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Abstract

We document that Bitcoin returns, while largely unpredictable by macroeconomic vari-
ables, are predictable by 5- to 100-day moving averages (MAs) of its prices, both in-
and out-of-sample. Trading strategies based on MAs generate substantial alpha, utility
and Sharpe ratios gains, and significantly reduce the severity of drawdowns relative to
a buy-and-hold position in Bitcoin, which already has a Sharpe ratio of 1.9. We ex-
plain these facts with a novel equilibrium model that demonstrates, in the absence of
cashflows, rational learning leads to joint predictability of returns by different horizon’s
MAs.
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I. Introduction

Bitcoin is no doubt one of the most speculative assets in the history of finance. Its rapid price

increase surprised even the most optimistic of market observers and early investors. One dollar

invested in Bitcoin on October 27, 2010 grew to $103,453 by January 31, 2018, while the same

investment in the S&P500 stock index grew to only $2.65 over the same period.

Bitcoin is the first digital coin in the rapidly growing cryptocurrency market that has a capital-

ization exceeding $800 billion at the end of 2017. A Google search of “Bitcoin” generates hundreds

of millions of results. Despite the widespread attention to Bitcoin in the popular press, relatively

few academic studies investigate Bitcoin, and these papers primarily focus on identifying its po-

tential uses and sources of fundamental value. Böhme et al. (2015) discuss the virtual currency’s

potential to disrupt existing payment systems and perhaps even monetary systems. Harvey (2017)

describes immense possibilities for the future for Bitcoin and its underlying blockchain technology.

Balvers and McDonald (2018) describe conditions and practical steps necessary for using blockchain

technology as a global currency. Several recent St. Louis Fed Review articles, including Berentsen

and Schar (2018), Williamson (2018), and Andolfatto (2018) also discuss the enormous potential

for Bitcoin as a currency, but overall the authors reach mixed conclusions about the likelihood of

its success.

Few, if any, measurable fundamentals explain Bitcoin’s explosive price growth and high volatil-

ity. Bitcoin was worth $1,000 on January 1, 2017 and nearly $20,000 by mid December, while

also experiencing three bear markets, with average drops of 30%. In contrast to common financial

assets such as stocks and bonds, Bitcoin does not pay dividends or interest. Since Bitcoin has no

widely accepted fundamentals, existing asset pricing theories are difficult to apply. In this paper,

we address the natural questions of investors: what explains the dynamics of Bitcoin prices and

are Bitcoin returns predictable?

Given the absence of observable fundamentals, Bitcoin traders must rely heavily on the path of

prices, which signal information of others. Theoretically, under various imperfect market conditions,

Treynor and Ferguson (1985), Brown and Jennings (1989), Hong and Stein (1999), Chiarella et al.

(2006), Cespa and Vives (2012), Edmans et al. (2015), Han et al. (2016), among others, show that

past stock prices can predict future prices. These results imply that technical indicators, which
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are functions of past prices, can represent useful trading signals. Empirically, Brock et al. (1992)

and Lo et al. (2000), among others, show that trading based on technical indicators, especially

the moving averages of prices, can be profitable in the stock market. Schwager (1989) and Lo

and Hasanhodzic (2009) further provide insightful comments about the effectiveness of technical

strategies from top practitioners. A crucial assumption in existing equilibrium models featuring

technical analysis, is that assets generate observable cashflows, and thus their assumptions are not

applicable to Bitcoin.

To motivate the applicability of technical analysis to Bitcoin and other assets that lack funda-

mentals in general, we provide the first equilibrium model featuring technical traders and assets

without cash flows. The central prediction of our model is that the moving averages of these assets’

prices over different horizons jointly forecast returns. In contrast with the model of Han et al. (2016)

with exogenous technical traders, our framework features heterogeneous technical traders who are

rational investors that optimally learn from past prices, though each over a different horizon.

Consistent with our model, we find that Bitcoin returns are jointly predictable in-sample by

ratios of 5- to 100-day moving averages (MAs) of price relative to current price. In-sample predictive

regressions can overstate the significance of predictability to investors in real-time. (e.g., Goyal and

Welch (2008)). Thus, we assess the out-of-sample predictability of Bitcoin returns by MA-price

ratios. To incorporate information across horizons, we apply out-of-sample mean-combination

or three-pass-regression-filter methods and find statistically significant out-of-sample R2s (e.g.,

Rapach et al., 2010; Kelly and Pruitt, 2013). Moreover, encompassing tests reject the null that

the out-of-sample forecasts from any one horizon’s MA subsumes the predictive information for

returns from forecasts based on each other MA. These results indicate that the MA-price ratios

of different horizons jointly forecast Bitcoin returns out-of-sample. We also test whether Bitcoin

returns are predictable by the VIX, Treasury bill rate, term spread, and the default spread, which

are common predictors of stock returns. While these variables have some degree of in-sample return

predictability for Bitcoin returns, this predictability fails out of sample.

To assess the economic significance of Bitcoin-return predictability to investors, we form a

trading strategy that goes long Bitcoin when the price is above the MA, and long cash otherwise.

We find that these trading strategies using MA lag lengths ranging from 5 to 100 days, significantly

outperform the buy-and-hold benchmark, increasing Sharpe ratios by 0.2 to 0.6 per year from
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1.9. The alphas and mean-variance-utility gains are also large for most MA strategies. Moreover,

average returns on Bitcoin on days when the different horizon MA signals indicate a long Bitcoin

position are 11 to 58 times as large as when the signals indicate investment in cash. These results

are robust across both halves of the sample. The MA strategies also outperform the buy-and-hold

benchmark when applied to other cryptocurrencies, such as Ripple and Ethereum, Bitcoins two

largest competitors.

To further test the prediction of our theory, we also consider the NASDAQ portfolio during

a ten-year window (1996–2005) that includes the dot.com boom-and-bust of the early 2000’s. In

this period, many emerging technologies associated with the internet and other communication

advances introduced fundamentals that at the time were difficult to assess, much like Bitcoin. Many

NASDAQ companies possessed no earnings (or negative earnings) for years before they became

viable, and other company’s innovations never proved valuable and eventually failed. We show

that our technical trading strategies applied to NASDAQ outperform the buy-and-hold benchmark

in this ten-year window. This outperformance largely derives from avoiding the length and severity

of the major NASDAQ drawdowns during this period. We also show that the profitability of

the moving average-based strategies declines after 2005 as internet-based technology matured and

investors became better able to evaluate price using fundamentals. These results demonstrate wider

applicability of our model to other emerging assets characterized by fundamentals that are difficult

to value besides just Bitcoin and other cryptocurrencies.

Our model provides a refutable economic implication in addition to the joint predictability of

Bitcoin returns by MAs of prices. Specifically, in our model, trading results from variation across

MA horizon indicators. Consistent with this implication, controlling for the absolute value of price

shocks, the chief empirical determinant of volume, we show that proxies for disagreement across

horizons and total turnover implied by the MA signals are significantly and positively associated

with trading volume. Hence, overall, results demonstrate that Bitcoin returns are jointly predictable

by MAs of different horizons, investors can profit from this predictability, and Bitcoin’s trading

volume is at least partially explained by differing MA trading signals across horizons.

The rest of the paper is organized as follows. Section II introduces the model and discusses its

implications. Section III provides the data and summary statistics. Section IV reports the main

empirical results, and Section V concludes.
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II. The Model

In this section, we provide a rational equilibrium model that provides a theoretical foundation for

using the moving average of prices (MAs) for forecasting and trading Bitcoin.

In the model, there is one risky asset (“Bitcoin”) which provides utility to investors. There

are two types of investors with different prior beliefs about the future benefit of Bitcoin. Trading

occurs between the two types of investors as their beliefs evolve over time. When type 1 investors

are more optimistic (pessimistic), they buy from (sell to) type 2 investors, and vice versa. Due

to lack of full information about the risky asset, we show next that in equilibrium the optimal

investment strategies of the two types of investors can be approximated by functions of MAs with

different lags which is endogenously determined. The main insight of the model is that, without

sufficient information, MAs of past prices can be useful trading signals. Moreover, trading volume

can be predicted by the MAs which indicates how disagreement changes over time between the two

types of investors.

We start out the model with a set of assumptions. All are standard except the first one, which

attempts to capture the unique features of Bitcoin compared to more typical assets.

Assumption 1. There is one unit of Bitcoin in the economy and each unit provides a stream of

service/enjoyment δt, where

dδt
δt

= Xtdt+ σδdZ1t, (1)

dXt = µ(X̄ −Xt)dt+ ρσXdZ1t +
√

1− ρ2σXdZ2t, (2)

where σδ, µ, X̄, σX , and ρ ∈ [−1, 1] are all known constants and (Z1t, Z2t) is a two-dimensional

standard Brownian motion (thus independent), and Xt is an unobservable state variable that affects

the service flow of Bitcoin.

While Bitcoin does not provide any cash flows, we assume that it offers service flow to investors

who derive utility from it. As a result, there is a market for its trading. On the investors, we make

the assumptions below.

Assumption 2. There are two types of investors who differ by their priors about the state variable

Xt and possibly initial endowment of Bitcoin. Type i investor is endowed with ηi ∈ (0, 1) units of
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Bitcoin with η1 + η2 = 1 and has a prior that X0 is normally distributed with mean M i(0−) and

variance V i(0−), i = 1, 2.

Denote by Ft the filtration at time t generated by the Bitcoin price process {Bs} and the

prior (M i(0−), V i(0−)) for all s ≤ t and i = 1, 2. Further let M i
t ≡ E[Xt|F it ] be the conditional

expectation of Xt. Below we will solve the equilibrium price explicitly in terms of M i
t . For this, we

need two additional assumptions.

Assumption 3. All investors have log preference over the service flow provided by Bitcoin with

discount rate β until time T . Specifically, the investor’s expected utility is

E

∫ T

0
e−βt logCitdt,

where Cit denotes the service flow received by a Type i investor from owning Bitcoin.

Assumption 4. Investors can trade one risk free asset and the Bitcoin with the risk free rate rt

and the Bitcoin price Bt to be determined in equilibrium. We conjecture and later verify that Bt

satisfies

dBt
Bt

= (µitBt − δt)dt+ σδBtdẐ
i
1t, (3)

where µit is an adapted stochastic process and Ẑi1t is an innovation process to be determined in

equilibrium.

With the above assumptions, we have

Proposition 1: In an economy defined by Assumption 1-4, there exists an equilibrium, in which

dBt = ((β +M i
t )Bt − δt)dt+ σδBtdẐ

i
1t,

where

M i
t = hi(t) + f i(0, t) log

Bt
B0

+ (f i(t, t)− f i(0, t))

(
logBt −

∫ t
0 g

i(u, t) logBudu∫ t
0 g

i(u, t)du

)
(4)

is the ith investor’s conditional mean of Xt, h
i(.), f i(., .), and gi(., .) are as defined in the Appendix

for i = 1, 2. In addition, the optimal fraction trading rules are linear functions of M i
t .

Proof. See the Appendix.
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There are two important implications of Proposition 1. First, it implies that the Bitcoin price

is predictable by the moving averages, because

∫ t
0 g

i(u, t) logBudu∫ t
0 g

i(u, t)du

is simply a weighted moving average of the log prices of Bitcoin. With linearization, we can

approximate this moving average with the arithmetic MAs of prices, as is more commonly used in

practice.

The second implication is that the optimal trading strategy is a function of the MAs. In

particular, investors’ optimal trading rules are given by

1 +
αt

1 + αt

µdt
σ
,

for the type 1 investor, and

1− 1

1 + αt

µdt
σ

for the type 2 investor, where

µdt =
M1
t −M2

t

σδ
,

and αt is as defined in (A.9), denoting the ratio of the marginal utility of type 1 investor to that of

type 2 investor.

In our model setting, investors trade with each other due to their differences in prior beliefs.

Because of the lack of complete information, investors use MA signals to extract information from

the market. As a result, their optimal trading strategies are functions of the MAs.

In practice, due to difficulties in estimating the exact functionals, we use the MAs only as timing

signals. This is for simplicity, similar to technical stock trading in practice where most technical

traders apply the MAs to time a stock or the market. The simple trading strategy is then: When

the MAs are positive, we either buy or hold the position if bought already; Otherwise, we sell or

do not trade if we do not own any Bitcoin.
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III. Data

Bitcoin trades continuously and electronically on multiple exchanges around the world. We obtain

daily Bitcoin prices from the news and research site Coindesk.com, which is frequently cited in

professional publications such as the Wall Street Journal, over the sample period July 18, 2010 (first

day available) through January 31, 2018. Starting July 1, 2013, Coindesk reports a Bitcoin price

equal to the average of those listed on large high-volume exchanges. Prior to July 2013, Coindesk

reported the price from Mt. Gox, an exchange that handled most of the trading volume in Bitcoin

at the time.1 We also obtain data on a second cryptocurrency, Ripple, from coinmarketcap.com.

Ripple is one of the two largest competitors to Bitcoin, and of these two, has a much longer time

series of data available.2

We obtain the daily risk-free rate and market excess return (MKT ) through December 29,

2017 from the website of Kenneth French. To measure the risk-free rate on weekends and through

January 31, 2017 (during which time the FOMC has not changed the short-term rates, we use the

most recently available one-day risk-free rate. The average risk free rate over this time (see below)

was multiple orders of magnitude smaller than the average Bitcoin return over this time so our

risk-free rate assumptions can not have an economically meaningful impact on our results.

We obtain daily prices and total returns on the NASDAQ composite index, Gold, and the

Barclay’s aggregate bond market index from Bloomberg. We obtain daily levels of the S&P500

index, VIX, 3-month and 10-year Treasury yields (BILL and LTY , respectively), and Moody’s

BAA- and AAA-bond index yields (BAA and AAA, respectively) from the St. Louis Federal Reserve

Bank website over the sample period July 18, 2010–January 31, 2018. We define TERM = LTY −

BILL and DEF = BAA − AAA. V IX, BILL, TERM , and DEF are commonly used returns

predictors and among the few available at the daily frequency (e.g., Ang and Bekaert, 2007; Goyal

and Welch, 2008; Brogaard and Detzel, 2015).

Figure 1 depicts the time-series of $1 invested in Bitcoin or the S&P500 at the beginning of our

sample period. Over the roughly seven year sample, $1 investment in the S&P500 increased to about

$2.65. Over the same period, $1 invested in Bitcoin grew to $103,453! Table 1 presents summary

statistics for our main variables of interest. Panel A shows that Bitcoin earns an annualized daily

1For details on the history of the Bitcoin market, see Eha (2017).
2Ethereum is the remaining cryptocurrency from the three largest by market cap.
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excess return of 213.6% and a Sharpe ratio of 1.9 with an annualized volatility of 111.0%. In

contrast, MKT has a much lower average return and volatility over the period of 14.4% and

14.6%, respectively. Although far less than the Sharpe ratio of Bitcoin, the resulting MKT Sharpe

ratio of 0.99 is relatively high by historical standards. The aggregate bond market, proxied by

AGG, also earns a high Sharpe ratio during our sample of 0.82. In contrast to other markets, Gold

earned slightly less per year than the risk-free rate. All of the returns have small and insignificant

daily autocorrelations.

Panel B presents summary statistics for several benchmark return predictor variables used in

the next section. All four are highly persistent, with an autoregressive coefficient of 0.96–1.0.

Moreover, Augmented Dickey-Fuller tests fail to reject the null that any of the return predictors

except VIX contain a unit root.

IV. Empirical results

Based on the theory of Section II, we predict that returns on Bitcoin are jointly predictable by

moving averages of price and technical-analysis strategies based on Bitcoin should produce even

greater performance than the buy-and-hold strategy. We test these predictions in this section.

A. Random walk test

Following Lo and Mackinlay (1989), Table 2 reports variance ratio tests of the hypothesis that log

Bitcoin prices follow a random walk. Under this hypothesis, the variance of price changes should

scale linearly with horizon and the variance ratios (VR(q)) should be one for each horizon. Rejection

of the null hypothesis implies predictability of price changes via the history of prices. Ratios below

one are consistent with mean reversion of log prices. If the variance ratio is above one, log prices are

mean averting (Poterba and Summers, 1988)), and returns are positively autocorrelated. Consistent

with the latter, results for k=2, 4, 8 and 16 weeks all reveal ratios above one, and VR is significantly

and substantially above one for horizons of four or more weeks.

The fact that Bitcoin’s variance ratio is above one encourages the use of technical analysis,

because it indicates positive autocorrelation of returns. Thus, when the current price is rising and

above its 5-, 10-, 20-, 50- or 100-day moving average, investors can likely profit from purchasing
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Bitcoin as the positive trend is likely to continue. In contrast, if a negative shock causes the price to

fall below this horizons moving average trends, investors should sell as the negative trend is likely

to continue. In short, the random walk hypothesis of Bitcoin price is rejected, and we show below

that its price is predictable by the MAs, consistent with our model and suggested by the variance

ratio tests.

B. In-sample predictability

Following Han et al. (2013), Neely et al. (2014), and Han et al. (2016), we form technical strategies

based on the prior day’s price relative to a lagged moving average (MA). Specifically, we define a

moving average (MA(L)) of daily Bitcoin prices (Pt) as:

MAt(L) = (1/L)
L−1∑
l=0

Pt−l (5)

We choose moving average horizons of L = 5, 10, 20, 50, or 100 days. These lags choices are

common, see, e.g., Brock et al. (1992) and Lo et al. (2000). Our main return predictors of interest

are the ratios of prices to moving averages: (MAt−1(L)/Pt−1).

Table 3 evaluates in-sample predictability and presents estimates of predictive regressions of

the form:

rt+1,t+5 = a+ b′Xt + εt+1,t+h, (6)

where rt+1,t+5 denotes the log excess return on Bitcoin over business days t+ 1 through t+ 5. We

use Newey and West (1987) standard errors with a bandwidth of 5 to account for heteroskedasticity

and 4 days of overlap in retuarn observations.

In Panel A, columns (1)–(5) present results withXt = log(MAt−1(L)/Pt−1) for L = 5, 10, 20, 50,

or 100. The log(MAt−1(L)/Pt−1) significantly predict rt+1,t+5 for L = 20, 50, and 100. The moving

averages of different horizons will mechanically be highly correlated with each other. Hence, to ac-

count for multicollinearity, while also testing whether different MA horizons jointly predict rt+1,t+5,

we construct three principal components of the log(MAt−1(L)/Pt−1) and use them as predictors

in Column (6). The first two principal components significantly predict rt+1,t+5, supporting joint

predictability of information contained in multiple horizon forecasts.
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Panel B presents predictive regressions of the form Eq. (6) using the “common” return predictors

V IX, BILL, TERM, and DEF . Columns (1)–(5) show that V IX and BILL individually and

significantly predict rt+1,t+5, and all four predictors jointly predict rt+1,t+5. Moreover, column (6)

shows that controlling for the four common predictors renders the three PCs of log(MAt−1(L)/Pt−1)

insignificant. Thus, it appears that the predictive signals contained in the MA are related to the

equity- and bond-predictor variables. Taken together, the evidence in Panel E initially appears to

suggest that the equity- and bond-return predictors at least partially subsume the technical indica-

tors. However, it is well-established that highly persistent regressors such as V IX, BILL, TERM,

and DEF can generate spuriously high in-sample return predictability (e.g., Stambaugh, 1999;

Ferson et al., 2003; Campbell and Yogo, 2006); these biases and parameter instabilty often imply

that in-sample estimates poorly capture real-time predictability, which actually impacts investors

(e.g., Goyal and Welch, 2008). For this reason among others, we next assess the out-of-sample

predictability of Bitcoin returns.

C. Out-of-sample predictability

Table 4 presents out-of-sample R2 (R2
OS) for recursively estimated predictive regressions of Eq. (6)

at the horizon of h = 7 days. For robustness, we report R2
OS using several split dates between the

in-sample and out-of-sample periods (e.g., Kelly and Pruitt, 2013). The first five columns of Panels

A and B present results using univariate predictive regressions based on log(MAt−1(L)/Pt−1). The

sixth column (denoted PLS MA) uses the three-pass-regression filter of Kelly and Pruitt (2013)

to combine the predictive information in the log(MAt−1(L)/Pt−1). The last column (denoted

MEAN), follows Rapach et al. (2010) and presents R2
OS for the MEAN combination forecast,

which is the simple average of the univariate predictive regression-based forecasts (Eq. (6) with

Xit = log(MAt−1(L)/Pt−1)). Recent studies show strong evidence of out-of-sample return pre-

dictability using three-pass-filter methodology (e.g., Kelly and Pruitt, 2013; Huang et al., 2015).

Prior evidence however reveals that simple-average forecasts are robust, and frequently outper-

form more sophisticated combination methods in forecasting returns and other macroeconomic

time-series out-of-sample (e.g., Timmermann, 2006; Rapach et al., 2010).

Panel A shows that several of the log(MAt−1(L)/Pt−1) individually frequently predict returns

out-of-sample with R2
OS > 0. Moreover, at each horizon, the MEAN forecasts forecasts predict
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returns with an R2
OS of 1.17%–3.66%, which is high at the weekly horizon. For comparison, Rapach

et al. (2010) report comparable R2
OS but at the quarterly returns on the S&P500, and predictability

should increase with horizon. The R2
OS for the MEAN forecast are significant at the 10% or 5%

level for each choice of in-sample period. The R2
OS for the three-pass-filter forecast range from

0.91%–2.46% and are at least marginally significant when the in-sample period is at least two

years.

Panel B presents similar results as Panel A, but uses 5-days per week Bitcoin returns so they

that can be matched with the equity- and bond-predictor variables. The R2
OS drop relative to

those in Panel A, but remain positive and non-trivial for several of the log(MAt−1(L)/Pt−1) and

the associated three-pass-filter and MEAN forecasts. Moreover, the R2
OS remain at least marginally

significant for the three-pass-filter and MEAN forecasts using the three-year in-sample period.

In contrast, Panel C highlights that V IX, BILL, TERM, and DEF all have R2
OS < 0 indi-

vidually, regardless of in-sample length. Moreover the PLS forecasts based on these predictors also

have R2
OS < 0 as does the MEAN forecast for all but one in-sample length; both combination pro-

cedures are also insignificant for all sample periods. Thus, the technical indicators predict Bitcoin

returns in real time while other common return predictors do not.

Figure 2 depicts the time-series of differences in cumulative-squared prediction errors for each

forecast in Panel A. An upward slope indicates that the stated forecast is more accurate than the

historical average. Each forecast exhibits sharp swings in predictability during the beginning of the

sample and weak predictability for the 3-year window spanning mid-2013 through mid-2017 before

mostly increasing in the second half of 2017.

It is not entirely clear from the results in Table 4, however, that multiple MA horizons jointly

predict Bitcoin returns out-of-sample. For example, the combination forecasts’ R2
OS are not greater

than the greatest R2
OS of the individual log(MAt−1(L)/Pt−1)-based forecasts. Hence, we examine

whether the different out-of-sample forecasts “encompass” each other, that is subsume each oth-

ers’ predictive information or conversely the different strategies contain useful different marginal

information. To demonstrate that the different MA strategies possess different information we use

Harvey, Leybourne and Newbold out-of-sample encompassing tests in Table 5. The null hypothe-

sis is that the out-of-sample forecasts in the column heading encompasses the forecast in the row

implying that the column heading forecasts contain all the relevant information; whereas, the al-
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ternative hypothesis (a probability less than .05) is that the column’s forecast does not encompass

the forecast in the row and hence the row forecasts contain additional useful information.

Results in the first column of Table 5 shows that the historical average forecast does not en-

compass any other forecast; this implies the moving average forecasts and their combinations (PLS

or MEAN) contain useful incremental out-of-sample predictive information. More importantly, not

one of the log(MAt−1(L)/Pt−1)-based forecasts that have a corresponding R2
OS > 0 in Table 4

encompass all of the others. For instance, inspection of the MA20 column indicates that we can

reject that the MA5, MA10, and M100 have similar information; however, we can not reject the

null of encompassing for the MA50, suggesting that only the MA20 and MA50 forecasts contain

similar information. Overall, most different MA horizons add significantly distinct out-of-sample

forecasts information for out-of-sample forecasting of Bitcoin returns.

D. Performance of trading strategies

We define the buy-sell indicator (buy=1, sell=0) associated with each MA strategy as:

SL,t =


1, if Pt−1/MAt−1(L) > 1

0, otherwise

(7)

The return on the Bitcoin MA strategies on day t are given by:

r
MA(L)
t = Sn,t ·Rt + (1− Sn,t) ·Rft, n = 5, 10, 20, 50, 100, (8)

where rt and rft denote, respectively, the return on Bitcoin and the risk-free rate on day t. Intu-

itively, the trading strategy defined by Eq. (8) captures the predictability of Bitcoin by short-term

trends discussed theoretically in Section II. We denote the excess return of the buy-and-hold

position in Bitcoin as rxt and the excess return on the MA strategies by rx
MA(L)
t .

To assess the economic significance of Bitcoin-return predictability to investors, we examine the

performance of the MA strategy’s performance relative to a buy-and-hold position (e.g., Pesaran and

Timmermann, 1995; Cochrane, 2008; Rapach et al., 2010). Table 6 presents summary statistics for

the buy-and-hold and MA strategies. Panel A, which uses the full sample (10/27/2010–1/31/2018),
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shows that all strategies are right-skewed and have fat tails. The Sharpe ratio of Bitcoin is 1.9,

which is about five times the historical Sharpe ratio of the stock market (e.g., Cochrane, 2005). All

of the MA strategies further increase this ratio to 2.1 to 2.5. The maximum drawdown of Bitcoin

is 89.5%, while those of the MA strategies are all lower, ranging from 64.3% to 70.3%. Panel B

indicates that the performance of Bitcoin was higher during the first half of the sample, although

the performance gains of the MA strategies are similar in magnitude as those exhibited during the

full sample. Similarly, Panel C shows that the baseline performance of Bitcoin remains strong in

the second half of the sample with a Sharpe ratio of 1.5, however the MA strategies still improve

performance (with Sharpe ratios up to 2.1 and drawdowns reduced from 73.4 to as low as 33.5%).

Panel A of Figure 3 plots the cumulative value of $1 invested in Bitcoin and the MA10 strategy

at the beginning of the sample. At the end of our sample, the $1 in Bitcoin grew to $103,453 while

the $1 in the buy-and-hold strategy grew to approximately $305,306, a difference of about $200,000

over 7 years! Panel B plots the drawdowns of Bitcoin and the MA10 strategy. As Panel B shows,

the out-performance of the MA strategies relative to the buy and hold largely stems from the MA

strategy having less severe and much shorter drawdowns than the buy-and-hold.

Table 7 presents average returns of Bitcoin on days when the five moving-average strategies

indicate investment in Bitcoin (IN) and when these strategies indicate investment in Treasury bills

(OUT). The results clearly show that vast majority of positive returns accrue to Bitcoin obtain on

IN days. Moreover, this out-sized performance occurs over both halves of the sample.

Table 8 formally tests the performance of MA strategies relative to the buy-and-hold. Specifi-

cally, we regress the excess returns of the MA strategies on the buy-and-hold benchmark:

rx
MA(L)
t = α+ β · rxt + εt. (9)

A positive alpha indicates that access to rxMAn
t increases the maximum possible Sharpe ratio

relative to that of a buy-and-hold Bitcoin position. The ultimate benefit of such increases to an

investor is increased utility from a higher maximum Sharpe ratio for their whole portfolio. Thus,

alpha only matters to the extent that it expands the mean-variance frontier. Intuitively, this

expansion depends on the alpha relative to the residual risk investors must bear to capture it. The
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maximum Sharpe ratio (SRNew) attainable from access to rxt and rx
MA(L)
t is given by:

SRNew =

√(
α

σ(εt)

)2

+ SR2
Old, (10)

where SROld is the Sharpe ratio of rxt (e.g., Bodie et al., 2014). Hence, we use the appraisal ratio(
α

σ(εt)

)
as one measure of the benefits of technical analysis to investors.

A disadvantage of the appraisal ratio is that its effect on Sharpe ratios is nonlinear. The same

appraisal ratio has a greater impact on a lesser SROld than vice versa. Thus, to further facilitate

comparison across assets, we measure the percentage increase in mean-variance utility, which—for

any level of risk aversion—is equal to:

Utility gain =
SR2

New − SR2
Old

SR2
Old

. (11)

Campbell and Thompson (2008) find that timing expected returns on the stock market increases

mean-variance utility by approximately 35%, providing a useful benchmark utility gain.

Panel A shows that over the entire sample period, the MA strategies earn significant α with

respect to rxt of 0.11% to 0.24% per day. These alphas lead to economically large utility gains of

18.5% to 70.3%. Panel B shows these results remain strong in the second half of the sample.

Panel C presents results with sampling over the five U.S. business days per week. The αs and

utility gains remain close to those in Panel A. Panel D adds the excess return on the stock market

(MKT ), the Barclay’s Aggregate Bond Index (AGG), and gold over the same sample as Panel C.

These variables proxy for exposure to other major asset classes as well as innovations in important

macroeconomic news. Panel D shows that the rx
MA(L)
t has little exposure to the other markets

and in particular, this exposure has no impact on α. Thus, the incremental performance of the

MA strategies relative to the buy-and-hold position is completely unexplained by correlation with

important news that drives other major markets.

A naive alternative to our discrete buy-or-sell strategies defined by Eq. (8) would be estimating

mean-variance weights using our Bitcoin-return forecasts, and then testing whether the resulting

strategy out-performs the buy-and-hold benchmark (e.g., Marquering and Verbeek, 2004; Campbell

and Thompson, 2008; Huang et al., 2015). However, this approach has several theoretical and
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empirical shortcomings relative to our simple MAn strategies. First, the mean-variance weights

assume the investor is choosing between the market return and the risk-free asset. However, Bitcoin

is a poor theoretical proxy to the market portfolio of risky assets. Second, prior to 2017, investors

could not sell Bitcoin short or buy it on margin or via futures contracts. Hence, the weights on

Bitcoin should be constrained between zero and one. Thus, the mean-variance-weights approach

could only outperform the MA strategies by choosing optimal variation between zero and one.

This in turn exacerbates the following two problems: (i) that the mean-variance weights require

at least two estimated forecasts, and therefore come with substantial estimation error, and (ii) the

mean-variance weights assume for tractability the mean-variance functional form of investor utility.

While a common assumption, mean-variance utility is unlikely to precisely capture the behavior of

a representative investor.

In contrast, our discrete MA strategies satisfy are based on a directly observable out-of-sample

signals and require no estimation error. They also make no assumption about the utility of under-

lying investors. Thus, the strong performance of our MA strategies relative to the buy-and-hold

position already provide evidence of great economic significance of out-of-sample predictability of

Bitcoin returns by technical indicators based on multiple MA horizons. Moreover, this strong

performance relative to the buy-and-hold precludes the need for more sophisticated methods to

demonstrate the economic significance of out-of-sample predictability by technical indicators.

E. Subperiods and major episodes

Despite Bitcoin’s rapid increases over the past few year, its performance has been plagued by several

bear markets. A Fortune magazine article (Roberts, 2017) examines the explanations behind five

major Bitcoin crashes, and a more recent article (Pollack, 2017) details explanations behind the

three bear market crashes of 2017. We briefly summarizes the cause of these downturns from these

articles, and document the performance of our technical trading strategies during these identified

episodes. The evidence clearly shows that the moving average indicators relatively quickly indicated

exit and thus minimized large draw-downs.

An outage at Mt Gox, the prominent Bitcoin trading platform at the time in April of 2013, lead

to uncertainty about the platform and a collapse in Bitcoin from $230 to $93, a decline of nearly

60%. The MA5, MA10 and MA20 declined however to $165, $125 and 117, or declines of 28%, 46%
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and 49%, respectively. Fortune further details the second decline to overzealous US regulators in

the late fall of 2013; Bitcoin fell from $1125 to $522, or nearly 54%. The MA5, MA10 and MA20

declined however to $900, $603 and $820, or declines of 20%, 46% and 27%. Third, the collapse of

Mt Gox then in February 2014 lead to an additional fall from $855 to $598, nearly 40%. The MA5,

MA10 and MA20 declined however to $900, $603 and $820, or declines of 20%, 46% and 27%. In

all three cases, the drawdown’s figure clearly illustrates that the MA predictors quickly indicated

exit and hence saved investors money.

Fortune and Cointelegraph both discuss the Summer of 2017 due to uncertainty about the hard-

fork of Bitcoin splitting into two coins: Bitcoin and Bitcoin cash. Bitcoin fell from $3019 to $1939,

or approximately 56%. The MA5, MA10 and MA20 declined however to $2605, $2417 and $2183,

or declines of 16%, 25% and 38%. Then the Chinese in September of 2017 threatened to crack

down on Bitcoin, contributing to fall from $4950 to $3003 or 27%. The MA5, MA10 and MA20

declined however to $4663, $3581 and $4217, or declines of 14%, 28% and 15%. Cointelegraph

lastly documents a recent crash attributable to Bitcoin limiting its blocksize, and prompted an exit

to Bitcoin cash which increased 40%, while Bitcoin fell from $7559 to $5857, more than 21%. The

MA5, MA10 and MA20 declined to $7147, $6570, $6337, or falls of 4%, 12% and 15%, respectively.

During the writing of this article in early 2018, Bitcoin experienced its first downturn of 2018

due in part to crackdown in China and Korea and fears of regulation of the U.S. that began in

mid December. Increased scrutiny by regulators lead to a fall of 59.9%; however, the MA5, MA10

and MA20 experienced losses of 26.4%, 23.7% and 38.8%. Similarly to the above patterns, the MA

strategy relative quickly indicated to sell Bitcoin and hence minimized large losses.3 Overall, in

all seven episodes, the three sharp declines in 2013-2014, the three bear markets of 2017, and the

recent bear market in early 2018, the MA5, MA10 and MA20 decisively outperformed a buy-and-

hold strategy since they relatively quickly indicated exit and hence minimized large losses.

F. Performance of trading strategies applied to Ripple

To examine the robustness of our trading strategy performance, Table 9 presents performance

results similar to those above for Ripple, which is the third largest digital currency by market

3These percentages reflect declines to early February, 2018; even if Bitcoin losses continue, the MA indicators
have all indicated exit.
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capitalization and has existed since 2013.4 Panel A shows that all the MA strategies except MA100

increase Sharpe ratios relative to the buy-and-hold strategy by up to 0.55. Each strategy also

reduces the maximum drawdown of the buy-and-hold by about 10%-24%.

Figure 4 further shows that the representative MA10 strategy not only substantially limits the

Ripple’s large maximum drawdowns over multiple episodes, but also the duration of drawdowns.

Panel B shows that the MA5, MA10, and MA20 strategies earn significant alpha with respect to

the buy-and-hold Ripple strategy and lead to large utility gains. Overall, the performance of our

MA strategy does not appear unique to Bitcoin.

G. Comparison with NASDAQ

Over our sample, Bitcoin exhibits a substantial run-up in prices, with many market observers

anticipating a crash, citing the eventual bursting of many so-called “bubbles”.5 It is therefore

interesting to assess how MA strategies would help investors improve performance in prior extreme

run-ups that were followed by extreme market crashes. The equilibrium theory underlying technical

analysis is not restricted to Bitcoin, so this exercise also assesses the robustness of our MA strategy

results using Bitcoin. We apply each of the MA strategies defined by Eq. (8) to the total return

on the NASDAQ composite index using daily data over the sample 1996–2005, a ten year window

approximately centered around the peak of the NASDAQ “bubble”.

Bitcoin shares several common features with the NASDAQ in the late 1990s. These include

difficulty valuing the underlying asset with fundamentals and rapid run-ups in price. Thus, the

current intense interest in blockchain technology including its value as a medium of exchange and

its ultimate long-run commercial monetary worth is similar to the frenzy around internet stock

in the late 1990s. Many dot-com companies for years had no earnings and lacked measurable

fundamentals. Several of these companies went bankrupt such as Pets.com, while others proved

commercially viable. If our technical strategies are applied to the NASDAQ during this period,

could they have out-performed a buy-and-hold during the run-up, and could they have avoided

large losses on the way-down? We demonstrate that the answer to both questions is—yes. Hence

the NASDAQ stock price episode provides robust evidence of technical trading for firms in an

4Ethereum is the second largest by market capitalization but its data began several years after Ripple. Hence,
though the results are similar, we report only those on Ripple for brevity.

5E.g., the “Dutch Tulip mania”, the “dot.com crash”, the “CDO/MBS” crash, etc.
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industry that is newly emerging without clear fundamentals.

Figure 5 depicts the performance of the buy-and-hold position in NASDAQ relative to the

MA10 strategy. Panel A shows the MA10 increases more steadily than NASDAQ, avoiding much

of the latter’s peaks and valleys. The MA10 returns $3.66 at the end of 2005 to an investor with

a $1 investment at the beginning of 1996. Conversely, a buy-and-hold investor in NASDAQ would

have about half ($1.85) of the accumulated value. Panel A shows that much of the performance

gains from the MA strategy come from avoiding most of NASDAQ’s large crash in the early 2000’s.

Panel B further shows that the MA10 did not just avoid the largest crash, however. The strategy

avoids the majority of each of the non-trivial NASDAQ drawdown before the crash as well.

Table 10 documents the performance of the MA strategies applied to the NASDAQ relative to

the buy-and-hold strategy. Results in Panel A show that the MA10, MA20 and MA50 methods

particularly possess mean returns more than four percent greater than the 7.3% buy-and-hold of

the NASDAQ. Further, all five methods substantially boost the NASDAQ Sharpe ratio of 0.25; e.g.,

MA10, MA20 and MA50 possess Sharpe ratios of .65 to .71. The last column documents that the

MA strategies also greatly reduce the maximum drawdown of NASDAQ (77.9%) to 25.7%–44.7%.6

Panel B of Table 10 presents the alphas, appraisal and utility gain for the NASDAQ. Results

document significant alpha for MA10 to MA100 strategies. It also reveals very high utility gains

for all five strategies; for investors that use the MA10, MA20 and MA50 methods, the utility

gains exceed 600% relative to a buy-and-hold. Overall, the same technical strategies that produce

significant performance improvements in Bitcoin and Ripple also produce significant performance

improvements in NASDAQ, largely by reducing the length and severity of drawdowns.

H. Volume implications of our model

In our model, trading is based on moving-average indicators across different horizons. Testing this

refutable implication provides an opportunity to validate our model’s mechanism in explaining the

predictability of Bitcoin by moving averages of multiple horizons.

We test for volume generated by technical trading in two ways. First, we evaluate whether

increases in total turnover implied by different MA signals also leads to higher Bitcoin volume.

6We also applied our strategies to the Nasdaq over the past ten years using our framework, which follows the
maturation of internet-based technologies and an increased understanding of fundamentals. These untabulated results
show that the MA strategies no longer earn significant alpha or produce Sharpe ratio gains.
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We measure this total turnover by the sum of the turnover generated by each moving-average

buy-sell indicator SL,t:
∑

L |∆SL,t|. Second, we evaluate whether disagreement among MA buy-

sell indicators (SL,t) is associated with higher trading volume. Intuitively, if technical traders

disagree, they will trade with each other. As a measure of disagreement, we use the cross-sectional

standard deviation of the signed turnover implied by each MA strategy, denoted σL(∆SL,T ). For

each measure, Table 11 presents estimations of regressions of the form:

∆ log(volumet) = a+ b ·Xt + c|̇rt|+ εt, (12)

where the Xt denotes one or both of our two volume-inducing variables. Because large price

shocks are the main empirical determinant of volume and are likely correlated with our price-based

indicators, we also control for the absolute value of returns (see, e.g., Karpoff, 1987). We use change

in log volume as the dependent variable because the level of volume is not stationary.

Results in column (1) of Table 11 demonstrate that increases in turnover across multiple horizons

lead to increases in volume, controlling for price shocks. Then, column (2) shows that increases

in disagreement among MA traders also leads to significant increases in volume. Finally, column

(3) indicates that turnover and disagreement across MA traders jointly predicts volume, with both

measures positively related to volume. Overall, the results in Table 11 are consistent with traders

using MA strategies significantly impacting trading volume in Bitcoin.

V. Conclusion

Bitcoin and cryptocurrencies are increasingly attracting attention from investors and financial in-

stitutions. This has lead for instance to recent Bitcoin ETF trading by large financial institutions

such as Fidelity and futures trading in the US. Yet, there is a lack of both empirical and theoretical

evidence on the investment properties of Bitcoin.

Since Bitcoin has no obvious fundamentals to analyze, it is therefore a natural laboratory to use

technical analysis. In this paper, we propose a new theory that predicts that moving averages of

prices over different horizons should jointly predict Bitcoin returns. Predictive regressions confirm

the joint predictability of Bitcoin returns by moving averages over multiple horizons. Moreover,
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combining these signals yields significant out-of-sample predictability. Simple real-time trading

strategies that exploit this predictability significantly outperform the buy-and-hold position in

Bitcoin, with increases in Sharpe ratio of 0.2–0.6. We show technical strategies relative to a buy-

and-hold stems from its ability to exit a down market, thereby decreasing the length and severity

of drawdowns. We further test an implication from our model and find that increases in turnover

from differences in signals across multiple horizons boosts trading volume.

Bitcoin skeptics argue that the behavior of cryptocurrency prices resembles that of the NASDAQ

“bubble”. Applying the same trading strategies to the NASDAQ index around the rise and fall in

the early 2000’s would have spared investors from much of the crash. Our trading-strategy results

suggest that if Bitcoin exhibits a massive devaluation similar to that of “bursting of the NASDAQ

bubble”, technical analysis could protect investors from much of resulting losses.
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Appendix

Based on assumption 2, let M i
t ≡ E[Xt|F it ] be the conditional expectation of Xt. Then ∀i = 1, 2,

M i
t satisfies

dM i
t = µ(X̄ −M i

t )dt+ σiM (t)dẐi1t, M i
0 = M i(0−), (A.1)

where Ẑi1t is the (observable) innovation processes satisfying

Ẑi1t =

∫ t

0

Xs −M i
s

σδ
ds+ Z1t,

σiM (t) = V i(t)
σδ

+ ρσX , V i(t) ≡ E[(Xt −M i
t )

2|F it ] is the conditional variance of Xt satisfying

dV i(t)

dt
= −2µV i(t) + σ2X −

(
1

σδ
V i(t) + ρσX

)2

, V i(0) = V i(0−). (A.2)

This implies that

dδt
δt

= M i
tdt+ σδdẐ

i
1t, i = 1, 2. (A.3)

If V 1(0) = V 2(0), then V 1(t) = V 2(t) and σ1M (t) = σ2M (t). Then

d(M1
t −M2

t ) = −(µ+ σ1M (t))(M1
t −M2

t )dt. (A.4)

As in Detemple (1986), Gennotte (1986), and Detemple (1991), the investor’s problem is sep-

arable in inference and optimization.7 In particular, given the initial endowment ηi > 0 and the

prior (Mi(0
−), Vi(0

−)), Investor i’s portfolio selection problem is equivalent to

max
θi,Ci

E

∫ T

0
e−βt logCitdt,

subject to

dWt = rtWtdt+ θit(µ
i
t − rt)dt+ θitσδdẐ

i
1t − Citdt. (A.5)

7The separation principle trivially applies because the objective function is independent of the unobservable state
variable (see, e.g., Fleming and Rishel (1975, Chap. 4, Sec. 11) .
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Define πit as the state price density for investor i. Then

dπit = −rtπitdt− κitπitdẐi1t, (A.6)

where κit is the price of risk perceived by investor i, i.e.,

κit =
µit − rt
σ

. (A.7)

Using the standard dual approach (Cox and Huang (1986)) to solve investor i’s problem, we have

e−βt(Cit)
−1 = λiπ

i
t. (A.8)

Define

αt =
λ1π

1
t

λ2π2t
(A.9)

to be the ratio of the marginal utilities. Then αt evolves as

dαt = −αtµdt dẐ1
1t, µdt =

µ1t − µ2t
σ

, α0 =
η2
η1
, (A.10)

where the first equality from Ito’s lemma and the consistency condition (i.e., the stock price is the

same across all investors):

µ1t − µ2t
σ

=
M1
t −M2

t

σδ
,

and the last equality follows from the budget constraints.

By market clearing condition C1
t + C2

t = δt, we have

C1
t =

δt
1 + αt

, C2
t =

αtδt
1 + αt

,

κ1t = σδ +
αt

1 + αt
µdt , κ2t = σδ −

1

1 + αt
µdt ,

rt = β +
1

1 + αt
M1
t +

αt
1 + αt

M2
t − σ2δ .
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Therefore, the fraction of wealth invested in the stock by investor 1 is

κ1t /σ

, i.e.,

1 +
αt

1 + αt

µdt
σ
, (A.11)

and by investor 2 is

1− 1

1 + αt

µdt
σ
. (A.12)

So if µdt > 0, i.e., investor 1 is more optimistic than investor 2, then investor 1 borrow to buy the

stock, and investor 2 sells the stock and lends.

The stock price

Bt = E1
t

∫ T

t

π1s
π1t
δsds =

1− e−β(T−t)

β
δt,

which implies that

dBt = ((β +M i
t )Bt − δt)dt+ σδBtdẐ

i
1t,

µit = β +M i
t , µ

d
t =

M1
t −M2

t

σδ
, σ = σδ.

This implies that

dẐi1t =
1

σδ

(
d logBt −

(
M i
t −

β

1− e−β(T−t)
− 1

2
σ2δ

)
dt

)
.

Investor 1’s wealth is

W1t = E1
t

∫ T

t

π1s
π1t
C1sds =

1− e−β(T−t)

β
C1t =

1

1 + αt
Bt

and Investor 2’s wealth is

W2t = E1
t

∫ T

t

π2s
π2t
C2sds =

1− e−β(T−t)

β
C2t =

αt
1 + αt

Bt.
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The number of shares Investor 1 holds is equal to

N1t = W1t(1 +
αt

1 + αt

µdt
σ

)/Bt =
1

1 + αt
(1 +

αt
1 + αt

µdt
σ

).

The number of shares Investor 2 holds is equal to

N2t = W2t(1−
1

1 + αt

µdt
σ

)/Bt =
αt

1 + αt
(1− 1

1 + αt

µdt
σ

).

We have

∂N1t

∂αt
=
−(1 + αt) + (1− αt)µdt /σδ

(1 + αt)3
,

which is < 0 if and only if

αt >
µdt /σδ − 1

µdt /σδ + 1
,

which is true µdt

Then we have

dM i
t = (ai(t)− bi(t)M i

t )dt+ ci(t)d logBt, (A.13)

where

ai(t) = µX̄ +

(
β

1− e−β(T−t)
+

1

2
σ2δ

)
ci(t),

bi(t) = µ+ ci(t), ci(t) =
σiM (t)

σδ
.

Equation (A.13) implies that

M i
t = hi(t) +

∫ t

0
f i(u, t)d logBu,

where

hi(t) = e−
∫ t
0 b

i(s)ds

∫ t

0
ai(u)e

∫ u
0 bi(s)dsdu, f i(u, t) = ci(u)e

∫ u
t b

i(s)ds.
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Then by integration by parts, we have

M i
t = hi(t)− f i(0, t) logB0 + ci(t) logBt −

∫ t

0
logBudf

i(u, t)

= hi(t) + f i(0, t) log
Bt
B0

+ (f i(t, t)− f i(0, t))

(
logBt −

∫ t
0 logBug

i(u, t)du∫ t
0 g

i(u, t)du

)
,

(A.14)

where

gi(u, t) =
∂f i(u, t)

∂u
.

It can be shown that gi(u, t) > 0 for any u and t, and thus
∫ t
0 g

i(u,t) logBudu∫ t
0 g

i(u,t)du
is a weighted average of

log(Bu) over the interval [0, t]. In addition, this implies that f i(t, t) − f i(0, t) > 0 for any t. This

proves the Proposition.
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Figure 1: Value of $1 invested in Bitcoin or S&P500 on 7/18/2010
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casts minus those of MA strategies
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Figure 3: Performance of investment in Bitcoin buy-and-hold and MA strategies.
Panel A presents cumulative returns to $1 invested in the buy-and-hold and MA10 Bitcoin strategies
on 7/18/2010. Panel B presents drawdowns of each strategy in Panel A. Panel C presents the
proportion of days each month that the MA strategies listed invest in Bitcoin as opposed to the
risk-free rate.
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Figure 4: Drawdowns of buy-and-hold and MA10 strategies applied to Ripple.
This figure presents drawdowns of the buy-and-hold and MA10 strategies applied to Ripple from
11/12/2013 through 1/31/2018.
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Figure 5: Performance of investment in NASDAQ buy-and-hold and MA10 strategies.
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Table 1: Summary statistics 
 
Panel A of this Table presents summary statistics of the returns in excess of the 1-day risk-free 
rate on Bitcoin (BTC), the U.S. stock market (MKT), the Barclays aggregate bond market index 
(AGG), and gold. Means, standard deviations, and Sharpe ratios are annualized. Panel B presents 
summary statistics of other relevant variables. AR1 denotes the first-order autoregressive 
coefficient and 𝑝"# denotes the p-value from an augmented Dickey-Fuller test for the null of a 
unit root. The sample period is daily from 10/27/2010−1/31/2018. Bitcoin returns trade 7 days 
a week and have 2654 observations during the sample period. Other variables are available only 
5 days a week and have 1,896 observations during this period.  
  

Panel A: Returns 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis AR1 
BTC 213.58 111.04 1.92 -38.83 52.89 0.92 15.65 0.06 
MKT 14.43 14.6 0.99 -6.97 4.97 -0.45 8.23 -0.08 
AGG 2.68 3.27 0.82 -1.01 0.74 -0.3 4.13 -0.05 
GOLD -0.69 16.2 -0.04 -9.07 4.69 -0.52 8.71 -0.03 

Panel B: Predictor variables 
  Mean(%) SD(%) Min(%) Max(%) Skewness Kurtosis AR1 𝑝𝑑𝑓 

VIX 16.29 5.55 9.14 48 2.05 8.42 0.96 0 
BILL 0.23 0.34 -0.02 1.45 2 5.94 1 1 
TERM 2.05 0.59 1 3.6 0.42 2.5 1 0.45 
DEF 0.96 0.25 0.53 1.54 0.53 2.22 1 0.62 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Table 2: Variance ratio tests of the random walk hypothesis    
 
The variance ratios are denoted 𝑉𝑅(𝑞) with the corresponding heteroscedasticity-robust test 
statistics and p-values denoted 𝑧∗ and 𝑝𝑧∗, respectively. Under the random walk null hypothesis, 
the value of the variance ratio is 1 and the test statistics have a standard normal distribution 
(asymptotically). The sample period is 7/18/2010−1/31/2018.   
 

q 𝑉𝑅(𝑞) 𝑧𝑠
∗ 𝑝𝑧∗ 

14 1.237 1.623 0.104 
28 1.575 2.967 0.003 
56 2 3.919 0 
112 2.211 3.649 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 



Table 3: In-sample predictability of Bitcoin returns 
 
This table presents estimates of predictive regressions of the form: 𝑟-./,-.1 = 𝑎 + 𝑏′𝑋- + 𝜖-./,-.1, 
where 𝑟-./,-.1 denotes the log return on Bitcoin over business days 𝑡 + 1 through 𝑡 + 5 (one week). 
We use present Newey and West (1987) standard errors below the point estimates to correct for 
heteroscedasticity and serial correlation in return observations. In Panel A, the predictors are the 
log moving average/price ratios (log(𝑀𝐴(𝐿) 𝑃⁄ )) or their first three principal components 
(𝑃𝐶1,𝑃𝐶2, 𝑜𝑟 𝑃𝐶3). In Panel B, the predictors include these principal components along with the 
other return predictors (VIX, BILL, TERM, and DEF). The sample period is 7/18/2010—
1/31/2018 (𝑛 = 1896).  
 

Panel A: Predictability of Bitcoin returns by log moving average/price ratios 
 (1) (2) (3) (4) (5)   (6) 
log(𝑀𝐴𝑡(5)/𝑃𝑡)   -17.90     𝑃𝐶12 -1.36 
 (-14.43)      (0.64) 
log(𝑀𝐴𝑡(10)/𝑃𝑡)    -18.10    𝑃𝐶22 1.67 
  (-12.75)     (-0.79) 
log(𝑀𝐴𝑡(20)/𝑃𝑡)     -17.95   𝑃𝐶32 1.36 
   (-8.47)    (1.86) 
log(𝑀𝐴𝑡(50)/𝑃𝑡)      -12.00    
    (-4.60)    
log(𝑀𝐴𝑡(100)/𝑃𝑡)       -6.61   
     (-2.95)   
𝑅2  0.00 0.01 0.03 0.04 0.03  0.04 

Panel B: Predictability of Bitcoin returns by common return predictors 
 (1) (2) (3) (4) (5) (6) 
𝑉𝐼𝑋2  -1.84      -2.54    -1.74  
 (-0.65)    (-0.80) (-0.94) 
𝐵𝐼𝐿𝐿2   0.73   2.14   1.55 
  (0.65)   (1.06) (1.27) 
𝑇𝐸𝑅𝑀2    0.99  2.94    2.19  
   (0.86)  (1.18) (1.30) 
𝐷𝐸𝐹2     -0.49 2.05   1.54  
    (-.58) (0.77) (0.92) 
𝑃𝐶12       -1.01 
      (-0.69) 
𝑃𝐶22       1.09 
      (0.92) 
𝑃𝐶32       1.86 
      (2.02) 
𝑅2  0.02 0.01 0.00 0.00 0.04 0.05 

 
 
 



Table 4: Out-of-sample predictability of Bitcoin-returns 
 
This table presents out-of-sample 𝑅2 for predictive regressions of the form: 𝑟-./,-.D = 𝑎 + 𝑏′𝑋- +
𝜖-./,-.D, where 𝑟-./,-.D denotes the log return on Bitcoin over (calendar) days 𝑡 + 1 through 𝑡 + 7. 
𝑇G denotes the in-sample period in days. In columns denoted MA𝐿, the only predictor is 
log(𝑀𝐴(𝐿)/𝑃). In columns denoted 3PRF, the forecast is based on the 3-pass regression filter of 
Kelly and Pruitt (2013) using all five log(𝑀𝐴(𝐿)/𝑃). In columns denoted MEAN, the forecast is 
the simple average of the five forecasts based on each log(𝑀𝐴(𝐿)/𝑃). Panel A presents results 
using 7-day frequency. Panel B presents similar results as Panel A for 5-day-per week data to 
facilitate comparison with Panel C, which presents results using VIX, BILL, DEF, and TERM as 
predictors. The in-sample plus out-of-sample period is 10/27/2010−1/31/2018 (n=2,654 in Panel 
A, and n=1,823 in Panels B and C). Brackets present p-values for the null that the adjacent out-
of-sample 𝑅H is zero.  
 

Panel A: 7-day-per-week observations 
𝑇0 MA5 MA10 MA20 MA50 MA100 3PRF MEAN 
365 -0.41 -1.28 0.15 1.46 0.65 0.91 [.124] 1.17 [.050] 
730 -0.28 -1.12 0.57 1.68 1.53 1.71 [.067] 1.37 [.098] 
1095 0.56 2.04 4.23 3.91 2.87 2.46 [.033] 3.66 [.016] 

Panel B: 5-day-per-week observations 
𝑇0 MA5 MA10 MA20 MA50 MA100 3PRF MEAN 
252 -0.82 -2.7 -1.02 0.63 0.17 0.54 [.098] 0.22 [.249] 
504 -0.56 -2.49 -0.68 0.7 0.83 1.07 [.088] 0.35 [.277] 
756 0.71 2.38 4.33 3.69 2.64 2.16 [.055] 3.6 [.022] 

Panel C: 5-day-per-week observations 
𝑇0 VIX BILL TERM DEF  3PRFcro MEANcro 
252 -5.61 -2.19 -7.56 -4.46  -5.45 [.541] -1.31 [.343] 
504 -1.89 -1.65 -3.32 -2.36  -1.9 [.333] -0.07 [.282] 
756 -3.56 -3.73 -2.94 -3.64  -3.61 [.503] -0.85 [.516] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5: Encompassing tests   
 
This table reports p-values for the Harvey, Leybourne, and Newbold (1998) statistic. The statistic 
corresponds to a one-sided (upper-tail) test of the null hypothesis that the 7-day Bitcoin-return 
forecast defined in the column heading encompasses the forecast defined by the row heading, 
against the alternative hypothesis that the forecast given in the column does not encompass the 
forecast given in the row. The forecasts are the out-of-sample forecasts defined in Table 4 Panel 
A along with the historical-average forecast (�̅�). The sample period is 10/27/2010−1/31/2018 with 
an in-sample period of 𝑇G = 730.   
 
  𝑟L MA5 MA10 MA20 MA50 MA100 3PRF MEAN 
𝑟L   0.349 0.274 0.313 0.302 0.352 0.389 0.402 
MA5 0.000  0.000 0.000 0.000 0.000 0.000 0.000 
MA10 0.000 0.999  0.000 0.000 0.000 0.000 0.000 
MA20 0.000 0.997 0.998  0.000 0.000 0.000 0.989 
MA50 0.000 0.720 0.703 0.672  0.960 0.344 1.000 
MA100 0.000 0.270 0.160 0.000 0.000  0.001 0.995 
3PRF 0.000 0.188 0.112 0.001 0.000 0.852  0.811 
MEAN 0.000 0.764 0.234 0.000 0.000 0.000 0.000  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6: Performance of Bitcoin trading strategies  
 
This table presents summary statistics of the returns in excess of the 1-day risk-free rate on Bitcoin 
(BTC) and each of the MA(𝐿) Bitcoin strategies. Means, standard deviations, and Sharpe ratios 
are annualized. The sample period is daily from 10/27/2010−1/31/2018. Panel A presents full 
sample results (n=2,654). Panels B and C, respectively, present results for the first and second 
halves (n=1,327) of the sample. MDD denotes maximum drawdown. 
 

Panel A: Full-sample 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
BTC 213.58 111.04 1.92 -38.83 52.89 0.92 15.65 89.48 
MA5 209.78 83.59 2.51 -29.41 52.89 2.62 31.84 66.44 
MA10 208.49 85.1 2.45 -38.83 52.89 2.21 32.38 69.75 
MA20 196.91 86.13 2.29 -38.83 52.89 2.08 31.71 64.25 
MA50 195.98 91.81 2.13 -38.83 52.89 1.6 26.03 70.28 
MA100 203.37 97.54 2.09 -38.83 52.89 1.61 22.76 70.28 

Panel B: First-half (10/27/2010-6/25/2014, n=1,327) 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
BTC 349.71 142.6 2.45 -38.83 52.89 0.81 11.53 89.48 
MA5 339.7 108.66 3.13 -29.41 52.89 2.25 22.44 66.44 
MA10 331.54 111.98 2.96 -38.83 52.89 1.77 22.07 69.75 
MA20 316.66 114.11 2.77 -38.83 52.89 1.7 21.3 64.25 
MA50 309.67 121.24 2.55 -38.83 52.89 1.33 17.68 70.28 
MA100 341.12 127.76 2.67 -38.83 52.89 1.37 15.68 70.28 

Panel C: Second-half (6/26/2014-1/31/2018, n=1,327) 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
BTC 104.64 71.95 1.45 -21.9 25.41 0.18 9.39 73.37 
MA5 108.74 51.97 2.09 -14.24 25.41 1.63 17.84 34.28 
MA10 103.43 51.12 2.02 -11.13 25.41 1.68 18.53 33.5 
MA20 95.15 50.04 1.9 -11.13 22.97 0.93 14.17 38.76 
MA50 100.65 55.77 1.8 -16.51 22.97 0.52 11.91 34.71 
MA100 88.96 61.37 1.45 -16.73 25.41 0.39 12.7 46.77 

 
 
 
 
 
 
 
 
 
 
 
 
 



Table 7: Returns to Bitcoin when MA strategies are invested vs not invested  
 
This table presents average returns to Bitcoin on days when the MA(𝐿) strategy defined in the 
column heading is long Bitcoin (IN) and days when the strategy is not (OUT). The sample period 
is daily from 10/27/2010−1/32/2018. Panel A presents full sample results (n=2,654). Panels B 
and C, respectively, present results for the first and second halves (n=1,327) of the sample.  
 

Panel A: Full sample 
 All Days MA5 MA10 MA20 MA50 MA100 

OUT 0.59% 0.01% 0.01% 0.05% 0.05% 0.03% 
IN  0.58% 0.57% 0.54% 0.54% 0.56% 

Panel B: First half 
OUT 0.90% 0.06% 0.07% 0.17% 0.25% 0.04% 
IN  1.41% 1.37% 1.31% 1.20% 1.23% 

Panel C: Second Half 
OUT 0.29% -0.01% 0.00% 0.03% 0.01% 0.04% 
IN  0.30% 0.28% 0.26% 0.28% 0.24% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 8: Alphas of MA Bitcoin strategies relative to buy-and-hold benchmark and other asset 
classes 
 
Panels A, B and C presents regressions of the form: 𝑟𝑥-

PQ(R) = 𝛼 + 𝛽UVW ⋅ 𝑟𝑥-UVW + 𝜖-, where 𝑟𝑥- 
denotes the day-𝑡 buy-and-hold excess return on Bitcoin and 𝑟𝑥-

PQ(R) denotes the excess return 
on the MA(𝐿) Bitcoin strategy. Beneath each regression is the Sharpe ratio and appraisal ratio of 
the MA strategy as well as the utility gain from access to 𝑟𝑥-

PQ(R). Panel A also reports the average 
daily turnover (TO) of the MA strategies, the one-way transaction cost (FEE) that would be 
required to eliminate the alpha of the MA strategy, and the percentage of days when the return 
on the strategy is at least that of Bitcoin (WIN(%)). The sample period is 10/27/2010−1/31/2018. 
Panel A presents results for 7-day-per-week observations (n=2,654). Panel B presents the same 
results as Panel A, but for the second half of the sample (n=1,302). Panel C presents similar 
results as Panel A but using 5-day-per-week observations. Panel D uses the same sample as Panel 
C but also includes the excess returns on the stock market (𝑀𝐾𝑇), the Barclay’s Aggregate Bond 
Index (AGG), and gold as factors. Newey-West standard errors are below point estimates in 
parentheses.   
 

Panel A: 7-day-per-week observations (N=2654) 
 MA5 MA10 MA20 MA50 MA100 
𝛽𝐵𝑇𝐶  0.57 0.59 0.60 0.68 0.77 
 (0.04) (0.04) (0.04) (0.03) (0.03) 
𝛼(%) 0.24 0.23 0.19 0.14 0.11 
 (0.05) (0.06) (0.06) (0.06) (0.05) 
𝑅2  0.57 0.59 0.60 0.68 0.77 
MA Sharpe 2.51 2.45 2.29 2.13 2.09 
Appraisal 1.61 1.52 1.26 0.97 0.83 
Utility gain(%) 70.29 62.35 42.83 25.33 18.52 
TO(%) 21.75 12.93 7.95 5.01 2.68 
FEE(%) 1.12 1.76 2.36 2.74 3.96 
WIN(%) 79.70 80.32 80.86 84.02 84.57 

Panel B: 7-day-per-week observations, second-half subsample (N=1327) 
 MA5 MA10 MA20 MA50 MA100 
𝛽𝐵𝑇𝐶  0.52 0.50 0.48 0.60 0.73 
 (0.04) (0.04) (0.04) (0.04) (0.04) 
𝛼(%) 0.15 0.14 0.12 0.10 0.04 
 (0.05) (0.05) (0.05) (0.05) (0.05) 
𝑅2  0.52 0.50 0.48 0.60 0.73 
MA Sharpe 2.09 2.02 1.90 1.80 1.45 
Appraisal 1.51 1.41 1.24 1.07 0.40 
Utility gain(%) 107.25 93.42 72.52 54.28 7.63 

 
 
 
 
 



Table 8: (continued) 
 

Panel C: 5-day-per-week data (N=1807) 
 MA5 MA10 MA20 MA50 MA100 
𝛽𝐵𝑇𝐶  0.58 0.60 0.60 0.67 0.77 
 (0.04) (0.04) (0.04) (0.04) (0.03) 
𝛼(%) 0.28 0.24 0.22 0.17 0.13 
 (0.07) (0.07) (0.07) (0.06) (0.06) 
𝑅2  0.58 0.60 0.59 0.67 0.77 
MA Sharpe 2.42 2.30 2.23 2.13 2.08 
Appraisal 1.48 1.29 1.18 0.97 0.84 
Utility gain(%) 59.70 45.57 38.08 25.85 19.15 

Panel D: Controlling for other factors at 5-day frequency (N=1793  ) 
 MA5 MA10 MA20 MA50 MA100 
𝛽𝐵𝑇𝐶  0.58 0.60 0.59 0.67 0.77 
 (0.04) (0.04) (0.04) (0.04) (0.03) 
𝛽𝑀𝐾𝑇  8.32 10.51 8.26 -8.31 -19.86 
 (12.06) (12.22) (12.14) (-12.59) (-13.15) 
𝛽𝐴𝐺𝐺  0.03 0.43 0.25 -0.31 -0.58 
 (0.43) (0.45) (0.43) (-0.43) (-0.42) 
𝛽𝐺𝑂𝐿𝐷  -0.02 -0.05 -0.07 -0.03 -0.07 
 (-0.10) (-0.08) (-0.08) (-0.072) (-0.07) 
𝛼(%)  0.27 0.23 0.22 0.19 0.16 
 (0.07) (0.07) (0.07) (0.07) (0.07) 
𝑅2  0.58 0.60 0.59 0.67 0.77 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 9: Performance of trading strategies for Ripple  
   
Panel A presents summary statistics of the returns in excess of the 1-day risk-free rate on Ripple 
and each of the MA(𝐿) strategies for Ripple. The data are from 11/12/2013-1/31/2018 (n=1540). 
Means, standard deviations, and Sharpe ratios are annualized. MDD denotes maximum 
drawdown. Panel B presents regressions of the form: 𝑟𝑥-

PQ(R) = 𝛼 + 𝛽Z[\\R] ⋅ 𝑟𝑥- + 𝜖-, where 𝑟𝑥- 
denotes the day-𝑡 buy-and-hold excess return on Ripple and 𝑟𝑥-

PQ(R) denotes the excess return on 
the MA(𝐿) Ripple strategy. Beneath each regression is the appraisal ratio ̂ _

`(a)
b of the MA strategy 

and the utility gain from access to 𝑟𝑥-
PQ(R). Newey-West standard errors are below point estimates 

in parentheses.   
Panel A: Summary Statistics for Ripple strategies 

  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
Ripple 230.78 173.15 1.33 -46.01 179.37 6.69 112.33 95.21 
MA5 286.22 156.52 1.83 -46.01 179.37 9.02 166.58 70.8 
MA10 290.91 154.47 1.88 -46.01 179.37 9.31 175.24 77.81 
MA20 255.08 155.15 1.64 -46.01 179.37 9.18 172.73 77.26 
MA50 234.46 157.3 1.49 -46.01 179.37 8.74 163.85 85.52 
MA100 203.94 156.98 1.3 -46.01 179.37 8.9 165.22 79.95 

  
Panel B: Strategy alphas 

 (1) (2) (3) (4) (5) 
 MA5 MA10 MA20 MA50 MA100 
𝛽𝑅𝐼𝑃  0.82    0.80    0.80    0.83    0.82    
 (0.05) (0.05) (0.05) (0.05) (0.05)) 
𝛼(%) 0.27    0.29    0.19   0.12 0.04 
 (0.08) (0.08) (0.08) (0.08) (0.08) 
𝑅2  0.82 0.80 0.80 0.83 0.82 
Appraisal 1.47 1.54 1.01 0.67 0.22 
Utility gain(%) 120.82 134.01 57.88 25.21 2.64 

 
  



Table 10:  Performance of trading strategies for NASDAQ: 1996-2005  
 
Panel A presents summary statistics of the returns in excess of the 1-day risk-free rate on 
NASDAQ and each of the MA(𝐿) NASDAQ strategies. Means, standard deviations, and Sharpe 
ratios are annualized. MDD denotes maximum drawdown. Panel B presents regressions of the 
form: 𝑟𝑥-

PQ(R) = 𝛼 + 𝛽cdefdg ⋅ 𝑟𝑥- + 𝜖-, where 𝑟𝑥- denotes the day-𝑡 buy-and-hold excess return 
on NASDAQ and 𝑟𝑥-

PQ(R) denotes the excess return on the MA(𝐿) NASDAQ strategy. Beneath 
each regression is the appraisal ratio ^ _

`(a)
b of the MA strategy and the utility gain from access to 

𝑟𝑥-
PQ(R). The sample period is daily from 1/2/1996−12/30/2005 yielding n=2,419 strategy-return 

observations. Newey-West standard errors are below point estimates in parentheses.   
  

Panel A: Summary Statistics of NASDAQ strategies 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
NASDAQ 7.26 29.45 0.25 -9.69 14.15 0.20 6.99 77.93 
MA5 7.81 18.54 0.42 -6.23 8.10 0.07 9.46 44.72 
MA10 11.61 17.8 0.65 -6.23 8.10 0.05 9.12 42.72 
MA20 12.45 17.6 0.71 -5.59 8.10 -0.06 8.30 25.66 
MA50 12.05 17.54 0.69 -7.66 4.84 -0.43 7.30 37.24 
MA100 7.16 17.22 0.42 -7.66 4.28 -0.50 7.77 41.26 

  
Panel B: Strategy alphas 

 (1) (2) (3) (4) (5) 
 MA5 MA10 MA20 MA50 MA100 
𝛽𝑁𝐴𝑆𝐷𝐴𝑄  0.40    0.37    0.36    0.35    0.34    
 (0.02) (0.02) (0.02) (0.02) (0.02) 
𝛼(%) 0.02 0.04  0.04   0.04   0.02 
 (0.02) (0.02) (0.02) (0.02) (0.02) 
𝑅2  0.40 0.37 0.36 0.35 0.34 
appraisal 0.34 0.63 0.70 0.67 0.34 
Utility gain(%) 193.1 656.1 803.3 743.9 184.7 

 
  



Table 11: Volume and technical trading indicators 
 
This table presents regressions of the form:   

Δ log(𝑣𝑜𝑙𝑢𝑚𝑒)- = 𝑎 + 𝑏 ⋅ 𝑋𝑡 + 𝑐 ⋅ |rt|+ 𝜖𝑡, 
where 𝑣𝑜𝑙𝑢𝑚𝑒- denotes the trading volume in Bitcoin on day 𝑡, |𝑟2| denotes the absolute return 
on Bitcoin on day 𝑡, and 𝑋𝑡 denotes one of two predictors. In column (1), 𝑋𝑡 is the sum 
p∑ rΔ𝑆𝐿,𝑡r𝐿 s of the absolute turnover’s rΔ𝑆𝐿,𝑡r from each of the MA strategies. In column (2), 𝑋𝑡 
is the cross-sectional standard deviation ^𝜎𝐿pΔ𝑆𝐿,𝑡sb of Δ𝑆J,2, a measure of the “disagreement” 
among technical traders using the different MA strategies (𝐿 = 5, 10, 20, 50, or 100). In column 
(3), 𝑋𝑡 includes ∑ rΔ𝑆𝐿,𝑡r𝐿  and 𝜎𝐿pΔ𝑆𝐿,𝑡s. The sample is 12/27/2013–1/31/2018 (n=1496).  
Newey-West standard errors are below point estimates in parentheses.   
 

 (1) (2) (3) 
∑ p|Δ𝑆𝐿,𝑡|s𝐿   0.31     0.32    
 (0.06)  (0.06) 
𝜎𝐿pΔ𝑆𝐿,𝑡s   0.03    0.03    
  (0.01) (0.01) 
|𝑟-|  5.33    5.75    5.33    
 (0.55) (0.57) (0.55) 
𝑅H  0.18 0.17 0.18 

 


