. Let Ssep
j,t , j = 1, 2 denote the equilibrium prices of Stock j

in this benchmark. We compare the impact of circuit breakers on the stock prices when

they are on an index and when they are on individual stocks.

5.1 Equilibrium Prices

By Propositions 1 and 2, we obtain the initial equilibrium prices Ŝ1,0 = 0.8725, Ŝ2,0 =

0.9703 in the absence of circuit breakers. When there are separate circuit breakers on

individual stocks, the equilibrium prices are Ssep
1,0 = 0.8719 and Ssep

2,0 = 0.9577, which

are respectively lower than those without circuit breakers. In the presence of market-

wide circuit breakers, we obtain the equilibrium prices S1,0 = 0.8652 and S2,0 = 0.9418.

The prices of both stocks with separate circuit breakers are lower than those without

circuit breakers, because market closure prevents risk sharing after the circuit breakers

are triggered. In addition, with circuit breakers on an index, the prices are even lower.

As we show later, this is because of the contagion effect of the circuit breakers on indices.

Figure 1 and Figure 2 depict sample paths of the equilibrium prices shortly before

the circuit breaker are triggered. In Figure 1, the market is halted due to the continuous

drop of Stock 1’s price, while in Figure 2 the circuit breaker is trigged by a jump in Stock

2’s price. In the first case, as Stock 1’s price (the red line) approaches to the threshold
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and finally causes the index to drop enough to trigger the circuit breaker, Stock 2’s price

moves down to the corresponding equilibrium price at closure (the blue line). In the

second case, when Stock 2’s price crashes (jumps down), the circuit breaker is triggered,

and Stock 1’s price also crashes down to the equilibrium price at closure (the blue line).

Figures 1 and 2 suggest circuit breakers may cause a positive correlation and a crash

contagion between the two stocks, which we will investigate in details later.
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Figure 1. This figure depicts sample paths of the equilibrium prices during a period of time right before the market
is halted due to continuous decreasing in Stock 1’s dividend process.

5.2 Crash Contagion

Because the circuit breaker based on a stock index is triggered when the index reaches a

threshold, a crash in a group of stocks (e.g., from a downward jump in their dividends)

may trigger the circuit breaker and cause the entire market to be closed down. As a

result, the prices of otherwise independent stocks may also jump down because of the
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Figure 2. This figure depicts sample paths of the equilibrium prices during a period of time before the market is
halted due to a jump in Stock 2’s dividend process.

sudden market-wide closure. We refer this pattern of cross-stock serial crashes as crash

contagion.

Let C denote the event that a crash in Stock 2’s price triggers the circuit breakers at

τ and ∆t be a small time interval. In Figure 3, we plot the unconditional distribution of

Stock 1’s price change between τ and τ −∆t (blue line), the corresponding distribution

conditional on the event C (red dashed line), and the conditional distribution of Stock

1’s price change between τ and τ− (red line). The green line in Figure 3 shows that

without circuit breakers, the price change of Stock 1 between τ and τ − ∆t, with or

without a crash in Stock 2’s price, is normally distributed. This implies that without

circuit breakers, there is no contagion across stocks. In contrast, as the red dashed line in

Figure 3 shows, in the presence of circuit breakers, after a crash of Stock 2 that triggers

a circuit breaker, the distribution of Stock 1’s price change between τ and τ −∆t shifts

leftward significantly compared to the unconditional distribution. This distribution shift
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indicates crash contagion from Stock 2 to Stock 1 in the presence of circuit breakers.

Figure 3 indicates that on average a crash of Stock 2 ’s price causes Stock 1 price to

drop, suggesting a positive correlation between the returns of the two stocks when the

market crashes. Recall that in the absence of circuit breakers, Stock 1 price is continuous

and thus Stock 1’s price change between τ and τ− is zero. The red line of Figure 3

implies that in the presence of circuit breakers, not only there is contagion but also a

crash in Stock 2’s price can cause a crash (jumping down) in Stock 1’s price, i.e., circuit

breakers can result in a crash contagion. This discontinuity in Stock 1’s price is due to the

discontinuous change in the value of the stock due to the sudden market closure. Stock

1’s price jumps down because the market closure reduces risk sharing and thus increases

the riskiness of the stock.
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Figure 3. Distribution of changes in Stock 1’s price when the circuit breaker is triggered by a jump
in Stock 2’s price. In the presence of a circuit breaker, the distribution is skewed negatively. Results for
two methods of measuring the changes are presented. Meanwhile, in the absence of circuit breakers the
price changes follows a normal distribution.
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5.3 Increased Correlations and Correlation Asymmetry

With circuit breakers based on indices, a discrete jump (crash) in a stock is not necessary

to adversely affect other otherwise independent stocks. Intuitively, even after a small

decline in the price of a stock, the index gets closer to the circuit breaker threshold and

thus the market is more likely to be closed early, which may lower the prices of other

otherwise independent stocks, which in turn makes the index even closer to the circuit

breaker threshold, entering into a vicious circle. This contagion magnitude is typically

smaller than that caused by a crash in a stock in normal times, but can become much

more significant and create strong correlations when the circuit breaker is close to being

triggered because of the magnified vicious circle effect. We next show that a gradual

change in the price of a stock can indeed affect the price of another stock and can also

cause high correlations among otherwise independent stocks when the index gets close to

the circuit breaker threshold.
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Figure 4. Instantaneous correlation.
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Consistent with our intuition, Figure 4 shows that the correlation between the two

prices with circuit breakers increases significantly as the index gets close to the thresh-

old.12 When the index is far from the threshold and thus a market closure is unlikely,

the correlation becomes close to zero, because the correlation without circuit breakers is

zero. In addition, when the potential market closure duration is large (T − t is large),

the impact of the circuit breakers on the correlation is even greater, because the fear of

a market closure is stronger when the potential market closure duration is longer. For

example, conditional on the same distance of 0.02 from the threshold, if it is later in the

day at t = 0.75, the correlation is 0.2, but the correlation increases to about 0.55 if it is

early in the day at t = 0.13

We further show that circuit breakers may change tail dependence of the stock returns

and generate correlation asymmetry. Hong, Tu, and Zhou (2007) develop a model-free

method to measure correlation asymmetry as follows. Let r1 and r2 be two random

variables with zero mean and unit standard deviation. Define

ρ+ = corr(r1, r2|r1 > c, r2 > c), ρ− = corr(r1, r2|r1 < −c, r2 < −c),

where c ≥ 0 can be interpreted as a multiplier of standard deviations. The correla-

12In the figure, “distance from threshold” is defined as the value of the index in exceed of the threshold.
Because the equilibrium index level is determined jointly by the dividend levels of the two stocks, the
way to vary the distance is not unique. In all the figures in this paper that plot against the distance to
threshold we fix D2,t and vary D1,t. We also used alternative ways such as fixing D1,t and varying D2,t

and find similar results.
13So far the dividend processes are assumed to be uncorrelated and we show that a strong correlation

of the stock prices can emerge due to circuit breakers. One concern may be that if the dividend processes
are already correlated, then the additional correlation caused by the circuit breakers may be small and
thus the effect of circuit breakers in increasing correlation may be small in practice. To address this
concern, in an earlier version of the paper, we show that even when the dividends are correlated, the
presence of circuit breakers can significantly increase the correlation of stock prices further. In addition,
the presence of circuit breakers can even make negatively correlated stocks in the absence of circuit
breakers become positively correlated. This reversal is because as the index gets close to the threshold,
the common fear for market closure offsets the effect of the negatively correlated dividends and as a
result the correlation turns positive. These results are not presented in the current version to save space,
but available from the authors.

27



tion asymmetry is measured by ρ+ − ρ−. Given a set of observations of (r1, r2), cor-

relation asymmetry can be tested for a single multiplier c or a vector of them, e.g.,

c = (0, 0.5, 1, 1.5). We refer readers to Hong, Tu, and Zhou (2007) for more details of the

statistical testing. Using our simulation data of the equilibrium stock returns, we report

the testing results in Table 1. Table 1 shows that significant correlation asymmetries are

present, indicating that the circuit breaker generates significantly greater tail dependence

after a large drop in stock prices than after a large increase. Note that in the absence of

circuit breakers, there is no correlation and thus there is no correlation asymmetry.

distance c 0 0.5 1 1.5 J(stat.) p-value
0.0211 ρ+ − ρ− -0.0854 -0.1710 -0.3742 -0.5788 19.334 0.00068
0.0187 ρ+ − ρ− -0.2145 -0.3662 -0.6147 -0.3224 82.96 < 10−6

Table 1. This table reports correlation asymmetry testing results at different distances from the

threshold. The existence of correlation asymmetry is confirmed, even more significant if the distance is

smaller. The p-values are calculated by using the statistics (J) with a χ2
3 distribution.

5.4 Volatility Contagion and Volatility Amplification

Next, we show that in addition to crash contagion, circuit breakers can also cause volatility

contagion among otherwise independent stocks, i.e., an increase in the volatility of one

stock can cause an increase in that of another. Figure 5 plots the instantaneous volatility

of Stock 2 against that of Stock 1 for t = 0 and t = 0.25 when the index level is 0.01

above the circuit breaker threshold as we change the volatility of Stock 1’s dividend.

Figure 5 indicates that, indeed, a higher volatility of Stock 1’s dividend can cause a

higher volatility of Stock 2. Intuitively, the stock price contagion causes the volatility

contagion. As explained above, after some stocks fall in prices, the index gets closer to

the circuit breaker threshold, other stock prices also fall due to the fear of the more likely

market closure, which in turn drives the index even closer to the threshold, and so on.

This vicious cycle implies that as the price change of one stock becomes more volatile,

28



so does the price change of the other, resulting in volatility contagion, especially when

the index is close to the circuit breaker threshold. In addition, when the time to horizon

is longer (t = 0), the effect of the circuit breakers is greater, and therefore the degree of

contagion is larger as measured by the sensitivity of Stock 2’s volatility change to Stock

1’s volatility change (the red line slope).

One of the regulatory goals of the circuit breaker is to reduce market volatility in

bad times. Because of the volatility contagion, we conjecture that contrary to regulators’

intention, circuit breakers may increase the market volatility in bad times. Figure 6

plots the volatility of the index with circuit breakers against the index’s distance from

the circuit breaker threshold at two different time points t = 0 and t = 0.5. Figure 6

suggests that, indeed, contrary to the regulatory goal, circuit breakers can amplify the

market volatility. This is because the vicious cycle effect described above can increase

the sensitivity of stocks’ prices to dividend shocks.
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Figure 5. This figure shows that volatilities of Stocks 1 and 2 are correlated in the presence of circuit
breakers.
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against the distance from the circuit breaker threshold.

5.5 Acceleration of Market Decline: The Magnet Effect

Circuit breakers are implemented to protect the market from a fast decline. Contrary

to this intention, Chen et al. (2023) show in a single-stock setting that circuit breakers

can accelerate a stock price decline compared to the case without circuit breakers. This

acceleration is what is called the “magnet effect” by Chen et al. (2023). However, it is

not clear how the presence of multiple stocks affects this magnet effect. Our following

results suggest that, in the presence of circuit breakers on stock indices, the probability

of falling to the index threshold compared to the case without circuit breakers is also

increased, so the magnet effect found by Chen et al. (2023) is robust to a multiple-stock

setting.

Figure 7 shows the probabilities of reaching the circuit breaker index threshold in a
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given time interval (duration) with circuit breakers on the index (red line) and without

circuit breakers (blue line). It suggests that the probability of falling to the index thresh-

old when there is a circuit breaker on the index is higher than that without any circuit

breakers. This is because with circuit breakers on indices, when one stock goes down, the

distance to the circuit breaker threshold is shorter and the likelihood of an early market

closure is greater. As a result, other stock prices tend to go down, which in turn drags

the index further downward, resulting in a downward accelerating vicious circle, contrary

to regulators’ intention. Because of the contagion effect across stocks, the magnet effect

in a model with multiple stocks like ours is stronger than that found in the single-stock

setting of Chen et al. (2023), ceteris paribus. In addition, when the potential market

closure length is longer (e.g., at t = 0), this magnet effect is even stronger.

Although the magnet effect is present in both Chen et al. (2023) and this paper, the

main driving force of the magnet effect in our setting is different. The main driving force

for the magnet effect in Chen et al. (2023) is the fear that one has to liquidate a levered

position at the market closure time because after market closure, leverage is prohibited

by the solvency requirement. In contrast, in this paper there is no change in the leverage

level allowed before and after a market closure. Figure 8 shows that when a separate

circuit breaker is imposed on Stock 1 as in Chen et al. (2023), the probability of reaching

the circuit breaker threshold is almost the same as that in the absence of a circuit breaker.

This implies that in our setting which does not restrict leverage, the magnet effect would

be virtually zero without the contagion effect. This suggests that different from Chen et

al. (2023), the driving force behind the magnet effect in our setting is the contagion effect

of circuit breakers, instead of the leverage constraint effect in Chen et al. (2023).
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Figure 7. This figure shows the probability that prices will reach the threshold with or without a
circuit breaker.

5.6 Benefits of Circuit Breakers

In this paper, we focus on the possible unintended bad effects of circuit breakers in bad

states. To be clear, we are not arguing that circuit breakers are always counterproduc-

tive. On the contrary, there is no doubt that circuit breakers do have “bright sides” as

recognized by a few of previous studies and our model also implies such bright sides when

there is only moderate decline in the market.

As an example, given any distance of the index from the threshold, we simulate the

next instant Stock 1 and Stock 2 prices and sort the index changes into quantiles with

lowest quantile (≤ 0.2) representing the largest drop and the highest quantitle (≥ 0.8)

representing the largest increase. In Figure 9, we plot the volatility of the index against

the distance to the threshold for index changes in the lowest, the middle, and the highest

quantiles. Figure 9 shows that index volatilities are reduced when the index changes

moderately or increases sharply as the index approaches the circuit breaker threshold.

Therefore, as a benefit of circuit breakers, they can decrease market volatility in normal
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Figure 8. This figure shows the probability that prices will reach the threshold with or without a
circuit breaker for Stock 1 with a separate circuit breaker.

or good times.14

6. Empirical Analysis

Our model has two main predictions: (1) With a market-wide circuit breaker, as market

index gets closer to the circuit breaker threshold, the contagion across stocks gets stronger;

and (2) The contagion with a market-wide circuit breaker is stronger than that without.

In this section, we empirically test these predictions.

14However, large drops in the index cause increased volatilities, as found in the preceding subsections.
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Figure 9. This figure depicts how correlation and volatility change for different change levels of the
stock prices (the quantiles are sorted by changes in the index in the next instant for a given distance to
the threshold).

6.1 Identification Strategy

It is inherently difficult to distinguish the circuit breaker effects from the general effects

of market turbulence. To establish that it is the circuit breaker imposition that causes

the change in the degree of contagion, we take advantage of a policy experiment in China

in January, 2016. After the stock market tumbled in the second half of 2015, the CSRC

introduced market-wide circuit breakers (CB) starting from January 1 in 2016. The

Chinese CB rules mimic those in the United States, albeit with a much lower triggering

threshold. The CB rule uses the CSI 300 Index (China Securities Index, a Chinese

counterpart of the S&P 500 index) as reference and imposes a 15-minute trading halt

when the index rises or falls by a threshold of 5% relative to the previous close level.

After the initial halt, trading continues unless CSI 300’s movement later reaches the 7%

level, when the market will be closed for the day. The trading halt was triggered on
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January 4, the very first trading day since the policy’s official implementation, and later

on January 7. After receiving harsh public criticisms, the CSRC suspended this policy

from January 8 on. The sudden adoption and suspension of the CB policy provide a good

setting to test our model implications. This approach complements (Chen et al., 2023)

who construct a distance to circuit breakers threshold and examine aggregate market

behavior along this distance over time.

Our empirical strategy is to compare the degree of market contagion across different

periods that have different extent of impact from circuit breakers. Prior studies often

consider a significant increase in the degree of co-movement between stock markets in

different countries as the primary evidence of market contagion. We follow this logic but

adapt such cross-country tests to suit our setting. As cautioned in Forbes and Rigobon

(2001), some groups of countries (assets) are innately closely connected to each other,

and therefore it would not be surprising to find a large negative shock propagating from

one group to another. Therefore, we focus on groups of stocks that are least correlated

with others during normal times. As in Chan, Lakonishok, and Swaminathan (2007), we

find that utility stocks have substantially lower correlations with other stocks in normal

times. Accordingly, we examine how utility stocks’ co-movements with other industries’

stocks manifest with and without circuit breakers. Specifically, we first compare stock co-

movement in the period just before the trading halt with a period well before the trading

halt as an intra-day test of prediction (1); we then compare stock co-movement on a day

with circuit breakers with days without circuit breakers as an inter-day test of prediction

(2). In addition to the simultaneous co-movement between utility stocks and other stocks,

we further investigate whether other stocks’ declines can lead to subsequent declines in

utility stocks. We view an elevated correlation between other stocks’ simultaneous/past

returns and utility stocks’ returns as evidence of market contagion.

To examine the contagion effect of circuit breakers across utility stocks and other
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stocks, we use the following regression specification:

Return8,j,t =α + β1Returnk,j,t + β2CBj + β3(Returnk,j,t ∗ CBj)

+ β4Returnk,j,t−5 + β5(Returnk,j,t−5 ∗ CBj)

+ β6Returnk,j,t−10 + β7(Returnk,j,t−10 ∗ CBj) + ϵ, k = 1, 2 . . . , 7, 9 . . . , 12 (R)

In the above specification (R), the dependent variable Return8,j,t is the value-weighted

utility industry return (Industry No.8 based on Fama-French 12-industry classification)

at minute t on day j. We manually construct a mapping between FF12 and the CSRC’s

detailed industry classifications and use the end of 2015 market capitalization to com-

pute portfolio weights in an industry. For explanatory variables, we include Returnk,j,t,

the simultaneous return of the kth Fama-French industry (k = 1, 2 . . . , 7, 9 . . . , 12), to

examine the co-movements between utility stocks and other stocks. We also include two

lagged return variables Returnk,j,t−5 (5 minutes) and Returnk,j,t−10 (10 minutes) to test

whether other industries’ past returns relate to utility stocks’ subsequent movements.

We further interact a dummy variable CB with these three return variables to examine

whether stock returns’ simultaneous co-movements and lead-lag relations vary with the

value of CB.15

Equation (R) is estimated using high-frequency trading data from Jinshuyuan.net

(a Chinese stock trading data provider similar to Refinitiv). We first perform industry

pairwise estimation by regressing utility stock returns on each of 11 industries’ returns

and obtain β coefficients for each industry. We construct a Wald-type test based on

a more general test of linear restrictions on the regression parameters in linear models

(Cameron and Trivedi , 2005, p.224). The null hypothesis is that the mean value of the

15As explained later, CB can capture the time distance from a CB halt or the presence of circuit
breakers.

36



corresponding βs across 11 separate regressions is equal to zero. The Wald-type test

statistic converges to the χ2 distribution under the null hypothesis (Cameron and Trivedi

, 2005, p.225).

6.2 Intra-day Evidence of Jan 4

The circuit breakers were triggered twice, on January 4 and 7, before the policy was

suspended on January 8. On January 7, the circuit breaker was tripped only 12 minutes

after market opened, which makes January 7 not suitable for testing prediction (1).

Hence, we focus our analysis on January 4. On January 4, the CSI 300 dropped by

5% in the early afternoon, triggering a 15-minute trading halt at 13:13; shortly after

when trading resumed at 13:28, the market tumbled again, hitting the 7% threshold at

13:34 and forced the market to close for the rest of the day. We analyze stock contagion

during the period leading up to the trading halt. In particular, we divide the period

before trading halt into two halves and rename the dummy variable CB in Equation (R)

as a dummy variable “SH” (short for the second half) that equals one for the period

immediately before the trading halt.

The results are presented in Table 2. Results in Column (1) indicate that utility stock

returns are closely related with the simultaneous returns of other stocks. The average

coefficient estimate of the interaction term is positive and statistically significant at 1%

level. The economic magnitude is considerable: In the first 70 trading minutes on January

4, the average co-movement coefficient is 0.717; in the subsequent 73 minutes before the

trading halt, the co-movement intensity increases by about 26.4% (0.189/0.717). Results

in Columns (2) and (3) suggest that in the period further away from the trading halt,

other stocks’ past returns have very little (or even negative) association with subsequent

returns of utility stocks. In contrast, in the period right before CB, both 5-minute

and 10-minute lagged returns of other stocks are significantly positively associated with
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subsequent returns of utility stocks. In Column (4), we control for the simultaneous

returns, both lagged returns, and the interaction terms. The results indicate that other

stocks’ past and simultaneous returns become statistically significantly associated with

utility stock returns during the period right before CB. These results are consistent with

model Prediction (1), namely, with CB in place, as a market index gets closer to the

triggering threshold, contagion across stocks gets significantly stronger.

Table 2. Test for market contagion within the CB day of Jan 4

This table reports the results of estimating Equation R1 using data from January 4, 2016.
The dependent variable is the value-weighted Fama-French utility industry return (FF8) at
minute t. Explanatory variables include the returns of the remaining Fama-French 11 industries
(1, 2 . . . , 7, 9 . . . , 12) at minute t (Simultaneous return), t − 5 (Lagged return 5 min), and t − 10
(Lagged return 10 min). We divide the trading period before CB into two halves and SH is a
dummy variable that equals one for the second half right before the CB. We interact this dummy
variable with the three return variables to test whether market contagion intensifies when the time
draws closer to the triggering of CB. We regress utility stock returns on the simultaneous and
lagged returns for each of the remaining 11 industries separately and report the mean value of the
coefficient estimates. P values from χ2 tests for the statistical significance of this mean value are
presented in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1%
levels, respectively.

Returns of FF8
(1) (2) (3) (4)

Simultaneous return 0.717*** 0.732*** 0.743*** 0.747***
(0.001) (0.001) (0.001) (0.001)

Simultaneous return*SH 0.189*** 0.177*** 0.156*** 0.156***
(0.001) (0.001) (0.001) (0.001)

SH (Second Half) −0.0001** −0.0001 0.0001 0.0001
(0.016) (0.379) (0.698) (0.103)

Lagged return (5 min) 0.005 −0.005
(0.755) (0.755)

Lagged return (5 min)*SH 0.080*** 0.087***
(0.005) (0.002)

Lagged return (10 min) −0.001 0.003
(0.951) (0.824)

Lagged return (10 min)*SH 0.239*** 0.233***
(0.001) (0.001)

Intercept Yes Yes Yes Yes
Avg. Obs. 143 137 132 132
Avg. R2 0.739 0.75 0.764 0.77
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6.3 Inter-day Evidence

6.3.1 CB versus Pre-CB and Post-CB Controls

Our model Prediction (2) implies that market contagion is stronger with CB than without.

As the circuit breaker policy was first introduced on January 4 and later suspended from

January 8 on, we use the two adjacent days: December 31, 2015, the last trading day

prior to the initiation, and January 8, the first trading day since the suspension of the

policy, as control groups. Accordingly, in regression (R) whose results are reported in

Table 3, the dummy variable of CB equals one for January 4, and zero for December 31,

2015 and January 8, 2016.

Results in Column (1) in Table 3 show that the return co-movements between utility

stocks and other stocks are significantly greater on January 4, the day with CB, than

the days without CB. The point estimates indicate a 55.8% (0.327/0.585) increase from

December 31 to January 4. Moreover, results in Columns (2) and (3) show a sharp

contrast with and without CB in the lead-lag relations of stocks: with CB in place, other

stocks’ past returns propagate to utility stocks’ subsequent returns, consistent with the

market contagion prediction, while without CB, the propagation is much weaker or even

negative. For instance, in Column (2), the coefficient of 5-minute lagged return is −0.016

but the interaction term is 0.105 with a statistical significance at 1% level. This evidence

suggests that other stocks’ 5-minute past returns are inversely related to utility stocks’

subsequent returns on December 31 and January 8, but are positively related to utility

stocks’ subsequent returns on January 4. When we move our attention to Column (4),

the previous conclusions continue to hold. Both the simultaneous co-movements and the

lead-lag relations between utility stocks and other stocks are significantly elevated on a

day when CB is implemented.
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Table 3. Comparing market contagion with pre-CB and post-CB controls

This table reports the results of estimating Equation (R) combining data from January 4, 2016
(CB) with December 31, 2015 and January 8, 2016 data (Controls). The dependent variable is
the value-weighted Fama-French utility industry return (FF8) at minute t. Explanatory variables
include the returns of the remaining Fama-French 11 industries (1, 2 . . . , 7, 9 . . . , 12) at minute t
(Simultaneous return), t − 5 (Lagged return 5 min), and t − 10 (Lagged return 10 min). CB is
a dummy variable that equals one for January 4 and zero for December 31 and January 8. We
interact this dummy with the three return variables to test whether market contagion intensifies
when circuit breakers are triggered. We regress utility stock returns on the simultaneous and
lagged returns for each of the remaining 11 industries separately and report the mean value of the
coefficient estimates. P values from χ2 tests for the statistical significance of this mean value are
presented in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1%
levels, respectively.

Returns of FF8
(1) (2) (3) (4)

Simultaneous return 0.585*** 0.583*** 0.587*** 0.585***
(0.001) (0.001) (0.001) (0.001)

Simultaneous return*CB 0.327*** 0.331*** 0.316*** 0.329***
(0.001) (0.001) (0.001) (0.001)

CB −0.0001*** −0.0001*** −0.0001*** −0.0001**
(0.001) (0.001) (0.001) (0.016)

Lagged return (5 min) −0.016** −0.015*
(0.046) (0.058)

Lagged return (5 min)*CB 0.105*** 0.098***
(0.001) (0.001)

Lagged return (10 min) −0.001 −0.003
(0.875) (0.636)

Lagged return (10 min)*CB 0.240*** 0.239***
(0.001) (0.001)

Intercept Yes Yes Yes Yes
Avg. Obs. 445 442 439 439
Avg. R2 0.689 0.694 0.704 0.709
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6.3.2 CB versus Eight Days with Extraordinary Market Decline

One might worry that December 31, 2015 and January 8, 2016 are not perfect counter-

factuals as the stock market only experienced moderate drops on these two days. To

alleviate this concern, we choose all the days when the CSI 300 index dropped over 5%

since 2016 as another group of controls. These eight days include January 11, January

26, February 25 of 2016, February 9 and October 11 of 2018, May 6 of 2019, February 3

of 2020, and April 25 of 2022. This new choice of counterfactual allows us to estimate

what would have followed in the market when the CSI drops below 5% in the absence of

circuit breakers. Combining these eight non-CB days with the treatment day of January

4, we re-estimate Equation (R) and report the results in Table 4.

The results in Table 4 bear a close resemblance to Table 3. Results in Column

(1) indicate that utility and other stocks’ simultaneous co-movements are about 25.7%

(0.186/0.723) greater on January 4 than those eight days when stock markets dropped

over 5%. It is worth noting that on those days with extraordinary market declines, other

industries’ 5 and 10 minutes past returns are both negatively associated with utility

stocks’ subsequent returns yet on the day with CB, this lead-lag relations are significantly

positive. This evidence is consistent with the quantitative significance of market contagion

caused by the circuit breakers.

6.3.3 Evidence Based on the Entire Week of CB

The above analysis compares the CB day of January 4 with various sets of controls.

The short-lived policy actually lasted four days from January 4 to January 7, although

circuit breakers were not triggered on January 5 and 6. In this section, we analyze

whether market contagion behavior changes from the week before CB to the week after

CB. To this end, we pool data for all four days (CB Week) and compare market contagion

behavior with four trading days before January 4 (December 28, 29, 30 and 31 of 2015)
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Table 4. Comparing market contagion with eight days of extraordinary market decline

This table reports the results of estimating Equation (R) using data on January 4 (CB) and eight
days when the CSI dropped over 5% post-CB (Controls). The dependent variable is the value-
weighted Fama-French utility industry return (FF8) at minute t. Explanatory variables include the
returns of the remaining Fama-French 11 industries (1, 2 . . . , 7, 9 . . . , 12) at minute t (Simultaneous
return), t− 5 (Lagged return 5 min), and t− 10 (Lagged return 10 min). CB is a dummy variable
that equals one for January 4 and zero for those eight days of extraordinary market decline. We
interact this dummy with the three return variables to test whether market contagion intensifies
when circuit breakers are triggered. We regress utility stock returns on the simultaneous and
lagged returns for each of the remaining 11 industries separately and report the mean value of the
coefficient estimates. P values from χ2 tests for the statistical significance of this mean value are
presented in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1%
levels, respectively.

Returns of FF8
(1) (2) (3) (4)

Simultaneous return 0.723*** 0.722*** 0.723*** 0.721***
(0.001) (0.001) (0.001) (0.001)

Simultaneous return*CB 0.186*** 0.189*** 0.177*** 0.180***
(0.001) (0.001) (0.001) (0.001)

CB −0.0001*** −0.0001*** −0.0001*** −0.0001***
(0.001) (0.001) (0.001) (0.001)

Lagged return (5 min) −0.013*** −0.015***
(0.003) (0.001)

Lagged return (5 min)*CB 0.100*** 0.095***
(0.001) (0.001)

Lagged return (10 min) −0.006 −0.008**
(0.110) (0.045)

Lagged return (10 min)*CB 0.243*** 0.242***
(0.001) (0.001)

Intercept Yes Yes Yes Yes
Avg. Obs. 1523 1521 1519 1519
Avg. R2 0.651 0.652 0.653 0.654
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and four trading days after January 7 (January 8, 11, 12, and 13 of 2016). We re-estimate

Equation (R) and report the results in Table 5. Overall, the results are quite similar to

those in the previous tables. These results confirm that market contagion is significantly

greater when the CB policy is in place.

Table 5. Market contagion analysis based on the week of CB

This table reports the results of estimating Equation (R) using data from January 4 to January 7
(CB week) and four days before January 4 and four days after January 7. The dependent variable is
the value-weighted Fama-French utility industry return (FF8) at minute t. Explanatory variables
include the returns of the remaining Fama-French 11 industries (1, 2 . . . , 7, 9 . . . , 12) at minute t
(Simultaneous return), t − 5 (Lagged return 5 min), and t − 10 (Lagged return 10 min). CBW
(CB Week) is a dummy variable that equals one for the four days between January 4 and January
7, zero for those eight days surrounding January 4 and January 7. We interact this dummy with
the three return variables to test whether market contagion intensifies when circuit breaker policy
is in place. We regress utility stock returns on simultaneous and lagged returns for each of the
remaining 11 industries separately and report the mean value of the coefficient estimates. P values
from χ2 tests for the statistical significance of this mean value are presented in parentheses. *, **,
and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Returns of FF8
(1) (2) (3) (4)

Simultaneous return 0.783*** 0.778*** 0.783*** 0.778***
(0.001) (0.001) (0.001) (0.001)

Simultaneous return*CBW 0.135*** 0.156*** 0.128*** 0.149***
(0.001) (0.001) (0.001) (0.001)

CBW (CB Week) −0.0001*** −0.0001*** −0.0001*** −0.0001***
(0.001) (0.001) (0.001) (0.001)

Lagged return (5 min) −0.025*** −0.023***
(0.001) (0.001)

Lagged return (5 min)*CBW 0.076*** 0.083***
(0.001) (0.001)

Lagged return (10 min) 0.012*** 0.023***
(0.001) (0.003)

Lagged return (10 min)*CBW 0.021*** 0.090***
(0.001) (0.001)

Intercept Yes Yes Yes Yes
Avg. Obs. 1899 1894 1889 1889
Avg. R2 0.831 0.832 0.831 0.833

6.4 Evidence from the United States

One might worry about that our results might be only valid for the Chinese market. To

address this concern, we present evidence based on the occurrences of circuit breaker trips
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in the United States amid COVID-19. Market-wide circuit breakers were mandated by

the U.S. Securities and Exchange Commission (SEC) in 1988 to prevent market crashes

such as the Black Monday of 1987, when the Dow Jones Industrial Average (DJIA)

plunged 22.6%. Currently, the circuit breakers can be triggered at three thresholds which

measure a decrease from the previous day’s closing price of the S&P 500 index – 7% (level

one), 13% (level two), and 20% (level three). In March 2020, level one circuit breakers

were triggered four times, each causing a 15-minute trading halt. On March 9, 12 and 16,

the level one circuit breakers were triggered within the first few minutes after the market

opened in the morning, while the fourth occurred at 12:56:17 PM on March 18.

In this section, we focus our attention on March 18, because the first three trading

halts occurred very early in the morning. We use tick history data from Refinitiv to

perform our analysis. In the intra-day test, we examine market contagion behavior in the

window leading up to the trading halt. In the inter-day test, we compare market contagion

between March 18 and March 19, another turbulent day with a daily swing over 6% but

without triggering the CB. The intra-day results are presented in Table 6. The results

are similar to the results in Table 2 with simultaneous stock co-movements experiencing

a 18% to 23% increase in the period immediately before the trading halt. Also, other

stocks’ 5-minute lagged returns exhibit significantly greater association with utility stocks’

subsequent returns. We then turn to the inter-day test results in Table 7 when we compare

market contagion with March 19. The previous conclusion remains unchanged and the

economic magnitude of estimate is comparable. The simultaneous stock co-movements

on March 18 are about 20% greater than those on March 19. Moreover, other stocks’ 10-

minute lagged returns experience an elevated association with utility stocks’ subsequent

returns on March 18.

In summary, we find consistently supporting evidence for our model predictions of

contagion in both China and the United States markets.
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Table 6. Test for U.S market contagion within the CB day of March 18

This table reports the results of estimating Equation R1 using U.S. tick history data on March 18,
2020. The dependent variable is the value-weighted Fama-French utility industry return (FF8) at
minute t. Explanatory variables include the returns of the remaining Fama-French 11 industries
(1, 2 . . . , 7, 9 . . . , 12) at minute t (Simultaneous return), t − 5 (Lagged return 5 min), and t − 10
(Lagged return 10 min). We divide the trading period before CB into two halves and SH is a
dummy variable that equals one for the second half right before the CB. We interact this dummy
variable with the three return variables to test whether market contagion intensifies when the time
draws closer to the triggering of CB. We regress utility stock returns on the simultaneous and
lagged returns for each of the remaining 11 industries separately and report the mean value of the
coefficient estimates. P values from χ2 tests for the statistical significance of this mean value are
presented in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1%
levels, respectively.

Returns of FF8
(1) (2) (3) (4)

Simultaneous return 0.788*** 0.775*** 0.786*** 0.775***
(0.001) (0.001) (0.001) (0.001)

Simultaneous return*SH 0.057 0.142*** 0.162*** 0.175***
(0.178) (0.001) (0.001) (0.001)

SH (Second Half) 0.0001 0.0001*** 0.0001*** 0.0001***
(0.308) (0.001) (0.001) (0.001)

Lagged return (5 min) −0.114*** −0.111***
(0.001) (0.001)

Lagged return (5 min)*SH 0.081** 0.112***
(0.041) (0.005)

Lagged return (10 min) 0.031 0.014
(0.221) (0.547)

Lagged return (10 min)*SH 0.013 0.031
(0.742) (0.414)

Intercept Yes Yes Yes Yes
Avg. Obs. 206 201 196 196
Avg. R2 0.481 0.503 0.521 0.526
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Table 7. Comparing U.S. market contagion between March 18 and March 19

This table reports the results of estimating Equation (R) using U.S. tick history data on March 18
(CB) and March 19 (Non-CB). The dependent variable is the value-weighted Fama-French utility
industry return (FF8) at minute t. Explanatory variables include the returns of the remaining
Fama-French 11 industries (1, 2 . . . , 7, 9 . . . , 12) at minute t (Simultaneous return), t − 5 (Lagged
return 5 min), and t − 10 (Lagged return 10 min). CB is a dummy variable that equals one for
March 18 and zero for March 19. We interact this dummy with the three return variables to test
whether market contagion intensifies when circuit breakers are triggered. We regress utility stock
returns on the simultaneous and lagged returns for each of the remaining 11 industries separately
and report the mean value of the coefficient estimates. P values from χ2 tests for the statistical
significance of this mean value are presented in parentheses. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

Returns of FF8
(1) (2) (3) (4)

Simultaneous return 0.747*** 0.747*** 0.748*** 0.749***
(0.001) (0.001) (0.001) (0.001)

Simultaneous return*CB 0.153*** 0.150*** 0.152*** 0.150***
(0.001) (0.001) (0.001) (0.023)

CB 0.0001** 0.0001* 0.0001** 0.0001**
(0.035) (0.051) (0.019) (0.028)

Lagged return (5 min) −0.017 −0.019
(0.260) (0.219)

Lagged return (5 min)*CB −0.022 −0.012
(0.386) (0.619)

Lagged return (10 min) 0.028** 0.028**
(0.044) (0.042)

Lagged return (10 min)*CB 0.046* 0.044*
(0.051) (0.062)

Intercept Yes Yes Yes Yes
Avg. Obs. 377 372 367 367
Avg. R2 0.551 0.552 0.554 0.555

46



6.5 Volatility Increase and Volatility Contagion

Our model also predicts that (1) as an index gets closer to the CB threshold, the market

volatility increases; and (2) a volatility changes in one group of stocks can spill over to

other groups of stocks (volatility contagion). In this section, we provide some supporting

evidence of such predictions using the Chinese data. First, we focus on the market

volatility in the period leading up to the trading halt on January 4. In Figure 10, we plot

the CSI 300’s volatility (in 5-minute intervals) against the market index’s distance to the

triggering threshold of CB. In the figure, we add a dashed, curve line using the fitted value

from a log-linear regression. The market volatility path reveals that market volatility

gradually rises as the distance inches closer to the triggering threshold, consistent with

model prediction (1).
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Figure 10. This figure plots the volatility of China’s stock market against market index’s distance to
CB triggering threshold on January 4, 2016.

We next estimate the same empirical specification of Equation (R) with returns re-

placed by volatilities to explore whether other stocks’ volatility propagate to utility
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stocks. Results in Table8 show that other stocks’ 5-minute past volatility and simul-

taneous volatility are positively associated with volatility of utility stocks. This evidence

is consistent with our model prediction that cross-stock volatility contagion rises when

CB policy is in place.

Table 8. Comparing volatility contagion with eight days of extraordinary market decline

This table reports the results of estimating Equation (R) with returns replaced by volatilities
using data on January 4 (CB) and eight days when the CSI 300 dropped over 5% post-CB. The
dependent variable is the Fama-French utility industry’s volatility (FF8) at minute t. Explanatory
variables include the volatilities of the remaining Fama-French 11 industries (1, 2 . . . , 7, 9 . . . , 12)
at minute t (Simultaneous volatility), t− 5 (Lagged volatility 5 min), and t− 10 (Lagged volatility
10 min). CB is a dummy variable that equals one for January 4 and zero for those eight days
of extraordinary market decline. We interact this dummy with the three volatility variables to
test whether volatility contagion intensifies when circuit breakers are triggered. We regress utility
stock volatility on the simultaneous and lagged volatilities for each of the remaining 11 industries
separately and report the mean value of the coefficient estimates. P values from χ2 tests for the
statistical significance of this mean value are presented in parentheses. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% levels, respectively.

Volatility of FF8
(1) (2) (3) (4)

Simultaneous volatility 0.502*** 0.473*** 0.488*** 0.469***
(0.001) (0.001) (0.001) (0.001)

Simultaneous volatility*CB 0.274*** 0.212*** 0.262*** 0.196***
(0.001) (0.001) (0.001) (0.001)

CB −0.002*** −0.007*** −0.005*** −0.009***
(0.001) (0.001) (0.001) (0.001)

Lagged volatility (5 min) 0.107*** 0.092***
(0.001) (0.001)

Lagged volatility (5 min)*CB 0.296*** 0.295***
(0.001) (0.001)

Lagged volatility (10 min) 0.079*** 0.051***
(0.001) (0.001)

Lagged volatility (10 min)*CB 0.143** 0.152***
(0.012) (0.004)

Intercept Yes Yes Yes Yes
Avg. Obs. 1523 1521 1521 1519
Avg. R2 0.836 0.848 0.840 0.850

7. Conclusion

We present a continuous-time equilibrium model that incorporates multiple stocks to

investigate the impact of circuit breakers on joint stock price dynamics and cross-stock
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contagion. Contrary to the intended regulatory objectives of circuit breakers, our find-

ings reveal that while they can be effective in normal market conditions by dampening

volatility, they can have unintended consequences during periods of significant market

downturns.

Specifically, our research demonstrates that circuit breakers can contribute to crash

contagion, volatility contagion, heightened volatilities, and increased correlations among

stocks that are otherwise independent. These results are supported by our comprehensive

empirical analysis, which incorporates data from both Chinese and US markets. Notably,

our analysis indicates that circuit breaker rules may have exacerbated international mar-

ket declines triggered by the COVID-19 pandemic due to their contagion effects. Conse-

quently, market-wide circuit breakers have the potential to propagate financial contagion,

transforming idiosyncratic risks into systemic risks, particularly during adverse market

conditions.

To address these concerns, we propose an alternative circuit breaker rule based on

individual stock returns rather than market indices. By implementing this revised rule,

we can mitigate the aforementioned issues associated with circuit breakers and establish

a more effective framework for managing market volatility while reducing contagion risks.
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Appendix

A Price of Stock 1: Without Circuit Breakers

We assume that the disagreement process δ1,t is stochastic and follows Equation (6).

When there are no circuit breakers, the equilibrium price of Stock 1 is independent of

Stock 2 because of independent dividend processes. The price of Stock 1 can be obtained

in closed-form as follows.

We first evaluate EA
t [π

A
1,T ]. Ignoring constants, we need to calculate

EA
t [η

1/2
1,T e

− γ
2
D1,T ] = EA

t [e
Y1,T ] · f(t),

where f(t) is a deterministic function and,

Y1,T =

∫ T

0

(
δs
2σ

− γσ

2
)dZs +

∫ T

0

(− δ2s
4σ2

)ds.

To simplify notation, in the rest of Appendix A, we use δt, k, and δ̄ to denote δ1,t, k1,

and δ̄1 respectively.

Conjecture F (t, y, δ, δ2) = eA(t)+B(t)y+C(t)δ+
H(t)
2

δ2 = EA[eYT |Yt = y, δt = δ], with

A(T ) = C(T ) = H(T ) = 0 and B(T ) = 1. Substituting the conjecture into the mo-

ment generating function of the process (Yt, δt) and collecting the coefficients of y, δ, δ2

and constants, we obtain four ordinary different equations:

A′(t) +
1

8
γ2σ2B(t)2 + kδ̄C(t) +

σ2
δ

2
(C(t)2 +H(t))− γσσδ

2
B(t)C(t) = 0,

B′(t) = 0,

C ′(t)− γ

4
B(t)2 + kδ̄H(t)− kC(t) + C(t)H(t)σ2

δ +
σδ

2σ
B(t)C(t)− γσσδ

2
B(t)H(t) = 0,

H ′(t)

2
− 1

4σ2
B(t) +

B(t)2

8σ2
− kH(t) +

σ2
δ

2
H(t)2 +

σδB(t)H(t)

2σ
= 0.
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The solution of the ODE system is obtained as follows.

B(t) = 1,

H(t) =
e(D

+−D−)σ2
δ (t−T ) − 1

e(D+−D−)v2(t−T )D− −D+
D+D−,

C(t) =

∫ T

t

e
∫ s
t f(x)dsg(s)ds =

1

∆(D− −D+e2∆(T−t))

·
(
−γ

4
((D+ +D−)e∆(T−t) −D+e2∆(T−t) −D−)− (kδ̄ − σσδγ

2
)D+D−(e∆(T−t) − 1)2

)
,

A(t) =

∫ t

T

(−1

8
γ2σ2 − kδ̄C(s)− σ2

δ

2
(C(s)2 +H(s)) +

γ

2
σδσC(s))ds,

where

∆ =

√
k2 +

σ2
δ

2σ2
− σδk

σ
,

D± =
k − σδ

2σ
±
√

k2 +
σ2
δ

2σ2 − σδk
σ

σ2
δ

,

f(t) =− k + σ2
δH(t) +

σδ

2σ
,

g(t) =− γ

4
+ kδ̄H(t)− γσσδ

2
H(t).

Then

EA
t [e

YT ] = F (t, y, δ, δ2; γ) = eA(t)+B(t)y+C(t)δ+
H(t)
2

δ2 .

Next, we consider the first derivative of F with respect to γ to obtain EA
t [e

YTZT ]. We

define

A(t; γ) = A(t), C(t; γ) = C(t).

Note that

dB(t)

dγ
=
dH(t)

dγ
= 0,

dC(t; γ)

dγ
=

∫ T

t

e
∫ s
t f(x)dx[−1

4
− σσδ

2
H(s)]ds,

dA(t; γ)

dγ
=

∫ t

T

(
−σ2γ

4
− kδ̄

dC(s; γ)

dγ
− σ2

δC(s; γ)
dC(s; γ)

dγ
+

σδσ

2
C(s; γ) +

γσδσ

2

dC(s; γ)

dγ
)ds.

Hence

EA
t [e

YTZT ] = − 2

σ

d

dγ
EA

t [e
YT ] = − 2

σ

d

dγ
F (t, y, δ, δ2; γ).
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Finally, the stock price in the equilibrium is given by

Ŝ1,t =
EA

t [π
A
1,TD1,T ]

EA
t [π

A
1,T ]

=
EA

t [π
A
1,TD1,T ]

F
= D1,0 + µA

1 T − 2

dF
dγ

F

= D0 + µA
1 T − 2(

dA(t; γ)

dγ
+

dy

dγ
+

dC(t; γ)

dγ
δt)

= D1,0 + µA
1 T − 2(

dA(t; γ)

dγ
− σ

2
Zt +

dC(t; γ)

dγ
δt).

The last equality above holds because Yt =
∫ t

0
( δs
2σ

− γσ
2
)dZs+

∫ t

0
(− δ2s

4σ2 )ds and Yt = y yield

dy/dγ = −1/2σZt. By D1,t = D1,0 + µA
1 t+ σZt (µ

A
1 is constant), we obtain

Ŝ1,t =D1,t + µA
1 (T − t)− 2(

dA(t; γ)

dγ
+

dC(t; γ)

dγ
δt). (A.1)

In case δt is constant, i.e., σδ = k = 0 and δt ≡ δ0, we find that dA(t)/dγ = −σ2γ/4(t−
T ) and dC(t; γ)/dγ = −1/4(T − t). Thus, Ŝ1,t = D1,t+µA

1 (T − t)+(δ0/2−σ2γ/2)(T − t).

This is the equilibrium price of Stock 1 in the case of constant disagreement.

SinceH(t) → 0 as t → T , we see that dC(t; γ)/dγ is negative when T−t is small. Thus,

it follows (A.1) that the instantaneous volatility of the stock price σŜ = σ − 2dC(t;γ)
dγ

σδ is

greater than the dividend volatility σ when T − t is small, given σδ is positive.

B Market Clearing Prices

B.1 Stock 1: Stochastic Disagreement

In the presence of circuit breakers, we cannot obtain the equilibrium price of Stock 1

directly. In this section, we derive the market clearing price of Stock 1 when a circuit

breaker is triggered and the market is closed early. Because the two dividend processes

are independent and we assume no leverage constraints when the market is halted, the

market clearing prices for the two stocks are independent of each other.

The disagreement δ1,t is stochastic following (6), therefore µB
1,t = δ1,t+µA

1 is stochastic

as well. In the presence of a circuit breaker, we solve for the market clearing price when

the market is halted. To do so, we solve the utility maximization problem

max
θA1,τ

EA
τ [−e−γWA

T ],
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subject to WA
T = θA1,τ (D1,T − S1,τ ) +WA

τ , where W
A
t is the wealth of Type A investors at

time t.

Using the dynamics D1,T = D1,τ + µA
1 (T − τ) + σ(ZT − Zτ ), we obtain the optimal

portfolio of agent A as follows.

θA1,τ =
D1,τ − S2,τ + µA

1 (T − τ)

γσ2(T − τ)
. (B.1)

Next, we study the utility maximization problem of agent B:

max
θB1,τ

EB
τ [−e−γ(WB

τ +θB1,τ (D1,T−S1,τ ))].

We first prove the following lemma.

Lemma B1. Suppose θ is a constant, then

EB
t [e

−γθD1,T ] = eA(t,θ)+B(t,θ)D1,t+C(t,θ)δ1,t ,

where

A(t, θ) = γθµA
1 (t− T )− σ2

2
γ2θ2(t− T ) +

1

k̃1
(−γθk1δ̄1 + σδσγ

2θ2)(T − t− 1− ek̃1(t−T )

k̃1
)

+
σ2
δγ

2θ2

2k̃2
1

(T − t− 2
1− ek̃1(t−T )

k̃1
+

1− e2k̃1(t−T )

2k̃1
),

B(t, θ) = −γθ,

C(t, θ) =
−γθ

k̃1
(1− ek̃1(t−T )),

with k̃1 = k1 − σδ/σ. In particular, if k̃1 = 0, then

A(t, θ) = γθµA
1 (t− T )− σ2

2
γ2θ2(t− T ) +

1

2
(−γθk1δ̄1 + γ2θ2σδσ)(t− T )2 − σ2

δγ
2θ2

6
(t− T )3,

B(t, θ) = −γθ,

C(t, θ) = γθ(t− T ).

Lemma B1 can be proved by using the moment generating function of process D1,t and

δ1,t and solving an ODE system. Detailed deviations are omitted here.
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By the lemma,

EB
τ [−e−γ(WB

τ +θB1,τ (D1,T−S1,τ ))] = −e−γWB
τ eA(t,θB1,τ )+C(t,θB1,τ )δ1,τ e−γθB1,τ (D1,τ−S1,τ ).

Then the FOC with respect to θB1,τ yields that

γS1,τ − γD1,τ +
∂A(τ, θB1,τ )

∂θB1,τ
+

∂C(τ, θB1,τ )

∂θB1,τ
δ1,τ = 0

or

S1,τ −D1,τ + µA
1 (τ − T )− 1

k̃1
(1− ek̃1(τ−T ))δ1,τ − δ̄1

k1

k̃1
(T − τ − 1− ek̃1(τ−T )

k̃1
) + θB1,τI(τ) = 0,

(B.2)

where

I(t) = −γσ2(t−T )+
2σδσγ

k̃1
(T−t−1− ek̃1(t−T )

k̃1
)+

σ2
δγ

k̃2
1

(T−t−2
1− ek̃1(t−T )

k̃1
+
1− e2k̃1(t−T )

2k̃1
).

It follows (B.1) that

S1,τ = D1,τ + µA
1 (T − τ)− θA1,τγσ

2(T − τ). (B.3)

Together with (B.2) and the market clearing condition θA1,τ + θB1,τ = 1, we obtain the

optimal share holding of Type A for Stock 1 at the time of market closure.

θA,∗
1,τ =

− 1
k̃1
(1− ek̃1(τ−T ))δ1,τ − δ̄1

k1
k̃1
(T − t− 1−ek̃1(τ−T )

k̃1
) + I(τ)

I(τ) + γσ2(T − t)
. (B.4)

Therefore, we find the market clearing price S1,τ by (B.3) where θA1,τ = θA,∗
1,τ given by

(B.4).

In particular, in the case k̃1 = 0 (or k1 = σδ/σ),

θA,∗
1,τ =

1

γ

(
γσ2 − γσδσ(τ − T ) + 1

2
k1δ̄1(τ − T ) +

σ2
δγ

3
(τ − T )2 − δ1,τ

−σδσ(τ − T ) +
σ2
δ

3
(τ − T )2 + 2σ2

)
,
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and substituting it into (B.1), it follows that

S1,τ = D1,τ + µA
1 (T − τ)

+
γσ2 − γσδσ(τ − T ) + 1

2
kδ̄(τ − T ) +

σ2
δγ

3
(τ − T )2 − δ1,τ

−σδσ(τ − T ) +
σ2
δ

3
(τ − T )2 + 2σ2

σ2(τ − T ).

Finally, it is worthy mentioning that S1,τ may not be larger than Ŝ1,τ (the equilibrium

price in the absence of circuit breakers at time τ). In fact, for a relative small σδ (say,

less than half of the volatility σ), the coefficient of δ1,t in (B.3) can always be less than

the coefficient of δ1,t in the formula of Ŝ1,τ . Thus, along with a small γ, we can always

have S1,τ < Ŝ1,τ . Under these conditions, the market clearing price with circuit breakers

can always be smaller than the price without circuit breakers at time τ .

Denote the market clearing price of Stock 1 by Sc
1,τ . Then by (B.3),

Sc
1,τ = D1,τ + µA

1 (T − τ)− γθA,∗
1,τ σ

2(T − τ).

In addition, we obtain the value function of Type B investors:

V B
1 (τ,WB

τ ) = max
θB1,τ

EB
τ [e

−γ(WB
τ +θB1,τ (D1,T−S1,τ ))] = e−γWB

τ e−γGB
1,τ ,

where −γGB
1,τ = −γθB1,τ (D1,τ − S2,τ ) + A(τ, θB,∗

1,τ ) + C(τ, θB,∗
1,τ )δ1,τ , or

GB
1,τ = θB,∗

1,τ (D1,τ − S2,τ )−
1

γ
A(τ, θB,∗

1,τ )−
1

γ
C(τ, θB,∗

1,τ )δ1,τ , (B.5)

and the value function of Type A investors:

V A
1 (τ,WA

τ ) = max
θA1,τ

EA
τ [e

−γ(WA
τ +θA1τ (D1,T−S1,τ ))] = e−γWA

τ e−γGA
1,τ ,

where−γGA
1,τ = −γθA,∗

1,τ (D1,τ−S1,τ )−γθA,∗
1,τ µ

A
1 (T−τ)+

γ2(θA,∗
1,τ )2

2
σ2(T−τ) = −γ2(θA,∗

1,τ )2

2
σ2(T−

τ), or

GA
1,τ = θA,∗

1,τ (D1,τ − S1,τ ) + θA,∗
1,τ µ

A
1 (T − τ)−

γ(θA,∗
1,τ )

2

2
σ2(T − τ) =

γ(θA,∗
1,τ )

2

2
σ2(T − τ).

(B.6)
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B.2 Stock 2: Stochastic Disagreement on Jump Intensity

Note that for Stock 2 there is disagreement on the jump intensity of dividend process

D2,t, which follows

dD2,t = (µi
2 − κi

tν)dt+ νdN i
t , i = A,B, (B.7)

with κA
t ≡ κA and NA

t ≡ Nt. In this Appendix, we derive the market clearing price Sc
2,τ

of Stock 2 when a circuit breaker is triggered.

Recall that δ2,t = κB
t /κ

A satisfies a mean-reverting process as follows.

dδ2,t = −k2(δ2,t − δ̄2)dt+ νδdNt. (B.8)

Suppose that the circuit breaker is triggered at τ < T . The individual optimization

problem of Type i ∈ {A,B} investors at τ is:

V i
2 (W

i
τ , τ) = max

θi2,τ

Ei
τ [− exp(−γ(W i

τ + θi2,τ (D2,T − S2,τ )))], (B.9)

subject to the market clearing condition θA2,τ + θB2,τ = 1, where W i
τ is the wealth owned

by Type i investors at time τ . Note that

Ei
τ [u(W

i
τ + θij,τ (D2,T − S2,τ ))] = −e−γW i

τ eγθ
i
2,τS2,τEi

τ [e
−γθi2,τD2,T ].

For Type A agents we have

Ei
τ [e

−γθi2,τD2,T ] = exp{−γθA2,τD2,τ + (τ − T )((µA
2 − κAν)γθA2,τ − κA(e−γθA2,τν − 1))};

(B.10)

and for Type B agents we have

EB
τ [e

−γθi2,τD2,T ] = exp{−γθB2,τD2,τ + ϑτg(τ ;−γθB2,τ ) +

∫ T

τ

(−γθ2,τ (µ
A
2 − κAν)) + k2δ̄g(s;−γθB2,τ )ds}

:= exp(−γMB
2,τ ), (B.11)

where function g(t;α) satisfies

g′(t;α) + κA(eαν+νδg(t) − 1)− k2g(t;α) = 0, (B.12)
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with g(T ) = 0.

To solve the optimization problem (B.9), we find the first order conditions with respect

to θi2,τ for j ∈ {1, 2}, i ∈ {A,B} as follows.

D2,τ − S2,τ + (T − τ)(µA
2 − κAν + κAνe−γθA2,τν) = 0, (B.13)

D2,τ − S2,τ + δ2
∂g(τ ;α)

∂α
|α=−γθB2,τ

+

∫ T

τ

(µA
2 − κAν) + k2δ̄

∂g(s;α)

∂α
|α=−γθB2,τ

)ds = 0,

(B.14)

where gα(t) :=
∂g(t;α)

∂α
satisfies an ODE as follows.

g′α(t) + κAeαν+νδg(t)(ν + νδgα(t))− k2gα(t) = 0, (B.15)

with gα(T ) = 0.

Along with the market clearing condition: θA2,τ + θB2,τ = 1, we can solve the optimal

share holdings θA2,τ = θA,∗
2,τ , θ

B
2,τ = θB,∗

2,τ and the market clearing price S2,τ = Sc
2,τ from

(B.13) and (B.14). No explict solutions like for Stock 1, we rely on numerical solutions

in practice.

By (B.13), the market clearing price of Stock 2 can be expressed by θA,∗
2,τ :

Sc
2,τ = D2,τ + (µA

2 − κAν)(T − τ) + κAν(T − τ)e−γθA,∗
2,τ ν .

Define

GA
2,τ = θA2,τµ2(T − τ) + θi2,τ (D2,τ − Sc

2,τ )−
κA

γ
(T − τ)(e−γθA,∗

2,τ ν − 1), (B.16)

GB
2,τ = MB

2,τ − θB,∗
2,τ S

c
2,τ ,

where MB
2,τ is defined in (B.11). Then by (B.10) and (B.11), the value function of Type

i investors at τ can be expressed in terms of W i
2,τ and Gi

2,τ as follows.

V i
2 (W

i
τ , τ) = −e−γW i

τ e−γGi
2,τ , i ∈ {A,B}.

By the expressions of GA
2,τ and GB

2,τ , it is useful to notice that Sc
2,τ +GA

2,τ +GB
2,τ does

not depend on Sc
2,τ directly. The quantity depends on the optimal share holdings at τ :

θA,∗
2,τ and θB,∗

2,τ .
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C Learning and Heterogeneous Beliefs

Suppose

dDt = µtdt+ σdZ̄t.

The dividend Dt is observable but the growth rate µt is not. Agents A and B infer the

value of µt through the information from the dividend. Assume that

dµt = −k(µt − µ̄)dt+ σµdZ̄t,

and µ0 ∼ N(a0, b0), a normal distribution with mean a0 and standard deviation b0.

Agent i ∈ {A,B} believes k = ki, µ̄ = µ̄i, σµ = σi
µ, a0 = ai0, b0 = bi0. Both of them learn

µt through {Ds}ts=0. Let µ
A
t = EA[µt|{Ds}ts=0] and µB

t = EB[µt|{Ds}ts=0]. Then following

the standard filtering results, we have (under the assumption: µt|{Ds}ts=0 ∼ N(µ̂, σµ))

dµA
t = −kA(µA

t − µ̄A)dt+ σA
µ dZ

A
t ,

dµB
t = −kB(µB

t − µ̄B)dt+ σB
µ dZ

B
t ,

where dZi
t =

1
σ
(dDt − µi

tdt), i = A,B. Then

dDt = µA
t dt+ σdZA

t , dDt = µB
t dt+ σdZB

t .

Therefore, ZB
t + δt

σ
t is equal to ZA

t almost surely, where δt = µB
t − µA

t . In other words,

ZB
t + δt

σ
t is a standard Brownian motion under agent A’s probability measure PA.

Thus,

dµB
t = −kB(µB

t − µ̄B)dt−
σB
µ

σ
δtdt+ σB

µ dZ
A
t .

So we can obtain the general dynamics of the stochastic disagreement δt under learn-

ing. To validate the setting adopted in this paper, we let σA
µ = 0, kA = 0, and µA

t = µA

for all t. That is, we assume that Type A investors take the long-time mean of the growth

rate as the estimation and impose no learning. Then it follows that

dδt = d(µB
t − µA) = −(kB +

σB
µ

σ
)δtdt− kB(µA − µ̄B)dt+ σB

µ dZ
A
t

= −kBδtdt+ kB(µ̄B − µA)dt+ σB
µ dZ

B
t .
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Further, let k1 = kB + σB
µ /σ, σδ = σB

µ and δ̄k1 = (µ̄B − µA)kB and we have

dδt = −k1(δt − δ̄)dt+ σδdZ
A
t ,

that is identical to the mean-reverting disagreement process (6) assumed in the paper.

D The Fixed Point Problem

We prove the existence and uniqueness of a solution to the fixed point problem. First

of all, based on the explicit expressions of the prices, we restrict the model parameters

and the initial conditions (e.g., D1,0, D2,0) and assume that both Ŝj,0 (the price without

circuit breakers) and Sc
j,0 (the market clearing price) are positive for each j = 1, 2.

Recall that S1,0, S2,0 impact valuation of the expectations through the sum S1,0+S2,0

only. When the initial stock prices are S1,0 and S2,0, the threshold h is (S1,0+S2,0)(1−α).

So, we define

fj(S1,0 + S2,0) =
EA

0 [π
A
T∧τSj,T∧τ ]

πA
0

, j = 1, 2.

and define a function f : R → R2 such that f(S1,0 + S2,0) = (f1(S1,0 + S2,0), f2(S1,0 +

S2,0))
⊤, where ⊤ denotes the transpose of a vector. Then the fixed point problem is

expressed as follows.

(S1,0, S2,0)
⊤ = f(S1,0 + S2,0).

Define g(x) = f1(x) + f2(x) − x, where x ∈ R. When the threshold is zero, the

circuit breaker is hardly triggered. Thus the equilibrium prices are close to the prices

Ŝ0,1 and Ŝ2,0 respectively in the absence of circuit breakers. Given positive Ŝ0,1 and Ŝ2,0,

we can obtain (specifically, for a sufficiently small volatility of D1,t and jump intensity

of D2,t): g(0) = f1(0) + f2(0) > 0. On the other hand, if the threshold is the sum of the

market clearing prices Sc
1,0+Sc

2,0, the market is stopped immediately and the equilibrium

prices must be the market clearing prices exactly. Thus, g(
Sc
1,0+Sc

2,0

1−α
) = f1(

Sc
1,0+Sc

2,0

1−α
) +

f2(
Sc
1,0+Sc

2,0

1−α
) − Sc

1,0+Sc
2,0

1−α
= Sc

1,0 + Sc
2,0 − Sc

1,0+Sc
2,0

1−α
< 0. It can be shown that g(x) is a

continuous function. Hence, there exists x∗ ∈ (0,
Sc
1,0+Sc

2,0

1−α
), such that g(x∗) = 0. Thus

f1(x
∗) + f2(x

∗) = x∗.

Now define (S∗
1,0, S

∗
2,0)

⊤ = f(x∗). Then x∗ = f1(x
∗) + f2(x

∗) = S∗
1,0 + S∗

2,0 and

(S∗
1,0, S

∗
2,0)

⊤ = f(x∗) = f(S∗
1,0 + S∗

2,0).
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Thus (S∗
1,0, S

∗
2,0)

⊤ ∈ R2 is a solution to the fixed problem. The existence is proved.

Next, we show that the solution is unique. To do so, it is sufficient to show that g(x) is

monotonic. For the sake of notional simplicity, we ignore super-script “A” of expectations

and πA
t below.

Let D0 = D1,0+D2,0. Given an exogenous threshold h and initial dividend sum value

D0, let S
h,D0
t = Sc

1,t + Sc
2,t, where S

c
1,t and Sc

2,t are the market clearing prices; let τ(h,D0)

denote the stopping time; and let πh,D0
t be the state price density, i.e.

πh,D0
t = (ηt)

1/2e−
γ
2
S
h,D0
t · e

GA
t +GB

t
2 .

We redefine

g(x) = g(x;D0) =
E[πτ(h,D0)∧TS

h,D0

τ(h,D0)∧T ]

E[πτ(h,D0)∧T ]
− x,

where h = x(1− α). Observe that τ(h,D0) = τ(0, D0 − h) because the stopping time is

determined byDt and δt only. Then the market clearing (sum) price Sh,D0

τ(h,D0)
= S0,D0−h

τ(0,D0−h)+

h by the expressions of Sc
j,τ , j = 1, 2. In addition, by the definition of Gi

τ , we see that

Gi
τ(h,D0)

= Gi
τ(0,D0−h), i = A,B. Therefore

πh,D0

τ(h,D0)
= e−

γ
2
h · π0,D0−h

τ(0,D0−h). (D.1)

Thus,

g(x;D0) =
E[πh,D0

τ(h,D0)∧T · (Sh,D0

τ(h,D0)∧T − x)]

E[πh,D0

τ(h,D0)∧T ]

=
E[π0,D0−h

τ(0,D0−h)∧T · (S0,D0−h
τ(0,D0−h)∧T − x+ h)]

E[π0,D0−h
τ(0,D0−h)∧T ]

= g(0;D0 − h)− x+ h = g(0;D0 − h)− αx.

Given h1 < h2, we have τ(0, D0 − h1) ≥ τ(0, D0 − h2). Then,

E[π0,D0−h1

τ(0,D0−h1)
] = E[E[π0,D0−h1

τ(0,D0−h1)
|τ(0, D0 − h2)]] = E[π0,D0−h1

τ(0,D0−h2)
]

= E[(ητ(0,D0−h2)∧T )
1/2e

− γ
2
S
0,D0−h1
τ(0,D0−h2)∧T · e

GA
τ(0,D0−h2)∧T

+GB
τ(0,D0−h2)∧T

2 ]

= E[(ητ(0,D0−h2)∧T )
1/2e

− γ
2
S
0,D0−h2
τ(0,D0−h2)∧T · e

GA
τ(0,D0−h2)∧T

+GB
τ(0,D0−h2)∧T

2 · e−γ/2(h2−h1)]

= E[π0,D0−h2

0,D0−h2
]e−γ/2(h2−h1).
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Similarly,

E[π0,D0−h1

τ(0,D0−h1)
· S0,D0−h1

τ(0,D0−h1)
] = E[E[π0,D0−h1

τ(0,D0−h1)
· S0,D0−h1

τ(0,D0−h1)
|τ(0, D0 − h2)]]

= E[π0,D0−h1

τ(0,D0−h2)
· S0,D0−h1

τ(0,D0−h2)
]e−γ/2(h2−h1)

≥ E[π0,D0−h2

τ(0,D0−h2)
· S0,D0−h2

τ(0,D0−h2)
]e−γ/2(h2−h1).

Finally, let x1 < x2 and h1 = x1(1− α), h2 = x2(1− α). It follows that

g(x1;D0) = g(0;D0 − x1)− αx1 =
E[π0,D0−h1

τ(0,D0−h1)∧T · S0,D0−h1

τ(0,D0−h1)∧T ]

E[π0,D0−h1

τ(0,D0−h1)∧T ]
− αx1

≥
E[π0,D0−h2

τ(0,D0−h2)∧T · S0,D0−h2

τ(0,D0−h2)∧T ]

E[π0,D0−h2

τ(0,D0−h2)∧T ]
− αx1

= g(0;D0 − h2) = g(x2;D0) + αx2 − αx1 > g(x2;D0).

Thus, g(·, D0) is monotonic. This completes the proof of uniqueness.

E The Case of Correlated Dividend Processes

To impose a correlation between dividend processes, we assume that: under PA,

dD1,t = µA
1 dt+ σ1dZt, (E.1)

dD2,t = µ2dt+ σ2dZt + νdNt, (E.2)

and under PB:

dD1,t = µB
1 dt+ σ1dZ

B
t , (E.3)

dD2,t = µ2dt+
σ2

σ1

δtdt+ σ2dZ
B
t + νdNt, (E.4)

where µB
1 = µA

1 + δt and

dδt = −k(δt − δ̄)dt+ σδdZt,

or

dδt = −k(δt − δ̄)dt+
σδ

σ1

δtdt+ σδdZ
B
t .
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Then the two dividend processes are correlated with instantaneous correlation

ρ =
σ2√

σ2
2 + κν2

.

We assume no disagreement on jump intensity of the Poisson process Nt (κ
A ≡ κB ≡ κ)

and study the equilibrium prices without or with circuit breakers.

E.1 The Equilibrium Prices without Circuit Breakers

The pricing formula has the same expression as that in the uncorrelated case.

Ŝj,t = EA
t

[
πA
TDj,T

EA
t [π

A
T ]

]
, j = 1, 2,

where πA
T = γζEA

t [η
1/2
T · e− γ

2
(D1,T+D2,T )]. However, the two prices cannot be evaluated

separately anymore because the two dividend processes are correlated (σ2 ̸= 0).

E.2 The Equilibrium Prices with Circuit Breakers

We derive the market clearing prices when the market is closed early due to the circuit

breaker.

Type A investors need to maximize the individual utility function

max
θA1,τ ,θ

A
2,τ

EA
t [−e−γ(θA1,τ (D1,T−S1,τ )+θA2,τ (D2,T−S2,τ ))].

It results in first order conditions:

− γ(D1,τ − S1,τ )− γµA
1 (T − τ) + γ2(θA1,τσ1 + θA2,τσ2)σ1(T − τ) = 0, (E.5)

− γ(D2,τ − S2,τ )− γµ2(T − τ) + γ2(θA1,τσ1 + θA2,τσ2)σ2(T − τ)− γνκe−γθA2 ν = 0. (E.6)

For Type B investors, the optimization problem is

max
θB1,τ ,θ

B
2,τ

EB
t [−e−γ(θB1,τ (D1,T−S1,τ )+θB2,τ (D2,T−S2,τ ))].

We first obtain an expression for the following expectation for any real numbers x and y:

EB
t [e

x
∫ T
t δsds+y(ZB

T −ZB
t )] = eA(t;x,y)+C(t;x)δt ,
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where

A(t;x, y) =
y2

2
(T − τ) + kδ̄

∫ T

t

C(s;x)ds+
σ2
δ

2

∫ T

t

C(s;x)2ds+ yσδ

∫ T

t

C(s;x)ds,

C(t;x) =
x

k − σδ

σ1

(1− e
(k−σδ

σ1
)(τ−T )

).

Then let y = −γ(θB1,τσ1 + θB2,τσ2) and x = −γ(θB1,τ + θB2,τ
σ2

σ1
); we obtain the first order

conditions for the maximization problem of Type B:

− γ(D1,τ − S1,τ )− γµA
1 (T − τ) +

dA(t;x, y)

dθB1,τ
+

dC(t;x)

dθB1,τ
δt = 0, (E.7)

− γ(D2,τ − S2,τ )− γµ2(T − τ)− γκν(T − τ)e−γθB2,τν +
dA(t;x, y)

dθB2,τ
+

dC(t;x)

dθB2,τ
δt = 0.

(E.8)

Along with the market clearing condition θAj,τ + θBj,τ = 1, j = 1, 2, the four first order

conditions determine the solution S∗
1,τ , S

∗
2,τ , (θ

A
1,τ )

∗, (θA2,τ )
∗, that is the market clearing

prices and the share holdings at the market early closure time τ , respectively.

Next, as in the case of uncorrected dividend processes, we obtain the indirect utility

functions for Type A and Type B investors and the state price density. The equilibrium

stock prices at t < τ can be evaluated numerically by solving a fixed point problem

similar to (27).

In the above, we deal with the case of no disagreement on the jump intensity. To

incorporate a stochastic disagreement δ2,t into the model, we can follow the procedure in

Appendix B.2.

F Numerical Algorithms

P1: Solve for the Fixed Point Problem

Step 1. Initialize a solution and the threshold by letting S1,0 = 1, S2,0 = 1 and

h = (S1,0 + S2,0)(1− α).

Step 2. GenerateM pairs of sample paths of D1,t and D2,t according to their dynamics

(1) and (2) and stochastic differential equations of (6), (7) of δ1,t and δ2,t.

Step 3. Go through each sample ω: (1) Check whether the circuit breaker is triggered

at some time τ before T . If it is triggered, let Sj,T∧τ = Sc
j,τ , which is the market clearing
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price at time τ . Otherwise, let Sj,T∧τ = Dj,T . (2) Calculate π
A
T∧τSj,T∧τ and πA

T∧τ for each

sample, where πA
T∧τ is calculate by Eq. (24). (3) Find the averages of the two quantities

over all samples. (4) Then let S̃j,0 be the ratio of the two averages.

Step 4. If ∥S̃0−S0∥ < tol, we find an approximated solution to the fixed point problem

with accuracy tol. Otherwise, let S0 = S̃0 and go to Step 1.

P2: Find Stock Prices at any time t′ < τ

Step 1. Using S0 obtained by P1 codes, let h = (S1,0 + S2,0)(1− α) be the threshold

of the circuit breakers.

Step 2. Generate M pairs of sample paths of D1,t and D2,t from t′ to T .

Step 3. Go through each sample ω: (1) Check whether the circuit breaker is triggered

at some time τ before T . If it is triggered, let Sj,T∧τ = Sc
j,τ , which is the market clearing

price at time τ . Otherwise, let Sj,T∧τ = Dj,T . (2) Calculate π
A
T∧τSj,T∧τ and πA

T∧τ for each

sample, where πA
T∧τ is calculate by Eq. (24). (3) Find the averages of the two quantities

over all samples. (4) Then let Sj,t′ be the ratio of the two averages, that is the stock price

at time t′.

P3: Calculate Correlation and Volatilities of S1,t and S2,t

Step 1. Find equilibrium prices S1,t and S2,t at a give time t < T by using P2 codes.

Step 2. Generate M sample pairs of (D1,t+∆t, D2,t+∆t) given (D1,t, D2,t).

Step 3. For each (D1,t+∆t, D2,t+∆t), calculate the equilibrium price S1,t+∆t and S2,t+∆t

and find the price change ∆Sj,t = Sj,t+∆t − Sj,t for j = 1, 2.

Step 4. Calculate the correlation of the M pairs of (∆S1,t,∆S2,t), as well as the

volatilities of ∆S1,t and ∆S2,t.
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