
Internet Appendix for �Liquidity Cycles and Make/Take Fees in
Electronic Markets�by T. Foucault, O. Kadan, and E. Kandel

In this appendix we provide additional results and proofs mentioned in the paper but unreported

there for brevity.

A Proof of Corollary 1

Recall that V� is such that:
V� = h(V�;M;N; z); (A.1)

where h(�) is de�ned in Equation (35). It is immediate that h(�) increases in M , decreases in N ,
and increases in z. As h(�) decreases in V�, we have

@V�
@M

> 0; (A.2)

@V�
@N

< 0; (A.3)

@V�
@z

> 0: (A.4)

Now, using Equations (12) and (A.3), we conclude that

@��i
@N

=
�@V�
@N � ((M + 1) + (M � 1)V�)

(1 + V�)3

�
�m
M�

�
> 0:

Hence, @��
�

@N > 0. Furthermore, since ��� = ���

V� ; we have (using (A.3)) that
@���

@N > 0. A similar

argument shows that @���

@M > 0 and @���

@M > 0:

Now, consider the e¤ect of a change in � on market-takers�monitoring intensities. We have

(see Proposition 2),

��j = �(V�)
�
�t
N


�
;

where

�(V�) =
�
V� ((1 + V�)N � 1)

(1 + V�)2

�
:

Thus
@��j
@�

=

�
@�(V�)
@V�

@V�
@z

@z

@�

��
�t
N


�
We have @�(V�)

@V� > 0. Moreover @V�
@z > 0 and @z

@� < 0. Thus

@��j
@�

< 0,

which implies that @��

@� < 0. Now, since ��� = V����, we have

@���

@�
= V�@��

�

@�
+
@V�
@z

@z

@�
��� < 0;
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which implies @��i
@� < 0 for all i. The impact of make/take fees on traders�aggregate monitoring

levels is obtained in the same way. The second part of the corollary follows directly from the �rst

part and the de�nition of the trading rate (Equation (4)).

B The Case M = N = 1

When there is one market-maker and one market-taker, we can easily obtain a closed-form solu-

tions for traders�monitoring levels and the optimal make/take fee breakdown.

Claim 1 When M = N = 1, the market-maker�s monitoring level is ��1 =
�
1 + z

1
3

��2
�
�
�m
�

�
and the market-taker�s monitoring level is ��1 =

�
1 + z�

1
3

��2
�
�
�t



�
:

Proof of Claim 1. When M = N = 1, it is immediate that the solution to Equation (14) in

Proposition 2 is V� = z
1
3 . The expressions for traders�monitoring levels are then obtained by

replacing V� by its value in Equations (12) and (13) in Proposition 2.
We now derive the optimal make/take fee breakdown for the platform when M = N = 1:

Claim 2 When M = N = 1, the trading platform optimally allocates its fee �c between the

market-making side and the market-taking side as follows:

c�m = ��
�� �c
1 + r

1
4

and c�t = �c� c�m:

Proof of Claim 2. There is a one-to-one mapping between the fees charged by the trading

platform and the per trade trading pro�ts obtained by the market-making side and the market-

taking side, �m and �t. Thus, instead of using cm and ct as the decision variables of the platform,

we can use �m and �t. Thus, for a �xed �c, we rewrite the platform�s problem as

Max�m;�t
��1�

�
1

��1 + �
�
1

�c;

s:t �t + �m = �:

From Claim 1, we obtain,
��1
��1
= z

1
3 = (

�m
�t




�
)
1
3

and

��1 =
�m
�

1�
1 + z

1
3

�2 :
Thus, we can rewrite the previous optimization problem as

Max�m;z
��1

1 + z
1
3

�c (B.1)

s:t �m

�
1 +




�z

�
= �� �c: (B.2)

and ��1 =
�� �c

�
�
1 + z

1
3

�2 �
1 + 


�z

� : (B.3)
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This problem is equivalent to �nding z that minimizes�
1 + z

1
3

�3 �
� +




z

�
:

The FOC to this problem imposes

� 1
z2

�

 � z

4
3�
��

z
1
3 + 1

�2
= 0:

Hence, the solution is

z =

�



�

� 3
4

= r
3
4 : (B.4)

Using the constraint (B.2), we have,

��m =
�� �c
1 + r

1
4

: (B.5)

The result is then immediate using the fact that c�m = ��m ��.

C The Optimal Level of Total Fees

The platform�s optimization problem can be decomposed into two steps: (i) choose the optimal

make/take fees for a given �c (we solved this problem in the paper); and (ii) choose the optimal

�c. Observe that the optimal make/take fees, (c�m; c
�
t ), increase in �c; and recall that the trading

rate decreases in both the make fee and the take fee (Corollary 1). Thus, in the second step, the

trading platform faces the standard price-quantity trade-o¤: by raising �c, the trading platform

gets a larger revenue per trade but it decreases the rate at which trades occur. The next result

gives the optimal value of �c for the trading platform in the case of a thick market.

Claim 3 In the thick market case, the trading platform maximizes its expected pro�t by setting

its total trading fee at �c = �=2 and by splitting this fee between the two sides as described in

Proposition 3.

In contrast to the make/take fees, the optimal total fee for the platform is independent of

traders� relative monitoring costs and the relative size of the market-making side. Thus, our

results regarding the e¤ect of q, and r hold even if �c is optimally set by the trading platform.

Proof of Claim 3: We �x q > 0; and let N = M
q : From (43) and (44), we obtain that when fees

are set optimally in the thick market case, we have

z =
�m
�t
r = q�

1
3 r

2
3 ;

and,

V1 = (zq)
1
2 = (rq)

1
3 : (C.1)
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Using Corollary 4, Equations (43) and (44) and (C.1) we obtain

�1i =
�� �c

�
�
1 + (qr)

1
3

�2 and �1j =
�� �c



�
1 + (qr)�

1
3

�2 for i; j = 1; 2; ::: (C.2)

Now, for any given M , maximizing R(��; ��)�c is equivalent to maximizing R(��;��)
M �c; which

in turn is equivalent to maximizing ��1
1+V� �c (using Equation (36) and the fact that ��

� = M��1) :

Denote H (�c) � ��1
1+V� : Then, to �nd the optimal total fee �c in the thick market we need to �nd

the limit as M tends to in�nity of

argmax
�c�0

H (�c) �c:

The FOC for a given M is

H (�c) +H0 (�c) �c = 0: (C.3)

Note that H depends on �c only through its dependence on ��1 and V�: It follows that

H0 (�c) = @H
@��1

@��1
@�c

+
@H
@V�

@V�
@�c

=
1

1 + V�
@��1
@�c

� ��1
(1 + V�)2

@V�
@�c

: (C.4)

Since Equation (C.3) holds for any M; we can take the limit as M !1: We have,

lim
M!1

H (�c) = �11
1 + V1 =

�� �c

�
�
1 + (qr)

1
3

�3 (using (C.1) and (C.2)).

From (C.1) and (C.2) it also follows that

lim
M!1

@��1
@�c

=
@�11
@�c

= � 1

�
�
1 + (qr)

1
3

�2 ; and
lim
M!1

@V�
@�c

=
@V1
@�c

= 0.

Thus, from (C.4),

lim
M!1

H0 (�c) = � 1

�
�
1 + (qr)

1
3

�3 :
Hence, in the limit (C.3) becomes

�� �c

�
�
1 + (qr)

1
3

�3 � 1

�
�
1 + (qr)

1
3

�3 �c = 0;
which gives �c = �

2 :

D Optimal Make/Take Fees and the Tick Size

In this section we develop in the detail the analysis that leads to the proof of Proposition 6. We

also provide numerical examples that illustrate the intuition of the e¤ects of the tick size on the

ask price and the make/take fees.
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The �rst step is to analyze how the ask price, a�`(cm; �), depends on the make fee when there

is a positive tick size. The next lemma shows that this price is simply a step function of the make

fee.

Lemma 1 The optimal ask price is an increasing step function of the make fee cm. Speci�cally,

there exists a partition of the interval [ĉm1; ĉm1 + (2` � 1)�(`)] into 2` � 1 segments given by
[ĉmk; ĉmk+1] ; where ĉm1 is the unique solution to the equation O(v0; ĉm1) = O(v0 + �(`); ĉm1),
and ĉmk = ĉm1 + (k � 1)�(`) for k 2 f1; ::; 2`g such that:

1. When cm 2 (ĉmk; ĉmk+1), the optimal ask price is unique and given by a�`(cm; �) = v0+k�(`)

for k 2 f1; ::; 2`� 1g.

2. When cm = ĉmk+1 (k 2 f1; ::; 2(`� 1)g); both v0 + k�(`) and v0 + (k + 1)�(`) are optimal
ask prices, and we can set a�`(cm; �) to any of them.

Proof of Lemma 1: Since � is �xed throughout this proof, we omit the argument for � form

O(a; cm; �) to save space. It is straightforward that the objective function O(a; cm) is concave
in a and that @2O(a;cm)

@a@cm
> 0. Thus O(a; cm) satis�es the Milgrom-Shannon (1994) single-crossing

property (SCP): If O(a0; cm) � O(a; cm) then O(a0; c0m) > O (a; c0m) for all a0 > a and c0m > cm.

Let b�c and d�e be the �oor and ceiling functions, respectively.32 In the case of a zero tick size
(` =1); the solution to the optimization problem (24) is

a�1(cm; �) = v0 + cm + (1� �)(�� c):

As the objective function, O(�; �), is concave in a, the solution to (24) for a �nite `, is

a�`(cm; �) = v0 + k
�(cm; �)�(`);

where

k�(cm; �) 2
� �

cm + (1� �) (�� �c)
�(`)

�
;

�
cm + (1� �) (�� �c)

�(`)

��
:

We �rst show that k�(cm; �); and thereby a�`(cm; �) weakly increase in cm. We proceed by

contradiction. Suppose that cm < c0m and yet k�(cm; �) > k�(c0m; �). As a
�
1(cm; �) < a�1(c

0
m; �),

this is possible only if

k�(cm; �) =

�
cm + (1� �) (�� �c)

�(`)

�
=

�
c0m + (1� �) (�� �c)

�(`)

�
and

k�(c0m; �) =

�
cm + (1� �) (�� �c)

�(`)

�
=

�
c0m + (1� �) (�� �c)

�(`)

�
: (D.1)

32The �oor function maps a real number into the greatest integer below (or equal to) this number, and the ceiling
function maps a real number into the the smallest integer above (or equal to) this number.
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Now, if

k�(cm; �) =

�
cm + (1� �) (�� �c)

�(`)

�
;

then

O
�
v0 +

�
cm + (1� �) (�� �c)

�(`)

�
�(`); cm

�
� O

�
v0 +

�
cm + (1� �) (�� �c)

�(`)

�
�(`); cm

�
:

Thus, using the SCP, we have

O
�
v0 +

�
cm + (1� �) (�� �c)

�(`)

�
�(`); c0m

�
> O

�
v0 +

�
cm + (1� �) (�� �c)

�(`)

�
�(`); c0m

�
;

which implies

O
�
v0 +

�
c0m + (1� �) (�� �c)

�(`)

�
�(`); c0m

�
> O

�
v0 +

�
cm + (1� �) (�� �c)

�(`)

�
�(`); c0m

�
:

But this contradicts (D.1). Thus, k�(cm; �) and a�`(cm; �) weakly increase in cm.

Now let cm = �(1� �)(�� �c) and observe that

v0 +

�
cm + (1� �) (�� �c)

�(`)

�
�(`) = v0 +

�
cm + (1� �) (�� �c)

�(`)

�
�(`) = v0:

Similarly, let �cm = �� (1� �) (�� �c) : Then,

v0 +

�
�cm + (1� �) (�� �c)

�(`)

�
�(`) = v0 +

�
�cm + (1� �) (�� �c)

�(`)

�
�(`)

= v0 + 2`�(`) = v0 + �:

As a�`(cm; �) weakly increases in cm, k
� (cm; �) takes all the values between 0 and 2` as cm goes

from cm to �cm: For k 2 f1; 2; :::2` � 1g let ĉmk 2 (cm; �cm) be the smallest value of cm such that

a�` (cm; �) = v0 + k�(`): Then, for cm 2 (ĉmk; ĉmk+1) we have a�`(cm; �) = v0 + k�(`): Moreover,

by the continuity of O (�; �) we have that

O (v0 + k�(`); ĉmk+1) = O (v0 + (k + 1)�(`); ĉmk+1)

for all k 2 f1; 2; :::2` � 1g. Thus, at the partition points fĉmkg2`�1k=2 ; the optimal ask price can

be chosen as either v0 + k�(`) or v0 + (k + 1)�(`): Furthermore, the �rst partition point ĉm1 is

determined uniquely by the indi¤erence condition

O (v0; ĉm1) = O (v0 +�(`); ĉm1) :

That is, ĉm1 is the unique solution to

(�� �c+ ĉm1)� (�ĉm1)1�� = (���(`)� �c+ ĉm1)� (�(`)� ĉm1)1�� ;

which implies that ĉm1 < 0.
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Now, note that for any number u;

O (a; cm) = O (a+ u; cm + u) :

In particular, setting u = �(`) ;

O (v0 + k�(`) ; cm) = O (v0 + (k + 1)� (`) ; cm +�(`)) :

Thus, setting a�`(cm; �) = v0 + k�(`) is optimal given cm 2 [ĉmk; ĉmk+1] if and only if setting
a�` (cm; �) = v0+(k + 1)� (`) is optimal given cm 2 [ĉmk +�(`) ; ĉmk+1 +�(`)] : Hence, ĉmk+1 =
ĉmk +�(`) : In particular, ĉmk = ĉm1 + (k � 1)�(`) for all k = 1; :::; 2`:

Lemma 1 says that the interval of possible make-fees is partitioned into 2` � 1 segments,
inducing a weakly increasing step function of optimal ask prices. The optimal ask price a�`(cm; �)

is determined uniquely on the interior of the segments, whereas at the partition points we are

free to choose between the left or the right ask prices, as both yield exactly the same gains from

trade to makers and takers. Note that Lemma 1 only covers the case in which the make fee is in

the interval [ĉm1; ĉm1+ (2`� 1)�(`)]. In this case, a�` (cm; �) is in the range of traders�valuations
[v0; v0 + �]. For make fees outside this range (e.g., very large rebates for one side), the price

a�` (cm; �) will be outside the range of traders�valuations [v0; v0 + �].
33 Our results hold in this

case as well, but it is natural to focus the attention on parameters such that the ask price is

always in the range [v0; v0 + �].34

To better understand Lemma 1 consider the following numerical example. Set v0 = 800,

� = 50, �c = 1=10 (all monetary amounts are in cents): Moreover � = 0:5. Hence, market-makers

and market-takers split the gains from trade equally when the tick size is zero. Finally ` = 2, i.e.,

the tick size is �(2) = �
4 = $18 (12.5 cents). Figure 1 illustrates Lemma 1 for these parameter

values.

The partition points in this case are ĉm1 = �18:7, ĉm2 = �6:2, and ĉm3 = 6:3. The solid

step-function in the top graph of Figure 1 depicts the optimal ask price a�`(cm; �) as a function

of cm when the tick size is $18 (` = 2). Between the partition points the optimal price is unique,

while at the partition points one can choose either the left or the right price on the grid.35 The

45� thin line in the graph depicts the optimal ask price as as a function of cm when the tick size

is zero (` =1).
Suppose that cm = 0:03 cents. With a zero tick-size (` =1), the ask price is a�1(0:03; 0:5) =

824:98 and market-makers obtain 50% of the gains from trade. In contrast, with a $1=8 tick size
33For instance, if cm < �(1� �)(�� c) then a�1(cm; �) < v0 (see Equation (25)).
34 Indeed, suppose that market-makers receive a very large rebate so that they agree to sell at an ask price is

less than v0. By symmetry they would be willing to buy at a bid price higher than v0, which would lead to an
immediate arbitrage opportunity.
35For example, if the make-fee is between -6.2 cents and 6.3 cents then the optimal ask price is unique and equal

to 825 cents. However, if the make fee is exactly 6.3 cents, then the same division of gains from trade is obtained
when the ask price is 825 or 837.5 cents.
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(` = 2), the ask price is a�2(0:03; 0:5) = 825; as re�ected in the top graph of Figure 1. Indeed,

this is the price on the grid that yields the division of gains from trade which is the closest to

that obtained in the absence of a minimum price variation (with this price market-makers obtain

49:95% of the total gains from trade). Now suppose that the make fee decreases by 0:01 cents.

With no minimum price variation, the ask price would decrease by the same amount, leaving

unchanged the 50/50 split of the gains from trade between makers and takers. However, when

the tick size is greater than 0:01 cents, the change in the make fee cannot be fully neutralized

and an ask price of 825 is still the price that yields the division of gains from trade which is the

closest to that obtained in absence of the tick size. More generally, traders keep trading at 825 as

long as the make fee does not exceed 6:3 cents. At this point, traders are indi¤erent between an

ask price of 825 and an ask price of 837.5, and so both are optimal. Once the make fee exceeds

6:3 cents, the optimal ask price becomes 837.5 cents. To sum up, the required minimum price

variation renders the ask price less elastic to a change in the make fee, as shown in the top graph

of Figure 1.

As a consequence, when the tick size is strictly positive, market-makers�pro�ts depend on the

make fee charged by the platform, as shown in the bottom graph of Figure 1. Consider again the

previous numerical example and suppose that cm = 0:03. In this case, as explained previously,

the ask price is a�4(0:03; 0:5) = 825 cents. Market-makers earn a surplus of �m = 24:77 cents

and market-takers earn a surplus of �t = 25:13 cents. If instead the platform o¤ers a rebate of

1 cent to the market-makers (cm = �1), the price remains unchanged but the market-makers
now have a higher surplus (25:8 cents) and market-takers a lower surplus (24:1 cents). Thus,

market-makers (market-takers) will monitor the market more (less) intensively in the second case

and the trading rate will be a¤ected, as in the baseline model. One di¤erence compared to the

baseline model is that the make/take fee breakdown that maximizes the trading rate is no longer

unique, as shown in the next lemma.

Lemma 2 The trading rate when the platform chooses a make fee c�m 2 [ĉmk; ĉmk+1] is equal to
the trading rate when the platform sets the make fee at c

��
m = c�m + n�(`) for all integers n.

Proof of Lemma 2: Suppose that (c�m; c
�
t ) is a make/take fee breakdown that maximizes the

trading rate with c�m 2 [ĉmk; ĉmk+1) for some k 2 (1; 2` � 1). With this fee, traders�pro�ts per
trade are

�m(a
�
`(c

�
m; �); c

�
m) = k�(`)� c�m;

�t(a
�
` (c

�
m; �); c

�
t ) = �� �c� k�(`) + c�m

Now, consider the following make fee: c��m = c�m+n�(`) for some integer n. We have c
��
m 2 [ĉmk+n;

ĉmk+n+1) since ĉmk = ĉm1 + (k � 1)�(`). Thus, a�`(cm; �) = v0 + (k + n)�(`). We conclude that
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Figure 1: E¤ect of the make fee on the ask price and market-makers�per trade pro�t

traders�per trade pro�ts with a fee equal to c
��
m are

�m(a
�
`(c

��
m ; �); c

��
m ) = k�(`)� c�m;

�t(a
�
`(c

��
m ; �); c

��
t ) = �� �c� k�(`) + c�m:

Thus, the fees c�m and c
��
m result in exactly the same division of gains from trade between market-

makers and market-takers. As a consequence, monitoring intensities are identical in both cases

and both fees result in the same trading rate. Thus, if (c�m; c
�
t ) maximizes the trading rate then

(c��m ; c
��
t ) also maximizes the trading rate.

The intuition for this result is as follows. Suppose that initially the platform picks its fee

in [ĉmk; ĉmk+1]. If the platform adds an integer number of ticks to its make-fee then traders

neutralize the e¤ect of this shift in the make fee by adjusting the transaction price by exactly the

same number of ticks (Lemma 1). As a consequence, the division of gains from trade between

makers and takers is unchanged and traders�monitoring intensities are unchanged as well. Thus,

the trading rate is identical in both situations.

We can therefore arbitrarily choose the interval [ĉmk; ĉmk+1] in which the platform picks its

make fee. We �nd it convenient to set k = `. Indeed, in this case, the ask price at which

trades take place is independent of ` since a�`(cm; �) = v0 + `�(`) = v0 + � (as �(`) = �=`).

Proposition 6 then follows immediately. Indeed, the optimization problem of the platform is
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identical to its problem in the baseline case, with the additional constraint that cm 2 [ĉm`;

ĉm`+1]; where ĉm`+1 = ĉm` + �(`). Hence, if the optimal solution in the baseline case satis�es

the constraint, then it also solves the constrained problem. This implies that:

c�m(`; r; q) = c�m if ĉm` < c�m < ĉm`+1:

If instead, the optimal solution in the baseline case does not satisfy the constraint then the

constraint binds and the optimal solution for the platform is a corner solution as claimed in

Proposition 6.

E Algorithmic Trading and Welfare

In Section 6.2 in the paper, we claim that, for �xed trading fees, a reduction in traders�monitoring

costs is a Pareto improvement (i.e., results in a higher expected pro�t for each type of participant).

We now provide a proof of this claim.

Claim 4 For �xed trading fees, the total expected pro�t of each participant (market-makers,

market-takers, and the trading platform), and therefore, aggregate welfare increases when � or 


decreases.

Proof of Claim 4: Consider �rst the aggregate expected pro�t for market-takers. We have:

�t(�
�
1; ::; �

�
j ; :::; �

�
N ; �

�; 
; �; cm; ct) =
P

j �jt(�
�
j ; ��

�; 
; �;M;N):

Thus,

d�t
d


=
P

j

 
@�jt
@��j

@��j
@


+
@�jt
@���

@���

@

+
@�jt
@


!
;

d�t
d�

=
P

j

 
@�jt
@��j

@��j
@�

+
@�jt
@���

@���

@�
+
@�jt
@�

!
:

Now, the envelope theorem implies that @�jt
@��j

= 0 for all j. Moreover, the cross-side complemen-

tarity implies @�jt
@��� > 0 for all j; and Corollary 1 yields @���

@
 < 0 and @���

@� < 0. Last, for all j;
@�jt
@
 = �1

2

�
��j

�2
< 0 and @�jt

@� = 0. Thus, d�td
 < 0 and d�t
d� < 0. This establishes the �rst part

of Claim 4 for the market-taking side. The proof for the market-making side is parallel. Last, we

have proved in Corollary 1 in the paper that the trading rate decreases when � or 
 increases. It

follows that the expected pro�t of the platform decreases with � or 
.
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F Stochastic Needs for Trading

We now provide a detailed analysis of our model when market-takers receive orders from clients

at stochastic points in time, as explained in Section 6.1 of the paper. Recall that in this extension,

the total gains from trade for the market-maker and the market-taker when a transaction takes

place on the platform is � = �� c� (1��)(���). We assume that � � 0, i.e., c � �� (1��)�
as otherwise at least one side would lose money in each transaction (and would therefore not

participate to the market). For simplicity, we focus on the case M = N = 1:

Monitoring Decisions with Fixed Fees

As in the baseline model, the �rst step is to analyze traders�monitoring decisions for �xed

trading fees. As M = N = 1, we denote the market-maker�s monitoring intensity by � and the

market-taker�s monitoring intensity by � .

Using the expression for the trading rate given in Equation (23) in the paper, we have that

the objective function of the market-maker is

�m = �m � R (�; � ; �)�
1

2
��2 =

�m
1
� +

1
� +

1
�

� 1
2
��2

and the objective function of the market-taker is

�t =
�t

1
� +

1
� +

1
�

� 1
2

�2:

Hence, the �rst order conditions for the market-maker and market-taker are

��3 =
�m�

1
� +

1
� +

1
�

�2 (F.1)


�3 =
�t�

1
� +

1
� +

1
�

�2 : (F.2)

We conclude that
�

�
=

�
�m
�t




�

� 1
3

= z
1
3 : (F.3)

Using this observation and Equation (F.1), we have that the equilibrium monitoring intensity for

the market-maker, ��, solves

��3
�
1

��

�
1 + z

1
3

�
+
1

�

�2
= �m: (F.4)

That is

�
�
1 + z

1
3

�2
+
2�2

�

�
1 + z

1
3

�
+
�3

�2
=
�m
�
: (F.5)

Similarly, the equilibrium intensity for the market-taker, ��, solves

�
�
1 + z�

1
3

�2
+
2�2

�

�
1 + z�

1
3

�
+
�3

�2
=
�t


: (F.6)
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Figure 2: Equilibrium Monitoring Levels and Clients�arrival rate, �.

It is easy to see that the cubic equations (F.5) and (F.6) have a unique positive solution, (��; ��).

Furthermore, as � gets larger, traders�monitoring levels converge to their values in the baseline

model. Speci�cally, (F.5) and (F.6) yield,

lim
�!1

�� =
�
1 + z

1
3

��2
�
�
�m
�

�
; and

lim
�!1

�� =
�
1 + z�

1
3

��2
�
�
�t



�
:

This convergence is quite fast as illustrated in Figure 2 where we solve Equations (F.5) and (F.6)

numerically for speci�c parameters of the model, � = 25 cents, � = 12:5 cents, �c = 0:1 cent,


 = � = 1. The upward sloping lines depict �� and �� as a function of �; whereas the two

horizontal lines depict traders�monitoring levels in the baseline case (� =1).
Applying the implicit function theorem, we can use Equations (F.5) and (F.6) to show that

all of the main conclusions in the baseline model still hold in this more general case for any � > 0:

To start, we will illustrate that the complementarity results in Corollary 1 hold in this case.

Claim 5 The results of Corollary 1 hold for any � > 0:

Proof of Claim 5: We provide the proof that @��

@
 < 0 and @��

@
 < 0: The proof of the other

results in Corollary 1 is similar.

Denote

 � 1 + z
1
3 :
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Then,

@ 

@�m
=

@

@�m

 
1 +

�
�m
�t




�

� 1
3

!
=
1

3

�
�m
�t




�

�� 2
3 


�

1

�t
> 0; and

@ 

@�t
=

@

@�t

 
1 +

�
�m
�t




�

� 1
3

!
= �1

3

�
�m
�t




�

�� 2
3 


�

�m
�2t

< 0:

Furthermore,
@ 

@

=
1

3
z�

1
3
�m
�t

1

�
> 0: (F.7)

We can rewrite (F.5) as

� 2 +
2�2

�
 +

�3

�2
� �m

�
= 0: (F.8)

Implicitly di¤erentiating (F.8) by 
 gives

@�

@

 2 + 2 �

@ 

@

+
4�

�
 
@�

@

+
2�2

�

@ 

@

+
3�2

�2
@�

@

= 0:

Hence,

@��

@

= �

2 �� @ @
 +
2��2

�
@ 
@


 2 + 4��

�  + 2��2

�

< 0;

where the inequality follows from (F.7). Also, using (F.3),

@��

@

=
@��

@

z�

1
3 � 1

3
��z�

2
3
@z

@

< 0:

as required.

Now we derive the optimal pricing policy of the platform for all values of �, that is we provide

a proof of Proposition 4 in the paper.

Claim 6 Suppose c < �� (1� �)�. For all parameter values, the optimal make/take fee break-
down does not depend on �. Moreover, in the thick market case, the optimal make and take fees

are

c�m = ��
�

1 + r
1
4

and c�t = �c� c�m:

where � � �m + �t = (�� c)� (1� �)(���).

Proof of Claim 6: Remember that �m = � � cm and �t = �(� � �) � ct. Thus, there is a

one-to-one mapping between traders�pro�ts when a trade takes place and the make/take fees.

For this reason, as in the baseline model, for a �xed �c, we can write the platform�s problem as

Max�m;�tR(��; ��)c (F.9)

s:t �t + �m = �:
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Let w be the fraction of the total gains from trade that accrues to the market-taker, i.e.,

w =
�t
�
: (F.10)

In equilibrium, R(��; ��) = 1
1
��+

1
��+

1
�

=
�
1
��

�
1 + z

1
3

�
+ 1

�

��1
, where the second equality follows

from Equation (F.3). Moreover, using Equation (F.4), we deduce that

�
1

��

�
1 + z

1
3

�
+
1

�

�2
=

�m
���3

=
(1� w)�
� � ��3 (F.11)

We conclude that the optimization problem of the platform, F.9, is therefore equivalent to

Minw
(1� w)
��3

: (F.12)

Recall that �� is the unique solution of Equation (F.4). Clearly, this solution is a function of z.

Alternatively it can be written as a function of w since

z =
1� w
w




�
:

Using this observation and writing the �rst order condition for the optimization problem (F.12),

we deduce that the optimal w for the platform solves

�� + 3 (1� w�) @�
�

@w
jw=w� = 0: (F.13)

The L.H.S of this Equation depends on � since �� is also a function of � (see (F.5)). Yet, we now

show that the value of w that solves Equation (F.13) does not depend on �. To see this, we �rst

rewrite Equation (F.4) as  
1 + z

1
3

��
+
1

�

!2
� (1� w)�

���3
= 0:

Then, using implicit di¤erentiation with respect to w, we deduce that

2

 
1 + z

1
3

��
+
1

�

! 1
3z
� 2
3
@z
@w�

� �
�
1 + z

1
3

�
@��

@w

��2
= ��

�
�
�� + 3 (1� w) @�

�

@w

��4
: (F.14)

Using Equation (F.13), we deduce that the RHS of this Equation is zero when w = w�. Hence,

at w�, Equation (F.14) simpli�es to

@��

@w
jw=w� =

1
3z
� 2
3
@z
@w�

�

1 + z
1
3

: (F.15)

Replacing @��

@w jw=w� by this expression in Equation (F.13) we deduce that

�� + 3 (1� w�)
1
3z
� 2
3
@z
@w�

�

1 + z
1
3

= 0:
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That is,

1 + (1� w�)
z�

2
3
@z
@w

1 + z
1
3

= 0:

As z = 1�w�
w�



� , this Equation implicitly characterizes w

�. It does not depend on �. We deduce

that the optimal make/take fee breakdown for the platform (which is �xed by w�) does not

depend on �, as claimed.

Recall that, in Claim 2 in this Internet Appendix, we have derived the optimal make and take

fees for the platform when M = N = 1 and � is in�nite. We deduce from this characterization

that

w� =
r
1
4

1 + r
1
4

: (F.16)

Moreover, we deduce from Equation (F.10) that the optimal make/take fee breakdown is such

that

�t = w�(�� c� (1� �)(���));

that is

c�t = (���)(1� (1� �)(1� w�))� w�(�� c).

Using Equation (F.16) and the fact c�t + c
�
m = c, we deduce that

c�m = ��
�

1 + r
1
4

:
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