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Abstract

We provide general conditions under which principal-agent problems admit mechanisms that
are optimal for the principal. Our result covers as special cases those in which the agent has
no private information � i.e., pure moral hazard �as well as those in which the agent�s only
action is a participation decision � i.e., pure adverse selection. We allow multi-dimensional
actions and signals, as well as both �nancial and non-�nancial rewards. Beyond measurability,
we require no a priori restrictions on the space of mechanisms. Consequently, our optimal
mechanisms are optimal among all measurable mechanisms. A key to obtaining our result is
to permit randomized mechanisms. We also provide conditions under which randomization is
unnecessary.

1 Introduction

In his classic work on the principal-agent problem, Mirrlees (1976, 1999) identi�es at least two

important theoretical questions. The �rst is the question of the existence of an optimal incentive

contract. Somewhat surprisingly, within even the most standard economic settings (e.g., logarith-

mic utility, normally distributed signals) Mirrlees shows that an optimal contract need not exist.

The second question relates to the character of the optimal contract when one does exist. Here

Mirrlees introduces the ��rst-order approach�(FOA) in which the agent�s (possibly in�nite num-

ber of) incentive constraints is replaced with the single constraint that the e¤ort level targeted by

the principal is a critical point of the agent�s objective function. Much research has focused on

providing conditions under which the FOA can be employed (see, e.g., Rogerson (1985), Jewitt

(1988), Sinclair-Desgagne (1994), Conlon (2009)). But even the current state-of-the-art conditions

are highly restrictive.

Our focus here is on the �rst of Mirrlees�questions, that of the existence of a solution to the

principal�s problem. However, our setting is more general. Speci�cally, an agent has a privately

known type and a must choose an action. The principal presents the agent with a menu of contracts,
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where each contract speci�es a reward for the agent as a function of a signal whose distribution

depends on the agent�s action and type. After the agent chooses a contract from the menu and

takes an action, the signal is generated and the contract is honored.1 Thus, our setting includes as

special cases pure moral hazard and pure adverse selection, but in general allows for combinations

of the two.2 The question addressed here is, �Under what conditions does a menu of contracts exist

that maximizes the principal�s ex-ante expected payo¤ subject to the agent�s interim individual

rationality constraints?�

We establish existence without imposing the restrictive conditions (e.g., one-dimensional signals

and rewards, monotone likelihood ratio conditions, additively separable utility in rewards and

actions, etc.) that are typical for the validity of the FOA. Similar to Holmström and Milgrom

(1987, 1991) we allow multi-dimensional e¤ort, signals, and rewards. Rewards may take the form

of cash, promotions, restricted stock, or a nicer o¢ ce. Unlike Holmström and Milgrom (1987, 1991),

we do not restrict attention to a particular functional form of utility nor do we impose a particular

statistical relationship between the agent�s actions and the information received by the principal.

We allow substantial �exibility in how the set of feasible rewards varies with the signal, as for

example when a �rm cannot contract to pay its manager more than some fraction of the total

value of the �rm. Finally, we allow the payo¤ of both the principal and agent to depend in a

non-seperable way on the type of the agent, the action chosen, the signal, and the reward, with

no order structure on either object. As such, our model incorporates, for example, a setting where

the type of the agent is information about which of several projects is better, and the action of the

agent and the �reward�of the principal consist of which project to focus their respective e¤orts on.

In such an example, the payo¤s of the agent and principal may well have a substantial component

of common interest.

Even in the special case of pure moral hazard, establishing the existence of an optimal contract

under general conditions has proven to be surprisingly di¢ cult. The central issue is that the set of

all possible contracts as typically conceived is not compact in a useful topology, i.e., one in which

the participants�payo¤s are continuous. For instance, Mirrlees�(1999) counterexample involves a

sequence of contracts along which extreme punishments are in�icted at extremely low performance

thresholds, and along which the principal�s payo¤ approaches the full-information optimum. But,

no contract can attain full-information optimum payo¤s.

To restore compactness, Holmström (1979) begins by introducing upper and lower bounds on

feasible payments. But, even with such bounds, the set of contracts is not usefully compact.

Holmström thus also imposes a bounded variation restriction on contracts. While this delivers an

existence result, the bounded variation restriction is ad hoc �there is no guarantee that otherwise

reasonable contracts that do not meet the variation bound or the bounds on feasible payments

1No mechanism can improve upon a menu of contracts, which itself is equivalent to the principal conditioning the
contract he o¤ers the agent on the agent�s report of his type. We will take this latter direct mechanism approach in
the sequel. See Section 3.

2Examples of the latter sort of model can be found in Hellwig (2010), La¤ont and Tirole (1986, 1993), Walsh
(1995).
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would not be better for the principal. In a model with substantively more general actions, signals,

and preferences, Page (1987) takes a similar route to existence, again introducing upper and lower

bounds on payments, and assuming that the set of feasible contracts is a priori restricted so as

to be sequentially compact in the topology of pointwise convergence. Again, however, there is no

guarantee that contracts outside the pre-speci�ed set would not be even better.

In contrast, Grossman and Hart (1983) establish existence of an optimum in the moral hazard

problem without ad hoc restrictions on contracts. They do this by restricting attention to a �nite

set of signals each of which occurs with probability bounded away from zero regardless of the agent�s

action. With a continuum of signals, Carlier and Dana (2005) and Jewitt, Kadan and Swinkels

(2008) solve the existence problem while avoiding ad hoc restrictions on contracts by assuming that

e¤ort is one-dimensional, that likelihood ratios are monotone and bounded, and that the FOA is

valid. All three papers require signals and rewards to be one-dimensional and the principal�s losses

to be additively separable in them, and none permits the agent to possess private information.

A contract is typically de�ned as a function from signals to rewards. This is too restrictive in

our general setting, where randomization over rewards may be strictly optimal for the principal.

Consequently, we allow contracts that randomize over rewards. But there is another�deeper�reason

for allowing randomization. As our proof specialized to pure moral hazard reveals, randomization

over rewards renders the set of all contracts whose costs to the prinicpal are uniformly bounded

above, compact in a topology in which the principal�s losses are lower semicontinuous. This insight

builds on the ideas of Milgrom and Weber (1985), who introduce the concept of distributional

strategies to compactify the set of behavioral strategies in Bayesian games with continuum type

spaces.3

While permitting randomized contracts is crucial for our existence proof, the contracts in an

optimal menu may or may not involve randomization. We establish conditions under which optimal

menus can be composed of deterministic contracts and, in pure moral-hazard problems when, in

addition, the cost minimizing contract for any given e¤ort level is unique. We also provide examples

in which randomization is necessary for optimality. The latter can occur when, for example, the

sets of signals and rewards are �nite.

Our results require two economically substantive assumptions, and several technical ones. The

�rst substantive assumption is that the problem at hand can be formulated so that both the

agent�s utility and the principal�s losses are bounded below (with the former ruling out the Mirrlees

counterexample). Both restrictions appear to us to be exceedingly mild from an economic point of

view, with the �rst being satis�ed if, for example, contracts with arbitrarily draconian punishments

are unavailable, and the second being satis�ed if, for example, the gross bene�ts to the principal

as a function of the agent�s action have �nite expectation and the gross costs to the principal are

bounded below.
3To see how randomization can help with compactness in Bayesian games, consider an auction in which a bidder�s

value is drawn from [0; 2]; and suppose he bids zero if the n-th decimal place of his value is even, and bids 1 if it
is odd. This pure strategy has no pointwise limit as n ! 1. However, it does converge weakly to the randomized
strategy in which the bidder is equally likely to bid zero or one regardless of his value.
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Utility and losses are permitted to be unbounded above. This is important in particular because

a priori upper bounds on payments are not easy to motivate. For example, it is easy to see why a

CEO cannot be paid more than the value of the �rm, but it is less obvious why the value of the

�rm should be bounded up front. Even if the problem at hand naturally leads to both utility and

losses that are bounded, compactness of the space of contracts remains an issue that requires the

techniques we introduce.

The second economically substantive assumption is that if the utility of the agent diverges along

a sequence of rewards, the cost to the principal of providing that utility diverges even faster. When,

for example, the wage is both the agent�s reward and the �rm�s cost, this assumption is satis�ed if

the agent�s marginal utility of wealth tends to zero as wealth increases without bound.

Our existence result is proven under two sets of hypotheses. In the �rst, we require that the

support of the principal�s signal is independent of the agent�s action and private type. The resulting

information structure is nonetheless quite general, and, in particular, it does not impose monotone

likelihood ratio conditions or any other order structure on signals and/or actions.

The second set of hypotheses permits an even more general information structure, allowing,

for example, signal supports that vary with the agent�s action and type and that contain atoms.

However, while we still permit the agent�s preferences over rewards to depend on his action and

type and the signal generated, we require here that for any given signal there is a worst reward for

the agent that is independent of his action and type.

Finally, we require several purely technical assumptions. The agent�s action space is compact

metric, the reward, type, and signal spaces are complete, separable, and metric. As functions of

the signal, action, reward, and type, the agent�s utility is jointly continuous and the principal�s loss

is jointly lower semicontinuous.

Section 2 presents our assumptions on ambient spaces, payo¤s, and information. Several exam-

ple are provided that illustrate the model�s scope. Section 3 de�nes the spaces of contracts, menus,

and mechanisms, and introduces the principal�s problem. Section 4 states the main result and

provides a sketch of the proof. The formal proof is given in Section 5. Finally, Section 6 provides

two results on when optimal contracts can be chosen to be deterministic, and provides examples in

which optimality requires randomization.

2 The Model

2.1 Ambient Space and Payo¤Assumptions

We maintain the following assumptions throughout.

Assumption 1 The set of actions, A; is a non-empty compact metric space.

Assumption 2 The set of signals, S; is a Polish space, i.e., a complete separable metric space.
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Assumption 3 The set of rewards is a Polish space, R. For each s 2 S; �(s) � R is a nonempty

set of feasible rewards given the signal s. We assume that � = f(s; r) 2 S � R : r 2 �(s)g; the
graph of the correspondence �; is a Borel subset of S �R.

Assumption 4 The set of types, T; is a Polish space, and the prior on T is a Borel probability

measure H.4

Assumption 5 The agent has a continuous von Neumann-Morgenstern utility function,

u : ��A� T ! R that is bounded below, without loss of generality by 0:

Assumption 6 The principal has a lower semicontinuous von Neumann-Morgenstern loss (disu-

tility) function l : ��A� T ! R that is bounded below, again without loss of generality by 0.

Assumption 7 For every � 2 R and every compact subset Y of S � T; f(s; r; a; t) 2 �� A� T :

(s; t) 2 Y and l(s; r; a; t) � �g is compact.5

Assumption 8 If u(s0; r0; a0; t0) ! 1 for some sequence (s0; r0; a0; t0) in � � A � T; then

u(s0; r0; a0; t0)=l(s0; r0; a0; t0)! 0:

Let P (�ja; t) denote the probability measure over the signal space S when the agent takes action
a 2 A and his type is t 2 T: We present and discuss our assumptions on P in section 2.3.

2.2 Examples and Discussion

The model reduces to pure moral hazard when the type space, T; is a singleton, and reduces to pure

adverse selection when the action space, A; contains just two elements, �participate� and �don�t

participate,�re�ecting an interim IR constraint.

The model is intended to be as general as possible. Actions come from a compact space, but

signals and rewards need not, and all three can be multi-dimensional (even in�nite-dimensional)

and perhaps discrete in some dimensions while continuous in others. No order structure is assumed

on action, signal, or reward spaces. Even when a natural order exists, no monotonicity of payo¤s

is assumed. Our most economically signi�cant assumption is that the agent�s utility and the

principal�s losses are bounded below.

Each of the following examples satis�es all of the assumptions above as well as the informational

assumptions in Section 2.3.

4Throughout the paper, whenever we refer to a probability measure over a metric space; we take the measurable
sets to be the Borel sets. Spaces of probability measures are always endowed with the weak topology and are in fact
metrizable in our setting because all ambient spaces are Polish.

5 It follows from assumptions 3 and 7 that R is in fact a countable union of compact sets. That is, R is a sigma-
compact Polish space. Every Euclidean space is a sigma-compact polish space, being the union of all closed balls
with integer radii. Potentially useful in�nite dimensional spaces, such as the space of bounded real-valued Lipschitz
functions on a compact metric space, are also sigma-compact Polish spaces. Such function spaces can arise as reward
spaces if, for example, the agent works in period 1 and is rewarded on the basis of the stock price in period 2, where
rewards are stock options or other derivatives based on the stock price in period 3.
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Example 1 Pure Moral Hazard. Let S = [s; �s], T = ftg (a singleton), R = [0;1); � (s) = R

for all s; A = [0; 1]; and l (s; r; a; t) = r � s; where s is revenue, r is monetary compensation, and

a is e¤ort. Let u (s; r; a; t) = w (r; a) where w (�; �) is continuous, and assume that P (�ja) admits
a positive density, f(sja); continuous in s and a: This yields the standard moral hazard problem,
save that payments are bounded below and that there is no MLRP restriction on the information

structure. When w (r; a) = v (r)� c (a) we obtain the commonly employed case in which the agent�s
utility is separable in money, v (�) ; and cost of e¤ort, c (�) :

The requirement that losses are bounded below may seem restrictive, as it appears to rule out

arbitrarily large returns to the principal. In particular, Example 1 does not immediately admit

cases in which the principal�s revenue space is unbounded such as the exponential distribution

example studied in Holmström (1979) or the case where P (�ja) represents the normal distribution
with mean a and variance 1. However, as the next example illustrates, such cases are also often

covered by our formulation, as long as the principal�s expected revenue is bounded above.6

Example 2 Pure Moral Hazard with Unbounded Returns. Assume that S = (�1;1) ;
T = ftg ; R = [0;1); � (s) = R for all s: The principal receives revenue s; and pays compensation

r. Let u (s; r; a; t) = w (r; a) be continuous. If for some z; �(a) =
R
sdP (sja) � z for all a 2 A;

as would be the case if �(a) were �nite and continuous in a on the compact set of actions A; then

l (s; r; a) = r + z � �(a) is bounded below by zero (and happens to be independent of s):

When all spaces are Euclidean, assumption 7 states that as rewards become unbounded, so

does the loss to the principal. Finally, assumption 8 says that the losses to the principal per util

provided are unbounded above when they provide the agent with arbitrarily high utility. Note

that if the agent�s utility is bounded, assumption 8 is satis�ed trivially, regardless of the risk

preferences of the principal and agent.7 In the next two examples, there is a �xed z 2 R such that
� (a) =

R
S sdP (sja) � z for each a 2 A:

Example 3 Canonical Utility and Loss Functions. Suppose that S = (�1;1) ; R = [0;1);
� (s) = R for all s; l (r; s; a) = r+ z� � (a) ; and u (s; r; a; t) = v (r)� c (a) where c (�) is continuous
and v is di¤erentiable with limr!1 v0 (r) = 0 (as is true for risk-averse utility functions typically

used in practice). Then, assumption 8 is satis�ed.

If, in the previous example, v (r) = r� 1
r , assumption 8 would fail. The next example illustrates

some of the �exibility of our model.

Example 4 Multidimensional signals and rewards in a pure moral hazard problem. A

salesperson chooses his e¤ort level in [0; 1], and which of three styles of sales pitch to employ. Thus,

6Situations in which the agent�s utility is unbounded below in s can similarly often be brought into the con�nes
of our model.

7Even if utility can diverge, assumption 8 imposes only a very weak form of asymptotic diminishing returns. The
agent can, for example, be risk seeking over an arbitrarily large range of rewards.
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A = [0; 1]�f1; 2; 3g : The �rm can observe whether the contract is or is not obtained fyes; nog ; the
contract price, p 2 [0;1); the delivery date, � 2 [� ; �� ] ; and which of 2 basic platforms the customer
chose, i 2 f1; 2g. Thus, S = fyes; nog � [0;1)� [� ; �� ]� f1; 2g: The �rm can give the salesperson

a non-negative cash bonus, restricted by a liquidity constraint on the part of the �rm to be no more

than p; and decide whether or not to promote him. Hence, R = [0;1) � fpromote,don�tg ; with
� (s) = [0; p]� fpromote,don�tg :

Example 5 Pure Adverse Selection. Let S = fsg be a singleton. The principal is a monopolist
producing a good of quality q 2

�
q; �q
�
at a continuous cost  (q) for a price p 2 [0; �p] : The agent is

a consumer with a private taste parameter for quality t 2 T , where T is a subset of an Euclidean

space, with prior H (�) : A reward to the agent is a price-quality pair r = (p; q). Thus, R = � (s) =

[0; �p]�
�
q; �q
�
: The agent chooses whether or not to buy the good, i.e., A = fbuy, don�t buyg : If the

agent buys at price-quality pair (p; q); the loss to the principal is l (s; r; a; t) =  (q) � p and the

utility to the agent is u (s; r; a; t) = v (q; t) � p; where v is a continuous function representing the

bene�t to the agent from consuming a good with quality q given taste t: If the agent does not buy,

both principal and agent receive a payo¤ of zero.

The next example illustrates a mixed moral hazard/adverse selection setup.

Example 6 Moral Hazard and Adverse Selection. The principal sells �re insurance and the

agent is a homeowner. The value of the home is V0 > 0: The homeowner can take preventive actions

in [a; �a] and can also decide whether or not to purchase insurance. Hence, A = [a; �a] � finsure,
self-insureg. The homeowner has private information about the probability of a �re indexed by

t 2 T = [t; �t], with prior H (�) : The principal�s signal set is S = [0; V0] ; re�ecting possible damages,
and P (�ja; t) is the distribution of damages given action a and type t: A reward is a pair r = (�; b) ;
where � 2 [0; V0] is the insurance premium paid by the homeowner to the company, and b 2 [0; s] is
the bene�t paid by the company to the homeowner given damages of s: That is, � (s) = [0; V0]� [0; s]
for all s 2 S (for simplicity it is assumed that both the premium and the compensation are paid

after the damages have been observed). If the agent chooses to insure, takes preventive action a;

and the damage is s leading to reward (�; b); then the principal�s loss is l (s; r; a; t) = b� � and the
agent�s utility is u (s; r; a; t) = v (V0 � s� � + b)� c (a) ; where v (�) and c(�) are continuous. If the
agent chooses to self-insure, taking preventive action a; then the principal�s payo¤ is zero and the

agent�s utility in the event of damages s are v(V0 � s)� c(a):

2.3 Information and Rewards

We now turn to our information structure. Our �rst assumption imposes a mild form of continuity

of information in a and t:

Assumption 9 If an ! a; and tn ! t; then P (�jan; tn)! P (�ja; t); where convergence of measures
is in the weak topology.
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In general, we allow the supports of signals to vary with a and t: But, our next assumption

requires that where supports overlap, they satisfy a form of absolute continuity. On the other

hand, we do not require any form of monotone likelihood ratio property. Indeed, we impose no

order structure on either A or S.

Assumption 10 For every a 2 A and every t 2 T there is a Borel subset Sa;t of S such that

P (Sa;tja; t) = 1 and P (�ja0; t0) is absolutely continuous with respect to P (�ja; t) on Sa;t for every

a0 2 A and t0 2 T:8

Assumption 10 is much weaker than assuming that P (�ja0; t0) is absolutely continuous with
respect to P (�ja; t); because we ask for absolute continuity only on Sa;t: It is also weaker than

assuming that P (�ja0; t0) is absolutely continuous with respect to P (�ja; t) on the support of P (�ja; t)
because Sa;t need not be closed and hence may be a strict subset of the support of P (�ja; t): Example
8 below illustrates the usefulness of this.

Assumption 10 implies, by the Radon-Nikodym theorem, that for all a; a0 2 A and all t; t0 2 T;
there is a measurable function, �(�; a0; t0; a; t) : S ! R such that P (Bja0; t0) =

R
B �(s; a

0; t0; a; t)dP (sja; t)
for every measurable B contained in Sa;t: We require that the Radon-Nikodym derivative, �; can

be chosen to be well-behaved in the following sense.

Assumption 11 � is lower semicontinuous at (s; a0; t0; a; t) whenever (a0; t0) 6= (a; t) :

Example 7 A Density. S is Euclidean and P (�ja; t) can be represented by a density f (sja; t)
where f : S �A� T ! R is continuous and everywhere strictly positive. In particular, here we can
take Sa;t = S for all a; t; and � (s; a0; t0; a; t) = f(sja0;t0)

f(sja;t) :

Example 8 Moving support. Let A = [0; 1]; S = [0; 2]; T = ftg ; and let P (�ja; t) be uniform
on [a; a + 1]: Take Sa;t = (a; a+ 1) ; and take � (s; a0; a) = 1 for s 2 (a0; a0 + 1) \ (a; a+ 1) ; and 0
elsewhere.9 ;10

Example 9 Moving atom. Let A = S = [0; 1] ; T = ftg ; and let P (�ja; t) be the Dirac measure
placing mass one on s = a: That is, a is observable.11

Example 10 Discrete signal distributions. Suppose that S is a �nite set and that P (sja; t) is
continuous in (a; t) for each s 2 S:

Each of these satis�es our assumptions. An example that does not is the following.

8That is, P (Bja0; t0) = 0 for every Borel subset B of Sa;t such that P (Bja; t) = 0:
9 In examples of pure moral hazard, we will write simply � (s; a0; a) :
10Note the usefulness, in terms of the lower semicontinuity of �; of allowing Sa;t to be (a; a+ 1) as opposed to

insisting that it be the entire support [a; a+ 1] :
11This example illustrates why we only ask that � be lower semicontinuous where (a0; t0) 6= (a; t) : In particular,

� (s = a; a0; a) = 0 must hold for all a0 6= a; while � (s = a; a; a) = 1; violating lower semicontinuity at that point.
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Example 11 A Non-Compact Set of Implementable Actions. Let R = [0; 3]; A = S = [0; 2];

T = ft0g, and u(s; r; a; t) = a + r: Suppose the principal sees the agent�s action when it is strictly

less than one, but not otherwise, i.e., the principal receives the signal s = a if a < 1 and s = 1 if

a � 1. Hence, assumption 11 is violated because � (s; a0; a) = 0 for (s; a0; a) = (a; 2; a) with a < 1

while �(1; 2; 1) = 1: Every action a 2 [0; 1); being observable, is implementable. However, action
a = 1 is not implementable because it is indistinguishable by the principal from the action a = 2;

which is strictly preferred by the agent.

One can see the role of the lower semicontinuity of � in this example. E¤ectively, as a! 1; there

is a discontinuous change in how much di¢ culty the principal has in rewarding action a without

also giving the agent an incentive to deviate to a = 2: The role of lower semicontinuity is to ensure

that, in a general sense, this does not occur.

Our main existence result requires that one of two additional assumptions is also satis�ed. The

�rst places more structure on information, the second more structure on payo¤s.

Say that the environment has uniform information if the support of signals does not depend

on a or t; i.e., if the following assumption holds.

Assumption 12 The set of signals Sa;t can be chosen to be S for every a 2 A and t 2 T:

Assumptions 10 and 12 are equivalent to saying that P (�ja; t) is absolutely continuous with
respect to P (�ja0; t0) for every (a; t) and (a0; t0): Example 7 satis�es this assumption. Examples 8
and 9 do not. When there is uniform information, no further structure is necessary for existence.

But, when the support of the distribution of signals varies, we require instead some extra structure

on rewards. In particular, say that the environment has simple worst rewards if the following

assumption on payo¤s holds.

Assumption 13 There is a measurable function r� : S ! R with r�(s) 2 �(s) for every s 2 S

such that u(s; r; a; t) � u(s; r�(s); a; t) for every (s; r; a; t) 2 ��A�T , and such that u(s; r�(s); a; t)
is lower semicontinuous in (s; t) 2 S � T for each a 2 A:

That is, for each s, and independent of a and t; there is a worst reward for the agent.

Example 12 Worst Rewards. If (i) R is partially ordered (Euclidean for example), (ii) a com-

pact subset of R contains for each s a least element of � (s) ; and (iii) u is continuous in its

arguments and increasing in r; then assumption 13 holds.

Thus, assumption 13 typically holds when r is a reward in the �usual� sense. The following

is an example that fails to have simple worst rewards (and thus where our results require uniform

information to establish existence).

Example 13 No Worst Reward. Let T = ftg ; let A = R be a �nite set, and for each s 2 S let
u (s; r; a; t) = 1, if a = r; zero otherwise.
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3 Contracts, Menus, Mechanisms, and the Principal�s Problem

In the introduction, we described the principal�s problem as one of choosing a menu of contracts

from which the agent chooses. It is well-known that this is without loss of generality by the

revelation principle. Indeed, it is equivalent, and again without loss, for the principal to consider

only direct mechanisms of the following form.

The agent reports his type and (i) the mechanism speci�es a (possibly randomized) reward as

a function of the signal the principal receives (i.e., the mechanism speci�es a contract), and (ii) the

mechanism suggests to the agent an action to take.12 Moreover, the mechanism can be restricted

to be incentive compatible in the sense that, regardless of his type, the agent can do no better than

to report his type truthfully and to take the suggested action.13

Because menus of contracts and incentive compatible direct mechanisms are equivalent, we will,

for convenience, conduct the analysis in terms of incentive compatible direct mechanisms. We now

turn to the formal de�nitions, beginning with the notion of a contract.

Given the generality of the model, randomization over rewards will sometimes be strictly opti-

mal.14 However, even when randomization is not necessary for optimality, randomization nonethe-

less lies at the heart of establishing the existence of an optimal mechanism. Indeed, permitting

randomized contracts is essential for establishing an appropriate compactness property for the

space of contracts. This motivates the following de�nition of a contract, where �(Z) denotes the

set probability measures on the Borel subsets of any topologized set Z:

De�nition 1 The set of contracts is K = f�(�j�) s.t. (i) �(�js) 2 �(�(s)) for every s 2 S; and (ii)
�(Bjs) is a measurable function of s on S for every Borel subset B of Rg:

That is, for each s; a contract speci�es a lottery over rewards, with a basic measurability

condition as s varies. Of course, randomization is permitted but is not required� for each s there

may be a reward, r; such that � (�js) places probability one on r:
For � 2 K; a 2 A; and t 2 T; de�ne

U(�; a; t) =

Z
�
u(s; r; a; t)d�(rjs)dP (sja; t)

12The mechanism need never randomize over the suggested action because the agent would have to be indi¤erent
among all actions in the support of the randomization and one such action must yield the principal losses that are
no greater than those expected under the randomization.
13Note that a mechanism induces a menu of contracts, namely the set of all contracts determined by the mechanism

as the agent�s report varies over all of his possible types. Moreover, the menu induced by an incentive compatible
mechanism has the property that it is optimal for the agent to choose from the menu the contract the mechanism
would have speci�ed under truthful reporting and it is optimal for the agent to take the action that would have been
suggested by the mechanism. Consequently, menus of contracts are equivalent to incentive compatible mechanisms
from both the point of view of the principal and that of the agent.
14 In Section 6 we examine conditions under which deterministic contracts are optimal, and present examples where

they are not.
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as the utility to the agent if he faces contract �; takes action a; and has type t; and let

L (�; a; t) =

Z
�
l(s; r; a; t)d�(rjs)dP (sja; t)

denote the principal�s expected losses. Because utility and losses are nonnegative, both integrals

exist but could take on the value +1:
For each reported type of the agent, a mechanism determines a contract and suggests an action

to the agent. Formally, we have the following.

De�nition 2 A mechanism is a pair of functions � : T ! K; and a : T ! A specifying the

contract and suggesting an action for each reported type of the agent. For notational compactness,

write �t for �(t); and at for a(t): We require a : T ! A to be measurable and
R
B �t(Cjs)dP (sjat; t)

to be measurable as a function from T into the reals, for all Borel subsets B of S and C of R:

The measurability condition on
R
B �t(Cjs)dP (sjat; t) ensures that the principal can compute

expected losses; and one can also compute the agent�s ex-ante utility.15

De�nition 3 The mechanism (�;a) is incentive compatible at t if it is optimal for the agent of

type t to announce his true type and to take action at: That is,

U(�t; at; t) � U(�t0 ; a
0; t) for all a0 2 A; t0 2 T:

Finally, we have,

De�nition 4 A mechanism is incentive compatible if it is incentive compatible at H-a.e. t 2 T:

For any mechanism (�;a); let

L(�;a) =
Z
T
L(�t; at; t)dH(t);

be the principal�s expected loss assuming that the agent tells the truth and takes the recommended

action for all t.

The principal�s problem is

minL(�;a) s.t. (�;a) is incentive compatible: (1)

Although not explicitly modeled, our speci�cation of the principal�s problem easily allows the

presence of interim individual rationality constraints for the agent.16 To see this, suppose that the

15 In particular, the condition ensures that for any measurable function g : � � A � T ! R; the integralR
T

R
�
g(s; r; at; t)d�t(rjs)dP (sjat; t)dH(t) exists. One might instead ask for the stronger condition that �t(Cjs) be

jointly measurable in (s; t): Demonstrating the existence of such an optimal mechanism would require an extra step
in an already lengthy proof.
16Such constraints arise when the agent must commit to participating in the mechanism only after learning his

type.
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agent has an outside option, u0(t), that may depend upon his type. The corresponding interim

IR constraints can be incorporated by adding a distinct and isolated action a0 to A and de�ning

u (r; s; a0; t) = u0(t) for all (r; s; t) and similarly de�ning l (r; s; a0; t) to be the loss to the principal

when the agent exercises his outside option.17

4 The Main Existence Result

Theorem 1 Suppose that assumptions 1-11 hold and that the environment has either uniform

information or simple worst rewards, i.e., either assumption 12 or 13 also holds. If L(�;a) is
�nite for some incentive compatible mechanism (�;a); then the principal�s problem (1) possesses a

solution.

4.1 Proof Sketch for Pure Moral Hazard

A good deal of the e¤ort in proving Theorem 1 is spent on the case of simple worst rewards without

uniform information, and on establishing measurability of the mechanism in the agent�s type when

T is uncountable. Nonetheless, it is useful to illustrate some of the main ideas in the simpler

environment of uniform information and pure moral hazard (T a singleton).

The challenge is to rule out examples along the lines of Mirrlees (1999), where the �optimum�

can be arbitrarily closely approximated but never achieved. Let c < 1 be the loss from some

feasible contract and the action it implements. Given the compactness of A; it would be su¢ cient

to establish that if �n is a sequence of contracts implementing actions an ! a� with L (�n; an) � c;

then there is a contract �� 2 K implementing a� with L (��; a�) � limnL (�n; an) :18

Note that �n and P (�jan) together induce a distribution �n on S � R: The distribution �n
is similar in spirit to a distributional strategy (Milgrom and Weber (1985)). Prohorov�s theorem

states that if the sequence �n is tight, then it converges along a subsequence to some �
�.19 The

tightness of the sequence �n hinges on our assumption that l (�) is bounded from below. Together

with the boundedness of the sequence L (�n; an) of expected losses, this implies that rewards leading

to large losses must be rare. Tightness follows because we also assume, roughly, that sets of rewards

leading to bounded losses are compact. Our candidate contract will be ��; a regular conditional

probability of ��. Several issues must be adressed.

17One might instead wish to satisfy an ex-ante individual rationality constraint (i.e., when the agent must commit
to participating in the mechanism before learning his type). Our results can be extended to settings with an ex-ante
IR constraint under somewhat stronger conditions, and we do not pursue the details here. Of course, in the case of
pure moral hazard, the distinction between ex-ante and interim IR constraints vanishes and our model applies as is.
18For the case of pure moral hazard, our existence proof implicitly shows that there is a topology under which (i)

the set of incentive compatible contracts with expected cost below a given amount is compact and (ii) the principal�s
expected loss function is lower semi-continuous. A similar statement holds when the type space is �nite or countable.
However, when the type space is a continuum, our proof, while still establishing the existence of an optimal mechanism,
does not suggest a natural topology on the space of mechanisms (each of which speci�es a contract and action for
each type). See in particular step IV of the proof of Theorem 1.
19A set of probability measures on the Borel sets of a topological space is tight if, for any " > 0, there is a compact

C such that P (C) > 1� " for all measures P in the set.
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First, because l(�) and u(�) are lower semicontinuous and bounded below, but not necessarily
bounded above, limits of their expectations under �n need not be equal to their expectations

under ��: For example, suppose that R = [0;1); and consider the sequence of contracts in which,
regardless of the signal, the reward is n with probability 1=n and 0 with probability (n� 1) =n: If
l (s; r; a) = r; then, L (�n; an) = 1 for all n: However, under ��; rewards are zero with probability

1 and so L (��; a�) = 0: Consequently, L (��; a�) < limn L (�n; an) in this example, a result that

generalizes. Indeed, by the portmanteau theorem,20 our lower semicontinuity and lower bound

assumptions imply that limits of expectations of l(�) and u(�) under �n are no less than their
expectations under the weak limit �� so that, in particular, the desired inequality L (��; a�) �
limnL (�n; an) follows.

It remains to ensure that �� implements a�: For this, the implication of the portmanteau

theorem�that expectations cannot jump up in the limit�is not enough. Indeed, if the utility of

the implemented action jumps down in the limit, incentive compatibility can fail. The role of

assumption 8 is to ensure that the agent�s utility does not jump down. To see how this works,

return to the example in the previous paragraph and suppose that u (s; r; a) = v (r) � a; where v

is utility over wealth. Then U (�n; an) = 1
nv (n) +

n�1
n v (0) � an: By assumption 8, 1nv (n) ! 0 as

n ! 1, and so it follows that U (�n; an) ! v (0) � a� = U (��; a�) : Thus, in the example, while

the loss to the principal jumps down in the limit, the utility of the agent converges. In general,

assumption 8 permits us to show that

U (��; a�) = lim
n
U(�n; an): (2)

Of course, what we must show is that U(��; a�) � U(��; a) for every a 6= a�: Because �n

implements an for every n; it su¢ ces to show that for any a 6= a�;Z
u (s; r; an) d�n (rjs) dP (sjan) �

Z
u (s; r; a) d�n (rjs) dP (sja) (3)

implies Z
u (s; r; a�) d�� (rjs) dP (sja�) �

Z
u (s; r; a) d�� (rjs) dP (sja) : (4)

By uniform information, we can write the right-hand side of (3) asZ
u (s; r; a) � (s; a; an) d�n (rjs) dP (sjan) =

Z
u (s; r; a) � (s; a; an) d�n; (5)

and the right-hand side of (4) asZ
u (s; r; a) � (s; a; a�) d�� (rjs) dP (sja�) =

Z
u (s; r; a) � (s; a; a�) d��: (6)

Since utility is bounded from below, and since u (s; r; a) � (s; a; an) is lower semicontinuous by

assumption, the portmanteau theorem can be used to show that the liminf of the right-hand side of

20See, e.g., van der Vaart and Wellner (1996), Theorem 1.3.4.
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(5) is at least as large as the right-hand side of (6): Hence, the desired inequality follows because,

by (2), the left-hand side of (3); which is simply U(�n; an); converges to the left-hand side of (4);

which is simply U(��; a�).

Additional issues arise when the support of the signal distribution varies, for example, with

the agent�s action. In that case, uniform information fails and (5) need not hold. With uniform

information, knowing the (randomized) reward that the limit contract speci�es for almost every

signal generated by the action a� ties down the (randomized) reward speci�ed for almost every

signal generated by any other a in an incentive compatible manner. On the other hand, if some

set of signals Ŝ has zero probability for all a in a neighborhood of a�; then �� puts no weight on

s; r pairs with s 2 Ŝ: Consequently, the conditional probability of ��; which forms the basis for

de�ning the candidate limit contract, is arbitrary on Ŝ, providing no guidance whatsoever in how

the contract should be de�ned there. But, since Ŝ may receive positive probability when actions

outside the neighborhood of a� are taken, de�ning the contract appropriately on Ŝ is critical. It is

here that the assumption of simple worst rewards is very helpful, as it allows us to specify a reward

on Ŝ that, no matter what the agent�s type and action, is as bad as it gets for the agent.

5 Proof of Theorem 1

For � 2 K and (a; t) 2 A�T; let � = � �P (�ja; t) denote the probability measure on S�R de�ned
for all Borel subsets B of S and C of R by

�(B � C) =
Z
B
�(Cjs)dP (sja; t):

Note that � 2 �(�) because �(�(s)js) = 1 for every s 2 S: We begin with a critical preliminary

result.

Proposition 1 Suppose that assumptions 1-11 hold and that the environment has either uniform

information or simple worst rewards, i.e., either assumption 12 or 13 also holds. Let �n be a

sequence of contracts in K; let an be a sequence of actions in A converging to a� 2 A; and let tn

be a sequence of types in T converging to t� 2 T: If L(�n; an; tn) is bounded above, then there is a
subsequence, nj of n; and a contract �� 2 K such that

(i) �nj � P (�janj ; tnj ) converges to �� � P (�ja�; t�)

(ii) limjL(�nj ; anj ; tnj ) � L(��; a�; t�);

(iii) limj U(�nj ; anj ; tnj ) = U(��; a�; t�) <1; and

(iv) limjU(�nj ; a
0; t0j) � U(��; a0; t0) for all (a0; t0) 6= (a�; t�) and for all t0j ! t0:

That is, there is a contract, ��; such that as we pass from (�n; an; tn) to (��; a�; t�); the principal�s

losses can only fall, the agent�s utility from taking the suggested action along the sequence of types
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in question converges, and the agent�s utility from taking any other action along a sequence of types

converging to any other type can only fall.

Existence of an optimal contract for the case of pure moral hazard is immediate from this

proposition, as in the sketch. It also follows for the case of pure moral hazard that if a can be

implemented by some contract, then there exists a least-cost way of implementing a:

Corollary 1 Suppose that T is a singleton and the environment has either uniform information

or simple worst rewards. If an action a is optimal for the agent under some contract with �nite

expected losses to the principal then there is a contract that minimizes the principal�s losses subject

to implementing a.

Proof of Proposition 1. By hypothesis,

L (�n; an; tn) =

Z
�
l(s; r; an; tn)d�n(rjs)dP (sjan; tn)

is bounded above by, say c <1:
Throughout the proof the ordered pairs (s; r) are restricted to the feasible set � and we omit

explicit mention of this where convenient. The symbol �x denotes the Dirac measure placing

probability one on x:

There are �ve steps. At Step 5, the proof di¤ers signi�cantly depending on which case we are

in.

Step 1. We �rst show that the sequence �n = �n � P (�jan; tn) is tight. Fix " > 0: Because S is

Polish and P (�jan; tn)! P (�ja�; t�); the sequence P (�jan; tn) is a tight subset of �(S) by Prohorov�s
theorem. Consequently, there is a compact subset C of S such that P (Cjan; tn) � 1� "

2 for every

n: Also, for every � > 0;

c � L (�n; an; tn)

=

Z
�
l(s; r; an; tn)d�n(rjs)dP (sjan; tn)

�
Z
l(s;r;an;tn)>�

l(s; r; an; tn)d�n(rjs)dP (sjan; tn)

� ��n(l(s; r; an; tn) > �);

for every n; where the second inequality follows because l is nonnegative. Therefore, setting � =

2c=";

�n(l(s; r; an; tn) > �) � "=2; for every n:
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Letting Dn = f(s; r) 2 � : s 2 C and l(s; r; an; tn) � �g and noting that P (�jan; tn) is the marginal
of �n on S; we have

�n(Dn) = 1� �n(f(s; r) 2 � : s 2 C and l(s; r; an; tn) > �g)� P (SnCjan; tn)

� 1� "

2
� "

2
= 1� ":

Let Y be the compact subset C � ft�; t1; t2; :::g of S � T: Clearly, the union D1 [ D2 [ ::: is
contained in the projection onto � of f(s; r; a; t) 2 � � A � T : (s; t) 2 Y and l(s; r; a; t) � �g;
a compact set by assumption 7. Each �n therefore places weight at least 1 � " on the compact

projection onto �, and so, since " > 0 was arbitrary, f�ng is a tight subset of �(�).

Step 2. We next de�ne the requisite contract �� 2 K and establish (i). Since the sequence �n is

tight, by Prohorov�s theorem there is a subsequence, nj ; such that �nj ! �� for some �� 2 �(�).
Reindexing the subsequence, we have �n ! ��: Because P (�jan; tn) is the marginal of �n on S and
P (�jan; tn) ! P (�ja�; t�); the marginal of �� on S is P (�ja�; t�): Consequently, there is a regular
conditional probability 
(�j�) for �� (e.g. Dudley (2002), Theorem 10.2.2 ) such that for all Borel

subsets B of R and D of S;

��(B �D) =
Z
D

(Bjs)dP (sja�; t�);

where 
(Bjs) is measurable in s on S; and where (because ��(�) = 1) 
(�js) 2 �(�(s)) for all
s 2 S
 , where S
 is a measurable subset of S satisfying P (S
 ja�; t�) = 1:

In the uniform information case, de�ne �� 2 K as follows. For every Borel subset B of R and

every s 2 S;

��(Bjs) =
(


(Bjs);
~� (Bjs) ;

if s 2 S
 ;
otherwise,

where ~� is any contract (as for example an element of f�ng):
For the simple worst reward case, let Sa�;t� be as given by assumption 10, and de�ne �� 2 K

as follows. For every Borel subset B of R and every s 2 S;

��(Bjs) =
(

(Bjs);
�r�(s);

if s 2 Sa�;t� \ S
 ;
otherwise.21

In either case, because ��(Bjs) = 
(Bjs) for P (�ja�; t�) almost every s;

��(B �D) =
Z
D
��(Bjs)dP (sja�; t�);

21 In the uniform information case, the support of P is independent of a and t, and so the only consideration there
in de�ning the contract outside of S
 was to preserve measurability. Here, the de�nition of the contract outside of
Sa�;t� \ S
 does not a¤ect the payo¤ to type t� from action a�; but may well a¤ect the payo¤ to other types and
actions. Hence the assumption of simple worst rewards comes into play.

16



for all Borel subsets B of R and D of S:

Therefore, �n � P (�jan; tn) = �n ! �� = �� � P (�ja�; t�); proving (i).

Step 3. In this step we demonstrate (ii) as follows.

limnL(�n; an; tn) = limn

Z
�
l(s; r; an; tn)d�n

= limn

Z
��A�T

l(s; r; a; t)d
�
�n � �(an;tn)

�
�

Z
��A�T

l(s; r; a; t)d
�
�� � �(a�;t�)

�
=

Z
�
l(s; r; a�; t�)d��

= L(��; a�; t�):

To see the inequality, note �rst that �n � �(an;tn) ! �� � �(a�;t�) by Billingsley (1999) Theorem

2.8 (ii), since �n ! �� and �(an;tn) ! �(a�;t�): The inequality then follows from the portmanteau

theorem since l is lower semi-continuous (van der Vaart and Wellner (1996), Theorem 1.3.4).

Step 4. In this step we demonstrate (iii), i.e.,
R
u(s; r; an; tn)d�n !

R
u(s; r; a�; t�)d�� < 1:

Given our assumptions on u; this would follow directly from weak convergence if in addition u were

bounded. However, because u need not be bounded, some extra care must be taken here.

Let um(s; r; a; t) = min(u(s; r; a; t);m): For every n;Z
u(s; r; an; tn)d�n =

Z
um(s; r; an; tn)d�n +

Z
u(s;r;an;tn)>m

(u(s; r; an; tn)�m)d�n: (7)

Consider the last term. Let xm be the supremum of u(s; r; a; t)=l(s; r; a; t) over all (s; r; a; t) 2
��A� T such that u(s; r; a; t) > m (and where the sup of the empty set is zero). Then,Z

u(s;r;an;tn)>m
(u(s; r; an; tn)�m)d�n �

Z
u(s;r;an;tn)>m

u(s; r; an; tn)d�n

=

Z
u(s;r;an;tn)>m

u(s; r; an; tn)

l(s; r; an; tn)
l(s; r; an; tn)d�n

� xm

Z
�
l(s; r; an; tn)d�n

= xmL(�n; an; tn)

� xmc:

Hence, Z
um(s; r; an; tn)d�n �

Z
u(s; r; an; tn)d�n �

Z
um(s; r; an; tn)d�n + xmc; (8)

where the second inequality follows from (7) :
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To see that
R
u(s; r; an; tn)d�n is bounded, �x some m large enough that xm is �nite (such an

m exists by assumption 8), and note that (8) implies that for all n;Z
u(s; r; an; tn)d�n �

Z
um(s; r; an; tn)d�n + xmc

� m+ xmc:

For any m; um is bounded and continuous, and so, as in step 3,Z
um(s; r; an; tn)d�n !

Z
um(s; r; a

�; t�)d��:

Hence, from (8) we haveZ
um(s; r; a

�; t�)d�� � limn
Z
u(s; r; an; tn)d�n � limn

Z
u(s; r; an; tn)d�n �

Z
um(s; r; a

�; t�)d��+xmc:

Because limm xm = 0 by assumption 8, and because limm
R
um(s; r; a

�; t�)d�� =
R
u(s; r; a�; t�)d��

by the monotone convergence theorem, we conclude that limn
R
u(s; r; an; tn)d�n exists, is �nite,

and is equal to
R
u(s; r; a�; t�)d��:

Step 5. In this step, we demonstrate (iv), i.e., limnU(�n; a
0; t0n) � U(��; a0; t0) for all (a0; t0) 6=

(a�; t�) and for all t0n ! t0: Here, the details are very di¤erent depending on the setting.

Uniform Information. Fix (a0; t0) 6= (a�; t�). For every n

U(�n; a
0; t0n) =

Z
u(s; r; a0; t0n)d�n(rjs)dP

�
sja0; t0n

�
=

Z
u(s; r; a0; t0n)�

�
s; a0; t0n; an; tn

�
d�n(rjs)dP (sjan; tn)

=

Z
u(s; r; a0; t0n)�

�
s; a0; t0n; an; tn

�
d�n;

where the second equality is valid because Sa0;tn = San ;tn = S in the uniform information case.

Hence,

limnU(�n; a
0; t0n) = limn

Z
u(s; r; a0; t0n)�

�
s; a0; t0n; an; tn

�
d�n

�
Z
u(s; r; a0; t0)�

�
s; a0; t0; a�; t�

�
d��

=

Z
u(s; r; a0; t0)�

�
s; a0; t0; a�; t�

�
d�� (rjs) dP (sja�; t�)

=

Z
u(s; r; a0; t0)d�� (rjs) dP

�
sja0; t0

�
= U

�
��; a0; t0

�
;

where the inequality follows as in step 3 using assumption 11.

18



Simple Worst Rewards. To keep the notation manageable in this step, for X � S we shall writeR
X to mean the integral over all (r; s) 2 � with s 2 X: For any set B and " > 0; let B" denote the

open set of points whose distance from B is strictly less than ":

Fix (a0; t0) 6= (a�; t�). Let F be a closed subset of Sa�;t� : By assumption 13,

U(�n; a
0; t0n) =

Z
u(s; r; a0; t0n)d�n(rjs)dP (sja0; t0n)

�
Z
San;tn\F "

u(s; r; a0; t0n)d�n(rjs)dP (sja0; t0n) +
Z
Scan;tn[(F

")c
u(s; r�(s); a

0; t0n)dP (sja0; t0n):

(9)

The second term on the right-hand side is at leastZ �
1� IF "(s)

�
u(s; r�(s); a

0; t0n)dP (sja0; t0n); (10)

since u � 0 and where F " denotes the closure of F ": By assumption 10, and the de�nition of �; the
�rst term on the right-hand side isZ

San;tn\F "
u(s; r; a0; t0n)�(s; a

0; t0n; an; tn)d�n(rjs)dP (sjan; tn)

=

Z
F "
u(s; r; a0; t0n)�(s; a

0; t0n; an; tn)d�n

=

Z
u(s; r; a0; t0n)IF "(s)�(s; a

0; t0n; an; tn)d�n; (11)

where the �rst equality uses P (San;tn jan; tn) = 1.
Since F " is open, IF "(s) is lower semicontinuous. Consequently, since (a0; t0) 6= (a�; t�) ; and by

assumption 11, u(s; r; a0; t0n)IF "(s)�(s; a
0; t0n; an; tn) is lower semicontinuous at (s; r; a

0; t0; a�; t�) for

every (s; r) 2 �: Similarly, since F " is closed,
�
1� IF "(s)

�
u(s; r�(s); a0; t) is lower semicontinuous

in (s; t) on S � T by assumption 13. Therefore, because an ! a�; tn ! t�; P (�ja; tn) ! P (�ja; t�);
P (�ja; t0n)! P (�ja; t0) and �n ! ��; it follows from (10) and (11) as in step 3 that

limnU(�n; a
0; t0n) �

Z
u(s; r; a0; t0)IF "(s)�(s; a

0; t0; a�; t�)d��+

Z �
1� IF "(s)

�
u(s; r�(s); a

0; t0)dP (sja0; t0):

Taking the limit of the right-hand side as "! 0, noting that both IF "(s) and IF "(s)&" IF (s) for

every s 2 S; and applying the monotone convergence theorem,

limnU(�n; a
0; t0n) �

Z
u(s; r; a0; t0)IF (s)�(s; a

0; t0; a�; t�)d��+

Z
(1� IF (s))u(s; r�(s); a0; t0)dP (sja0; t0):

Being a Borel probability measure on a Polish space, P (�ja�; t�) is regular. Consequently, there
is an increasing sequence F1 � F2 � F3::: of closed subsets of Sa�;t� such that P ([mFmja�; t�) = 1:
Substituting Fm into the right-hand side of the previous expression and noting that IFm(s) %m
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I[mFm(s) for every s 2 S, the monotone convergence theorem implies that

limnU(�n; a
0; t0n) �

Z
u(s; r; a0; t0)I[mFm(s)�(s; a

0; t0; a�; t�)d��(rjs)dP (sja�; t�)

+

Z
(1� I[mFm(s))u(s; r�(s); a0; t0)dP (sja0; t0)

�
Z
Sa�;t�

u(s; r; a0; t0)�(s; a0; t0; a�; t�)d��(rjs)dP (sja�; t�)

+

Z
Sc
a�;t�

u(s; r�(s); a
0; t0)dP (sja0; t0)

=

Z
Sa�;t�

u(s; r; a0; t0)d��(rjs)dP (sja0; t0)

+

Z
Sc
a�;t�

u(s; r�(s); a
0; t0)dP (sja0; t0)

=

Z
u(s; r; a; t�)d��(rjs)dP (sja0; t0)

= U
�
��; a0; t0

�
;

where the second inequality follows because P (Sa�;t�n ([mFm))ja�; t�) = 0 (�rst term) and because
Sca�;t� � ([mFm)

c and u � 0 (second term), where the �rst equality follows from the de�nition of

�; and where the second equality follows because ��(�js) = �r�(s) for s 2 Sca�;t� :

We now turn to the proof of Theorem 1.

Proof of Theorem 1. By hypothesis, the set of incentive compatible mechanisms (�;a) such that

L (�;a) is �nite is nonempty. We must show that L (�;a) achieves a minimum on this set. Choose

any sequence of incentive compatible mechanisms (�n;an) such that L (�n;an) converges to some
c <1: It su¢ ces to show that there is an incentive compatible mechanism (��;a�) such that

L(��;a�) � c: (12)

The proof would be quite straightforward if there were a subsequence along which �nt and a
n
t

converged pointwise for H-a.e. t 2 T:22 But there need not exist any such subsequence when T

is uncountable. Consequently, the proof strategy is to (step I) restrict attention to a carefully

chosen countable dense subset of types and a carefully chosen subsequence for which �nt and a
n
t

have appropriate limits for each type t in the countable set. Then it is shown (step II) that the limit

mechanism satis�es the incentive constraint when reports are restricted to the countable set. Next,

it is shown (steps III and IV) that the limit mechanism can be extended to the entire set of types,

T; in a measurable and incentive compatible manner, thereby producing an incentive compatible

mechanism (��;a�): Finally, owing to the carefully chosen subsequence from step I, it is shown

(step V) that (��;a�) satis�es (12).

22This discussion is informal. We do not de�ne a topology on the space of contracts, K:
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Step I. Because the countable intersection of measure one sets is measure one, there is a measurable

subset T 0 of T with H (T 0) = 1 such that for all n; and for all t 2 T 0; (�n;an) is incentive compatible
at t.

For each n; and for each t 2 T; de�ne Ln (t) = L (�nt ; a
n
t ; t). Then each Ln is a [0;+1]-valued

measurable function, due to the measurability properties of �n and an; and because l(�) is lower
semicontinuous and therefore measurable.

Because T 0 is a subset of the separable metric space T; it is itself separable metric. Hence,

restricting each Ln to T 0, Lemma 1 (see Appendix) together with the boundedness of L (�n;an)
and the compactness of A imply that there is a subsequence nj and a countable dense subset T 0

of T 0 such that,

(a) anjt converges, to ât say, and limj Lnj (t) exists and is �nite for every t 2 T 0; and

(b) For every t 2 T 0 there is a sequence tm in T 0 converging to t such that

lim
m
lim
j
Lnj (tm) � limjLnj (t);

where the (possibly in�nite) left-hand side limits in (b) exist.

By (a), the sequence Lnj (t) is bounded for each t 2 T 0: Therefore, because T 0 is countable,

Proposition 1 implies that there is a common subsequence n0j of nj such that for every t 2 T 0;

(i0) �
n0j
t := �

n0
j

t � P (�ja
n0
j

t ; t) converges to �̂t := �̂t � P (�jât; t)

(ii0) limj L(�
n0j
t ; a

n0
j

t ; t) � L(�̂t; ât; t);

(iii0) limj U(�
n0j
t ; a

n0
j

t ; t) = U(�̂t; ât; t) <1; and

(iv0) limjU(�
n0j
t ; a

0; t0) � U(�̂t; a
0; t0) for all (a0; t0) 6= (ât; t) :

where the limit in (ii0) exists by (a).

Note that (a) holds when the sequence nj is replaced by the subsequence n0j because the limits

remain the same. As a consequence of this, the left-hand side of (b) remains unchanged when nj is

replaced by n0j . Therefore, because the right-hand of (b) can only increase when the sequence nj is

replaced by a subsequence, both (a) and (b) hold when nj is replaced by n0j : To simplify notation,

reindex the subsequence n0j as n for the remainder of the proof. Along this reindexed subsequence,

(�nt ; a
n
t )! (�̂t; ât) for all t 2 T 0 and L (�n;an)! c:

For each t 2 T; let L (t) = limnLn (t) : Then L is a [0;+1]-valued measurable function, being
the liminf of a sequence of such measurable functions. By Fatou�s lemma,Z

T
L (t) dH(t) � limn

Z
T
Ln(t)dH(t) = c <1: (13)
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Consequently, L (t) < 1 for H-a.e. t 2 T and so removing from T 0 all of those t with L (t) = 1;
we have L (t) < 1 for every t 2 T 0 and it remains the case that H(T 0) = 1: Moreover, by (a), no
t 2 T 0 is removed from T 0 and so T 0 � T 0 continues to hold.

By (b) and (ii0),

(c) For every t 2 T 0 there is a sequence tm in T 0 converging to t such that,

limmL (�̂tm ; âtm ; tm) � L (t) <1:

Step II. In this step, we show that ((�̂t; ât))t2T 0 satis�es the incentive constraints for each t 2 T 0

when reports are restricted to T 0: For all t; t0 2 T 0 and all a0 2 A;

U (�̂t; ât; t) = lim
n
U(�nt ; a

n
t ; t)

� limnU(�
n
t0 ; a

0; t);

where the equality follows from (iii0) and the inequality follows because each mechanism (�n;an)

is incentive compatible at every t 2 T 0 � T 0. Consequently, reversing the roles of t and t0 in (iv0),

we have

U (�̂t; ât; t) � U
�
�̂t0 ; a

0; t
�
; (14)

whenever (a0; t) 6= (ât0 ; t0): But because (14) clearly holds when (a0; t0) = (ât; t); (14) holds for all
t0; t 2 T 0 and all a0 2 A; as desired.

Step III. Because T is Polish H is regular. Hence, the measure of T 0 can be approximated

arbitrarily well by the measure of compact subsets of T 0. Since each such compact subset is itself

Polish, we may apply Lusin�s theorem to obtain a sequence T1; T2; ::: of compact subsets of T 0 whose

union, T � 2 B(T ); has measure one under H; and on each of which L is continuous.
For each t 2 T �; let F (t) denote the set of (�; a) in �(�)�A such that for some sequence tj in

T 0 converging to t;

(A) (�̂tj ; âtj )! (�; a) ; and

(B) limjL
�
�̂tj ; âtj ; tj

�
� L (t).

That is, F (t) is the set of all (�; a) that are limits of pairs (�̂tj ; âtj ) for types tj 2 T 0 near

t whose associated contracts �̂tj yield expected losses to the principal that, in the limit, are no

more than L (t) when the agent takes action âtj and is type tj : We claim that the correspondence

F : T � � �(�)�A is nonempty-valued, closed-valued, and measurable.

Nonempty-valued. Fix t 2 T �: By (c), there is a sequence tj in T 0 converging to t such that

limjL
�
�̂tj ; âtj ; tj

�
� L (t) <1:
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Therefore, by the compactness of A and by (i) of Proposition 1, there is a subsequence along which

(�̂tj ; âtj ) converges to some (�0; a0) 2 �(�)�A: Hence, (�0; a0) 2 F (t).

Closed-valued. Follows similarly from a straightforward diagonal argument.

Measurable. Let C be a closed set in �(�)�A. We wish to show that

F�1 (C) = ft 2 T � : F (t) \ C 6= ;g

is a member of B(T ): Since T � = [Ti;

F�1 (C) =
1[
i=1

F�1i (C) ;

where F�1i (C) = ft 2 Ti : F (t) \ C 6= ;g : It therefore su¢ ces to show that F�1i (C) is a closed

subset of T for each i:

So, �x i; and let tm be a sequence of elements of F�1i (C) converging to t0 2 T:We wish to show
that t0 2 F�1i (C) : Since Ti is compact, t0 2 Ti. It remains to show that F (t0)\C is nonempty. For
each m; since tm 2 F�1i (C) ; there is a sequence tmj in T 0 converging to tm such that (�̂tmj ; âtmj )

converges to some (�m; am) 2 C and limjL(�̂tmj ; âtmj ; tmj) � L(tm):

For each m; we may choose j large enough so that de�ning t0m = tmj ; we have t0m within

distance 1=m of tm; (�̂t0m ; ât0m) within distance 1=m of (�m; am) ; and L(�̂t0m ; ât0m ; t
0
m) � L(tm)+

1
m :
23

Consequently, t0m converges to t0 and limmL(�̂t0m ; ât0m ; t
0
m) � L(t0); where the inequality follows

from the continuity of L on Ti: Therefore because L(t0) <1; we may extract a subsequence of m
along which L(�̂t0m ; ât0m ; t

0
m) is bounded and, by (i) of Proposition 1, also along which (�̂t0m ; ât0m)

converges to some (�0; a0). Consequently, (�0; a0) 2 F (t0): But (�m; am) ; being within distance

1=m of (�̂t0m ; ât0m); therefore also converges to (�0; a0) along this subsequence. Hence, because C is

closed, (�0; a0) 2 C and we are done.

Step IV. We now de�ne the mechanism (��;a�) and show that it is incentive compatible. Since

F is nonempty-valued, closed-valued and measurable, it follows from Wagner (1977, Theorem 4.1)

and the discussion therein (p.863) that measurability of F implies weak measurability, that F has

a measurable selection. That is, for each t 2 T � there exists (��t ; a�t ) 2 F (t) such that (��t ; a�t ); as a
function from T � into �(�)�A; is measurable.

For each t 2 T �; the de�nition of F (t) implies that there exists a sequence tj in T 0 converging
to t such that (�̂tj ; âtj ) ! (��t ; a

�
t ). For typical elements t; t

0 2 T �; we denote their corresponding
sequences by tj and t0j : By Proposition 1, for each t 2 T �; there is a contract ��t 2 K such that;

(i00) �̂tj = �̂tj � P (�jâtj ; tj) converges to ��t � P (�ja�t ; t);

(iii00) limj U(�̂tj ; âtj ; tj) = U(��t ; a
�
t ; t) <1; and

23The distance between �t0m and �m is measured by the Prohorov metric.
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(iv00) limjU(�̂tj ; a
0; t0j) � U(��t ; a

0; t0) for every (a0; t0) 2 A� T �n f(a�t ; t)g :

Consequently, by (i00), ��t = ��t � P (�ja�t ; t) for every t 2 T �: Having de�ned (��t ; a
�
t ) for each

t 2 T �; we now extend to all of T: Fix some t0 2 T � and let (�0; a0) = (��t0 ; a
�
t0): For t 2 TnT �;

de�ne (��t ; a
�
t ) = (�0; a0): Consequently, a

�
t is measurable as a function from T into A; and for every

measurable subset B of R and D of S;
R
D �

�
t (Bjs)dP (sja�t ; t) is measurable as a function from T into

R; because ��t = ��t �P (�ja�t ; t) is a measurable function of t into �(�):24 Given these measurability
properties, we have therefore de�ned a mechanism (��;a�) : It remains to show that it is incentive

compatible. Indeed, it su¢ ces to show incentive compatibility at each t 2 T � because H(T �) = 1:
Reporting a type in TnT � is equivalent to reporting t0 2 T �. Consequently, it su¢ ces to show

that for all t; t0 2 T �; and all a0 2 A with (a0; t0) 6= (a�t ; t);

U (��t ; a
�
t ; t) = lim

j
U(�̂tj ; âtj ; tj)

� limjU(�̂t0j ; a
0; tj)

� U
�
��t0 ; a

0; t
�
:

But the equality follows from (iii00), the �rst inequality follows from (14), and the �nal inequality

follows by reversing the roles of t and t0 and the roles of tj and t0j in (iv
00), so long as (a0; t) 6= (a�t0 ; t0);

or equivalently, so long as (a0; t0) 6= (a�t ; t); as desired.

Step V. For t 2 T �; (��t ; a�t ) 2 F (t) implies that (�̂tj ; âtj )! (��t ; a
�
t ) and limjL

�
�̂tj ; âtj ; tj

�
� L (t)

for some sequence tj in T 0 converging to t: Consequently,

L (��t ; a
�
t ; t) =

Z
l(s; r; a�t ; t)d�

�
t

� limj

Z
��A�T

l(s; r; a; t)d[�̂tj � �(âtj ;tj)]

= limjL
�
�̂tj ; âtj ; tj

�
� L (t) ;

where the second line follows from the portmanteau theorem. Therefore, since H (T �) = 1;

L(��;a�) =

Z
T
L (��t ; a

�
t ; t) dH (t)

�
Z
T
L (t) dH (t)

� c;

24To see measurability, de�ne for each measurable Z 2 �, gZ : �(�)! R by gZ(
) =
R
IZ(s; r)d
(s; r); and de�ne

h : T ! �(�) by h(t) = ��t : Then, as a real-valued function of t;
R
D
��t (Bjs)dP (sja�t ; t) is the composition of gB�D

and h: By construction, h; our selection from F; is measurable. Hence, it su¢ ces to show that gZ is measurable. But
this follows from the fact that gZ is lower semicontinuous (and therefore measurable) for each open set Z and that
the collection of Borel sets Z for which gZ is measurable is a Dynkin class, which, containing the open sets must
therefore consist of all the Borel sets as desired.
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where the last inequality follows from (13).

6 Randomization and Optimal Contracts

In much of this section, we specialize to the case of pure moral hazard (and so drop the notation

t) and provide several results relating to the use of randomization in optimal contracts. Our �nal

result returns to the setting including adverse selection.

It is well known that contracts involving randomization over rewards may or may not be nec-

essary for creating optimal incentives. For example, Holmström�s (1979) su¢ cient statistic result

yields as a corollary that randomization is undesirable when the agent�s utility function displays

risk aversion and is additively separable in e¤ort and one-dimensional rewards, and the principal�s

pro�t function displays risk aversion and strictly decreases when higher rewards are given to the

agent. See also Grossman and Hart (1983). On the other hand, Gjesdal (1982), and Arnott and

Stiglitz (1988) provide examples in which randomization is desirable. The following result is an

important stepping stone to a generalization (Corollary 2) of Holmström�s corollary on the op-

timality of deterministic contracts and provides some insight into the nature of contracts when

randomization is necessary for the principal to achieve optimality.

Theorem 2 Suppose assumptions 1-6 are satis�ed and that u (s; r; a) = v (s; r) � c (s; a) ; so that

for each s; utility is additively separable in rewards and actions. Suppose also that � 2 K achieves a

minimum expected loss for the principal subject to implementing a 2 A; and that this loss is �nite.
If � is closed, then for P (�ja)-a.e. s 2 S; � (�js) solves

min
�2�(�(s))

Z
R
l (s; r; a) d� (15)

subject to Z
R
u (s; r; a) d� =

Z
R
u (s; r; a) d� (rjs) :

That is, the principal, for each signal, chooses a least cost means of delivering the utility in

question. This is intuitively obvious, as otherwise, changing the contract to deliver the same utility

at each s more cheaply leaves the incentives of the agent una¤ected (for each action, given the

additive separability assumed) and the principal better o¤. The only issue is in the technicality of

showing that such changes can be made in a measurable fashion as s varies. The proof is in the

Appendix.

Theorem 2 permits a rather general result on the redundancy of randomization. We�ll need the

following de�nition.

De�nition 5 Say that the principal and the agent have weakly con�icting preferences over rewards

if whenever

u(s; r; a) > u(s; r0; a)
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for r; r0 2 � (s) ; then there exists r00 2 � (s) such that

u(s; r00; a) = u(s; r0; a) and l(s; r00; a) < l(s; r; a):

Thus the principal and agent have weakly con�icting preferences over rewards if whenever the

principal can reduce the agent�s utility to a given level by changing the reward, he can reduce

the agent�s utility to the same level and decrease his losses. Weakly con�icting preferences are

present in the classic moral hazard problem with one-dimensional rewards because the principal�s

losses strictly fall when the (monetary) reward to the agent falls. Indeed, in the classic problem

the principal and the agent have diametrically opposed preferences over rewards. When the reward

space is multidimensional, it would be far too restrictive to assume that their preferences are

diametrically opposed, i.e., that the principal�s losses are an increasing function of the agent�s

utility. On the other hand, weakly con�icting preferences can easily arise even when the reward

space is multidimensional as the following example illustrates.

Example 14 Weakly Con�icting Preferences. For each s 2 S; �(s) = R = Rn+: For each
a 2 A and each s 2 S; u(s; 0; a) � u(s; r; a) for all r 2 R; and l(s; �; a) is strictly increasing coordi-
natewise. Weakly con�icting preferences holds because for any r; r0 2 Rn+ with u(s; r; a) > u(s; r0; a),

either l (s; r0; a) < l (s; r; a) ; and we are done, or set r00 as an appropriate convex combination of r

and 0.

Corollary 2 Suppose that (i) R � RN ; (ii) �(�) is convex-valued, (iii) u (s; r; a) = v (s; r)� c (s; a)
is concave in r 2 �(s), (iv) l (s; r; a) is convex in r 2 �(s); and (v) the principal and agent have

weakly con�icting preferences over rewards. Under the hypotheses of Theorem 2, if some contract

� 2 K achieves a �nite minimum expected loss for the principal subject to implementing a 2 A,

then some deterministic contract does so as well. Moreover, if for P (�ja)-a.e. s 2 S; either

u(s; �; a) is strictly concave or l(s; �; a) is strictly convex,25 then the loss minimizing contract subject
to implementing a is unique and deterministic, each up to events of P (�ja) measure zero.

Proof of Corollary 2. For each s 2 S let �r(s) =
R
R rd�(rjs) 2 �(s); and choose r̂(s) 2 �(s) to

be any certainty equivalent for the agent, i.e., such that u(s; r̂(s); a) =
R
R u(s; r; a)d�(rjs): Because

�(s) is closed and convex, such an r̂(s) always exists.

Because u is concave in r;

u(s; �r(s); a) �
Z
R
u(s; r; a)d�(rjs) = u(s; r̂(s); a): (16)

If the inequality in (16) is strict, then because preferences are weakly con�icting, there exists

~r(s) 2 �(s) such that
u(s; ~r(s); a) = u(s; r̂(s); a)

25Which of the two alternatives occurs is allowed to depend upon s 2 S:
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and

l(s; ~r(s); a) < l(s; �r(s); a) �
Z
R
l(s; r; a)d�(rjs);

where the last weak inequality follows because l is convex in r: Theorem 2 therefore implies

that the inequality in (16) can be strict for at most a P (�ja)-measure zero subset of S:26 Con-
sequently, u(s; �r(s); a) =

R
R u(s; r; a)d�(rjs) for P (�ja)-a.e. s 2 S and therefore, again by Theorem

2, l(s; �r(s); a) =
R
R l(s; r; a)d�(rjs) for P (�ja)-a.e. s 2 S. These two equalities imply that the de-

terministic contract �r(�) implements a; proving the �rst part of the result, and Jensen�s inequality
applied to the two equalities proves the deterministic piece of the second part. For the uniqueness

piece of the second part, simply note that if two deterministic contracts are optimal and di¤er

on a set of P (�ja) positive measure, the randomized contract where after any signal a fair coin
determines which of the two speci�ed rewards is given to the agent, is also optimal, contradicting

the deterministic piece of the second part.

Randomization can be necessary for optimality for example when risk-aversion fails over some

range of rewards or when the reward and signal spaces display some discreteness. In the latter case,

randomization convexi�es the set of rewards.27

Example 15 Promotion. The action space (e¤ort) is A = [0; 0:5]; the reward space is R =

fP;Dg; i.e., �promote (P )�and �don�t promote (D),�and the signal space is S = fsucceed; failg:
Suppose u (s; r; a) = vr � 1

2a
2 and l(s; r; a) = cr � �s; where

1
2 � vP � vD > 0; cP > cD = 0;

�succeed = 1 and �fail = 0: Finally, suppose that Pr (succeedja) = a: Any cost minimizing contract

for e¤ort level a uses D in the event of �fail�; and P with some probability � given �succeed�: The

e¤ort level implemented is then

a = � (vP � vD) ; (17)

with expected cost to the principal

a�cP = a2
cP

vP � vD
:

Hence, the principal chooses a 2 [0; 0:5] to maximize

a� a2 cP
vP � vD

;

so that the optimal e¤ort level is

a� =
vP � vD
2cP

:

Comparing, with (17);

� =
1

2cP
:

So, for cP > 1
2 ; optimization requires randomization.

26Note that the functions on the right-hand and left-hand sides of (16) are measurable.
27When preferences are not additively separable, the agent may be risk averse after one action but risk neutral after

another, so that randomization is helpful in dissuading the �rst action. In a more general setting with a non-trivial
type space, randomization can easily be optimal as a way of inducing separation between types.
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Even when there is randomization, Theorem 2 has strong implications. For example, assume

that R = RN ; that rewards on the n-th coordinate can be continuously varied, and that the princi-
pal�s losses are linear in that coordinate. Then, except in so much as the feasibility constraint � (s)

precludes it, the principal will equalize the marginal utility of this reward across any randomization

taking place among other coordinates. The following example illustrates.

Example 16 Modify Example 15 so that the reward space is fP;Dg � [0;1] (for example, the
principal can also pay cash, m). Assume that u (s; P;m) = vP +2

p
m; and u (s;D;m) = vD+

p
m;

where vP ; vD 2 R. Let l (s; P;m) = cP + m and l (s;D;m) = cD + m; where cP ; cD 2 R. An
optimal contract consists of the probability � of promotion given success, along with a speci�cation,

(mP ;mD) ; of how much cash the agent receives in the event of success conditional on being promoted

or not. Given (� ;mP ;mD) the agent chooses

a = � (vP � vD) + �2
p
mP + (1� �)

p
mD;

and, as before, for appropriate cP ; the principal�s optimum will involve � 2 (0; 1) : But, the concavity
of utility in the monetary coordinate of utility together with Theorem 2 also imply

1
p
mP

=
1

2

1
p
mD

;

so that the agent�s marginal utility of income, in the event of success, is equalized across whether

he is promoted or not. Indeed, if this were not the case then increasing payments where marginal

utility is low and decreasing them where marginal utility is high can be done in a way that maintains

the same expected utility for the agent,and yet reduces the principal�s losses.

Our second result on the redundancy of randomization is based upon a puri�cation result due

to Dvoretsky et. al. (1951). The version of their result used here is distinct from, although related

to, the version used in the puri�cation literature in game theory (see Milgrom and Weber (1985)).28

We do not impose any of the assumptions from previous sections here. We require only that u(�)
and l(�) are real-valued measurable functions on ��A�T and that �(s) = R for all s 2 S: However,
in contrast to the previous results, we require that A and T are �nite, and that R is compact.

Theorem 3 If A and T are �nite, R is a compact metric space, �(s) = R for all s 2 S; and

P (�ja; t) is atomless for every (a; t) 2 A�T; then either the principal�s problem, (1), has a solution
that is deterministic, or it has no solution at all. Consequently, under the additional hypotheses of

Theorem 1, the principal�s problem has a deterministic solution.

Proof: Suppose that (�0;a0) is an incentive compatible mechanism. Let w1(�) = u(�) and w2(�) =
l(�): Consider �rst the case in which R is �nite. Following Dvoretsky, Wald, and Wolfowitz (1951),
28For other techniques toward puri�cation in games, see Aumann et. al. (1983).
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henceforth DWW, for each r 2 R; a 2 A; t0 2 T; and n 2 f1; 2g; let

�(r;a;t0;n)(B) =

Z
B
wn(s; r; a; t

0)dP (sja; t0);

for every Borel subset B of S: Then f�(r;a;t0;n)g is a �nite collection of atomless measures. Con-
sequently, by Theorem 2.1 in DWW, for each t 2 T there is a deterministic contract ��t such

that Z
S
��t (rjs)d�(r;a;t0;n)(s) =

Z
S
�0t (rjs)d�(r;a;t0;n)(s);

for each r 2 R; a 2 A, t0 2 T; and n 2 f1; 2g:
Hence, for each a 2 A; t; t0 2 T and n 2 f1; 2g;

X
r2R

Z
S
��t (rjs)wn(s; r; a; t0)dP (sja; t0) =

X
r2R

Z
S
�0t (rjs)wn(s; r; a; t0)dP (sja; t0):

But this is equivalent to

U(��t ; a; t
0) = U(�0t ; a; t

0) and L(��t ; a; t
0) = L(�0t ; a; t

0);

for each a 2 A; and t; t0 2 T; from which it follows that the deterministic mechanism (��;a0)

is incentive compatible and yields the same losses to the principal as the incentive compatible

mechanism (�0;a0): The desired conclusions follow.

The remaining case, in which R is a compact metric space, is handled as in Section 4 of DWW.

7 Appendix.

Lemma 1 Suppose that X is a separable metric space, that H is a probability measure on the Borel

subsets of X whose support is X; and that gn is a sequence of integrable [0;+1]-valued functions
on X such that

R
X gndH is bounded. Then there is a subsequence nj and a countable dense subset

X0 of X such that,

(i) limj gnj (x) is �nite for every x 2 X0; and

(ii) For every x 2 X there is a sequence xm in X0 converging to x such that

lim
m
lim
j
gnj (xm) � limjgnj (x):

It is implicit in (i) and (ii) when writing �lim�that the associated limit (which may be +1) exists.

Proof. Let � be an upper bound for the sequence
R
X gndH: Because the support of H is X;
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H(U) > 0 for any open subset U of X: Hence, setting � = 1=H(U) gives

inf
x2U

limngn(x) � �limn

Z
U
gndH � �limn

Z
X
gndH � �� <1; (18)

where the �rst inequality uses Fatou�s Lemma.

Fix a countable dense subset of X and let U1; U2; ::: be a list of the countably many open subsets

of X that are open balls with rational radii centered around points in the countable dense set. We

now construct X0 inductively. First choose x1 2 U1 such that,

limngn(x1)� 1 � inf
x2U1

limngn(x);

and choose fn1(j)gj ; a subsequence of fng; such that limj gn1(j)(x1) = limngn(x1):
Next, choose x2 2 U2 such that,

limjgn1(j)(x2)�
1

2
� inf
x2U2

limjgn1(j)(x);

and choose fn2(j)gj ; a subsequence of fn1(j)gj ; such that limj gn2(j)(x2) = limjgn1(j)(x2):
Continuing this process, for each k; choose xk 2 Uk such that,

limjgnk�1(j)(xk)�
1

k
� inf
x2Uk

limjgnk�1(j)(x); (19)

and choose fnk(j)gj ; a subsequence of fnk�1(j)gj ; such that limj gnk(j)(xk) = limjgnk�1(j)(xk):
We claim that (i) and (ii) are satis�ed by setting X0 = fx1; x2; :::g and de�ning nj = nj(j).

Indeed, because for each k; fnjgj�k is a subsequence of fnk(j)gj�1; limj gnj (xk) exists and is equal
to limj gnk(j)(xk): Moreover, both limits are �nite in view of their construction and (18). Hence,

(i) is satis�ed. To see that (ii) is also satis�ed, consider any x 2 X: Choose Uk containing x: Then,
limj gnj (xk) = limjgnk�1(j)(xk) and (19) imply that,

lim
j
gnj (xk)�

1

k
� inf
x02Uk

limjgnk�1(j)(x
0) � limjgnj (x); (20)

where the second inequality follows because fnjgj�k�1 is a subsequence of fnk�1(j)gj�1 and because
x 2 Uk: By considering a sequence of Uk containing x such that the associated sequence of xk

converges to x as k ! 1; (ii) follows by taking the limit over an appropriate subsequence of fkg
in the left-hand side of (20).

Finally, because fx1; x2; :::g is, by construction, dense in X; the result follows.

Proof of Theorem 2 If (15) fails, there is a measurable subset Ŝ of S; � > 0; and (because

expected losses are �nite under (�; a)) M < 1; such that P (Ŝja) > 0 and for every s 2 Ŝ, some

�s 2 �(� (s)) satis�es Z
l (s; r; a) d�s �

Z
l (s; r; a) d� (rjs)� � < M; (21)
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and Z
u (s; r; a) d�s =

Z
u (s; r; a) d� (rjs) : (22)

By Lusin�s theorem (see, e.g., Aliprantis and Border, Theorem 12.8, p. 438), we may further

suppose that Ŝ is compact and that both
R
l (s; r; a) d� (rjs) and

R
u (s; r; a) d� (rjs) are continuous

in s on Ŝ:

Let  u(s) =
R
u (s; r; a) d� (rjs) and let  l(s) =

R
l (s; r; a) d� (rjs)��:De�ne the correspondence

F : Ŝ � �(R) by,

F (s) = f� 2 �(� (s)) :
Z
u (s; r; a) d� =  u(s) and

Z
l (s; r; a) d� �  l(s)g:

If F admits a measurable selection �̂ (�js) ; where the sigma algebra on Ŝ is Ŝ \ B(S); then we
may de�ne

�̂ (rjs) =
(
� (�js) ; if s 2 SnŜ
�̂(�js); otherwise.

Then �̂ 2 K:29 But then, (22) and the additive separability of u imply that �̂ implements a: Yet,
(21) implies that �̂ yields the principal strictly lower losses than � - contradicting that � is optimal.

Hence, it su¢ ces to show that F admits a selection that is Ŝ \ B(S)-measurable.
Both Ŝ and �(R) are Polish, the latter because R is Polish (see Billingsley, (1999) Theorem

6.8, p. 73). By Wagner (1977) Theorem 4.1 and the discussion therein (p.863) that measurability

of F implies weak measurability, it su¢ ces to show that F has a closed graph.

So, suppose �n 2 F (sn), sn ! s�; and �n ! ��. We must show that �� 2 F (s�): Because Ŝ is
closed, s� 2 Ŝ: Because � is closed, �� 2 �(�(s�)):30 Similar to steps 3 and 4 in the proof of Proposi-
tion 1 (but treating sn here as an there) we have that (step 3)

R
l(s�; r; a)d�� � limn

R
l(sn; r; a)d�n

and (step 4) limn
R
u(sn; r; a)d�n =

R
u(s�; r; a)d��: Hence, the continuity of  u and  l on Ŝ imply

that �� 2 F (s�):
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