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Abstract

We present a suffi cient condition under which the prices of options with dif-
ferent strike prices written on a particular stock can be used to calculate a lower
bound on the expected returns of that stock. The suffi cient condition imposes a
restriction on a combination of the stock’s systematic and idiosyncratic risk. The
lower bound is forward-looking and can be calculated on a high-frequency basis
for stocks with liquid option trading. We estimate the lower bound empirically
for constituents of the S&P 500 index and study its cross-sectional properties.
We find that the bound increases with beta and decreases with size. The bound
also provides an economically meaningful signal on future realized stock returns.

1 Introduction

A traditional point of view in the asset pricing literature is that option prices can
teach us a great deal about the volatility of underlying assets. The idea is that option
prices along with some assumptions on the price process (such as in Black and Sc-
holes (1973)) can be used to derive a forward looking estimate of the return volatility
of the underlying asset. More generally, beginning with the work of Breeden and
Litzenberger (1978), it has been well understood that option prices can be used to
extract forward-looking risk neutral probabilities, allowing one to price a variety of
assets. What remains a puzzle to this day is whether option prices can be used to
elicit any useful information on forward-looking expected returns, derived from the
physical (true) distribution of the returns of the underlying asset.1 It is for this rea-
son that the Recovery theorem, proposed by Ross (2015), ignited much controversy,
as it suggests that given a regularity condition on the pricing kernel, option prices
can in fact be used to recover the physical probability distribution of asset returns,

∗We thank Kerry Back, Phil Dybvig, Ian Martin, Luca Pezzo, seminar participants at University
of Adelaide, Rice, University of Sydney, UNSW, Southwest Institute of Finance and Economics, and
Washington University in St. Louis as well as participants at the IDC Summer Conference for helpful
comments and suggestions.
†Olin Business School, Washington University in St. Louis, kadan@wustl.edu.
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1The conventional approach to estimating pricing kernels from option prices relies on using the

risk-neutral probability and then supplementing it with a physical probability derived from historical
returns. See Jackwerth (2000) and Ait-Sahalia and Lo (2000).
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and, in particular their implied expected returns. Ross’s result, however, has been
criticized by Borovička, Hansen, and Scheinkman (2014), who argue that it restricts
the dynamics of the stochastic discount factor in an unrealistic manner, and thereby,
the recovered probability distribution differs from the true one.

Martin (2015) takes a different approach to address this problem. He derives the
following simple and yet useful relation for the expected return of any asset j,

EtRj,t+1 −Rf,t =
V ar∗t (Rj,t+1)

Rf,t
− Covt (Mt+1Rj,t+1, Rj,t+1) . (*)

Namely, the expected excess returns of asset j as of time t, equals the risk-neutral
variance of the asset’s returns discounted at the risk free rate, less the covariance
between the product of the stochastic discount factor and the asset return, and the
asset return.2 Martin then restricts attention to the case in which asset j is the mar-
ket, and he explores whether Covt (Mt+1Rm,t+1, Rm,t+1) is weakly negative, where
Rm,t+1 is the return on the market. He terms this the Negative Correlation Condition
(NCC). The idea is that if Covt (Mt+1Rm,t+1, Rm,t+1) ≤ 0, then (*) implies that the
deflated risk-neutral variance can be used as a lower bound on the expected market
premium,

EtRm,t+1 −Rf,t ≥
V ar∗t (Rm,t+1)

Rf,t
. (**)

Moreover, Martin (2015) shows that V ar∗t (Rm,t+1) can be relatively easily calculated
from the prices of options written on the S&P 500 index with different strike prices.3

Thus, to the extent that the NCC holds, Martin’s argument presents us with a simple
procedure to calculate a high-frequency lower bound on expected market returns.
Martin then goes on to show that the NCC indeed holds theoretically under very
mild conditions in a variety of asset pricing settings. Essentially, what is needed
to justify the NCC is that relative risk aversion in the economy be no less than 1.
Martin also shows that the NCC holds empirically given typical factor structures for
the stochastic discount factor.

Martin’s approach is appealing. His assumptions are very mild, leading to a credi-
ble forward-looking estimate of a lower bound on the market premium. Furthermore,
his analysis suggests that the lower bound he obtains is tight.

In this paper we follow Martin’s approach noting that (*) holds true for any asset.
The question then is whether the NCC holds for individual assets as well. If it does,
then one can use (**) to calculate a lower bound on expected stock returns cross-
sectionally using options written on individual stocks. Intuitively, since the market is
a weighted average of individual assets, and since the NCC holds for the market as a
whole, one would expect the NCC to hold for a significant portion of individual assets.
However, Martin’s approach does not provide us with a procedure to test whether a
particular stock satisfies the NCC. In our main theoretical contribution we provide

2As in Martin (2015), a star is used to denote moments under the risk-neutral measure. Thus,
V ar∗t refers to a risk-neutral variance whereas Covt refers to a physical covariance.

3Martin (2013) shows that the risk neutral variance is closely related to an index of simple variance
swaps (SVIX).
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such a tool by deriving a suffi cient condition for the NCC to hold for individual stocks.
Our condition, which relies on a first-order approximation, establishes that the NCC
holds for stocks with a relatively low combination of systematic and idiosyncratic risk
compared to the relative risk-aversion in the market.

Our suffi cient condition is easily checked empirically provided that one makes
some plausible assumption on the level of relative risk aversion in the economy. We
show that given conventional estimates of relative risk aversion, the NCC holds for
50%-90% of S&P 500 constituents, where the range depends on the level of conser-
vatism one would like to impose on the assumed risk aversion. It follows that for a
large cross-section of stocks we can modify (**) to obtain the following lower bound
on the expected returns of individual stocks

EtRj,t+1 −Rf,t ≥
V ar∗t (Rj,t+1)

Rf,t
. (***)

This lower bound can be estimated empirically from options with different strike
prices using the procedure developed in Martin (2015).4 We need, however, to restrict
our empirical analysis to stocks that have highly liquid traded options so that the
lower bound can be calculated in a suffi ciently precise manner. To this end, we confine
our examination to 652 constituents of the S&P 500 index during the years 2005-2014,
which pass our screens for the availability of option price data. This approach yields
575,197 stock/day combinations for which we can estimate the lower bound. We then
use this extensive panel to study the properties of these lower bounds empirically.

The average lower bound during our sample period ranges from 8.4% to 19.5%
depending on the level of conservatism one exerts when applying the NCC. The
average lower bound drops significantly to 6.7%-15.2% when we exclude the crisis
period of 2008-2009. Indeed, during the crisis period we observe a dramatic spike in
expected stock returns consistent with the findings of Martin (2015) on the market
premium. Cross-sectionally we find that the lower bound decreases with firm size, in
line with the classic Fama and French (1992) findings, which are based on realized
rather than forward-looking estimates. Strikingly, and in contrast to the Fama-French
findings, the lower bound is strongly correlated with the CAPM beta. Thus, while
beta does not seem to explain cross-sectional variations in realized stock returns, it
appears to be a strong determinant of investors’expectations as reflected in option
prices. We do not find any relation between the firm’s book-to-market ratio and
the lower bound. Additionally, momentum appears to have a moderate effect on
the lower bound, and to the extent it exists, it works in the opposite direction from
the one explored in Jegadeesh and Titman (1993). Namely, being a recent winner
induces investors to lower rather than increase their expectations regarding a given
stock. These findings are consistent with prior findings using other approaches to
estimating forward looking expected returns. In particular, Berk and van Binsbergen

4Martin’s (2015) approach to estimating the lower bound requires the use of European style
options. However, options written on individual stocks in the U.S. are of the American style. Our
estimates are mostly based on out-of-the money options for which the difference in price between
American and European options is not big. In Section 5 we estimate the error resulting from using
American instead of European options, and we find it to typically be rather small.
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(2015) use capital flows to/from mutual funds to test asset pricing models and find
that the CAPM is the closest model to the model investors use to make capital
allocation decisions. Similarly, Brav, Lehavy, and Michaely (2005) calculate forward
looking expected returns using analyst expectations and find them to be positively
correlated with firm beta and negatively correlated with size.

In our last analysis we ask whether the forward looking lower bounds we obtain
have any predictive value. That is, are the lower bounds on expected stock returns
correlated with future realized returns? Clearly, our sample period of 10 years is
short for a longitudinal asset pricing test, and our estimates are likely quite noisy.
Nevertheless, our lower-bound estimates appear to provide a large and economically
meaningful (if noisy) signal on future stock returns. The signal appears to be stronger
for stocks in which our lower bound is more binding and over horizons of 6-12 months.
For example, stocks in the lowest decile of the lower bound on expected returns have
average realized returns of 8.6% in the next twelve-months period, while stocks in
the highest decile have average realized returns of 36.0%. The difference of 27.5%
per year is very large economically.

The paper proceeds as follows. In Section 2 we explain how we derive the lower
bounds for individual assets. In Section 3 we explain how the lower bounds can
be estimated from option prices. Section 4 discusses our cross-sectional empirical
analysis of the lower bounds. In Section 5 we discuss and evaluate the precision of
the approximations we are using. We conclude in Section 6.

2 Derivation of the Lower Bound

2.1 General Approach

Our setup follows that of Martin (2015) with the difference being that Martin focuses
on the market as a whole, while we focus on the cross-section of individual assets.
Consider a standard dynamic asset pricing model with uncertainty at time t about
the realization of asset returns at time T > t. Assume no arbitrage so that a stochastic
discount factor,MT , exists satisfying Et (MTRj,T ) = 1 for the gross returns Rj,T from
time t to T of any asset j. Denote Rf,t = 1/Et (MT ) the gross risk free rate between
times t and T. Then, it is standard that

V ar∗t (Rj,T )

Rf,t
= Et(MTR

2
j,T )−Rf,t, (1)
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for all assets j, where V ar∗t (·) denotes variance taken under the risk-neutral measure.
As Martin (2015) shows, the expected excess return of any asset j is given by

EtRj,T −Rf,t = EtRj,T −Rf,t + Et(MTR
2
j,T )− Et(MTR

2
j,T ) (2)

=
V ar∗t (Rj,T )

Rf,t
− Et(MTR

2
j,T ) + EtRj,T (using (1))

=
V ar∗t (Rj,T )

Rf,t
−
[
Et(MTR

2
j,T )− EtRj,TEt (MTRj,T )

]
(using that Et (MTRj,T ) = 1)

=
V ar∗t (Rj,T )

Rf,t
− Covt (MTRj,T , Rj,T ) ,

where Covt (·, ·) denotes the covariance operator as of time t. Note that in (2) both
the expectation and covariance are taken under the physical probability measure
whereas the variance is taken under the risk-neutral measure.

Definition 1 (Martin (2015)). We say that the Negative Correlation Condition
(NCC) holds for asset j if Covt (MTRj,T , Rj,T ) ≤ 0.

Note that (2) implies that if the NCC holds for asset j, then

EtRj,T −Rf,t ≥
V ar∗t (Rj,T )

Rf,t
. (3)

Thus, whenever the NCC holds for asset j, the risk neutral return variance scaled by
the risk free return serves as a lower bound for the expected excess return of asset j.
On the other hand, if the NCC fails, then the inequality in (3) is reversed, and we
obtain an upper bound on expected asset returns.

Martin (2015) restricts attention to the case in which j is the market portfolio. He
shows that in this case, the NCC holds in a variety of standard asset pricing models
subject to relative risk aversion being at least 1, allowing him to obtain a lower bound
on the expected market premium. Our goal here is to show that the NCC holds
for many individual assets satisfying a somewhat stricter (but still quite standard)
condition. Thus, we can use (3) to obtain cross-sectional bounds on expected stock
returns.

2.2 Martin’s Argument for the Validity of the NCC

To motivate our analysis we begin by reviewing Martin’s (2015) basic argument for
why the NCC is satisfied when j is the market portfolio. We then show that Martin’s
argument does not directly apply for individual assets, leading to our own analysis
in the next section.

Martin shows that under a mild condition on risk aversion, when the asset being
considered is the market the NCC holds for standard work-horse models in asset pric-
ing including a one-period investment problem, a dynamic consumption/investment
model with separable utility, and a dynamic consumption/investment model with
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recursive utility. For brevity we only review his one period analysis and refer the
reader to his paper for the other models.

Assume the existence of a representative agent maximizing expected utility. The
utility function u(·) is assumed to be twice differentiable with u′ > 0 and u′′ < 0. At
time t the agent needs to construct an optimal portfolio out of N assets whose random
returns will be realized at time T > t and are denoted by Ri,T , i = 1, 2, ...N . The
agent consumes only once at time T . The optimal portfolio is the market portfolio
and we denote its return by Rm,T .

The agent’s problem is thus to choose portfolio weights {wi} to solve

max
{wi}

Etu(
∑

wiRi,T )

s.t.
∑

wi = 1.

At optimum, we have the first-order condition:5

Et[u
′(Rm,T )Ri,T ] = λ,∀i, (4)

where λ is a positive Lagrange multiplier and the market portfolio is

Rm,T ≡
N∑
i=1

wiRi,T . (5)

Dividing both sides of (4) by λ, we have that

Et[
u′(Rm,T )

λ
Ri,T ] = 1, ∀i.

Therefore, u
′(Rm,T )
λ is a stochastic discount factor in this economy,6 and we conclude

that MT is proportional to u′(Rm,T ). Thus, for the NCC to hold in this setup for
some specific asset j we need

Covt
(
u′ (Rm,T )Rj,T , Rj,T

)
≤ 0. (6)

In particular, if j is the market portfolio we need

Covt
(
u′ (Rm,T )Rm,T , Rm,T

)
≤ 0.

Denote

γ (w) ≡ −wu
′′ (w)

u′ (w)
,

the coeffi cient of relative risk aversion at wealth level w. Note that we do not need
to assume in this setup that γ (w) is constant or monotone in w. If γ (Rm,T ) ≥ 1 then
u′ (Rm,T )Rm,T is a decreasing function ofRm,T and therefore Covt (u′ (Rm,T )Rm,T , Rm,T ) ≤
0.7 We thus have

5To justify this one needs to introduce assumptions on the validity of differentiation of an expec-
tation. We skip these standard technical details for brevity.

6 It is easy to see that λ = E[Rm,Tu
′(Rm,T )].

7This argument relies on the fact that if g is a decreasing function then Cov (g (x) , x) ≤ 0.
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Proposition 2 (Martin (2015)). Suppose γ (Rm,T ) ≥ 1, then the NCC holds for the

market portfolio. In this case, V ar∗(Rm,T )
Rf,t

serves as a lower bound on the expected
market premium between time t and T.

Thus, as long as relative risk aversion in the economy is at least 1, var
∗(Rm,T )
Rf,t

is
a lower bound on the expected market premium. As shown by Martin, this lower
bound can be calculated from option prices on a high frequency basis.

Martin’s argument is a powerful statement on the market portfolio, but it cannot
be directly applied to individual assets. To see this note first that the sign of (6)
depends on the covariance between Rj,T and u′ (Rm,T ) and on the covariance between
Rj,T and itself, i.e., the variance of Rj,T . The former is related to the systematic
risk of the asset and is likely to be negative since u′ is decreasing. The latter is
related to the idiosyncratic risk of the asset and is always positive. Thus, we have
two conflicting effects driving the sign of the covariance in (6). The curvature of u′,
which is driven by risk aversion, will determine which one of the two effects dominates.
Thus, intuitively, determining whether the NCC holds for a particular asset should
depend on the asset’s systematic risk, idiosyncratic risk, and on the prevailing level
of risk aversion.

It is also instructive to note that the monotonicity argument used by Martin to
sign the covariance does not extend to the case of individual assets. Indeed, for any
given asset j, (6) can be written as

Covt

(
Rj,Tu

′(
N∑
i=1

wiRi,T ), Rj,T

)
≤ 0. (7)

But now, asking that u′(
∑N

i=1wiRi,T )Rj,T be monotone decreasing in Rj,T is no
longer suffi cient to guarantee that the covariance is negative. In fact, taking a first
order derivative with respect to Rj,T will often result in a positive value. However,
this is not conducive to the conclusion that the covariance is positive.8 Rather, the
sign of the covariance depends on the entire correlation structure between Rj,T and
all other assets, which is being ignored if one only takes partial derivatives. In the
next section we present an alternative approach to signing the covariance in (6).

2.3 The NCC for Individual Assets

To overcome the diffi culty of calculating the covariance in (7) we use a first-order
approximation leading to suffi cient conditions under which the NCC holds for indi-
vidual assets. As in Martin (2015), our approach is valid for both static and dynamic
standard asset pricing models. We present the one-period model here and relegate
the dynamic models to Appendix I.

8As noted above, Martin (2015) uses the fact that if g is a decreasing function then Cov (g (x) , x) ≤
0. This result, however, does not extend to multivariate functions. For example, even if g (x, y) is
decreasing in x, one cannot generally conclude that Cov (g (x, y) , x) ≤ 0. Rather, this depends also
on the covariance between x and y.
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Our goal is to find a condition under which (7) is satisfied. Define f : RN → R
by

f(R1,T , R2,T , ...RN,T ) = Rj,Tu
′(

N∑
i=1

wiRi,T ). (8)

The first order multivariate Taylor expansion of f around (EtRm,T ,EtRm,T , ...EtRm,T )
gives

f(R1,T , R2,T , ...RN,T ) ≈ f(EtRm,T ,EtRm,T , ...EtRm,T ) (9)

+
N∑
i=1

fi(EtRm,T ,EtRm,T , ...EtRm,T )(Ri,T − EtRm,T ),

where fi is the partial derivative of f with respect to its ith argument.
Partially differentiating (8) gives for i 6= j

fi(R1,T , R2,T , ...RN,T ) = wiRj,Tu
′′(

N∑
i=1

wiRi,T ) (10)

and for i = j

fj(R1,T , R2,T , ...RN,T ) = u′(
N∑
i=1

wiRi,T ) + wjRj,Tu
′′(

N∑
i=1

wiRi,T ). (11)

Using (10) and (11), we can rewrite (9) as

f(R1,T , R2,T , ...RN,T ) ≈ f(EtRm,T ,EtRm,T , ...EtRm,T )

+u′(
N∑
i=1

wiEtRm,T )(Rj,T − EtRm,T )

+

N∑
i=1

wiEtRm,Tu
′′(

N∑
i=1

wiEtRm,T )(Ri,T − EtRm,T )

= f(EtRm,T ,EtRm,T , ...EtRm,T )

+u′(EtRm,T )(Rj,T − EtRm,T ) +
N∑
i=1

wiEtRm,Tu
′′(EtRm,T )(Ri,T − EtRm,T ).
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We can now plug this result into the left hand side of (7) obtaining

Covt

(
Rj,Tu

′(
N∑
i=1

wiRi,T ), Rj,T

)
= Covt (f(R1,T , R2,T , ...RN,T ), Rj,T )

≈ Covt
(
u′(EtRm,T )(Rj,T − EtRm,T ), Rj,T

)
+Covt

(
N∑
i=1

wiEtRm,Tu
′′(EtRm,T )(Ri,T − EtRm,T ), Rj,T

)
= u′(EtRm,T )V art (Rj,T )

+EtRm,Tu
′′(EtRm,T )

N∑
i=1

wiCovt (Ri,T , Rj,T )

= u′(EtRm,T )V art (Rj,T ) + EtRm,Tu
′′(EtRm,T )Covt (Rm,T , Rj,T ) ,

where the penultimate equality follows from the fact that ERm,T is constant as of
time t, and the last equality follows from (5). Equivalently,

Covt
(
u′ (Rm,T )Rj,T , Rj,T

)
≈ u′(EtRm,T )

[
V art (Rj,T ) + EtRm,T

u′′(EtRm,T )

u′(EtRm,T )
Covt (Rm,T , Rj,T )

]
.

(12)
Then, (12) can be written as

Covt
(
u′ (Rm,T )Rj,T , Rj,T

)
≈ u′(EtRm,T ) [V art (Rj,T )− γ (EtRm,T )Covt (Rm,T , Rj,T )]

= u′(EtRm,T )V art (Rj,T ) γ (EtRm,T )

[
1

γ (EtRm,T )
− Covt (Rm,T , Rj,T )

V art (Rj,T )

]
.

We conclude that, up to a first order approximation, the NCC holds for asset j if

1

γ (EtRm,T )
≤ Covt (Rm,T , Rj,T )

V art (Rj,T )
. (13)

Note that when Covt (Rm,T , Rj,T ) ≤ 0, (13) implies that the NCC must fail
(since risk aversion is positive). On the other hand, for “positive beta”assets where
Covt (Rm,T , Rj,T ) > 0, (13) can be written as

γ (EtRm,T ) ≥ V art (Rj,T )

Covt (Rm,T , Rj,T )
. (14)

Intuitively, this means that the NCC holds for asset j with a positive beta if relative
risk aversion is high enough to make the covariance between Rj,T and u′ (Rm,T )
outweigh the covariance between Rj,T and itself, i.e., the variance of Rj,T .As (14)
shows, the ratio of the asset return’s variance to its covariance with the market
return is fundamental for evaluating whether the NCC holds for asset j. It will be
convenient to denote this ratio by

δj,t ≡
V art (Rj,T )

Covt (Rm,T , Rj,T )
. (15)
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Thus, (14) is equivalent to γ (EtRm,T ) ≥ δj,t. The next proposition summarizes the
discussion thus far, establishing a suffi cient condition for the NCC and for the validity
of the lower bound.

Proposition 3 Up to a first order approximation, the NCC holds for asset j when-
ever Covt (Rm,T , Rj,T ) > 0 and γ (EtRm,T ) ≥ δj,t. For such assets,

V ar∗(Rj,T )
Rf,t

serves
as a lower bound on the asset’s expected excess return between time t and T. The
NCC fails when Covt (Rm,T , Rj,T ) ≤ 0.

Note that when j is the market, δj,t = δm,t =
V art(Rm,T )

Covt(Rm,T ,Rm,T )
= 1. Thus, in this

case, Proposition 3 agrees with Martin’s Proposition 2. More generally, Proposition 3
provides us with a suffi cient condition to check whether any given asset j satisfies the
NCC, and so, whether V ar

∗(Rj)
Rf

is a valid lower bound on its expected excess returns.
We next study this condition and explain its economic meaning.

2.4 Combined Risk: The Economic Meaning of δj

The condition in Proposition 3 says that for the NCC to hold for asset j we need
relative risk aversion in the economy to be greater than δj,t, this is in contrast to
Martin’s result which asked that risk aversion be uniformly greater than 1 for the
lower bound on the market premium to hold. To obtain some intuition for our
condition, how it compares to Martin’s condition, and the type of assets for which it
is likely to hold we now provide two different economic interpretations of δj,t.

2.4.1 Relation to CAPM Beta and Idiosyncratic Risk

While δj,t is time varying, for estimation we will follow the standard approach (e.g.,
for estimating betas) and assume it is constant for some (short) period of time and
denote it by δj . Then, δj could be easily estimated from time-series data of asset
returns and the returns on the market. We denote by δ̂j the estimator of δj ,

δ̂j =
V ar (Rj,t)

Cov (Rj,t, Rm,t)
. (16)

To gain further intuition consider the following standard one-factor model

Rj,t = αj + βjRm,t + εj,t, (17)

in which asset j’s returns are being regressed over the market returns and Cov (εj,t, Rm,t) =
0. Considering the OLS estimation of this regression model, the slope is given by

β̂j =
Cov (Rj,t, Rm,t)

V ar (Rm,t)
,
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and the R-squared is given by

ρ2j =
β̂
2

jV ar (Rm,t)

V ar (Rj,t)

=
β̂jCov (Rj,t, Rm,t)

V ar (Rj,t)

=
β̂j

δ̂j
.

We conclude that

δ̂j =
β̂j
ρ2j
. (18)

In words, δj is estimated as the ratio of the asset’s beta and the R-squared from
a regression of the asset returns on the market returns. Since 1

ρ2j
is a measure of

the asset’s idiosyncratic risk, we obtain that δj is large for assets with either large
systematic risk (beta) and/or large idiosyncratic risk. We thus call δj the combined
risk of asset j, as it accounts for both idiosyncratic and systematic risk of the asset.

One extreme case is when an asset has idiosyncratic risk of zero, i.e., ρ2j = 1. In

this case δ̂j = β̂j . Another extreme case would be if idiosyncratic risk is very large

and so ρ2j would be (approximately) zero. In this case δ̂j diverges to infinity. The
typical cases would be somewhere in between, in which 0 < ρ2j < 1 and hence the

asset’s combined risk is strictly higher than β̂j as it is inflated by a factor of
1
ρ2j
.

Corollary 4 For any asset j, δ̂j ≥ β̂j with equality occurring only for assets with
zero idiosyncratic risk.

Since the weighted average of asset betas in the market equals 1 (the market
beta), it follows from Corollary 4 that the weighted average of all combined risks will
be strictly larger than 1.

According to Proposition 3, for the NCC to hold for asset j we need relative risk
aversion to be greater than the combined risk (δj). Corollary 4 shows that the NCC
for individual assets is typically more demanding than Martin’s NCC for the market.
Indeed, his condition only required that risk aversion be greater than 1, while our
condition requires that risk aversion be greater than δj , which is, on average, strictly
greater than 1.

2.4.2 Relation to the Reverse CAPM Regression and Estimation Bias

More insight into the meaning of δj can be obtained by considering the reverse CAPM
regression in which market returns are regressed on stock returns

Rm,t = ωj + νjRj,t + ηj,t. (19)
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Then, from (16),

δ̂j =
1

v̂j
. (20)

Thus, another interpretation of δj is as the reciprocal of the slope coeffi cient from a
reverse CAPM regression. This interpretation is important for practical estimation
since it has implications for the bias of the estimator.9 To see this note that

E
(
δ̂j

)
= E

(
1

v̂j

)
≥ 1

E (v̂j)
=

1

vj
= δj ,

where the first equality follows from (20), the inequality follows from Jensen’s in-
equality, the second equality follows from the fact that OLS coeffi cients are unbiased,
and the last equality follows by taking expectations on both sides of (17) and (19)
and then comparing coeffi cients. We have obtained the following corollary.

Corollary 5 For any asset j, E
(
δ̂j

)
≥ δj . That is, the estimator for δj is upward

biassed.

This result is important since it implies that by using δ̂j we are actually being
conservative. Namely, we require risk aversion to be larger than δ̂j while it actually
can be somewhat lower.

We next turn to studying the type of stocks for which the NCC holds in the data.
These are the stocks for which our lower bound will be valid.

2.5 Testing for the NCC

By Proposition 3, for the NCC to hold we need that γ ≥ δj , where δj =
V ar(Rj)

Cov(Rj ,Rm)
is

asset j′s combined risk and γ is the relative risk aversion in the economy. While δj
can be easily estimated from data, γ is not directly observable. The finance literature
has provided a wide range of reasonable values for relative risk aversion. Bliss and
Panigirtzoglou (2004, Table 7) gather estimates of relative risk aversion from several
prior studies. Their table shows estimates anywhere between 0 and 55. Recent studies
in asset pricing typically consider relative risk aversion levels between 1 and 10 as
being “reasonable.” For example, Mehra and Prescott (1985) argue that relative
risk aversion should be lower than 10, and Bansal and Yaron (2004) and Bansal,
Kiku, and Yaron (2011) use a relative risk aversion coeffi cient of either 7.5 or 10 for
their calibrations. Such levels are supported by recent estimates such as in Vissing-
Jorgensen and Attanasio (2003), who estimate relative risk aversion between 5 to
10 under realistic assumptions for Epstein-Zin Euler equations. Similarly, Bliss and
Panigirtzoglou (2004), when considering power utility, estimate relative risk aversion
between 3 to 10 as implied from option prices.

To see whether the condition γ ≥ δj is empirically reasonable, and so whether the
NCC may hold for typical stocks, we begin by calculating δj from historical monthly
stock returns (obtained from CRSP) for common stocks (share code 10 and 11) for

9We thank Kerry Back for highlighting this point to us.
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the time period January 1995 to December 2014. We estimate δj as the variance of
the stock monthly return divided by covariance of its return with the CRSP value
weighted returns. We restrict attention to S&P 500 constituents starting from the
year 2005 (N = 692). We consider this sample since these stocks have relatively
active option trading and thus relevant data in the OptionMetrics database. As a
result, these stocks can serve as a baseline sample for our lower-bound calculations
in Section 4. Panel A of Table 1 reports summary statistics for δj calculated over the
entire sample period. The mean δj is 6.5 and the median is 5.2. Thus, if one believes
that risk aversion in the economy is at least 5, then the NCC holds for about 50%
of S&P constituents. If one holds the more liberal view that relative risk aversion is
at least 10, then the NCC holds for 90% of these stocks. The table also shows that
δj is negatively correlated with size. Thus, the NCC is more likely to hold for large
stocks. Panel B reports parallel results with δj being calculated using a 60-months
rolling window rather then over the entire sample period. The median here is just 4.3
suggesting that risk aversion larger than this level would imply that the NCC holds
for at least 50% of S&P 500 constituents. As before, risk aversion of 10 covers about
90% of the S&P 500 universe.

This discussion demonstrates that checking whether the NCC holds for a partic-
ular stock ultimately depends on one’s views regarding relative risk aversion in the
economy. To fix ideas we divide all S&P 500 constituents at each month τ starting
from January 2005 into four groups denoted by conservative, moderate, liberal, and
very liberal based on their δ̂j,τ estimated over a rolling window of 60 months from
τ − 60 to τ − 1 as follows

stock j in month τ is


conservative if 1 ≤ δ̂j,τ < 4

moderate if 4 ≤ δ̂j,τ < 7

liberal if 7 ≤ δ̂j,τ ≤ 10

very liberal if δ̂j,τ > 10

. (21)

Our main analysis will be centered around the conservative, moderate, and liberal
stocks, for which risk aversion in the range of 1-4, 4-7, or 7-10 respectively guarantees
the validity of the lower bound. For very liberal stocks the lower bound is unlikely
to be valid, and the sign of the covariance in (7) is likely positive. Thus, instead of a
lower bound we will likely be getting an upper bound in this case. In addition as can
be seen from Table 1, the very liberal group accounts for just around 10% of S&P
500 constituents.

Table 2 reports summary statistics for δ̂j,τ for each of the four groups. The
average number of stocks in the conservative group is 189 in a given month. The
average and median δ̂j,τ in this group is 2.8. The stocks in this group are quite large
with a mean market cap of $28.2 billion, average B/M ratio of 45%, and average beta
of 1. The average R-squared for regressions against the market in this group is 38%.
The moderate group averages 133 stocks per month. The average δ̂j,τ in this group
is 5.3 and the median is 5.1. The stocks in this group are still quite large with an
average market cap of $15.5 billion, average B/M ratio of 51%, average beta of 1.3,
and average R-squared of 26%. The liberal group averages 48 stocks per month with
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a mean δ̂j,τ of 8.3 and a median of 8.1. The stocks in this group are quite small with
a average market cap of $12.5 billion, average B/M of 51%, average beta of 1.5, and
average R-squared of 18%.

As expected, among these three groups, when combined risk becomes larger both
the systematic risk (reflected in beta) and idiosyncratic risk (reflected in the inverse
of R-squared) become larger. Simultaneously, firms that belong to the more liberal
groups are also smaller in size.

Finally, the very liberal group is the smallest with 46 stocks per month on average.
The mean δ̂j,τ in this group is 33.8 and the median is 14. Thus, the mean here is
strongly influenced by large extreme values as reflected by the very large standard
deviation. The average beta in this group is 0.9 and the R-squared is just 7%.
Thus, the large combined risk for this group is mostly reflecting a very high level of
idiosyncratic risk.

3 Estimating the Lower Bound

To estimate the lower bound on the return of asset j we follow a methodology similar
to Martin (2015). The idea is that the risk-neutral variance of a stock return can
be readily calculated from option prices with various strike prices. Formally, let dj,t
denote the present value of dividends paid between times t and T, and consider a set
of call and put European options on asset j with strike prices K ranging from 0 to
infinity with the same maturity, T. Denote the prices of these options by callj,t (K)
and putj,t (K) , respectively. Martin shows that

1

Rf,t
var∗tRj,T =

2

S2j,t

[∫ Fj,t

0
putj,t (K) dK +

∫ ∞
Fj,t

callj,t (K) dK

]
(22)

where

Fj,t = Rf,t (Sj,t − dj,t) ,

is the forward price of asset j as of time t for delivery at time T. Note that as long
as dj,t is not too large, the integration in (22) is performed using options that are
primarily out the money for both the put and the call options.

To obtain a numerical estimate of (22) we consider all put options with strike
prices less than or equal to Fj,t and call options with strike prices larger than Fj,t on
asset j. Assume there are NP such put options and NC such call options available at
a given point in time t for which we would like to estimate (22) with corresponding
strike prices KP

1 < ... < KP
NP

< KC
1 < ... < KC

NP
. Denote the prices of these options

by put1, ..., putNp and call1, ..., callNC respectively. Then, our numerical estimate for
the bracketed integrals in (22) is

NP−1∑
i=1

puti
(
KP
i+1 −KP

i

)
+

NC−1∑
i=1

calli+1
(
KC
i+1 −KC

i

)
+
(
KC
1 −KP

NP

)
min (putNP , call1) .

(23)
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Figure 1 illustrates this numerical integration. Note that our numerical approach
estimates the integral from below by using the minimum price at each interval, which
is consistent with our goal to obtain a lower bound. This approach is somewhat
different from Martin’s, who uses the price at the mid-point of each interval and then
relies on the convexity of the option prices to justify the validity of the lower bound.
Our more conservative approach is mandated by the option data for individual stocks,
which often does not offer equally spaced strike prices, and thus does not allow us
to rely on a similar convexity argument. Note also that dropping the left and right
tails from the integral in (22) (i.e., starting the integration at KP

1 and ending at
KC
NC

) again has the effect of lowering the integral, in line with obtaining a valid
lower bound.

A limitation unique to our setting of dealing with individual assets is the fact
that options for individual stocks in U.S. markets are all of the American style, while
the correct implementation of (22) requires European style options. Since the prices
of the American options include an early exercise premium, using American option
instead of European option tends to overestimate the lower bound. It is known,
however, that the value of the early exercise premium in out-of-the-money options
is small (see Barone-Adesi and Whaley, 1987). In Section 5 we provide estimates
for the positive bias introduced by using American instead of European options and
show that this bias is indeed typically small.

We next turn to discuss how we obtained our lower bound estimates in more
detail.

4 Empirical Analysis

4.1 Data and Main Calculations

To calculate (22) we obtain option price data from OptionMetrics. An observation
in this database consists of the closing bid and ask prices for an option on a given
date for a given stock. Typically, a stock will have multiple options traded on it with
different strike prices and maturities.

It is well known that options for individual stocks may be quite illiquid. Thus,
we limit our attention to a subset of stocks which are known to be highly traded and
liquid. In particular, we focus our attention on options written on stocks which were
included in the S&P 500 index starting from 2005. Our sample period spans January
2005 to August 2014. We choose to begin our sample period in 2005 since before
that year option trading on individual stocks (as documented on OptionMetrics) has
been quite thin. Our focus is on including in our sample stocks that have a rich and
liquid set of options, which will allow us to calculate the integrals in (22) as precisely
as possible. We have no intention to be fully comprehensive in our sample and are
inclined to drop stocks for which option trading is too thin rather than including
them in the analysis.

Our aim is to calculate the lower bound (22) for each S&P 500 constituent and
each day during our sample period. This goal, however, is too ambitious since even
among S&P 500 constituents we find many stocks that have rather thinly traded
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options or that the number of options is too small to estimate the integrals. Thus,
we use the following criteria to further screen illiquid options (similar or related
filters have been used in Figlewski, 2008 and Benzoni, Collin-Dufresne, and Goldstein,
2011):

• We drop options with maturity horizon of less than 30 days, as these options
are often thinly traded.

• We drop observations that have missing values in their bid and/or ask prices.

• We do not estimate the integrals in (22) for a given day and stock if the total
volume of options with the same maturity is less than 20 contracts. We do not
feel comfortable trusting the prices of such thinly traded options.10

• We do not calculate the integrals in (22) for a given day and stock if the lowest
strike to closing price ratio is greater than 0.8 or the highest strike to closing
price ratio is less than 1.2. In these cases the left and/or right tails are very
large and so we are not likely to obtain a good estimate.

• We do not calculate the integrals for a given day and stock if the number of
distinct options for a given maturity is less than 20, as the grid would become
too coarse to obtain a viable estimate.

• We do not calculate the integrals for a given day and stock if the maximum
distance between two adjacent strike prices is greater than the maximum of
20% of the closing stock price and 10. Again, this would imply a very coarse
grid.

• We drop all options with a non-standard settlement.

After applying all these screens we are still left with 54,485,878 observations which
yield 575,197 stock/day combinations for which we can estimate (22) to obtain the
lower bounds on expected excess returns of 652 distinct stocks. Thus, while our
screens our quite aggressive to ensure that our estimates are meaningful, we are still
left with a healthy cross-section of stocks allowing us to perform a variety of asset
pricing tests.

For each stock/day combination in this sample we estimate the lower bound (22)
using (23) for each available maturity separately and then annualize it. For these
calculations we take Sj,t, as the closing price of the underlying security, and the put
and call prices used for the integration as the average of the closing bid and ask prices
of these options. We then estimate the lower bound for a given day as the average of
the lower bounds across different maturities for that day.11

10We have repeated all the analysis with a screen of at least 50 contracts traded per day. This
results in about 10% drop in the number of daily observations but no material effect on any of our
results.
11An alternative approach would be to take the maximum lower bound across different maturities

(as this is the most binding of the lower bounds). We have tried this approach as well and it yields
similar results.
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Besides the OptionMetrics data we also draw data from CRSP and Compustat to
calculate firm characteristics such as beta, size, book-to-market ratio and momentum.
These characteristics are used in our cross-sectional Fama-MacBeth regressions.

4.2 Example: Microsoft, P&G, and Apple

Before moving to a full-scale empirical analysis we begin by illustrating the lower
bound for three household names: Microsoft, P&G, and Apple. Microsoft and P&G
typically belong to the conservative group with an average combined risk of 2.99
and 3.57, respectively. Apple typically belongs to the moderate group with average
combined risk of 5.11.

Figure 2 presents the time series of the lower bound for these three stocks between
January 2005 and August 2014. Consider Microsoft first. The average lower bound
is 6%. A clear pattern is that the lower bound spiked very significantly during the
years of the financial crisis. Excluding the years 2008-2009 the average lower bound
on expected excess returns for Microsoft is 4.5%. Considering P&G, the average lower
bound is 3% and it also exhibits a sharp increase during the crisis period. Excluding
this period the average lower bound is 2.3%. For Apple, average lower bound is much
larger at 14%. It decreases to 12% once the crisis period is excluded.

Apart from the crisis period, the expected returns of both Microsoft and P&G
appear to be quite stable over time. By contrast, Apple’s expected excess returns
appear to be trending down somewhat from around 18% in 2005 (the iPod and Steve
Job’s era) to about 10% (the iPhone 6 and Tim Cook’s era), with the crisis period
interrupting this trend.

4.3 Summary Statistics for the Lower Bounds

We now turn to analyzing the lower bound for all stocks in our sample. Figure 3 and
Table 3 provide summary statistics for different sub-samples. Consider first the stocks
in the conservative group (for which 1 ≤ δj,τ < 4). The average lower bound for these
stocks is 8.4% and the median is 6.1%. Figure 3 also clearly shows that the expected
return for these stocks spiked significantly during the crisis years of 2008-2009, in line
with the pattern observed for the three household names discussed above. Excluding
these two years shows that during “normal times”the average lower bound on these
stocks is 6.7% and the median is 5.5%. Note that the distribution of lower bounds is
right skewed, which is driven by some very large occasional values. Turning to the
moderate group (4 ≤ δj,τ < 7), the average lower bound is 16.0% and the median is
11.0% for the whole sample period. Excluding 2008-2009 we have an average lower
bound of 12.0% and a median of 9.6%. Evidently, the lower bounds of the expected
excess returns in this group are higher than in the conservative group. Considering
the liberal group (7 ≤ δj,τ ≤ 10) we obtain an even higher lower bound, which spikes
occasionally not only during the financial crisis but also in later years. This noise
may be attributed to the fact that this group is very small with only 29.4 stocks on
average. The average lower bound in this group is 19.3% and the median is 12.9%.
Excluding the crisis period we have a mean of 15.2% and a median of 11.1%.
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Thus, as the combined risk (δj,τ ) becomes larger, the lower bound we obtain rises
as well. This can stem from two different sources. First, as δj,τ becomes larger the
lower bound becomes tighter and (if the risk aversion is suffi ciently low) may even
switch to becoming an upper bound. Second, a higher combined risk corresponds
to higher systematic and/or idiosyncratic risk. And, as shown in Panel B of Table
2, higher δj,τ corresponds to higher beta and smaller size. To the extent that these
two risks are compensated for in expected returns, we should expect a higher lower
bound.

Considering the very liberal group (δj,τ > 10) we again see a rather volatile
pattern of lower bounds, which may be attributed to the small number of stocks in
this group (21.8 on average). Recall that for this group it is quite likely that what
we are calculating is an upper bound rather than a lower bound on expected excess
returns. In line with this view, the average bound we obtain is 19.5% and the median
is 13.8%. Excluding 2008-2009 we still have a quite high mean of 14.2% and median
of 10.7%.

It is interesting to compare these results to the average over the entire sample
(Panel E of Figure 3) and for the S&P 500 (Panel F of Figure 3). The latter is simply
our version of Martin’s (2015) calculations obtained using options on the S&P 500
index (compared this to Figure 3 in Martin (2015)) . The former is the average of
the lower bounds for all stocks in our sample considering all the four groups lumped
together. The average lower bound for the market premium we obtain is 4.6% and
the median is 3.7%. These numbers are comparable to those obtained by Martin
(2015) over a larger sample period. The average lower bound across all stocks in our
sample is 12.6% and the median is 8.3%. The fact that the average lower bound is
higher than the lower bound for the market is not a coincidence. The reason for this
a that our lower bounds are convex functions of returns, and thus the lower bound
for a portfolio is strictly lower than the weighted average of lower bounds. To see
this point formally note that by the convexity of the variance operator

V ar∗

 N∑
j=1

wjRj

 <

N∑
j=1

wjV ar
∗ (Rj) ,

implying that the lower bound for the market is strictly lower than the weighted
average of lower bounds for individual stocks. Thus, it would be inappropriate to
estimate Martin’s lower bound for the market premium by averaging our lower bounds
for individual stocks.

4.4 Cross-Sectional Analysis of the Bound

Having documented the time-series summary statistics of the lower bounds we now
turn to study how they vary in the cross-section of stocks. We hypothesize that firm
characteristics that have been documented to affect average realized returns will be
reflected also in the forward-looking lower bounds on expected returns we study. The
usual suspects are of course beta, size, and book-to-market (Fama and French (1992))
as well as momentum (Jegadeesh and Titman (1993)).
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Our goal is to perform a standard Fama-MacBeth (1973) cross-sectional analysis
on a monthly basis in which the estimated bound on expected excess returns serves
as a left-hand side variable. Thus, we perform a standard analysis replacing average
historical returns with forward looking lower bounds of expected returns. To this
end, we first calculate for each stock in our sample an average monthly lower bound
by averaging the daily estimates of the lower bound for each month during our sample
period. We then run cross-sectional regressions of the monthly lower bound against
beta, size, book-to-market ratio, and momentum.12 We perform this analysis for the
entire sample as well as separately for each of the four groups defined in (21).

Table 4 reports the time-series averages of the cross-sectional coeffi cient estimates
along with Newey-West adjusted standard errors. The results are striking. To begin,
consider the entire sample. The first result is that beta has a highly significant
and positive coeffi cient. That is, firms with high beta are associated with a high
lower bound on their expected returns in line with the classic CAPM. Thus, when
considering forward-looking expected returns it appears that beta is getting its life
back after being “announced dead”in Fama and French (1992). Second, and just as
important, size obtains its expected signs as in Fama and French (1992). Indeed, the
coeffi cient of size is negative and highly significant. By contrast, the book-to-market
ratio is not significant unlike in Fama and French (1992). Finally and somewhat
surprisingly, the coeffi cient on momentum is negative and significant, suggesting that
stocks that experienced a run-up in their price in the past 12 month are associated
with lower forward looking expectations.

When considering the conservative, moderate, and liberal groups separately we
obtain quite similar results. The coeffi cient of beta is positive and significant and the
coeffi cient of size is negative and significant for all three groups. The coeffi cient of
book-to-market is not significant for any of the groups. Momentum is negative and
significant for the moderate and liberal groups but not for the conservative group.
Finally, when considering the very liberal group —none of the coeffi cients is significant,
apparently reflecting the large noise in the estimation of the bound for this group and
its small size.

Overall, the cross-sectional results suggest that beta, size, and momentum are
reflected in market expectations for individual assets. The result for beta is particu-
larly important since it comes up as a major determinant of expected stock returns
unlike in the studies using realized returns. This is consistent with previous studies
using other approaches for estimating forward looking returns as in Berk and van
Binsbergen (2015) and Brav, Lehavy, and Michaely (2005). As for recent returns,
they still play a significant role, but rather than expecting continuation, it appears
that investors are expecting reversals in the short term.

12We estimate beta by regressing the stock realized excess returns on the market excess return
over a rolling window of 60 months prior to the month of interest. We estimate firm size as the log of
the year-end market-cap for the fiscal year that preceded the month of interest and book-to-market
is the log of the ratio of the book-value of equity to market-cap as of the end of the preceding fiscal
year. Finally, momentum is estimated as the stock return during the 12 months preceding the month
of interest.
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4.5 Predictive Value of the Bound

In the next set of analyses we ask if the lower bound on expected excess returns
provides a valuable signal on realized future returns. Finding such a predictive value
is a challenging task for at least three reasons. First, our sample period of 10 years is
quite short for a longitudinal asset pricing study especially given the likely noisiness
of our estimates. Thus, our ability to identify predictability, to the extent it exists,
is limited. Second, it may be that the market expectations reflected in option prices
are systematically wrong or irrational, and so they (or lower bounds thereof) are not
providing a valuable signal about future returns. Third, it may well be that the lower
bound we obtain is far from being binding. Thus, variations in the lower bound may
not tell us much about variations in realized future returns.

Despite these challenges, we do find evidence of predictability as we describe
below. This evidence is especially strong over 6-12 months investment horizons and
in the moderate and liberal groups. This is perhaps to be expected as the moderate
and liberal groups are the ones for which the NCC is likely to bind (relevant risk
aversion of 4-10). Therefore, it should be expected that variations in the lower bound
for these groups would be more reflective of variations in future returns.

To evaluate whether the lower bound delivers an informative signal about future
returns, in each month t we sort all stocks in our sample based on their monthly
average lower bound. We then divide the stocks in each month into ten deciles based
on their average bound. Decile 1 consists of the stocks with the lowest estimates and
Decile 10 with the highest estimates. We then calculate the equal weighted average of
stock realized returns for each decile over three different horizons: one month (t+ 1),
six months (t+1 to t+6), and 12 months (t+1 to t+12). If the lower bound provides
an informative signal, then we expect stocks in lower deciles to show lower average
realized returns compared to stocks in the higher deciles.

The results for this analysis are documented in Table 5 for the entire sample
and for each of the four groups separately. Consider first Panel B, which reports the
time-series averages of the six-month returns for each decile as well as the returns of a
portfolio which is long in Decile 10 and short it Decile 1. Considering the entire sample
(first column) we see a quite monotone pattern. The average six-month returns in
the low decile is 3.73% as compared to 15.16% in the top decile. The difference of
11.43% is very large economically and significant at the 10% level. Similar results
are obtained for each of the sub-groups. For example, the moderate group (column
3) shows an increase in average realized returns of 5.66% in the low decile to 20.09%
in the top decile, a difference of 14.43% over a six months period.13

In Panel C we consider a 12-month investment horizon. The results here are even
more striking. The entire sample (column 1) shows an almost perfect monotone trend.
Indeed, average returns for deciles 1 through 5 are all below 15% while for deciles
6 through 10 they are all above 15%. The average return in the low decile equals
8.57% and it rises to 36.04% in the top decile —a difference of 27.47% over 12 months
(significant at the 10% level). A similar pattern exists in each of the individual groups

13Note that we use Newey-West standard errors with three lags in this analysis to account for the
potential autocorrelations resulting from the overlapping windows of return estimation.
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with statistical significance being strongest in the moderate and liberal groups. For
example, in the liberal group, the average return in the low decile is 7.7% compared
to 39.6% in the top decile. This difference is very large economically.

In Panel A, which reports the one-month returns, we see weaker results. The
trends in realized returns are still somewhat monotone and the differences between
the two extreme deciles are still always positive. However, they are not statistically
significant. For example, for the entire sample the difference between average return
in the top and bottom deciles is 1.34% per month.

To summarize, the results in Table 5 provide evidence in support of a predictive
signal incorporated in the lower bound on expected stock returns. The evidence
is economically large and statistically significant for an investment horizon of 6-12
months. While we do see evidence of predictability in all groups, the evidence is
more pronounced within stocks in the moderate and liberal groups for which the
lower bounds are more likely to be binding.

5 Precision of Approximations

Our analysis relies on two types of approximations. First, to study whether the NCC
holds for a particular asset we rely on a first-order Taylor approximation. Second,
when estimating the lower bound we do not account for the fact that the options
being used are American. In this section we estimate the error associated with these
approximations. Our overall conclusion is that in most cases this error is small or
even negligible.

5.1 First Order Approximation for the NCC

A key advantage of our approach is that the form of the utility function need not be
known in order to check whether the NCC holds or to estimate the lower bound for
a particular asset. Instead, all that is needed is an assumption on the relative risk
aversion (which may not be constant) in the economy and its magnitude relative to
the combined risk of the asset. However, in order to obtain this “utility irrelevance”
we replaced u′ (Rm,t)Rj,t with its first order Taylor approximation in the calculation
of Cov (u′ (Rm,t)Rj,t, Rj,t). Similar approximations are rather common in asset pric-
ing models attempting to linearize or log-linearize non-linear expressions. In order to
assess the error associated with this approximation we consider standard utility func-
tions, which allow us to estimate Cov (u′ (Rm,t)Rj,t, Rj,t) precisely without resorting
to an approximation. We can then test how often the first order approximation leads
us to an incorrect inference about the NCC. Specifically, we assume that u takes
the CRRA form u (w) = w1−γ

1−γ , with γ varying between 2 to 10. We then repeat
the analysis in Section 2.5, but instead of using the condition γ ≥ δj,τ (relying the
approximation) we check directly whether cov (u′ (Rm,t)Rj,t, Rj,t) ≤ 0 holds true.

Table 6 reports the type I (false positive) and type II (false negative) errors
associated with using the approximation. Consider for example the case γ = 3. The
table shows that using the approximation γ ≥ δj,τ implies a probability of 0.76%
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of concluding that the NCC holds while in fact it does not (type I error). At the
same time, the probability of concluding that the NCC fails while it actually holds
is about 11.8% (type II error). Thus, in this case, the approximation seems rather
conservative in line with Corollary 5. It rarely leads us to accept the NCC when it
fails, but it occasionally leads us to conclude that the NCC fails when it actually
holds. This conservatism seems somewhat desirable as it prevents us from relying on
the lower bound in cases where it is not valid.

As γ grows larger the probability of type I errors increases and that of type II
errors declines sharply. For example, when γ = 9 the probability of type I errors is
about 15% and the probability of type II errors is 3.4%. Overall, for levels of risk
aversion up to 8 it appears that our approximation is quite conservative, with type
I error probabilities less than 10%. For higher levels of risk aversion type I errors
become more likely while the likelihood of type II errors diminishes.

5.2 Using American Options to Calculate the Lower Bound

The estimation of the lower bound in (22) relies on the prices of European options.
However, all options on individual stocks in the U.S. are of the American style,
introducing a potential upward bias in our lower bound estimation due to the early
exercise premium (EEP). It is important to note that the options we are using are
mostly out-of-the-money, a case in which the EEP is known to be relatively small.
Still, in this section we evaluate the magnitude of this potential bias.

A key advantage of (22) is that it makes no assumptions regarding the underlying
framework. To estimate the EEP we need to make additional assumptions on the
dynamics of the underlying security prices. To this end, we follow the framework
in MacMillan (1986) and Barone-Adesi and Whaley (1987), who offer an analytic
approximation for the EEP of American options in the Black-Scholes framework.
Specifically, we calculate the lower bound in (22) by obtaining option prices from
OptionMetrics and subtracting from them the estimated EEP to obtain a synthetic
price of a corresponding European option.

The results are reported in Table 7, which is analogous to Table 3, with the
only difference being the use of the synthetic European option prices instead of the
American options prices. As expected, the lower bounds in Table 7 are all lower than
in Table 3, but the differences are typically small. To illustrate, the median lower
bound for the entire sample in Panel A of Table 3 is 8.28% as opposed to 7.96% in
Panel A of Table 7, a difference of 32 basis points annually. When considering the
conservative group the median is 6.07% as opposed to 5.86%, a difference of 21 basis
points. Similar differences apply to the three other groups. The differences are even
smaller when considering Panel B of Tables 3 and 7, which exclude the crisis period.

When considering the mean of the lower bound distribution, the differences for
the conservative groups are also small at 39 basis points. The differences in means
become larger for the other three groups. The deviation between the mean and the
median in that regard is a result of what looks like outliers in the right tail, specifying
lower bounds close to or higher than 100%.

In conclusion, our estimates suggest that the use of American options inflates the
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lower bound by less than 50 basis points for the conservative group and by about
1-3 percentage points for the other groups. As a robustness test we also repeated
the empirical analysis discussed in Sections 4.4 and 4.5 replacing the original lower
bounds by the modified lower bounds obtained using the synthetic European options.
None of the conclusions is affected.

6 Conclusion

To be completed.

Appendix I

In this appendix we derive approximations and conditions for when an asset satisfies
NCC for two dynamic models. First is a standard consumption/investment model
with separable utility in which risk aversion may not be constant. Second is a dynamic
model with a recursive Epstein-Zin utility.

A Dynamic Model with Separable Utility

Consider a representative investor with time-separable utility u (·) , which is increas-
ing and concave and a subjective discount factor β ∈ (0, 1) . The investor faces N > 1
assets with random return Ri,t+1 between time t and t+1. In each period 0, 1, 2, ... the
investor needs to allocate his initial wealthWt among consumption Ct and investment
in each asset i, wi,t.

Assume there is an inter-temporal representative investor with separable utility.
Her value function J (·) is defined recursively as a function of her wealthWt as follows

J (Wt) = max
Ct,{wi,t}

[
u (Ct) + βEtJ

(
(Wt − Ct)

N∑
i=1

wi,tRi,t+1

)]

s.t.

N∑
i=1

wi,t = 1.

The first-order condition for wi,t is

βEtJ
′

(
(Wt − Ct)

N∑
i=1

wi,tRi,t+1

)
(Wt − Ct)Ri,t+1 = λ,

where λ is a positive multiplier. It follows that

Mt+1 ≡
βJ ′

(
(Wt − Ct)

∑N
i=1wi,tRi,t+1

)
(Wt − Ct)

λ

is a time-t stochastic discount factor (pricing claims between time t and t+ 1). Since
Wt+1 = (Wt − Ct)

∑
wiRi,t+1 we have

Mt+1 =
βJ ′(Wt+1)(Wt − Ct)

λ
.
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Since the representative investor holds the market the portfolio (w1,t, ..., wN,t) is
the market portfolio as of time t, and we denote the return on this portfolio between
times t and t+ 1 by

Rm,t+1 =
∑
i

wi,tRi,t+1.

Thus,Wt+1 = (Wt−Ct)Rm,t+1. This shows thatMt+1 is proportional to J ′ ((Wt − Ct)Rm,t+1).
Thus, the NCC holds for asset j at time t if and only if Covt (J ′ ((Wt − Ct)Rm,t+1)Rj,t+1, Rj,t+1) ≤
0.

Define f : RN → R by

f(R1,t+1, R2,t+1, ...RN,t+1) = Rj,t+1J
′((Wt − Ct)

N∑
i=1

wi,tRi,t+1). (24)

An analysis parallel to that in Section 2.3 yields the following first order approxima-
tion

Covt
(
J ′ ((Wt − Ct)Rm,t+1)Rj,t+1, Rj,t+1

)
≈ J ′(EtWt+1) (V art (Rj,t+1)− Γ(EtWt+1)Covt (Rm,t+1, Rj,t+1)) ,

where Γ(EtWt+1) = −EtWt+1
J ′′(EtWt+1)
J ′(EtWt+1)

is the investor’s relative risk aversion with
respect to his life-time utility evaluated at EtWt+1.

Thus, similar to the conclusion in Section 2.3 we have that the NCC holds for
asset j at time t if δj,t =

V art(Rj,t+1)
Covt(Rm,t+1,Rj,t+1)

is lower than relative risk aversion.

Proposition 6 Up to a first order approximation, the NCC holds for asset j when-
ever δj,t ≤ Γ (EtWt+1) . For such assets,

var∗(Rj,t+1)
Rf,t

serves as a lower bound on the
asset’s expected excess return between times t and t+ 1.

Note that we have obtained this result in a traditional consumption/investment
framework in which returns are exogenous while consumption and investment are
endogenous. A similar result can be obtained in an endowment economy, where
consumption is assumed exogenous and prices are determined endogenously.

A Dynamic Consumption/Investment Model with Recursive Utility

Consider an infinitely lived representative investor with recursive value function

Vt = J (Ct, µ (Vt+1)) ,

where the function J is an aggregator mapping current consumption Ct, and the
certainty equivalent of future life time value, µ (Vt+1), to current value, Vt. We follow
Epstein and Zin (1989) and consider the following functional form

J (C, µ) =
[
(1− δ)C1−ρ + δµ1−ρ

] 1
1−ρ , ρ ≥ 0

and the certainty equivalent function is
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µ (Vt+1) =
[
Et

(
V 1−γt+1

)] 1
1−γ

, γ > 0.

In the above expressions, ρ = 1
ψ , where ψ is the inter-temporal elasticity of substi-

tution (IES), γ is the relative risk aversion, and δ is a subjective discount factor.
The investor faces N > 1 assets with random return Ri,t+1 between time t and

t + 1. In each period the investor needs to allocate his initial wealth Wt among
consumption Ct and investment weight in each asset i, wi,t to maximize his life time
value subject to the budget constraint

(Wt − Ct)Rm,t+1 = Wt+1,

where Rm,t+1 =
∑N
1 wi,tRi,t+1. We further assume that market returns are i.i.d.

The stochastic discount factor in this economy takes the form

Mt+1 = δθ
(
Ct+1
Ct

)−θ
ψ

Rθ−1m,t+1,

where
θ ≡ 1− γ

1− ρ .

Since Ct is known as of time t, we have that Mt+1 is proportional to C
−θ/ψ
t+1 Rθ−1m,t+1.

It follows that Mt+1Rj,t+1 is proportional to

C
−θ/ψ
t+1 Rθ−1m,t+1Rj,t+1 =

(
Ct+1
Wt+1

)−θ/ψ
W
−θ/ψ
t+1 Rθ−1m,t+1Rj,t+1.

Since market returns are i.i.d., the consumption to wealth ratio is constant. It fol-
lows Mt+1Rj,t+1 is proportional to W

−θ/ψ
t+1 Rθ−1m,t+1Rj,t+1. Moreover, from the budget

constraint

Wt+1 = (Wt − Ct)Rm,t+1 = Wt(1−
Ct
Wt

)Rm,t+1,

and since both Wt and Ct
Wt
are known by time t we have that Mt+1Rj,t+1 is propor-

tional to (∑
i

wiRi,t+1

)θ−1−θ/ψ
Rj,t+1 =

(∑
i

wiRi,t+1

)−γ
Rj,t+1.

Thus, Covt(Mt+1Rj,t+1, Rj,t+1) has the same sign as

Covt

((∑
i

wiRi,t+1

)−γ
Rj,t+1, Rj,t+1

)
.

Define f : RN → R by

f(R1,t+1, R2,t+1, ...RN,t+1) =

(∑
i

wiRi,t+1

)−γ
Rj,t+1.
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An analysis parallel to that in Section 2.3 yields the following first order approxima-
tion

Covt(

(∑
i

wiRi,t+1

)−γ
Rj,t+1, Rj,t+1) ≈ (EtRm,t+1)

−γ (V art(Rj,t+1)− γCovt(Rm,t+1, Rj,t+1)) .

Thus, up to a first order approximation, Covt(Mt+1Rj,t+1, Rj,t+1) is non-positive if
and only if δj,t ≤ γ as before.

Proposition 7 Up to a first order approximation, the NCC holds for asset j when-
ever δj,t ≤ γ. For such assets, var∗(Rj,t+1)

Rf,t
serves as a lower bound on the asset’s

expected excess return between times t and t+ 1.
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Table 4: Fama MacBeth Analysis of the Bounds
This table presents the results of monthly cross-sectional Fama-MacBeth regressions. The sample

period is January 2005 to August 2014. We first estimate a monthly lower bound for each stock by
averaging the daily lower bounds reported in Table 3 over the month. For each month we then run
cross-section regressions in which the dependent variable is the average monthly lower bound and the
independent variables are beta, size, book-to-market ratio, and momentum. Obs is the time-series
average of the number of firms in the cross-sectional regressions. Beta is calculated as the coeffi cient
estimate from regressing each stock’s monthly excess returns on the market excess returns during a
60-month rolling window. Firm size is the log of the firm’s market-cap at the end of previous year.
B/M is the log of the ratio of equity book value to market cap at the end of the preceding fiscal
year. Momentum is given by the cumulative return over the 12 months period prior the current
month. The table reports the time-series average of the cross-sectional coeffi cient estimates as well
as Newey-West standard errors with 4 lags. The analysis is performed both for the entire sample
and for each of the four groups defined in (21) separately. Asterisks denote statistical significance at
the 1% (***), 5% (**) and 10% (*) level

Obs β Size B/M Ratio Momentum
Entire Sample 314.3 0.0498 -0.0203 0.0078 -3.8011

(0.0085)*** (0.0017)*** (0.0048) (1.6426)**

Conservative (1 ≤ δ < 4) 171.2 0.0493 -0.0051 0.0035 -1.8912
(0.0083)*** (0.0011)*** (0.0037) (1.2731)

Moderate (4 ≤ δ < 7) 97.8 0.0427 -0.0246 0.0091 -6.8896
(0.0094)*** (0.0049)*** (0.0064) (1.8835)***

Liberal (7 ≤ δ ≤ 10) 29.4 0.0344 -0.0295 0.0132 -5.1119
(0.0126)*** (0.0067)*** (0.0141) (2.6330)*

Very Liberal (δ > 10) 21.8 -0.4922 -1.0438 -1.1901 45.7667
(0.6021) (0.9620) (1.0910) (47.8518)
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Table 6: Type I and Type II Errors for Taylor Approximations
This table reports the type I (false positive) and type II (false negative) error probabilities

resulting from using the first order approximation to test the validity of the NCC. We assume a
utility function of the form u (w) = w1−γ

1−γ , where γ ranges between 2 and 10. The NCC holds if

cov (u′ (Rm)Rj , Rj) ≤ 0 and the first order approximation holds if γ ≥ δj , where δj =
V ar(Rj)

Cov(Rj ,Rm)
calculated using a 60-month rolling window. Our sample period for this test is January 2005 to
December 2014. For the market return Rm we use monthly CRSP value weighted returns and for
the stock return (Rj) we use monthly return data. The analysis is restricted to S&P 500 constituents
starting from the year 2005.

γ Type I Error Type II Error
2 0.0018 0.1977
3 0.0076 0.1180
4 0.0159 0.0922
5 0.0299 0.0767
6 0.0522 0.0550
7 0.0695 0.0510
8 0.1050 0.0417
9 0.1499 0.0339
10 0.1954 0.0290
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Figure 1: Illustration of the numerical estimation of the lower bound.
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Panel A: Estimated Lower Bound for Microsoft
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Panel B: Estimated Lower Bound for P&G
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Panel C: Estimated Lower Bound for Apple

0
.2

.4
.6

.8
E

st
im

at
ed

 L
ow

er
 B

ou
nd

01jan2005 01jan2007 01jan2009 01jan2011 01jan2013
Date

Lower Bound on AAPL Expected Return

Figure 2: Time series of estimated lower bound for Microsoft, P&G and Apple between
January 2005 and August 2014.
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Panel A: Conservative Group Panel B: Moderate Group
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Panel E: Whole Sample Panel F: Market Premium
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Figure 3: Time series of average estimated lower bound for each group, the whole sample,
and the market premium between January 2005 and August 2014.
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