
Additions to Proofs in “A Rational Expectations The-
ory of Kinks in Financial Reporting”by I. Guttman, O.
Kadan, and E. Kandel (Accounting Review, 2006)

Some parts of the proofs in the published version were omitted to conserve space.
This document includes the omitted parts.

Complete Proof of Existence and Uniqueness of a Pooling Interval (in-
cluding the uniqueness part)

It is suffi cient to show that there exists a unique a ∈ R, such that E(x̃|x̃ ∈
[a, a+ αc

β ]) = a+ 3αc
4β . As b = a+ αc

β we shall denote the conditional expectation by
d(a) = E(x̃|x̃ ∈ [a, a + αc

β ]) instead of d(a, b). Thus, we will show that there exists

a unique a ∈ R, such that d(a) = a + 3αc
4β . The conditional expectation d(a) is the

expectation of a truncated normal random variable over the interval [a, a+ αc
β ]. It is

well known (see Johnson, Kotz and Balakrishnan (1994)) that d(a) may be expressed
using the following formula:

d(a) = x0 − σ2
f(a+ αc

β )− f(a)

F (a+ αc
β )− F (a)

a ∈ R. (1)

Also, notice that the first derivative of the normal density satisfies:

f ′(x) = −x− x0
σ2

f(x). (2)

The following two lemmas are needed in order to establish the existence of the required
a.

Lemma 1 The following holds for any s > 0:

lim
x→∞

f(x+ s)

f(x)
= 0

lim
x→−∞

f(x+ s)

f(x)
= ∞.

Proof. For any s > 0, and x ∈ R we have

f(x+ s)

f(x)
=

1√
2πσ2

exp− (x+s−x0)
2

2σ2

1√
2πσ2

exp− (x−x0)2
2σ2

= exp−s(2x− 2x0 + s)

2σ2
.

The result follows by taking the appropriate limits.

Lemma 2 The following holds:

lim
a→∞

[d(a)− a] = 0

lim
a→−∞

[d(a)− a] =
αc

β
.
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Proof. By (1), and using L’Hopital’s law we have

lim
a→∞

d(a) = x0 − σ2 lim
a→∞

f(a+ αc
β )− f(a)

F (a+ αc
β )− F (a)

= x0 − σ2 lim
a→∞

f ′(a+ αc
β )− f ′(a)

f(a+ αc
β )− f(a)

= x0 + σ2 lim
a→∞

a+αc
β
−x0

σ2
f(a+ αc

β )− a−x0
σ2

f(a)

f(a+ αc
β )− f(a)

= x0 + lim
a→∞

(a+ αc
β − x0)f(a+ αc

β )− (a− x0)f(a)

f(a+ αc
β )− f(a)

= lim
a→∞

[
a+

αc

β

f(a+ αc
β )

f(a+ αc
β )− f(a)

]

Now, by plugging s = αc
β in Lemma 1 it follows that

lim
a→∞

d(a)− a =
αc

β
lim
a→∞

f(a+ αc
β )

f(a+ αc
β )− f(a)

=
αc

β
lim
a→∞

1

1− f(a)
f(a+αc

β
)

= 0,

as required.
As for the second part, repeating the previous analysis we obtain

lim
a→−∞

d(a) = lim
a→−∞

[
a+

αc

β

f(a+ αc
β )

f(a+ αc
β )− f(a)

]
.

Using Lemma 1 it follows that

lim
a→−∞

[d(a)− a] =
αc

β
lim

a→−∞

f(a+ αc
β )

f(a+ αc
β )− f(a)

=
αc

β
lim

a→−∞
1

1− f(a)
f(a+αc

β
)

=
αc

β
,

as required.

It is now easy to prove the existence of a required a. Indeed, define H(a) ≡
d(a)−a− 3αc

4β . From Lemma 2 it follows that lim
a→−∞

H(a) = αc
4β > 0, and lim

a→∞
H(a) =

−3αc4β < 0. Thus, from the continuity of H(a) we conclude that there exists an a ∈ R
such that H(a) = 0.

Our next step is to prove the uniqueness of the chosen a. We shall accomplish
this by showing that H(a) is strictly decreasing, namely, that d′(a) < 1. For brevity
we shall assume that x0 = 0. This shortens the presentation and has no effect on the
results.

From Lemma 2: lima→∞ d′(a) = lima→−∞ d′(a) = 1. Also, denote k(a) ≡ d(a)−a.
Notice that, for all a ∈ R: 0 ≤ d(a) ≤ αc

β , and k
′(a) = d′(a)− 1. Also from Lemma 2:

lima→∞ d(a) = 0, lima→−∞ d(a) = αc
β .
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Differentiating d(a) and using the fact that f ′(x) = − x
σ2
f(x) we obtain

d′(a) =
(a+ αc

β )f(a+ αc
β )− af(a)

F (a+ αc
β )− F (a)

+ σ2
(
f(a+ αc

β )− f(a)

F (a+ αc
β )− F (a)

)2
(3)

= − a

σ2
d(a) +

d(a)2

σ2
+

αc
β f(a+ αc

β )

F (a+ αc
β )− F (a)

=
1

σ2
d(a)k(a) +

αc
β f(a+ αc

β )

F (a+ αc
β )− F (a)

.

Using this equation we can evaluate d′(·) at a = −αc
2β . We accomplish this in the

next lemma.

Lemma 3 d′(−αc
2β ) =

αc
β
f(αc

2β
)

F (αc
2β
)−F (−αc

2β
) < 1.

Proof. From (3) we have:

d′(−αc
2β

) =
1

σ2
d(−αc

2β
)k(−αc

2β
) +

αc
β f(αc2β )

F (αc2β )− F (−αc
2β )

.

Since f(αc2β ) = f(−αc
2β ) we have: d(−αc

2β ) = 0; therefore d′(−αc
2β ) =

αc
β
f(αc

2β
)

F (αc
2β
)−F (−αc

2β
) .

Now, suppose on the contrary that
αc
β
f(αc

2β
)

F (αc
2β
)−F (−αc

2β
) ≥ 1. Since αc

β > 0, this implies
F (αc

2β
)−F (−αc

2β
)

αc
β

≤ f(αc2β ). However, by the mean value theorem we have
F (αc

2β
)−F (−αc

2β
)

αc
β

=

F (αc
2β
)−F (−αc

2β
)

αc
2β
−(−αc

2β
) = f(ξ) for some ξ ∈ (−αc

2β ,
αc
2β ). But since f is normal with mean zero,

it follows that f(ξ) > f(αc2β ) for all ξ ∈ (−αc
2β ,

αc
2β ). This constitutes a contradiction.

In order to proceed we need the following lemma, which uses the symmetry of the
normal distribution.

Lemma 4 k(a) = αc
2β if and only if a = −αc

2β .

Proof. If a = −αc
2β then by the symmetry of f around 0: f(a) = f(a+ αc

β ), and thus
d(a) = 0, and k(a) = αc

2β .

To prove the “only if”part of the lemma recall that d(a) =
∫ a+αcβ
a f(x)dx

F (a+αc
β
)−F (a) . Denote

∆(a) ≡ d(a)− (a+ αc
2β ). We may write

∆(a) =
1

F (a+ αc
β )− F (a)

∫ a+αc
β

a
(x− (a+

αc

2β
))f(x)dx

=

∫ a+αc
2β

a (x− (a+ αc
2β ))f(x)dx+

∫ a+αc
β

a+αc
2β

(x− (a+ αc
2β ))f(x)dx

F (a+ αc
β )− F (a)

.
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Changing variables in the right hand integral to η = 2a+ αc
β − x we obtain:

∆(a) =

∫ a+αc
2β

a (x− (a+ αc
2β ))f(x)dx−

∫ a+αc
2β

a ((a+ αc
2β )− η)f(2a+ αc

β − η)dη

F (a+ αc
β )− F (a)

(4)

=

∫ a+αc
2β

a (x− (a+ αc
2β ))[f(x)− f(2a+ αc

β − x)]dx

F (a+ αc
β )− F (a)

.

Now, suppose that k(a) = αc
2β , namely, ∆(a) = 0, and suppose on the contrary

that a 6= −αc
2β . Consider first the case of a < −

αc
2β . In this case, the symmetry of f

around 0 implies that for all x ∈ (a, a+ αc
2β ) : f(x) < f(2a+ αc

β − x). But from (4) it
follows that ∆(a) > 0 - a contradiction. A similar argument shows that it cannot be
the case that a > −αc

2β . We conclude that a = αc
2β .

The condition H(a) = 0 implies that k(a) = 3αc
4β . Thus, Lemma 4 implies that

we can assume a 6= αc
2β . Since d(a) is increasing in a, and d(αc2β ) = 0, it follows that

d(a) 6= 0, and f(a+ αc
β ) 6= f(a). Using this observation we can solve (3) for k(a) and

obtain

k(a) =
σ2d′(a)

d(a)
− αc

β
σ2

f(a+αc
β
)

F (a+αc
β
)−F (a)

d(a)
=
σ2d′(a)

d(a)
+

αc
β f(a+ αc

β )

f(a+ αc
β )− f(a)

(5)

Differentiating (5) yields

k′(a) =
σ2d′′(a)

d(a)
− σ2

(
d′(a)

d(a)

)2
+
αc

β

−a+αc
β

σ2
f(a+ αc

β )[f(a+ αc
β )− f(a)]

[f(a+ αc
β )− f(a)]2

(6)

+
αc

β

[
a+αc

β

σ2
f(a+ αc

β )− a
σ2
f(a)]f(a+ αc

β )

[f(a+ αc
β )− f(a)]2

=
σ2d′′(a)

d(a)
− σ2

(
d′(a)

d(a)

)2
+

(αcβ )2

σ2

f(a)f(a+ αc
β )

[f(a+ αc
β )− f(a)]2

The following notation is useful. For all a ∈ R denote Q(a) ≡ (αc
β
)2f(a)f(a+αc

β
)

[F (a+αc
β
)−F (a)]2 . Notice

that Q(a) > 0 for all a. The next lemma shows that Q(·) is bounded from above by
1.

Lemma 5 For all a ∈ R, Q(a) < 1.
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Proof. Differentiating Q we obtain for all a ∈ R:

Q′(a) = (
αc

β
)2
− a
σ2
f(a)f(a+ αc

β )− a+αc
β

σ2
f(a)f(a+ αc

β )

[F (a+ αc
β )− F (a)]2

−(
αc

β
)2

2(f(a+ αc
β )− f(a))f(a)f(a+ αc

β )

[F (a+ αc
β )− F (a)]3

= − a

σ2
Q(a)−

a+ αc
β

σ2
Q(a) +

2

σ2
d(a)Q(a)

=
Q(a)

σ2

[
2(d(a)− a)− αc

β

]
.

Since Q(a) > 0 for all a, it follows that Q′(a) = 0 if and only if d(a) − a = αc
2β .

And from Lemma 4 we conclude that Q′(a) = 0 if and only if a = −αc
2β . We shall

now show that a = −αc
2β is a global maximum for Q. Indeed, differentiating Q once

again we obtain

Q′′(a) =
Q′(a)

σ2

[
2(d(a)− a)− αc

β

]
+
Q(a)

σ2
[2(d′(a)− 1)].

It follows that

Q′′(−αc
2β

) =
Q(αc2β )

σ2
[2(d′(−αc

2β
)− 1)].

Thus, from Lemma 3 we conclude that Q′′(−αc
2β ) < 0, and a = −αc

2β is a global
maximum. Given this, in order to show that Q(a) < 1 for all a, it is suffi cient to
show that Q(−αc

2β ) < 1. Indeed:

Q(−αc
2β

) =
(αcβ )2f(αc2β )2

[F (a+ αc
β )− F (a)]2

.

However, from Lemma 3 we know that d′(−αc
2β ) =

αc
β
f(αc

2β
)

F (αc
2β
)−F (−αc

2β
) < 1; therefore

Q(−αc
2β ) = (d′(−αc

2β ))2 < 1.

We are now ready to show that H(a) = d(a) − a − 3αc
4β is strictly decreasing

in a, namely, that d′(a) < 1 for all a ∈ R. We will show that this is true for all
a ∈ (−∞,−αc

2β ]. A parallel argument shows that this assertion is true also for all
a ∈ (−αc

2β ,∞).
Suppose on the contrary that d′(a) ≥ 1 for some a values in (−∞,−αc

2β ]. Note
that lima→−∞ d′(a) = 1, and from Lemma 3, d′(−αc

2β ) < 1. It follows that there exists
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an â ∈ (−∞,−αc
2β ) such that d′(â) ≥ 1 and d′′(â) = 0. Substituting â in (6) we obtain

k′(â) ≤ −σ2
d(â)2

+
(αcβ )2

σ2

f(â)f(â+ αc
β )

[f(â+ αc
β )− f(â)]2

= − 1

σ2

[F (â+ αc
β )− F (â)]2

[f(â+ αc
β )− f(â)]2

+
(αcβ )2

σ2

f(â)f(â+ αc
β )

[f(â+ αc
β )− f(â)]2

=
(F (â+ αc

β )− F (â))2

σ2[f(â+ αc
β )− f(â)]2

[
(
αc

β
)2

f(â)f(â+ αc
β )

(F (â+ αc
β )− F (â))2

− 1

]

=
(F (â+ αc

β )− F (â))2

σ2[f(â+ αc
β )− f(â)]2

(Q(â)− 1).

But from Lemma 5 it follows that Q(â) − 1 < 0, and therefore: k′(â) < 0, or
equivalently d′(â) < 1 - a contradiction. This shows that there is a unique a that
satisfies H(a) = 0, as required.

Comparative Statics of the Pooling Interval by σ
For brevity we assume x0 = 0.1 Since we are interested in the impact of σ, we

view a and d as functions of σ. Define

H(a, σ) ≡ d(a, σ)− a− 3αc

4β
.

The relation between a and σ is given by the implicit equation H(a, σ) = 0. We
have shown that ∂H(a,σ)

∂a < 0 for all a, σ ∈ R. By the implicit function theorem we
have

∂a(σ)

∂σ
= −

∂H(a,σ)
∂σ

∂H(a,σ)
∂a

.

Thus, to show that ∂a(σ)
∂σ < 0 it is suffi cient to show that ∂H(a,σ)

∂σ < 0. We have

1A different choice of x0 would shift a(σ) by a constant, and thus it has no effect on ∂a
∂σ
.
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∂H(a, σ)

∂σ
=

∂d(a, σ)

∂σ
=

∂

∂σ

∫ a+αc
β

a xf(x)dx

F (a+ αc
β )− F (a)

=
∂

∂σ

1√
2πσ2

∫ a+αc
β

a xe−
x2

2σ2 dx

1√
2πσ2

∫ a+αc
β

a e−
x2

2σ2 dx

=

∫ a+αc
β

a
x3

σ3
e−

x2

2σ2 dx ·
∫ a+αc

β
a e−

x2

2σ2 dx−
∫ a+αc

β
a

x2

σ3
e−

x2

2σ2 dx ·
∫ a+αc

β
a xe−

x2

2σ2 dx[∫ a+αc
β

a e−
x2

2σ2 dx

]2
=

1

σ3

∫ a+αc
β

a x3e−
x2

2σ2 dx∫ a+αc
β

a e−
x2

2σ2 dx
−
∫ a+αc

β
a x2e−

x2

2σ2 dx∫ a+αc
β

a e−
x2

2σ2 dx
·
∫ a+αc

β
a xe−

x2

2σ2 dx∫ a+αc
β

a e−
π2

2σ2 dx


=

1

σ3

∫ a+αc
β

a x3f(x)dx∫ a+αc
β

a f(x)dπ
−
∫ a+αc

β
a x2f(x)dx∫ a+αc

β
a f(x)dx

·
∫ a+αc

β
a xf(x)dx∫ a+αc

β
a f(x)dx


=

1

σ3

[
E(x̃3|a ≤ x̃ ≤ a+

αc

β
)− E(x̃2|a ≤ x̃ ≤ a+

αc

β
) · E(x̃|a ≤ x̃ ≤ a+

αc

β
)

]
=

1

σ3
Cov(x̃2, x̃|a ≤ x̃ ≤ a+

αc

β
).

Thus, the sign of ∂H(a,σ)∂σ is equal to the sign of the Cov(ỹ, ỹ2), where ỹ is a random
variable obtained from a truncation of x̃ between a and a+ αc

β . It can be shown that
this covariance is strictly negative, as required. The proof is contained below in this
document.
Given that a(σ) is decreasing in σ, we know that a0 ≡ limσ→0 a(σ) exists. It is easy
to see that for any fixed a < x0 and b > a we have

lim
σ→0

E(x̃|x̃ ∈ [a, b]) =


b x0 /∈ [a, b]

x0 x0 ∈ [a, b]
. (7)

We claim first that there exists an a0 > 0 such that a0+ αc
β > x0. Indeed, suppose on

the contrary that a0+ αc
β ≤ x0. This implies by (7) that limσ→0E(x̃|x̃ ∈ [a(σ), a(σ)+

αc
β ]) = a0 + αc

β , contradicting the fact that for all σ, E(x̃|x̃ ∈ [a(σ), a(σ) + αc
β ]) =

a(σ) + 3αc
4β . Now, for all ε > 0 suffi ciently small we have: a0 − ε + αc

β > x0. Thus,
by (7) we have: limσ→0E(x̃|x̃ ∈ [a0 − ε, a0 − ε + αc

β ]) = x0. From the continuity of
the conditional expectation and since ε is arbitrary we conclude that limσ→0E(x̃|x̃ ∈
[a(σ), a(σ) + αc

β ]) = x0. And, hence limσ→0 a(σ) = x0 − 3αc
4β , as required.

As for the case of σ → ∞. For all fixed a and b we have: E(x̃|x̃ ∈ [a, b] → a+b
2 .
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Indeed, by applying L’Hopital’s law we obtain

lim
σ→∞

[
x0 − σ2

f(b)− f(a)

F (b)− F (a)

]
= x0 − lim

σ→∞
σ2
e
−(b−x0)

2

2σ2 − e
−(a−x0)

2

2σ2∫ b
a e

−(x−x0)2
2σ2 dx

= x0 −
1

b− a lim
σ→∞

e
−(b−x0)

2

2σ2 − e
−(a−x0)

2

2σ2

1
σ2

= x0 −
1

b− a lim
σ→∞

e
−(b−x0)

2

2σ2 − e
−(a−x0)

2

2σ2

1
σ2

= x0 −
1

b− a lim
σ→∞

(b−x0)2
σ3

e
−(b−x0)

2

2σ2 − (a−x0)2
σ3

e
−(a−x0)

2

2σ2

− 2
σ3

= x0 +
(b− x0)2 − (a− x0)2

2(b− a)
=
a+ b

2

This calculation implies that if a∞ ≡ limσ→∞ a(σ) were finite, we would have that
d(a(σ))→ a∞ + αc

2β - a contradiction to the fact d(a(σ)) = a(σ) + 3αc
4β for all σ.

The Sign of a Covariance between Y and Y 2 Obtained from Truncation of
a Symmetric R.V.

Notations and assumptions:
Assume that X is a symmetric r.v with mean 0. The density of X is f(x) and

the CDF is F (x). Assume that Y is the truncation of X on an interval [a, b]. The
density of Y is g(y). We have

g(y) =
f(y)

F (b)− F (a)
.

Theorem 6 For all a 6= −b , Cov(Y, Y 2) 6= 0. Moreover, if b > a > 0 or b > −a > 0
then Cov(Y, Y 2) > 0. If a < b < 0 or −a > b > 0 then Cov(Y, Y 2) < 0.

Proof:

Cov(Y, Y 2) = Cov(X,X2|X ∈ [a, b]) = E(x3|x ∈ [a, b])− E(x2|x ∈ [a, b])E(x|x ∈ [a, b])

=

∫ b

a
x3

f(x)

F (b)− F (a)
dx−

∫ b

a
x2

f(x)

F (b)− F (a)
dx

∫ b

a
x

f(x)

F (b)− F (a)
dx

Since F (b)−F (a) =
∫ b
a ϕ(x)dx > 0, the sign of Cov(Y, Y 2) is identical to the sign

of
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J(a, b) ≡
∫ b

a
f(x)dx

∫ b

a
x3f(x)dx−

∫ b

a
x2f(x)dx

∫ b

a
xf(x)dx (8)

Consider first the case: b > −a > 0
The symmetry of f implies that

∫ |a|
a x3f(x)dx =

∫ |a|
a xf(x)dx = 0.Therefore, we

can rewrite (8) as:

J(a, b) =

∫ b

|a|
x3f(x)dx

∫ b

a
f(x)dx−

∫ b

|a|
xf(x)dx

∫ b

a
x2f(x)dx (9)

If it were the case that b = −a then ∂J(a,b)
∂b = 0 and hence Cov(Y, Y 2) = 0.

Next we show that for all b > −a > 0, ∂J(a,b)∂b > 0. This will indicate that for all
b > −a > 0, Cov(Y, Y 2) > 0.

Differentiation yields

∂J(a, b)

∂b
=

∂

∂b

[∫ b

|a|
x3f(x)dx

∫ b

a
f(x)dx−

∫ b

|a|
xf(x)dx

∫ b

a
x2f(x)dx

]

= b3f(b)

∫ b

a
f(x)dx+ f(b)

∫ b

|a|
x3f(x)dx− bf(b)

∫ b

a
x2f(x)dx− b2f(b)

∫ b

|a|
xf(x)dx

Dividing by f(b) will not change the sign. We obtain

b3
∫ b

a
f(x)dx+

∫ b

|a|
x3f(x)dx− b

∫ b

a
x2f(x)dx− b2

∫ b

|a|
xf(x)dx

= b

∫ |a|
a

(
b2 − x2

)
f(x)dx+

∫ b

|a|

(
b3 + x3 − bx2 − b2x

)
f(x)dx

= b

∫ |a|
a

(
b2 − x2

)
f(x)dx+

∫ b

|a|
(b2 − x2)(b− x)f(x)dx

Now, since |a| < b we have: b2 > x2 for all a ∈ [a, |a|], therefore, the first integral
is positive. Also, it is clear that the second integral is positive. This implies that the
whole expression is positive as required.

A symmetric idea is used in the case: −a > b > 0 to show that Cov(Y, Y 2) < 0.
Consider now the case b > a > 0.
The following is a standard theorem in probability theory:

Proposition 7 Let Y be a random variable, and let h1 (·) and h2 (·) be two increasing
functions of Y. Then Cov(h1(Y ), h2(Y )) > 0.

We can set h1(y) = y, and h2(y) = y2. It is trivial that h1 is increasing. The fact
that h2 is increasing follows since b > a > 0. This yields the required result.

A parallel argument is used for the case a < b < 0.
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Out of Equilibrium Beliefs
Contrary to the separating equilibrium, the partially pooling, discontinuous equi-

librium relies strongly on out of equilibrium pricing. Some reports will never appear
in equilibrium. Since Bayes rule does not apply, the modeler has some leeway in
prescribing the beliefs associated with these reports. In the paper we assumed that if
investors observe an out-of-equilibrium report xR ∈ (a+ αc

2β , b)∪ (b, b+ αc
2β ) then they

believe that the manager is “mistakenly”playing the benchmark linear equilibrium.
These out of equilibrium beliefs, while suffi cient to support the equilibrium, are not
necessary, namely, they are too strong. Below, we provide a necessary and suffi cient
condition for out of equilibrium beliefs to support the partially pooling equilibrium.
The fundamental idea here is to find the pricing function that will make types ‘a’
and ‘b’just indifferent between their equilibrium action of reporting b, and providing
an out of equilibrium report. It turns out that there exists a unique pricing function
of this type.

Our first step is the next lemma showing that a suffi cient condition for an out-
of-equilibrium pricing function to support our partially pooling equilibrium, is that
the types ‘a’and ‘b’are indifferent between following the equilibrium strategy and
deviating from it to an out of equilibrium report.

Lemma 8 Consider any out-of-equilibrium report xR ∈ (a+ αc
2β , b)∪ (b, b+ αc

2β ) com-

bined with an out-of-equilibrium pricing function P (xR). The following holds:

1. If xR ∈ (a+ αc
2β , b), and if type ‘a’is indifferent between the equilibrium report

of b, and the out-of-equilibrium report of xR, then all other types x′ 6= a strictly
prefer the equilibrium report b over the out-of-equilibrium report xR.

2. If xR ∈ (b, b + αc
2β ), and if type ‘b’is indifferent between the equilibrium report

of b, and the out-of-equilibrium report of xR, then all other types x′ 6= b strictly
prefer the equilibrium report b over the out-of-equilibrium report xR.

Proof of Lemma 8
We shall prove Part 1 of the lemma. The proof of Part 2 is symmetric.
Suppose xR ∈ (a + αc

2β , b) is an out-of-equilibrium report, and let P (xR) be the

price in case a report of xR is observed. We claim that in this case, if the ‘a’type is
indifferent between submitting a report of b (equilibrium report) or xR (deviating),
then all other types x′ 6= a strictly prefer to stick to their equilibrium report. We
shall consider three cases.

Case 1: x′ ∈ (a, b]. Since the ‘a’type is indifferent between submitting b, and
deviating to xR, we obtain

αcd− β(b− a)2 = αP (xR)− β(xR − a)2. (10)

The payoff to type x′ ∈ (a, b] from reporting xR is: αP − β(xR − x′)2. It follows
that the largest benefit from deviating to a report of xR is incurred when the type
is equal to the report, namely: x′ = xR. In this case, the payoff in case of deviation

10



is αP , while the payoff on the equilibrium path is: αcd − β(xR − b)2. By (10),
the difference between the payoff on the equilibrium path, and the payoff in case of
deviation is

αcd− β(xR − b)2 − αP = −β(xR − b)2 + β(b− a)2 − β(xR − a)2

= 2β(xR − a)(b− xR) > 0.

Thus, type x′ strictly prefers to stick to his equilibrium report.
Case 2: x′ < a. Since the ‘a’type is indifferent between submitting a+ αc

2β , and

deviating to xR we obtain

αca− β(
αc

2β
)2 = αP (xR)− β(xR − a)2. (11)

Now, if type x′ follows the equilibrium he obtains: αcx′ − β(αc2β )2. If on the other

hand he deviates to xR he obtains: αP (xR)−β(xR−x′)2. Using (11) we obtain that
the difference is

αcx′ − β(
αc

2β
)2 − αP (xR) + β(xR − x′)2 = αcx′ − αca− β(xR − a)2 + β(xR − x′)2

= β(a− x′)(2xR − x′ − a− αc

β
)

> β(a− x′)(2(a+
αc

2β
)− x′ − a− αc

β
)

= β(a− x′)2 > 0,

where the penultimate inequality follows since xR > a + αc
2β . Thus, type x

′ is better
off sticking to the equilibrium strategy.

Case 3: x′ > b. In Case 1, we have shown that if type ‘a’is indifferent between
the two alternatives, then type ‘b’strictly prefers to stick to the equilibrium. Thus

αcb− β(
αc

2β
)2 > αP (xR)− β(xR − b)2.

Therefore
αP (xR) + β(

αc

2β
)2 < αcb+ β(xR − b)2.

We conclude that

αcx′ − β(
αc

2β
)2 − αP (xR) + β(xR − x′)2 > αcx′ − αcb− β(xR − b)2 + β(xR − x′)2

= β(x′ − b)(x′ + b+
αc

β
− 2xR)

> β(x′ − b)(x′ − b+
αc

β
) > 0,

where the penultimate inequality follows since xR < b. Thus, the deviation is not
profitable. This concludes the proof.
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Based on Lemma 8, the partially pooling equilibrium strategy ρ∗p(·) is said to
be supported by a tight pricing function P (xR), if for all xR ∈ (a + αc

2β , b), type

‘a’ is indifferent between the equilibrium strategy and deviating to xR, and for all
xR ∈ (b, b+ αc

2β ), type ‘b’is indifferent between following the equilibrium strategy and

deviating to xR. The next proposition shows that there exists a unique tight pricing
function. Moreover, a necessary and suffi cient condition for any pricing function
to support the partially pooling equilibrium is that the out of equilibrium pricing
function will lie weakly below the tight pricing function. To see this intuitively,
consider Figure 1. The out of equilibrium pricing function used in the paper is
represented in this figure by the dotted straight line connecting points A and B,
except for a report of b where the price is cd(a, b). The tight pricing function is the
dotted curve ADB. The original pricing function lies below the tight one, meaning
that under the original out of equilibrium pricing, the investors “punish”the manager
more severely then necessary in order to maintain this equilibrium. In general, any
out of equilibrium pricing that lies below the curve ADB will support the partially
pooling equilibrium. Thus, the tight pricing function is the least restrictive one that
still supports this equilibrium. Formally,

Proposition 9 There exists a unique tight pricing function that supports the par-
tially pooling strategy ρ∗p(·). This pricing function is monotone increasing and is
given by

P ∗t (xR) =



c
(
xR − αc

2β

)
xR < a+ αc

2β or x
R > b+ αc

2β

c · d(a, b) xR = b

c
(
a− αc

4β + β
αc(x

R − a)2
)

xR ∈ [a+ αc
2β , b)

c
(
b− αc

4β + β
αc(x

R − b)2
)

xR ∈ (b, b+ αc
2β ]

.

Moreover, a necessary and suffi cient condition for any pricing function P ∗(xR) to

support the partially pooling equilibrium is that: P ∗(xR) = c
(
xR − αc

2β

)
if xR < a+ αc

2β

or xR > b + αc
2β , P

∗(xR) = c · d(a, b) if xR = b, and P ∗(xR) ≤ P ∗t (xR) for all

xR ∈ (a+ αc
2β , b) ∪ (b, b+ αc

2β ).

Proof of Proposition 9
The cases xR < a + αc

2β , x
R > b + αc

2β , and x
R = b are identical to these cases in

the paper, and are determined uniquely using Bayes rule. As for the pooling region:
for all xR ∈ [a + αc

2β , b), we look for a pricing function P
∗
t (xR) that makes type ‘a’

indifferent between deviating to xR and sticking to the equilibrium. This indifference
implies that this pricing function must satisfy

αca− β(
αc

2β
)2 = αP ∗t (xR)− β(xR − a)2.
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Figure 1: The Tight Pricing Function

Solving for P ∗t (xR) yields the required result. A similar calculation applies for the
case xR ∈ (b, b+ αc

2β ). Lemma 8 implies that this out-of-equilibrium pricing guarantees
that no type will be willing to deviate from the partially pooling strategy ρ∗p(·).

Now, let P ∗(xR) be any other pricing function. Obviously, it must coincide with
P ∗t (xR) if xR < a + αc

2β or x
R > b + αc

2β , or x
R = b. Now, if P ∗(xR) ≤ P ∗t (xR) for all

xR ∈ (a + αc
2β , b) ∪ (b, b + αc

2β ) then types ‘a’and ‘b’(weakly) prefer to provide the
equilibrium report b compared to any out of equilibrium report. By an argument
similar to Lemma 8 this implies that all other types strictly prefer not to deviate
from the equilibrium. This establishes suffi ciency. To show necessity, suppose on the
contrary that P ∗(xR) > P ∗t (xR) for some xR ∈ (a+ αc

2β , b). Then type ‘a’would prefer

deviating and reporting xR instead of b. Similarly, if P ∗(xR) > P ∗t (xR) for some
xR ∈ (b, b+ αc

2β ) then type ‘b’would deviate.
Now, it is straightforward to verify that P ∗t (·) is monotone increasing. This

concludes the proof.
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