Additions to Proofs in “A Rational Expectations The-
ory of Kinks in Financial Reporting” by I. Guttman, O.
Kadan, and E. Kandel (Accounting Review, 20006)

Some parts of the proofs in the published version were omitted to conserve space.
This document includes the omitted parts.

Complete Proof of Existence and Uniqueness of a Pooling Interval (in-
cluding the uniqueness part)

It is sufficient to show that there exists a unique a € R, such that E(z|T €
[a,a+ %)) = a+ 2%, As b= a+ % we shall denote the conditional expectation by

d(a) = E(Z|2 € [a,a + %]) instead of d(a,b). Thus, we will show that there exists

a unique a € R, such that d(a) = a + %. The conditional expectation d(a) is the
expectation of a truncated normal random variable over the interval [a,a + %] It is
well known (see Johnson, Kotz and Balakrishnan (1994)) that d(a) may be expressed
using the following formula:
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Also, notice that the first derivative of the normal density satisfies:
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The following two lemmas are needed in order to establish the existence of the required
a.

Lemma 1 The following holds for any s > 0:
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Proof. For any s > 0, and z € R we have
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The result follows by taking the appropriate limits. =

Lemma 2 The following holds:
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Proof. By (1), and using L’Hopital’s law we have
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Now, by plugging s = % in Lemma 1 it follows that
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as required.
As for the second part, repeating the previous analysis we obtain
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Using Lemma 1 it follows that
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as required. m

It is now easy to prove the existence of a required a.

Indeed, define H(a) =

d(a) —a— 32, From Lemma 2 it follows that lim H(a) = 2 > 0, and lim H(a) =
48 48 a—00
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30236 < 0. Thus, from the continuity of H(a) we conclude that there exists an a € R

such that H(a) =

Our next step is to prove the uniqueness of the chosen a. We shall accomplish
this by showing that H(a) is strictly decreasing, namely, that d’(a) < 1. For brevity
we shall assume that xg = 0. This shortens the presentation and has no effect on the

results.

From Lemma 2: lim,_o d

'(a) = limg—,_ oo d'(a) = 1. Also, denote k(a) = d(a)—

Notice that, for all a € R: 0 < d(a ) < %, and k'(a) = d'(a) — 1. Also from Lemma 2:
limg 00 d(a ) =0, lim,—_ d(a) =



Differentiating d(a) and using the fact that f'(x) = —2% f(x) we obtain
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Using this equation we can evaluate d'(-) at a = —g‘—g. We accomplish this in the

next lemma.
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Lemma 3 d'(-33) = W < 1.
Proof. From (3) we have:
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B ey f(&) for some € € (—S—E, 3—5) But since f is normal with mean zero,
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it follows that f(§) > f(55) for all § € (=35, 55). This constitutes a contradiction.
[

In order to proceed we need the following lemma, which uses the symmetry of the
normal distribution.

Lemma 4 k(a) = ;‘—E if and only if a = —g‘—g.
Proof. If a = — 55 then by the symmetry of f around 0: f(a) = f(a+ %), and thus
d(a) =0, and k(a) = 55

a+%
To prove the “only if” part of the lemma recall that d(a) = %. Denote
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A(a) = d(a) — (a + §5). We may write

ac

1 aty ac
A0 = g ), @ )i

S B @ (a4 )@+ [17E (0~ (0t $5)f (@)da

Fla+ %)~ F(a)




Changing variables in the right hand integral to n = 2a + % — x we obtain:
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Now, suppose that k(a) = 25 namely, A(a) = 0, and suppose on the contrary
that a # —S‘—g. Consider first the case of a < —§%. In this case, the symmetry of f

around 0 implies that for all z € (a,a + 55) : f(z) < f(2a+ % — «). But from (4) it

follows that A(a) > 0 - a contradiction. A similar argument shows that it cannot be

the case that a > —g5. We conclude that o = 55. =
The condition H(a) = 0 implies that k(a) = %. Thus, Lemma 4 implies that
we can assume a # 55. Since d(a) is increasing in a, and d(g5) = 0, it follows that

d(a) # 0, and f(a+ %) # f(a). Using this observation we can solve (3) for k(a) and
obtain

flatee)
_dd(a) ac ,FarE)-F@ _ o*d(a) Ffa+ %)
M= TF T dw C d@ T Tarm-r@ )
Differentiating (5) yields
) (@) ac =2 f(a+ %)+ %) - /(@)
H) = ) <d<a>> i [t %) — f@)P ©)
acl o fla+ %) — & f(a)fla+ %)

)
') L (d@)? | (5 Fa)f
T ) (d<a>> *

. . _ ()2 fla)f(at+5) .
The following notation is useful. For all a € R denote Q(a) = TFar =) —F Notice
B

that Q(a) > 0 for all a. The next lemma shows that Q(-) is bounded from above by
1.

Lemma 5 For alla € R, Q(a) < 1.



Proof. Differentiating QQ we obtain for all a € R:
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Since Q(a) > 0 for all a, it follows that Q'(a) = 0 if and only if d(a) — a = 5.
And from Lemma 4 we conclude that '(a) = 0 if and only if a = —55- We shall
now show that a = —% is a global maximum for ). Indeed, differentiating ) once
again we obtain
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It follows that 0(2)
ne QCy 28 rp Gy
Q' (~55) = 2 (= 55) - 1)
Thus, from Lemma 3 we conclude that Q"(—45) < 0, and a = —55 is a global

maximum. Given this, in order to show that Q(a) < 1 for all a, it is sufficient to
show that Q(—53) < 1. Indeed:

TN G (i
25 = [Fla+ %) - F(a)]?
However, from Lemma 3 we know that d’ (—95) = %&?)) < 1; therefore
2
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We are now ready to show that H(a) = d(a) —a — % is strictly decreasing
in a, namely, that d’(a) < 1 for all a € R. We will show that this is true for all

a € (—oo, g‘—g] A parallel argument shows that this assertion is true also for all

a€ (=3 257 00).
Suppose on the contrary that d’(a) > 1 for some a values in (—oo, — 95]- Note
that lim,— oo d'(a) = 1, and from Lemma 3, d'(—§5) < 1. It follows that there exists



an a € (—oo, —53) such that d'(a) > 1 and d”(a) = 0. Substituting a in (6) we obtain
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But from Lemma 5 it follows that Q(a) — 1 < 0, and therefore: k' (a) < 0, or
equivalently d'(a@) < 1 - a contradiction. This shows that there is a unique a that
satisfies H(a) = 0, as required. m

Comparative Statics of the Pooling Interval by ¢
For brevity we assume o = 0.! Since we are interested in the impact of o, we
view a and d as functions of o. Define
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The relation between a and o is given by the implicit equation H(a,o) = 0. We
have shown that % < 0 for all a,0 € R. By the implicit function theorem we
have
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Thus, to show that 8‘5570) < 0 it is sufficient to show that % < 0. We have

YA different choice of xo would shift a(c) by a constant, and thus it has no effect on g—z.
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Thus, the sign of 8H(a’a) is equal to the sign of the Cov(7, ~2) where ¢ is a random

variable obtained frorn a truncation of Z between a and a + & 6 It can be shown that
this covariance is strictly negative, as required. The proof is contained below in this
document.

Given that a(o) is decreasing in o, we know that ag = lim,_,g a(0) exists. It is easy
to see that for any fixed a < xg and b > a we have

b xo ¢ [a, b]
lim B(i|7 € [a,b]) = : (7)
o xo € la, b]

We claim first that there exists an ag > 0 such that ag+ & /3 > x¢. Indeed, suppose on
the contrary that ap+ % < @o. This implies by (7) that lim, o £(Z|Z € [a(0),a(0) +

%1) = ao + %, contradicting the fact that for all o, E(Z|Z € [a(a),a(a) + %) =

a(o) + 34%6. Now, for all € > 0 sufficiently small we have: ag — & + % > xo. Thus,
by (7) we have: limg_o E(Z|Z € [ao — €, a0 — € + F]) = zo. From the continuity of

the conditional expectation and since ¢ is arbitrary we conclude that lim,_ E(Z|Z €
[a(0),a(c) + %]) = z9. And, hence lim,_,ga(o) = zg — %, as required.
As for the case of ¢ — co. For all fixed a and b we have: E(Z|% € [a,b] — %$2.



Indeed, by applying L’Hopital’s law we obtain
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This calculation implies that if ao = lim,_,o a(o) were finite, we would have that
d(a(0)) — as + 55 - a contradiction to the fact d(a(0)) = a(o) + 3 3“ forallo. m

The Sign of a Covariance between Y and Y? Obtained from Truncation of
a Symmetric R.V.

Notations and assumptions:

Assume that X is a symmetric r.v with mean 0. The density of X is f(z) and
the CDF is F(x). Assume that Y is the truncation of X on an interval [a,b]. The
density of Y is ¢g(y). We have
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Theorem 6 For all a # —b , Cov(Y,Y?) # 0. Moreover, ifb>a >0 orb> —a >0
then Cov(Y,Y?) > 0. Ifa <b<0 or —a > b > 0 then Cov(Y,Y?) < 0.

Proof:

Cov(Y,Y?) = Cov(X,X%X € [a,b)) = E(z®|z € [a b}) E(2?|z € [a,b])E(z|z € [a,b])
’ f(@) ’ f(z)
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Since F'(b) — F(a) = fb ¢(z)dx > 0, the sign of Cov(Y,Y?) is identical to the sign

a

of



J(a,b) = /ab f(z)dzx /ab 23 f(x)dx — /ab 22 f(z)dx /b zf(z)dx (8)

a
Consider first the case: b > —a >0
The symmetry of f implies that fam' 23 f(z)dr = faw xf(z)dx = 0.Therefore, we
can rewrite (8) as:

J(a,b) = /b 23 f(x)da /abf(x)dx — /|ab xf(x)dz /aba:Zf(z:)da: (9)
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If it were the case that b = —a then % = 0 and hence Cov(Y,Y?) = 0.

Next we show that for all b > —a > 0, 8‘](%2’1)) > 0. This will indicate that for all

b>—a>0,Cov(Y,Y?) > 0.
Differentiation yields
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Dividing by f(b) will not change the sign. We obtain
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Now, since |a| < b we have: b > 22 for all a € [a, |a|], therefore, the first integral
is positive. Also, it is clear that the second integral is positive. This implies that the
whole expression is positive as required.

A symmetric idea is used in the case: —a > b > 0 to show that Cov(Y,Y?) < 0.

Consider now the case b > a > 0.

The following is a standard theorem in probability theory:

Proposition 7 LetY be a random variable, and let hy (+) and hg (+) be two increasing
functions of Y. Then Cov(h1(Y'),ha(Y)) > 0.

We can set hi(y) =y, and ha(y) = y2. It is trivial that h; is increasing. The fact
that ho is increasing follows since b > a > 0. This yields the required result.
A parallel argument is used for the case a < b < 0.



Out of Equilibrium Beliefs

Contrary to the separating equilibrium, the partially pooling, discontinuous equi-
librium relies strongly on out of equilibrium pricing. Some reports will never appear
in equilibrium. Since Bayes rule does not apply, the modeler has some leeway in
prescribing the beliefs associated with these reports. In the paper we assumed that if
investors observe an out-of-equilibrium report 2 € (a + 95,b) U (b,b+ 55) then they
believe that the manager is “mistakenly” playing the benchmark linear equilibrium.
These out of equilibrium beliefs, while sufficient to support the equilibrium, are not
necessary, namely, they are too strong. Below, we provide a necessary and sufficient
condition for out of equilibrium beliefs to support the partially pooling equilibrium.
The fundamental idea here is to find the pricing function that will make types ‘a’
and ‘b’ just indifferent between their equilibrium action of reporting b, and providing
an out of equilibrium report. It turns out that there exists a unique pricing function
of this type.

Our first step is the next lemma showing that a sufficient condition for an out-
of-equilibrium pricing function to support our partially pooling equilibrium, is that
the types ‘@’ and ‘b’ are indifferent between following the equilibrium strategy and
deviating from it to an out of equilibrium report.

Lemma 8 Consider any out-of-equilibrium report x € (a + 55,0) U (b, b+ 55) com-
bined with an out-of-equilibrium pricing function P(z®). The following holds:

1. If 2% € (a + %, ), and if type ‘a’ is indifferent between the equilibrium report
of b, and the out-of-equilibrium report of ', then all other types @' # a strictly
prefer the equilibrium report b over the out-of-equilibrium report z't.

2. If ot € (b,b+ S‘—g), and if type b’ is indifferent between the equilibrium report
of b, and the out-of-equilibrium report of =, then all other types x' # b strictly
prefer the equilibrium report b over the out-of-equilibrium report z't.

Proof of Lemma 8

We shall prove Part 1 of the lemma. The proof of Part 2 is symmetric.

Suppose = € (a + S—E, b) is an out-of-equilibrium report, and let P(z%) be the
price in case a report of 2t is observed. We claim that in this case, if the ‘a’ type is
indifferent between submitting a report of b (equilibrium report) or z® (deviating),
then all other types x’ # a strictly prefer to stick to their equilibrium report. We
shall consider three cases.

Case 1: 2’ € (a,b]. Since the ‘a’ type is indifferent between submitting b, and
deviating to ', we obtain

acd — B(b—a)? = aP(z) — Bz — a)?. (10)
The payoff to type 2’ € (a,b] from reporting =% is: aP — B(zf — )2, It follows

that the largest benefit from deviating to a report of z* is incurred when the type
is equal to the report, namely: 2’ = z®. In this case, the payoff in case of deviation
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is aP, while the payoff on the equilibrium path is: acd — g(zf — b)2. By (10),
the difference between the payoff on the equilibrium path, and the payoff in case of
deviation is

acd — Bz —b)2 —aP = —BR—b)2+80b—a)? - B —a)?
= 2B(z® —a)(b—2f) > 0.

Thus, type ' strictly prefers to stick to his equilibrium report.

Case 2: 2/ < a. Since the ‘a’ type is indifferent between submitting a + g—ﬁc, and

R

deviating to z'* we obtain

ac
20
Now, if type 2’ follows the equilibrium he obtains: acz’ — 3 (3—5)2 If on the other

hand he deviates to z® he obtains: aP(xf) — g(zf —2/)2. Using (11) we obtain that
the difference is

aca — B(=)* = aP(z") — p(z® — a)?. (11)

acx’ — B(%)2 —aP(x) +B(zR - 2")? = ac’ —aca— Bz —a)? + Bzl — 2')?
= B(a—x')(?xR—x'—a—%)
> o=\t g5) — o' —a- )
= B(CL - x,)Q > 07

where the penultimate inequality follows since = > a + S‘—g Thus, type 2’ is better
off sticking to the equilibrium strategy.

Case 3: 2/ > b. In Case 1, we have shown that if type ‘a’ is indifferent between
the two alternatives, then type ‘b’ strictly prefers to stick to the equilibrium. Thus

ach — 5(%)2 > aP(zf) — gzt — b)2.
Therefore e
aP(z®) + ﬁ(%)z < ach + Bzt — b)2

We conclude that

act’ — B(?)Q —aP®) + B —2)? > aca’ —ach — B(z® — b)? 4 B(zf — 2/)?

= Bl —b)(a +b+ % )

> B’ =b)(2' —b+ %) >0,

where the penultimate inequality follows since zf* < b. Thus, the deviation is not
profitable. This concludes the proof. m
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Based on Lemma 8, the partially pooling equilibrium strategy p;(-) is said to
be supported by a tight pricing function P(xf?), if for all zf € (a + 25,()) type

R

‘a’ is indifferent between the equilibrium strategy and deviating to z'*, and for all

Re(bb+ g‘—ﬁc), type ‘b’ is indifferent between following the equilibrium strategy and

deviating to . The next proposition shows that there exists a unique tight pricing
function. Moreover, a necessary and sufficient condition for any pricing function
to support the partially pooling equilibrium is that the out of equilibrium pricing
function will lie weakly below the tight pricing function. To see this intuitively,
consider Figure 1. The out of equilibrium pricing function used in the paper is
represented in this figure by the dotted straight line connecting points A and B,
except for a report of b where the price is cd(a,b). The tight pricing function is the
dotted curve ADB. The original pricing function lies below the tight one, meaning
that under the original out of equilibrium pricing, the investors “punish” the manager
more severely then necessary in order to maintain this equilibrium. In general, any
out of equilibrium pricing that lies below the curve ADB will support the partially
pooling equilibrium. Thus, the tight pricing function is the least restrictive one that
still supports this equilibrium. Formally,

Proposition 9 There exists a unique tight pricing function that supports the par-
tially pooling strategy ,0;;(-). This pricing function is monotone increasing and is
given by

c(wR—g—E) xh <a+‘2”‘§ orafl >b+ 2 5
c-d(a,b) =10
Pzt =
c<a—%§+%(mR—a)2) =t e € [a+55.0)
c(b= g5+ 2" - v)?) R e (bb+ 5]

Moreover, a necessary and sufficient condition for any pricing function P*(xf) to
support the partially pooling equilibrium is that: P*(xf) = ¢ <a:R — S—E) if ot < a—i-%g
or 2 > b4 ¢ 55, P*(z By = ¢-d(a,b) if % = b, and P*(2f) < Py (z®) for all
zf e (a+ QB’b) (b,b+ %).

Proof of Proposition 9

The cases 2% < a + & ﬁ, o> b+ @ 25, and zf' = b are identical to these cases in
the paper, and are determlned uniquely using Bayes rule. As for the pooling region:
for all % € [a + ¢ 95, b), we look for a pricing function Py’ () that makes type ‘a’
indifferent between deviating to z* and sticking to the equilibrium. This indifference
implies that this pricing function must satisfy

aca — B(;—;)2 = aP}(z) - Bz — a)?.
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Figure 1: The Tight Pricing Function

Solving for Pj(x?) yields the required result. A similar calculation applies for the
case zf* € (b, b+ g‘—g) Lemma 8 implies that this out-of-equilibrium pricing guarantees
that no type will be willing to deviate from the partially pooling strategy py(-).

Now, let P*(z) be any other pricing function. Obviously, it must coincide with
Pr(z®) if 2 < a + 55 or o> b4 95, or of = b. Now, if P*(2f) < Py (2f) for all
™€ (a+ 55,b) U (b,b+ 55) then types ‘a’ and ‘b’ (weakly) prefer to provide the
equilibrium report b compared to any out of equilibrium report. By an argument
similar to Lemma 8 this implies that all other types strictly prefer not to deviate
from the equilibrium. This establishes sufficiency. To show necessity, suppose on the
contrary that P*(z') > Pf(zf!) for some 2% € (a+ $5,b). Then type ‘a’ would prefer
deviating and reporting 2 instead of b. Similarly, if P*(zf') > Py (zf) for some
zft e (b,b+ %) then type ‘b’ would deviate.

Now, it is straightforward to verify that P;(-) is monotone increasing. This
concludes the proof. m
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