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Abstract

We provide general conditions under which principal-agent problems with either one
or multiple agents admit mechanisms that are optimal for the principal. Our results
cover as special cases pure moral hazard and pure adverse selection. We allow multi-
dimensional types, actions, and signals, as well as both financial and non-financial
rewards. Our results extend to situations in which there are ex-ante or interim re-
strictions on the mechanism, and allow the principal to have decisions in addition to
choosing the agent’s contract. Beyond measurability, we require no a priori restric-
tions on the space of mechanisms. It is not unusual for randomization to be necessary
for optimality and so it (should be and) is permitted. Randomization also plays an
essential role in our proof. We also provide conditions under which some forms of
randomization are unnecessary.

1 Introduction

A principal wishes to incentivize a group of agents to behave optimally from her point of

view. Each agent has private information summarized by his “type”and can take an action

that the principal cannot directly observe. However, the principal can observe signals whose

distribution depends on the agents’types and actions, and can choose (possibly randomly)

rewards for the agents. This principal-agent setting is quite general, incorporating as special

cases the case of a single agent, pure moral-hazard (one possible type), pure adverse selection

(one possible action) and settings with both, as for example, a health insurance provider that
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worries not only about what the agents may know about their health but also about any

actions the agents may take that affect their health.1

The purpose of this paper is to provide general conditions under which an optimal mech-

anism for the principal exists. By the revelation principle (Myerson 1982), it is without loss

of generality to restrict attention to mechanisms of the following form. First, the agents

each privately report their type. Given the reported types, the mechanism privately rec-

ommends (possibly randomly) an action for each agent to take. Then, simultaneously, the

agents choose their actions and the mechanism specifies the agents’contracts - mappings

from signals into (possibly randomized) rewards (the specified contracts can depend on the

vectors of reported types and recommended actions). Signals are then generated with distri-

bution determined by the true types and actions of the agents. Given the signals, the agents’

reward is then generated according to the contracts.

Existence of an optimal mechanism in such settings is a significant question. Principal-

agent problems are central to economics.2 Moreover, it is possible in many principal-agent

problems to derive useful predictions about the environment using a partial characterization

of an optimal solution (e.g. through first-order conditions). But, none of this is relevant

unless one knows that an optimal solution exists.3 So it is troubling that Mirrlees (1999)

provides an example of a surprisingly simple economic setting (a single agent, pure moral

hazard, logarithmic utility, normally distributed signals) in which an optimal mechanism

does not in fact exist.4

To cover a wide array of economic settings, we permit types, actions, signals, and rewards

to be multi-dimensional and we impose no particular order structure. We do not rely on (but

permit) the usual structure of separability of utility in income and effort and the monotone

likelihood ratio property that permeates this literature. The signal space can describe mul-

tiple dimensions, such as which product the salesperson sold and what price was negotiated,

and the reward space can similarly include whether the agent is promoted, how much he is

paid, and the desirability of his offi ce. The utility of the agents and the principal can depend

in a general manner (with appropriate continuity) on the types, actions, signal, and reward.

The principal and agents can have common or opposing interests or anything in between.

We permit the utility of the agents and the disutility (henceforth loss) of the principal to

1Previous versions of this paper considered only the case of a single agent. We are grateful to a referee
for suggesting that we think harder about the multi-agent case.

2See Laffont and Martimort (2002) for a wealth of examples of the use of the principal agent model in
moral hazard, adverse selection, and mixed settings.

3In particular, first-order conditions are not applicable and, therefore, comparative statics results become
virtually impossible to obtain.

4See also Moroni and Swinkels (2013) for a distinct class of counter-examples to existence in a moral
hazard problem that do not depend on an unbounded likelihood ratio, but rather on the behavior of risk
aversion as utility diverges to negative infinity.
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be unbounded above. Signal supports can vary with the agents’actions and types and can

contain atoms.

For simplicity, we set up our baseline model for the case of a single agent and establish

our main existence result (Theorem 4.11) for this case. We then show how the single-agent

case extends naturally to a setting with multiple agents. So, from this point forward, we

will, for the most part, couch all of our discussion within the single-agent context until we

reach the multi-agent model in Section 13.

The key to our existence results is to associate with each incentive compatible mechanism

the joint distribution that it induces on the space of rewards, signals, actions, and types.

We call such a distribution a distributional mechanism. Thus, two mechanisms are different

precisely when they generate different joint distributions on the items of economic interest.

The advantage of casting the problem in terms of distributional mechanisms is that, first,

when endowed with the weak* topology, this space is metrizable.5 Second, and more im-

portantly, under this metric there are weak assumptions ensuring that the principal’s loss is

lower semicontinuous as a function of the mechanism and that the set of incentive compatible

mechanisms that bound from above the principal’s loss is compact. Consequently, an opti-

mal mechanism exists so long as the set of incentive compatible mechanisms is nonempty, a

condition that is typically trivial to verify in single-agent applications, but somewhat less so

in the multi-agent case. We give general suffi cient conditions for the existence of an incentive

compatible mechanism in both cases (Propositions 8.4 and 13.6).

Our distributional-mechanism approach is inspired by the useful role of distributional

strategies in Bayesian games. Distributional strategies were introduced by Milgrom and

Weber (1985), who showed that strategies in Bayesian games, namely measurable functions

from types into distributions over actions, could be usefully topologized when identified with

the joint distributions on actions and types that they induce when combined with the given

prior. Despite this important connection, our results are not a direct translation of Milgrom

and Weber’s. Most critically, in our setting, the distribution of signals, and in particular its

support, may depend on the true type and action of the agent. Consequently, a distribu-

tional mechanism only pins down the contract part of the mechanism “on-path”i.e., only on

signal events that occur with positive probability when the agent always truthfully reports

his type and always takes the recommended action. It does not pin down the contract part

of the mechanism on signal events that occur with positive probability only when the agent

lies about his type or chooses not to take the recommended action. On these events, which

are crucial to consider for incentive compatibility, we must construct the mechanism “by

5Recall that, according to the weak* topology, a sequence of probability measures µn converges to µ if
and only if for each continuous and bounded function f, the sequence of expectations

∫
fdµn converges to∫

fdµ.
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hand,”and a number of new assumptions introduced here permit us to do this. In contrast,

distributional strategies in Bayesian games, under Milgrom and Weber’s assumptions, com-

pletely pin down the players’strategies up to irrelevant measure zero subsets of their type

spaces.

Our first main result, Theorem 4.11, establishes the existence of an optimal mechanism

in the case of a single agent under a number of assumptions, some of which are only technical

in nature. But we make four substantive assumptions, each of which has a clear economic

interpretation. First, we require that there is a limit to how severely the agent can be

punished, and to the loss the principal can suffer.6 Second, we require that if the utility of

the agent can be made unboundedly high, it becomes arbitrarily expensive for the principal

to do so at the margin. Third, we introduce a new form of continuity of information that

ensures that it does not become discontinuously more diffi cult to reward a compliant agent

without also rewarding a deviating agent as the action of the compliant agent is varied. This

condition is mild. In particular (see Section 6), it is satisfied whenever the signal distribution

admits a density that is suffi ciently continuous, which is common in applications. In addition,

this new continuity of information condition covers important settings that previous models

could not, for example, any setting in which one or more dimensions of the agent’s multi-

dimensional action in [0, 1]k is observable. Fourth, we sometimes require that, if the principal

observes a signal that is inconsistent with the reported type and the recommended action,

then there is a way to punish the agent that does not depend on his true type and action.

These assumptions apply naturally to the multi-agent case, allowing us to establish our

second main result, Theorem 13.5, which extends our single-agent existence result to a

multi-agent setting.7

A key methodological contribution is that the existence of an optimal mechanism is es-

tablished without imposing any restrictions, beyond measurability, on the set of mechanisms.

This is in contrast to the most general existence results to date (e.g., Page (1987), (1991),

and Balder (1991)) that require a mechanism to employ only deterministic contracts (i.e.,

contracts that do not randomize over the agent’s reward) from some prespecified compact

set, even if this is not in the principal’s best interest. As a result, a mechanism that would

be considered “optimal”through the lens of this literature might not actually be fully op-

timal. There are two reasons for this. First, there may be deterministic contracts outside

the prespecified compact set that are better for the principal. Second, randomization by

the principal that can relax the agent’s incentive constraints is not permitted. Because we

6With some separability, unbounded ex-post payoffs can be accommodated by instead placing bounds on
expected payoffs.

7As we shall see, our multi-agent result requires somewhat stronger informational assumptions than our
single-agent result owing to the nature of the multi-agent incentive constraints. This provides a good reason
to treat the two models separately given the importance of the single-agent model in its own right.
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allow randomization and we allow any measurable contract, the solutions whose existence

we establish are fully optimal.

In some settings, the additional randomization that we allow is not used. For example,

we show that if both the principal and the agent are risk averse, and the payoffs to the

agent are suffi ciently separable in reward, action, and type, then the optimal mechanism

never requires randomization over the agent’s reward. But, even under these conditions,

proving the existence of an optimal mechanism is simpler and can be established with more

generality by allowing the possibility of randomization from the start.

While much of our analysis places no a priori restrictions on the mechanism, restricting

attention to deterministic contracts can sometimes be quite natural since, for example, they

may be simpler to enforce. Consequently, the existence results in the literature certainly

remain important. But there are many settings in which randomization arises naturally

and so we should want models and results that include this possibility as well. For a more

complete discussion of the role of randomization, see Section 8. More generally, the economic

setting of interest may call for any number of restrictions on the mechanism. For example,

a regulator may insist that a health insurance provider offer plans that are acceptable to a

certain fraction of a risk pool, or one that earns no more than a certain margin on a specified

subset of risk types. In Section 11, we show how our model and results readily adapt to

such restrictions, and we also show how to model settings that include ex-ante participation

constraints, settings in which the principal can choose to exclude the agent, and settings

in which the principal has decisions to take beyond the choice of the agent’s contract. But

the fundamental starting point is that in which no auxiliary restrictions are placed on the

mechanism, and it is our general existence result for this setting from which all of our other

results follow.

The remainder of the paper proceeds as follows. Section 2 presents three examples to

motivate our approach to information continuity and the role of randomization. Section 3

introduces the single-agent model. Section 4 presents our assumptions and main existence

result for the single-agent case. The assumptions are discussed and illustrated in Section 5.

In Section 6 we present a simplified case which is quite common in applications and explain

how our results apply. Section 7 discusses relevant literature. In Section 8 we discuss the

different roles of randomization in our setting and introduce the metric space of distributional

mechanisms. Section 9 provides a sketch of the proof of the main theorem. The formal

proof is presented in Section 10. Section 11 shows how to adapt our model to ex-ante and

interim restrictions on the set of mechanisms. Section 12 discusses the circumstances under

which optimal contracts can be chosen to be deterministic without loss to the principal, and

discusses the question of existence if one wishes to foreclose the principal from one or both
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forms of randomization even though they might be beneficial. Finally, Section 13 shows how

our existence result for the single-agent problem extends to the multi-agent case.

2 Three Examples

This section presents three examples. The first two highlight the need for an appropriate

notion of continuity of information, without which an optimal mechanism can fail to exist.

The third illustrates that randomized contracts may be required for existence, and that, by

restricting attention to an a priori “simple”set of deterministic contracts one may actually

dramatically increase the complexity of the optimal mechanism.

Example 2.1 Let the type space be a singleton. Let the compact set of available actions

be A = {1, 1
2
, 1

3
, 1

4
, ..., 0}, let the set of signals be S = [0, 1] and let the set of feasible rewards

be R = [0, 3]. The agent’s utility is equal to his reward r if he takes any action a < 1 and is

equal to r+ 1 if he takes action a = 1.8 The principal’s losses are a if the agent takes action

a ∈ A (rewarding the agent is costless to the principal).9 The signal s is uniform on [0, 1] if

a = 0 or 1. If a = 1
k
∈ {1

2
, 1

3
, 1

4
, ...}, then the signal s has density 2 when it is in Sk = [ 1

k
, 1

2
+ 1

k
]

and has density 0 otherwise.

For any k, the action a = 1/k can be implemented by paying the agent r = 3 when a

signal in Sk is observed and paying r = 0 otherwise, at loss 1/k for the principal.10 But,

a = 0 cannot be implemented because a = 1 is strictly preferred by the agent to a = 0

regardless of the contract offered. Hence, there is no optimal mechanism in this setting.

The payoff functions in this example are continuous and all spaces are compact. The

culprit driving non-existence is that information changes discontinuously at a = 0. In par-

ticular, the distribution of signals conditional on the agent choosing action a fails to be

continuous in a in the weak* topology at a = 0, since, for example, the probability of the

open set (1/2, 1) jumps from near 0 to 1
2
.

In view of this, it is no surprise that the extant literature assumes, at a minimum,

continuity of information in the weak* topology, thereby ruling out Example 2.1. But, as

the next example illustrates, this is not enough.

Example 2.2 Modify Example 2.1 only in that Sk is the subset of signals s in [0, 1] where

the k-th digit in the binary expansion of s is 0. So, for each k, Sk = ∪m≥0 even[
m
2k
, m+1

2k
]∩ [0, 1]

8Since a = 1 is an isolated action, there is no discontinuity here.
9We will think about the principal as minimizing an expected loss rather than (as is completely equivalent)

maximizing an expected gain.
10Facing such a contract, the agent gets utility 3 with certainty by taking action 1/k, and earns some

lottery over a utility of 3 and 0 by any other action except a = 1. The action a = 1 earns him utility
r + 1 = 4 half of the time and utility 1 the rest of the time, for expect utility 2.5 < 3.
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still has (Lebesgue) measure 1/2, but is the union of non-adjacent closed intervals of length

1/2k starting with [0, 1/2k]. Now, as a→ 0, the signal distribution not only converges in the

weak* topology to the uniform distribution, but the convergence is strong enough so that the

informational assumptions of Page (1987,1991) are satisfied. But, exactly as before, a = 1
k

can be implemented by paying r = 3 on Sk and paying r = 0 otherwise, yet a = 0 cannot be

implemented.

For each k, these two examples are fundamentally the same, just with the signals re-

shuffl ed in an irrelevant way. A satisfactory continuity-of-information assumption should

thus rule both of them out. To see what such an assumption might look like, let f(s|a)

denote the density of the signal s given the action a, and note that (in either example) on

Sk,
f(s|1)

f(s| 1k)
= 1

2
. This ratio is critical, because it determines how diffi cult it is to reward the

agent for choosing a = 1
k
without also making a = 1 attractive. In particular, each util given

to the compliant agent choosing a = 1
k
adds only half a util to the utility of a deviating

agent choosing a = 1, and so it is easy to motivate the agent to choose action a = 1
k
over

action a = 1. But, f(s|1)
f(s|0)

= 1 on [0, 1], and hence this ratio jumps up at a = 0, and so it is

impossible to motive the agent to choose a = 0.

The continuity-of-information assumptions we introduce in Section 4 (see in particular

Assumption 4.8) rule out such upward jumps in how diffi cult it is to reward one action

without making another action more attractive.

In our third example, a mechanism with a simple randomized contract is optimal. But

when the principal is restricted to deterministic contracts, an optimal mechanism fails to

exist. If the principal is restricted further to deterministic contracts with uniformly bounded

variation, existence is restored, but a tight variational bound implies substantial losses for

the principal. As the bound tends to infinity, the principal’s payoff converges to the fully

optimal payoff with randomization. However, in the limit, the contract oscillates wildly,

becoming arbitrarily complex. So, in this example, the restriction to “simple”deterministic

contracts either substantially reduces the principal’s payoff or substantially increases the

complexity of the mechanism.

Example 2.3 The set of signals is S = [0, 1]. The set of types is T = {±1,±2, ...}, where
H({t}) = 1

2|t|+1
for each t ∈ T. The set of actions is A = {−1,+1} and the set of feasible

rewards is R = [0,∞). Given reward r, signal s, action a, and type t, the principal’s loss is

l(r, s, a, t) =

{
0,

1,

if ta > 0

if ta < 0
,
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and the agent’s utility is

u(r, s, a, t) =


1,

2− 2e−r,

r,

if a = +1

if a = −1 and t > 0

if a = −1 and t < 0

.

The signal distribution depends only on the agent’s type. If t < 0, the signal is uniform

on [0, 1]. If t > 0, the signal is uniform on [at, bt], where [a1, b1], [a2, b2], ... is a list of all

nondegenerate closed subintervals of [0, 1] that have rational endpoints. This captures the

idea that the principal is concerned that, for any interval [a, b] ⊆ [0, 1], if high rewards are

given to the agent when the signal falls into that interval, some undesirable type of the agent

will generate a signal that virtually guarantees himself these high rewards.

The following simple mechanism yields the principal her minimum possible expected

losses of zero, and so is optimal. No matter what type the agent reports, offer the contract

that, regardless of the signal, randomizes with equal probabilities over a reward of 0 and a

reward of 3. With this mechanism, all negative (risk neutral) types have a strict incentive to

take action a = −1, and all positive (risk-averse) types have a strict incentive to take action

a = 1.11

Now suppose that the principal is restricted to deterministic contracts. Under this re-

striction, an optimal mechanism no longer exists. Indeed, the principal can no longer achieve

losses of zero,12 but he can get arbitrarily close, by, for example, choosing n suffi ciently large

and rewarding the agent with r = 0 when the n-th digit in the binary expansion of the signal

is even and rewarding the agent with r = 3 when it is odd. As n grows large, expected losses

approach zero, with the contract oscillating arbitrarily often between 0 and 3 as the signal

moves from 0 to 1.

To restore existence, let us follow the literature (e.g., Holmstrom (1979)) and restrict the

contract space further to the (compact) set containing all deterministic contracts whose total

variation is less than some uniform bound B > 0. By Page (1991), an optimal mechanism

exists within this restricted class of mechanisms. But, if B is small, the principal’s losses

can be substantial, while as discussed above, as B tends to infinity, the contract becomes

arbitrarily complex as it attempts to synthesize as much “randomization”as possible.

11The example is robust to a variety of perturbations, including rewards that are costly to the principal.
12Suppose, to the contrary, that some such mechansim yields zero expected losses. Fix some t̂ < 0, and let

c : S → R be the deterministic contract that is offered when the agent reports type t̂. For t̂ to want to choose
a = −1, t̂ must not prefer a = +1. Hence, we must have E(c(s)|s ∼ U(0, 1)) ≥ 1. For all positive types to
want to choose a = +1, they must not prefer to report t̂, and take action a = −1. Hence, we must have
E(e−c(s)|s ∼ U(at, bt)) ≥ 1

2 , for every t ∈ {1, 2, ...}. This implies that e
−c(s) ≥ 1/2 for (Lebesgue) almost

every s ∈ [0, 1], contradicting E(c(s)|s ∼ U(0, 1)) ≥ 1.
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Finally, let us remark that the situation can be worse still. If, when at < 0, the loss to the

principal is 2|t| instead of 1 (a specification permitted by our model), then every deterministic

contract (with bounded variation or not) results in infinite losses for the principal, while the

simple randomized contract still yields the minimum possible losses of zero.

3 A Principal-Agent Model

In this section, we present the (single-agent) model in its most basic form, making only

enough assumptions so as to permit a statement of the problem.

The sets of rewards R, signals S, actions A, and types T, are measurable spaces, i.e.,

each set is endowed with its own sigma-algebra of measurable subsets. All product sets

are endowed with their product sigma-algebras. The type space, T, is also endowed with

a probability measure H, i.e., a prior, on its measurable sets. Typical elements of R are

denoted by lower case letters r, r′, r′′, and typical sequences in R are denoted by rn etc., and

similarly for typical elements of and sequences in S, A, and T. Thus for example, whenever

convenient, we may abbreviate statements such as “for all s ∈ S”by “for all s”etc.
The set of feasible rewards can depend on the signal and is captured by Φ, a measurable

subset of R× S. For each signal s, the set of feasible rewards given the signal s is Φs = {r :

(r, s) ∈ Φ}, which we assume to be nonempty.
For any measurable space X, let ∆(X) denote the set of probability measures on the

measurable subsets of X. If Y is any other measurable space, a transition probability is a

mapping, γ say, from Y into ∆(X) such that for every measurable E ⊆ X, γ(E|y) is a

measurable function of y ∈ Y.
The signal technology is given by a transition probability, P, from A× T into ∆(S). We

write Pa,t or P (·|a, t) for the value in ∆(S) of P at any action and type pair (a, t). That is,

if the agent’s type is t and he takes action a, then the signal is generated according to the

probability measure Pa,t.

The agent’s von Neumann-Morgenstern utility function is u : R × S × A× T → R, and
the principal’s von Neumann-Morgenstern loss (disutility) function is l : R×S×A×T → R.
Both functions are measurable.

By a straightforward application of the revelation principle (Myerson 1982), our space of

mechanisms is as follows.

Definition 3.1 A mechanism is any (α, κ) such that α : T → ∆(A) and κ : S × A × T →
∆(R) are transition probabilities satisfying κ(Φs|s, a, t) = 1 for every (s, a, t) ∈ S × A× T.

A mechanism (α, κ) works as follows. Nature draws the agent’s type from T according to

H. After learning his type, t, the agent reports a type, t′, to the mechanism. The mechanism
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then recommends to the agent an action a′ that is generated by the probability measure

α(·|t′) ∈ ∆(A). After learning the recommended action a′, the agent chooses an action a

from A. Finally, given the signal s generated by Pa,t, the mechanism generates the agent’s

reward r ∈ Φs according to the probability measure κ(·|s, a′, t′) ∈ ∆(R). So, in particular,

signals are generated according to the true type and action of the agent, while rewards

depend on the reported type and recommended action.

Given (a′, t′), we interpret the transition probability κa′,t′ : S → ∆(R) as a “contract”

in which the principal may randomize over the rewards offered to the agent as a function

of the observed signal. In this interpretation, the agent knows the (randomized) contract

before choosing his action.13 Henceforth, a contract is a transition probability mapping S

into ∆(R).

Using the revelation principle once more, we may restrict attention to mechanisms that

are incentive compatible.

Definition 3.2 A mechanism (α, κ) is incentive compatible if for H-almost every type t, and

for every type t′,

∫
R×S×A

u (r, s, a, t) dκ (r|s, a, t) dP (s|a, t) dα(a|t)

≥
∫
A

sup
a∈A

∫
R×S

u (r, s, a, t) dκ (r|s, a′, t′) dP (s|a, t)

 dα(a′|t′).14

Denote the set of all incentive-compatible mechanisms by M .

The left-hand side of the inequality in Definition 3.2 is the utility to the agent of type t
13A second interpretation (see. e.g., Myerson, 1982) is that κa′,t′ : S → ∆(R) represents a randomization

over a collection of deterministic contracts, each of which is a function mapping the observed signal into a
reward (e.g., for each measurable set E in R, κ(E|s, a′, t′) = λ({ω ∈ [0, 1] : r(ω, s, a′, t′) ∈ E}), where λ is
Lebesgue measure and {r(ω, ·, a′, t′)}ω∈[0,1] is a collection of deterministic contracts, one of which is chosen
randomly through the choice of ω). In this second interpretation, given (a′, t′), the agent must choose his
action without knowing the deterministic contract, r(ω, ·, a′, t′) : S → R, that he will eventually face (since
he does not know ω). Either interpretation is acceptable, and the agent’s set of optimal actions is the same
regardless of which interpretation is chosen.

14For any a, a′ ∈ A, let g(a, a′) =

∫
R×S

u (r, s, a, t) dκ (r|s, a′, t′) dP (s|a, t) . Then, g is Borel measurable,

but G(a′) = supa g(a, a′), which is the function of a′ in parentheses on the righthand side of the displayed
inequality in Definition 3.2, might not be. However, for any real c, the set {a′ : G(a′) > c} is analytic
because it is the projection onto the first coordinate of the Borel set {(a, a′) : g(a, a′) > c}. Consequently,
letting B(A) denote the Borel subsets of A, G is measurable with respect to the completion of the measure
space (A,B(A), α(·|t′)) and it is with respect to this completion that the outermost integral over A on the
righthand side is to be understood. That said, under the assumptions that we shall make, there is an optimal
mechanism in which G is in fact Borel measurable and so, at the optimum, there is no need for this technical
caveat (see fn. 44).
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from reporting his true type to the mechanism and taking the recommended action, while

the right-hand side is the utility to the agent of type t from reporting that his type is t′, and

then choosing an optimal action when the mechanism recommends action a′.15

For any incentive compatible mechanism (α, κ) ∈M, let

L(α, κ) ≡
∫

R×S×A×T

l (r, s, a, t) dκ (r|s, a, t) dP (s|a, t)dα (a|t) dH (t) , (3.1)

be the principal’s expected loss when the agent reports honestly and takes the recommended

action. Then, the principal’s problem is

min
(α,κ)∈M

L(α, κ). (3.2)

Remark 3.3 The above specification of the principal’s problem does not explicitly include

participation constraints for the agent. An outside option that is always available to the

agent can be modeled by simply including it as an action in A. The model also captures

settings in which the principal can force the agent to take the outside option by including

the reward “take your outside option”in Φs for every signal s. In Section 11, we extend the

model and our existence result to settings that include an ex-ante participation constraint

for the agent of the form

∫
R×S×A×T

u (r, s, a, t) dκ (r|s, a, t) dP (s|a, t) dα(a|t)dH(t) ≥ u0.

We next provide general conditions under which a solution to problem (3.2) exists.

4 Assumptions and the Main Result

In this section we state our assumptions and our main result on the existence of an optimal

mechanism. Section 5 provides a discussion of the assumptions and also includes a variety

of examples.

Recall that a Polish space is a separable topological space that can be metrized by means

of a complete metric. The measurable subsets of any Polish space X will always be the Borel

sets B(X), and ∆(X) will denote the space of probability measures on B(X) endowed with

15It would have been equivalent to define incentive compatibility in the weaker sense that, for some H-
measure one set of types T 0, the inequality in Definition 3.2 holds only for every t, t′ ∈ T 0. This is because
one can, for any t0 ∈ T 0, always redefine (α, κ) on T\T 0 to be equal to its value at t0 (i.e., any report t′
outside T 0 is treated as if the report had been t0 instead), thereby satisfying the inequality exactly as given
in Definition 3.2, which we find more intuitive.
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the topology of weak convergence (the weak* topology).

Our assumptions are as follows.

Assumption 4.1 R, S, A, and T are nonempty Polish spaces, and A is compact.

Assumption 4.2 Φ is a closed subset of R × S, where for each s, Φs = {r : (r, s) ∈ Φ} is
non-empty.

Assumption 4.3 P : A× T → ∆(S) is a transition probability such that Pa,t is continuous

in a for each t.

Assumption 4.4 u : R× S × A× T → R and l : R× S × A× T → R are measurable and
bounded below, without loss of generality by 0, and, for every (a, t) ∈ A× T and for Pa,t a.e.
s ∈ S, u(·, t) is continuous at (r, s, a) and l(·, t) is lower semicontinuous at (r, s, a) for all

r ∈ R.

Assumption 4.5 For any type t, for any c ∈ R, and for any compact subset Y of S, the

closure of {(r, s, a) ∈ Φ× A : s ∈ Y and l(r, s, a, t) ≤ c} is compact.

Assumption 4.6 For any type t, and for any sequence (rn, sn, an) in Φ×A, if u(rn, sn, an, t)→
∞, then l(rn, sn, an, t)/u(rn, sn, an, t)→∞.

Assumption 4.7 There is a collection {Sa,t}(a,t)∈A×T of subsets of S such that {(s, a, t) :

s ∈ Sa,t} is a measurable subset of S ×A× T ; Pa,t(Sa,t) = 1 for all a, t; and Pa′,t′(E) = 0⇒
Pa,t(E) = 0 for all a, t, a′, t′ and for all measurable E ⊂ Sa′,t′.16

Under Assumption 4.7, Pa,t is absolutely continuous with respect to Pa′,t′ when both

measures are restricted to the measurable subsets of Sa′,t′ . Equivalently, the unrestricted

measure Pa,t(· ∩ Sa′,t′) on the measurable subsets of S is absolutely continuous with respect
to the unrestricted measure Pa′,t′ . Applying the Radon-Nikodym theorem to the unrestricted

measures, a Radon-Nikodym derivative defined on all of S exists and so we denote by ga,t/a′,t′ :

S → [0,+∞] any version of the Radon-Nikodym derivative of Pa,t(· ∩ Sa′,t′) with respect to
Pa′,t′ .

17

Assumption 4.8 For all a, t, a′, t′, and for every sequence a′n → a′, there is an → a and

there are versions of the Radon-Nikodym derivatives gan,t/a′n,t′ and ga,t/a′,t′ such that,

limngan,t/a′n,t′(sn) ≥ ga,t/a′,t′(s) ∀s ∈ S and ∀sn → s. (4.1)

16The measurability of {(s, a, t) : s ∈ Sa,t} implies the measurability of each of its slices Sa,t. See the
discussion in Section 5 for why it is useful to allow the Sa,t to differ from the support of Pa,t.
17Any two versions of the Radon-Nikodym derivative are Pa′,t′ almost everywhere equal. They can also

be chosen to be Pa′,t′ almost everywhere finite, but it is useful to allow values of +∞ on measure zero sets.
See Remark 5.7.
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Assumption 4.9 If the collection {Sa,t} in Assumption 4.7 is such that Pa,t(Sa′,t′) < 1 for

some a, t, a′, t′, then there is r∗ ∈ R such that r∗ ∈ Φs for all s ∈ S, and u(r∗, s, a, t) ≤
u(r, s, a, t) for all (r, s, a, t) ∈ Φ× A× T.

Remark 4.10 For numerous applications, it is possible to verify all nine of our assumptions

by recasting one’s model so that only Assumptions 4.1-4.6 need be checked. One such leading

case is when all spaces are Euclidean and the signal distribution admits a density that is

continuous in s, a, and t.18 See Corollary 6.1 and Remark 6.2 in Section 6 for this and more

general such cases.

We can now state our main result.

Theorem 4.11 If Assumptions 4.1-4.9 are satisfied, then, provided that there is at least

one incentive-compatible mechanism, the principal’s problem (3.2) has a solution.

Theorem 4.11 follows directly from Theorem 8.3 in Section 8.1, according to which the set

of incentive compatible mechanisms can be metrized so that (i) for any constant, the subset

of incentive compatible mechanisms that bounds the principal’s expected losses weakly below

that constant is compact, and (ii) the principal’s loss function is lower semicontinuous. The

existence of a loss-minimizing incentive compatible mechanism then follows immediately if

the set of incentive compatible mechanisms is nonempty. While in applications it is often

easy to establish the existence of at least one incentive compatible mechanism, Proposition

8.4 provides general conditions under which an incentive compatible mechanism exists.

5 Discussion of the Assumptions and Examples

Simple examples of Polish spaces include R, [0, 1] , Z, and a variety of function spaces (e.g.,
any Lp space, the space of continuous functions on any compact metric space, and others),19

as well as any finite or countable products of them. Hence, all of the spaces R, S, A, and T

can include multiple dimensions, some of which may be discrete and some of which may be

continuous. Only A is required to be compact.

The definition of Φ allows considerable flexibility regarding the rewards that are feasible

as a function of the observed signal. Of course, the set of feasible rewards need not depend on

s, in which case Φs is a fixed closed subset of R. For example, for m ≥ 0 setting Φs = [m,∞)

for all s captures a minimum payment constraint, with the case m = 0 corresponding to a

limited liability constraint.

18Note that there is no requirement here of a constant support.
19Such function spaces can be useful, for example, when modeling settings in which the agent may be

rewarded with stock options, which are real-valued functions of some future state variable.
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Assumption 4.3 imposes the minimal requirement that as a varies for any given t, Pa,t
moves continuously in the weak* topology. This is automatic if P (·|a, t) can be represented
by a density that is continuous in a. Example 2.1 fails this assumption.

The continuity assumptions on u (·) and l (·) are slightly more permissive than standard
assumptions since we allow some discontinuities. See Corollary 6.1 and Remark 6.2 for

how this additional generality can be helpful in applications. The assumption that utility

is bounded below is critical in ruling out the Mirrlees (1999) and Moroni-Swinkels (2013)

examples. It and the assumption that losses are bounded below are substantive in some

settings, but reasonable in many others. With enough separability, payoffs that are not

bounded below can nevertheless be handled. We give two examples.

Example 5.1 Unbounded Losses. S = (−∞,∞) , R = [0,∞), T = {t0} and Φs = R

for all s. The principal is risk neutral, receives revenue s, and pays compensation r. The

principal’s loss function, l(r, s, a, t) = r − s, is unbounded above and below. However, if

ζ(a, t) =
∫
S
sdP (s|a, t) is continuous and bounded above by some M < ∞, then defining

l instead by the nonnegative function l (r, s, a, t) = r + M − ζ(a, t) gives the principal the

same incentives over expected losses.

Example 5.2 Unbounded Utility. S = (0,∞) , R = [0,∞), T = {t0} and Φs = R for all

s. If the agent’s utility is u(r, s, a, t) = log(r + s) + w(a, t), where w(a, t) ≥ 0, then utility

is unbounded above and below. However, if ζ(a, t) =
∫
S

log sdP (s|a, t) is continuous and
bounded below by −M , then defining u instead by the nonnegative function u(r, s, a, t) =

log(r + s)− log s+ ζ(a, t) +M + w(a, t) gives the agent the same incentives.

When all spaces are Euclidean, Assumption 4.5 says that, for any fixed t ∈ T, the

principal’s losses are unbounded along any sequence inR×S×A in which only the component
corresponding to the agent’s reward is unbounded. This allows that unbounded rewards to

the agent might not lead to unbounded losses when, in addition, the signal is unbounded

along the sequence since, for example, the signal may indicate the firm’s revenue.

Assumption 4.6 says that the losses to the principal per unit of utility provided to the

agent are unbounded above when the agent’s utility is arbitrarily high. If the agent’s utility is

bounded, this is satisfied trivially. A typical applied setting has R = [0,∞), l(r, s, a) = r−s,
and u (r, s, a) = v (r)− c (a) , where c is continuous and v is differentiable. If limr→∞ v

′ (r) =

0, then Assumption 4.6 is satisfied. On the other hand, if, for example, v (r) = r − 1
r
, then

Assumption 4.6 fails.

Next, let us consider Assumption 4.7. For any a and t, the set Sa,t can be interpreted

as the set of signals that are considered possible when the agent’s type is t and he takes

action a. Under Assumption 4.7, the specification of rewards on any subset of Sa′,t′ that has
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measure zero (and so is irrelevant) for a compliant agent with true action/type (a′, t′) is also

irrelevant for any non-compliant agent with true action/type (a, t) 6= (a′, t′). Notice that

Assumption 4.7 is automatic if S is Euclidean and for each a, t, P (·|a, t) can be represented
by a density that is positive on Sa,t.

Remark 5.3 It can always be assumed that Sa,t is contained in the support of Pa,t (suppPa,t)

since if the collection {Sa,t} satisfies Assumption 4.7 then so does the collection {Sa,t∩ suppPa,t}.20

Our next example illustrates that it can be useful to allow Sa,t to be a proper subset of

the support of Pa,t

Example 5.4 Let S = A = [0, 1] , and for every measurable E ⊆ S, let

P (E|a, t) = a1E(0) + (1− a)

∫
E

f (s|t) ds,

where f (·|t) is a positive density on [0, 1] for each t. If we insist that Sa,t be the support of

Pa,t, then Sa,t = [0, 1] for all a < 1, Sa,t = {0} for a = 1, and the absolute continuity part of

Assumption 4.7 will fail for a′ = 0, a = 1, and E = {0}. However, if for a < 1 we instead set

Sa,t = (0, 1], then all of our informational assumptions are satisfied.

Our main continuity of information condition is Assumption 4.8. This assumption pre-

vents upward jumps in how diffi cult it is to reward any given type for a particular action

without making a different action more attractive for that type or for some other type.

In common applications the Radon-Nikodym derivative that is featured in this assumption

simply reflects the ratio between the densities on signals induced by the different actions

and types, and, in these applications the assumption is satisfied if the densities are bounded

away from zero, and are, for each t, continuous in a and s.

A simple suffi cient condition for Assumption 4.8 is the following.

Assumption 4.8′ For every a, t, and t′ the Radon-Nikodym derivative ga,t/a′,t′ (s) is lower

semicontinuous as a function of (s, a′) on S × A.

Remark 5.5 In a pure screening problem (i.e., A is a singleton set) Assumption 4.8 re-

duces to the condition that gt/t′(s) is lower semicontinuous in s and so Assumptions 4.8 and

Assumption 4.8′ become equivalent.

20The requisite measurability condition is satisfied because the set {(s, a, t) : s ∈ suppPa,t} is measurable,
being the complement of the union of measurable sets of the form V × {(a, t) : P (V |a, t) = 0}, where the
union is taken over any countable basis of open sets V for the topology on the Polish space S.
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To better understand Assumption 4.8, note that while Example 2.2 satisfies Assumption

4.3, it fails to satisfy Assumption 4.8. In particular, let a = 1, a′ = 0, and let a′n = 1
n
. Any

sequence an → 1 is constant at an = 1 after some point. Fix any given ŝ ∈ [0, 1] . For each

n, and for P 1
n
a.e. s ∈ S 1

n
, it must be that g1/ 1

n
(s) = 1

2
. Hence, for some sn with binary

expansion that agrees with ŝ to the first n − 1 digits, g1/ 1
n

(sn) = 1
2
. But then Assumption

4.8 is violated, since g1/0 (s) = 1 for almost all s, and ŝ was arbitrary.

The next two examples provide some indication of the range of Assumption 4.8.

Example 5.6 Observable Actions. Let S = A = [0, 1] and let Pa,t be the Dirac measure

placing mass one on s = a.

Example 5.6 fails to satisfy the informational assumptions in Page (1987, 1991), since,

for example, 0 = P1/n,t({0}) 9n P0,t({0}) = 1, but it satisfies Assumption 4.8. To see this,

let ga,t/a′,t′ = 1 if a = a′ and ga,t/a′,t′ = 0 otherwise and consider any a, a′ and a′n → a′. If

a′ = a, then choosing an = a′n will satisfy inequality (4.1), while if a
′ 6= a, then choosing

an = a will satisfy it. It is important to this example that Assumption 4.8 allows the choice

of the sequence an to be tailored to the particular sequence a′n. In particular, Example 5.6

fails to satisfy Assumption 4.8′.21

Remark 5.7 When verifying Assumption 4.8, the versions of all of the Radon-Nikodym

derivatives that are employed can depend on (a, t) and (a′, t′) as well as on the sequences

{an} and {a′n}. So, in particular, it is suffi cient for inequality (4.1) to hold only for Pa′,t′ a.e.
s ∈ S since, by choosing a version of ga,t/a′,t′ that is zero on the remaining Pa′,t′-measure

zero set of signals, (4.1) will hold for all s ∈ S. Similarly, for any sequence of sets Sn whose
complements have Pa′n,t′ measure zero, it suffi ces for (4.1) to hold only for all sn → s such

that sn ∈ Sn for each n because, for each n, we may choose a version of gan,t/a′n,t′(s) that is
equal to +∞ on the complement of Sn.22

This brings us to Assumption 4.9. To see what it is saying, suppose that Pa,t(Sa′,t′) < 1.

Then, if type t takes action a but reported type t′ and was recommended action a′, there is

a positive probability that the signal observed by the principal will be in Sa,t\Sa′,t′ , i.e., will
be considered possible for (a, t) but impossible for (a′, t′). Hence, there is positive probability

that the principal will infer that the agent either lied or took the wrong action. Assumption

4.9 ensures that the principal has a feasible “worst reward”that is sure to penalize the agent

21Any version of the requisite Radon-Nikodym derivative must satisfy ga,t/a′,t′(a′) = 1 if a = a′ and
ga,t/a′,t′(a

′) = 0 otherwise, and so for any sequence of distinct actions a′n → a, ga,t/a′n,t′(a
′
n) = 0 for every n,

but ga,t/a,t′(a) = 1. Hence, ga,t/a′,t′(s) is not lower semicontinuous in (s, a′).
22Recall that redefining the values of a nonnegative Lebesgue integrable function to be +∞ on a measure

zero set does not affect the value of its Lebesgue integral.
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in such cases. Notice that Assumption 4.9 is trivially satisfied when Sa,t is independent of a, t

(since Pa,t(Sa′,t′) = 1 for all a, t, a′, t′). Also, when Assumption 4.9 fails to hold, the agent’s

utility function can sometimes be harmlessly modified so that Assumption 4.9 is satisfied.23

6 A Standard Case

It is useful to point out how Theorem 4.11 applies to the standard case in the literature in

which there is Q ∈ ∆(S) such that Pa,t is absolutely continuous with respect to Q for every

(a, t) ∈ A×T.24 In particular, let us suppose that there is a measurable f : S×A×T → [0,∞)

such that for every measurable E ⊆ S,

P (E|a, t) =

∫
E

f(s|a, t)dQ(s). (6.1)

In this case, the agent’s expected payoff from any IC mechanism (α, κ) is∫
u(r, s, a, t)f(s|a, t)dκ(r|s, a, t)dQ(s)dα(a|t)dH(t).

Consequently, the situation for the agent is equivalent to one in which his utility function is

uf and the signal is drawn according to Q regardless of his action a and type t. Analogously,

the situation for the principal is equivalent to one in which her loss function is lf and the

signal is always drawn according to Q.

Since the model with signals always drawn according to Q trivially satisfies Assumptions

4.3-4.9, in this special case an optimal mechanism exists under weak additional assumptions.

Indeed, we have the following immediate corollary of Theorem 4.11, which can be quite

useful in applications.

Corollary 6.1 Suppose that Assumptions 4.1-4.6 hold when the agent’s utility function is

uf, the principal’s loss function is lf, and the signal is always drawn according to Q ∈
∆(S). Then, provided that at least one incentive-compatible mechanism exists, an optimal

mechanism exists when the agent’s utility function is u, the principal’s loss function is l, and

the signal is drawn according to Pa,t given by (6.1).

Remark 6.2 (a) If u and l satisfy Assumptions 4.4 and 4.6, then uf and lf also satisfy

Assumptions 4.4 and 4.6 if f is bounded, and, for every (a, t) ∈ A× T, f(·|·, t) is continuous
23Suppose, for example, that R = [0,∞), Φs = [s, s+ 1] , and u is increasing in r. Then, there is no fixed

r∗ in R that satisfies Assumption 4.9. In this case, simply redefine R by appending to it an isolated point
r∗, and extend u by defining u (r∗, s, a, t) = u (s, s, a, t) for all (s, a, t) . Assumption 4.9 is now satisfied.
24See, for example, Page (1987, 1991).
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at (s, a) for Q a.e. s ∈ S (the exceptional set of signals can depend on a and t).25 (b) If

l satisfies Assumption 4.5, then lf also satisfies Assumption 4.5 if either f is positive and

bounded away from zero, or if Φ ∩ (R× Y ) is compact for every compact subset Y of S.

We give three examples to illustrate Corollary 6.1. In each of them we assume that 0 ∈ Φs

for all s ∈ S, that Φ satisfies Assumption 4.2, and that u and l satisfy Assumptions 4.4-4.6.

By applying Remark 6.1, each example can be shown to satisfy the hypotheses of Corollary

6.1 and so each example admits an optimal mechanism.26

In the first two examples, it should be noted that there are no Sa,t sets satisfying As-

sumption 4.7 that are independent of a and t. Consequently, if we try to apply Theorem 4.11

directly, we would, in particular, need to know that there is a worst reward in order to satisfy

Assumption 4.9. By instead using Corollary 6.1, we can avoid Assumption 4.9 entirely.

Example 6.3 Let R = A = [0, 1], S = [0, 2], T = {t0} , and let Pa,t0 be uniform on

[a, a+ 1]. Then, we may define Q to be the uniform distribution on [0, 2], and we may define

f(s|a, t) = 2 if s ∈ [a, a+ 1] and f(s|a, t) = 0 otherwise.

Example 6.4 Discrete signal distributions. Let R = A = [0, 1], let S be a finite set

and let P (s|a, t) be a continuous function of a for each (s, t) ∈ S × T . Then we may define
Q(s) = 1/ |S| for each s, and we may define f(s|a, t) = P (s|a, t)/Q(s). (Notice that f may

sometimes be zero.)

Example 6.5 Let R = A = [0, 1], S = (−∞,∞), T = (1,∞), and let Pa,t be a normal

distribution with mean a and standard deviation t. The natural candidate for the carrying

measure Q here is Lebesgue measure, but it is not a probability measure on S. Instead,

define Q to be the probability measure on R with density q(s) = e−2|s|, and define f(s|a, t) =
e2|s|

t
√

2π
e−

(s−a)2

2t2 .

7 Related Literature and Applications

Our paper is the first to offer a general existence result without imposing onerous restrictions

on either the primitives of the model or on the set of allowed mechanisms. As such, it opens

25This condition on f (and its implications for Pa,t) is more restrictive than Page’s (1987, 1991) assumption
that Pa,t(E) is continuous in a for each closed E ⊆ S. However, in this absolutely continuous case, some
such stronger assumption is unavoidable since, as Example 2.2 shows, Page’s more permissive assumption
does not suffi ce for the existence of an optimal mechanism when the contract space is unrestricted, as it is
here.
26In each example, an incentive-compatible mechanism exists, e.g., the mechanism that, if the agent reports

type t, recommends an action that maximizes
∫
u(0, s, a, t)dP (s|a, t) and that always gives the agent reward

r = 0.
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the door for a range of applications. Previous papers in this area belong to one of the

following two groups:

1. Papers imposing restrictions on the primitives of the model. Grossman and

Hart (1983), establish existence of an optimum in a pure moral hazard problem. They

do this by restricting attention to a finite set of signals, each of which occurs with

probability bounded away from zero regardless of the agent’s action. With a continuum

of signals, Carlier and Dana (2005) and Jewitt, Kadan, and Swinkels (2008) solve

the existence problem in a pure moral hazard setting by assuming that effort is one-

dimensional, that likelihood ratios are monotone and bounded, and that the first-order

approach is valid.27 All three papers require signals and rewards to be one-dimensional

(as in Holmström (1979)) and the principal’s losses to depend on an additively separable

function of them, and none permits the agent to possess private information. Kahn

(1993) establishes existence in a pure adverse selection problem, relying on restrictions

on the set of types, and on the distributions and utilities considered.

2. Papers imposing restrictions on the allowed mechanisms. Holmström (1979),

Page (1987,1991), and Balder (1996, Section 3.2) all require the mechanism to employ

deterministic contracts that are observed by the agent prior to his action decision and

that are contained in some fixed function space that is compact in the topology of

pointwise convergence. As some of these papers note, the needed compactness can be

obtained by restricting contracts to be of uniformly bounded variation. The actual

bound is left unspecified even though it can significantly affect the optimal solution.

In contrast, the approach taken here permits a significant weakening of the standard

restrictions on the primitives of the model and dispenses with any restrictions on the set of

mechanisms or contracts. This is accomplished by permitting (but not requiring) random-

ization over the agent’s reward and by introducing new continuity of information conditions.

As a result, a large set of potential applications is covered and a fully optimal solution to

the principal’s problem can be studied.

The success of our approach hinges on a key insight due to Page (1991). He showed that

a powerful sequential compactness result due to Komlos (1967) and its important generaliza-

tion by Balder (1990) could be used to establish the existence of a mechanism that is optimal,

at least within the restricted class of mechanisms described in item #2 above. Balder (1996)

generalizes Page’s existence result within the same restricted class of mechanisms.

27Conditions facilitating the first order approach are typically quite demanding. See Mirrlees (1976),
Rogerson (1984), Jewitt (1988), Sinclair-Desgagne (1994), Conlon (2009)), and Chade and Swinkels (2016).
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Our existence result has several immediate applications to the literature seeking to go

beyond the restrictive first order approach (FOA). Chaigneau, Edmans, and Gottlieb (2014)

study Holmstrom’s (1979) informativeness principle in the pure moral hazard problem when

the FOA fails. Kierkegaard (2014) studies a moral hazard problem in which the FOA does

not necessarily hold using a spanning condition. Kadan and Swinkels (2013) study properties

of optimal contracts in the moral hazard problem when the FOA may fail and provide several

comparative statics results. Renner and Schmedders (2015) present a computational method

for providing an approximate solution to moral hazard problems not relying on the FOA. Ke

and Ryan (2015) present a general methodology for solving moral hazard problems without

assuming the FOA. All of these papers require, but do not include, an existence result. Our

paper supplies the missing result.

Several papers in the literature study specialized principal-agent models with moral-

hazard and/or adverse-selection and allow various forms of randomization, including random-

ization over the contract and randomization over rewards. These papers do not, however,

establish the existence of an optimal mechanism. Examples are Gjesdal (1982), Felling-

ham, Kwon, and Newman (1984), Arnott, and Stiglitz (1988), and Strausz (2006). In the

next section, we discuss several examples in which randomized mechanisms are economically

natural.

Page (1994) and Balder (1996) contain existence results for the problem of a principal

interacting with multiple agents. They are able to establish the existence of a mechanism

that is optimal for the principal among all dominant strategy mechanisms. However, their

techniques do not extend to the problem of Bayesian incentive compatible mechanisms. In

Section 13, we show how our existence result for the single-agent model implies the existence

of a Bayesian incentive compatible (BIC) mechanism that is optimal for the principal among

all BIC mechanisms even when there are multiple agents.

8 Randomization

The principal in our model has two potentially useful opportunities for randomization. First,

after the agent reports his type, the principal can randomize over the recommended action

which, because the contract will typically depend on this recommendation, will have the

effect of randomizing over the agent’s contract.28 Second, after the agent chooses his action

and a signal is generated, the contract itself may specify a randomization over the agent’s

reward. As noted, the most recent and closely related literature on the existence of an

28In fact, randomization over the recommended action that does not induce randomization over the con-
tract is never necessary for optimality. So, whenever randomization over the recommended action is men-
tioned, the reader should keep in mind that this effectively means randomizaiton over the contract.
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optimal mechanism (Page (1991) and Balder (1996)) has embraced the first opportunity

for randomization but has not permitted the second, i.e., they have restricted attention

to deterministic contracts. In this section, we discuss the importance, both practical and

theoretical, of permitting both forms of randomization. But first, a clarification is in order.

Whether the contract that is offered to the agent is deterministic (i.e., is a function from

the signal into a deterministic reward) or is randomized (i.e., is a function from the signal to

a probability distribution over rewards), we always assume that the agent is fully informed

of the contract (i.e., the function) prior to taking his action. This assumption is without

loss of generality in our setting that allows randomized contracts because any uncertainty

over the contract is equivalent to a known contract that randomizes over the reward. On

the other hand, this assumption, which Page (1991) and Balder (1996) both impose, is not

without loss of generality when the contract is restricted to being deterministic. In general,

the principal can strictly gain by not informing the agent of which deterministic contract is

in effect until after the agent has chosen his action.

Both opportunities for randomization can strictly benefit the principal.

As already well-recognized in the literature (e.g., Gjesdal 1982 and Arnott and Stiglitz

1988) randomization can strictly benefit the principal. We have already seen (Example 2.3)

that differences in risk aversion across agent types can make randomization over rewards

beneficial for the principal. We next provide an example showing how randomization over

the recommended action (i.e., randomization over the contract) can be beneficial. In this

example, the best way to dissuade the type 1 agent from announcing that he is type 2 is

to occasionally ask an agent who announces type 2 to take an observable action that, while

suboptimal for the principal, is suffi ciently unpleasant for the agent when he is type 1.

Example 8.1 Randomization over recommended actions. There are two equiproba-

ble types t1 and t2, and three actions a1, a2 and a3. Actions are observable. Rewards are in

[0,∞). Payoffs are described by the following matrix, where in each cell, the top left number

is the agent’s utility and the bottom right number is the principal’s loss if the given type

takes the given action and the reward is r.

a1 a2 a3

t1
r

r

1 + r

10

1

10

t2
r

10

r

r

2

10

In this example, the principal would like to, but cannot, ensure that t1 chooses a1 and
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t2 chooses a2. Indeed, if r1 is the agent’s reward for choosing a1 after reporting t1, and r2 is

the reward for choosing a2 after reporting t2, then for t1 not to want to imitate t2 we need

r1 ≥ 1 + r2, while for t2 not to want to imitate t1 we need r2 ≥ r1.29

Consequently, in any IC mechanism that does not randomize over recommended actions,

either type t1 chooses action a2 or a3, or type t2 chooses action a1 or a3. This implies that,

without randomization, the principal’s expected loss is at least 10/2 = 5.

But consider the following incentive compatible mechanism that involves randomization

over recommended actions. If t1 is reported, then the mechanism recommends action a1 and

selects the contract that pays r = 2 if a1 is observed and pays r = 0 if any other action

is observed. If t2 is reported then a lottery occurs. One-half of the time the mechanism

recommends action a2 and selects the contract that pays the agent r = 2 if a2 is observed

and pays r = 0 otherwise. The other half of the time the mechanism recommends action

a3 and selects the contract that pays the agent r = 0 regardless of the action that is observed.

With this mechanism, the principal’s expected losses improve to 4 < 5.30

Randomization is economically natural in many (but not all) real-world economic

settings.

Another important reason for allowing randomization within the theory is based on the

amount of randomization actually used in the economy. For example, in academia, at tenure

time there are essentially only two rewards, “tenure” or “fire.”Yet, over an intermediate

range of performance, the outcome of the case - the reward - is stochastic, depending on

non-contractable features such as who is present at the meetings, who reads the case, who

writes the evaluation letters, etc. While much of this randomness is intrinsic, it is not clear

that the university would be better off if it was eliminated, since the effect might be that

many people who knew that their case was far enough from the line, on either side, would

simply stop exerting effort.

Good audit strategies are typically stochastic. A given action (say a report of income)

generates a signal to the tax authority that is met with the reward of either an accepted

tax return and the associated tax liability, or the reward of an audit, in which case the

agent suffers a penalty if his true type is different than the action taken. A buyer making a

reservation on Priceline has a choice between simply reserving a room at their favorite hotel

in the relevant area, or getting a lower rate if they agree to learn the name of the hotel only

after they commit to purchase. This randomness presumably helps to sort types who differ

29Randomizing over rewards for any given action does not help, as the participants are risk neutral and the
set of feasible rewards is convex. Thus, we will restrict attention to mechanisms with deterministic rewards
here.
30With some effort, one can show that the above randomized mechanism is optimal, and that the example

can be modified to a setting with convex type and action spaces.
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in how finicky they are about the specific hotel.

Whether the randomness seen by the buyer reflects actual randomization deep within a

Priceline computer, or a deterministic function from inventory levels to hotel assignments,

where neither the current inventory levels nor the function is well understood by the buyer,

seems inconsequential. Ultimately, Priceline’s design requires its users to either choose an

outcome that is random from their perspective, or pay extra to ensure their preferred choice.

This deliberate design allows Priceline to separate types with different willingnesses-to-pay

to avoid the uncertainty. It seems the same to us whether the randomness seen by the buyer

is achieved by Priceline refusing to release information it has (on, say, available inventory)

or by performing a coin flip, and we have little doubt that they are up to the task in either

event.

The above are examples of randomization over rewards, the kind of randomization that

we permit but that the recent literature has not. For an example of randomization over both

contracts and rewards, consider a starting employee washing and parking cars at Enterprise

Rent-A-Car Corporation, which recruits management on a promote-from-within basis. Re-

wards in the entry-level job are poor compared to the outside option of the typical (college

graduate) hiree. One reason that the employee is willing to take the job is that there is a

reasonable chance that they will soon get promoted into a higher level position, one with

more aggressive performance pay. Whether that promotion occurs depends on any number

of factors that are random from the point of view of the new employee, such as whether the

immediate superior to the employee is likely to be terminated or promoted, or whether a

new branch is likely to be opened in the area.31 Rather than resolve any of this uncertainty,

Enterprise may be better off to leave it unresolved, and use the lottery as a way to satisfy

the participation constraint of a broader pool of entry-level workers.32

We are not arguing that every economically interesting environment is one where ran-

domization is natural. In many realistic settings the underlying economic or social context

precludes randomization at one or both relevant stages. For example, in academia, there is

randomization over rewards at intermediate performance levels, but a university is likely to

feel constrained not to randomize over the contracts that junior faculty receive. It would

probably be viewed as repugnant if an insurance company randomized over whether an ap-

plicant who reported a specific health history received liver transplant coverage. However,

on the occasion that a liver transplant is actually needed, whether one is available is indeed

random, and priority in the transplant queue does depend on the health history. In each

31If effort during the time spent in the entry-level position is a critical part of the picture, then one might
wish to model this as a multi-period mechansim, which moves beyond the scope of this paper.
32Note that in settings of this sort, randomization over contracts can be valuable even without a type

space.
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of these two cases, the right modeling choice may be to assume that randomization over

contracts is not allowed, but that contracts can randomize over rewards. In other settings,

it may be that it is reasonable to randomize over contracts, but not reasonable that the con-

tract randomizes over rewards for any given outcome. Our model and main results assume

that both kinds of randomization are possible. Nevertheless, in Section 12.2, we are also

able to shed light on the existence question when one or both kinds of randomization are

not permitted.

The restriction to deterministic contracts can lead to complex solutions that

obscure the underlying economics.

In a pure moral hazard context, Harris and Raviv (1976) and Holmström (1979) re-

strict attention to deterministic contracts. This is perfectly justified in the context of their

particular models because the principal and the agent are risk averse, and payoffs are addi-

tively separable in effort and rewards, and hence randomization over the agent’s reward is

never helpful (Holmström (1979), Proposition 3). Even so, because the set of deterministic

contracts is not compact in a useful topology, proving the existence of an optimal mech-

anism is not possible without further assumptions. To address this diffi culty, Holmström

(1979) restricts the set of contracts further by requiring them to be functions of uniformly

bounded variation, remarking (fn. 10) that for a suffi ciently large bound, this restricted set

of contracts “...will contain all functions of practical relevance.”

When randomization hurts the principal, there is no harm in including it since it will

never be used. But in settings in which randomization strictly benefits the principal, the

restriction to contracts with uniformly bounded variation may in fact exclude contracts of

practical relevance. In Example 2.3, for any given bound, the optimal contract uses all the

available variation, oscillating wildly in an attempt to replicate as much of the randomness

as possible. All the while, a simple randomized contract exists.

Randomization permits an economically relevant and a mathematically useful

topology on mechanisms.

To establish the existence of an optimal mechanism, we take the standard “continuity

and compactness”approach. This requires that we find a topology under which the space

of incentive compatible mechanisms is compact and the principal’s loss function is lower

semicontinuous. But how should this topology be chosen? Consider the following example.

Example 8.2 An agent of a single type takes an action a from the set A = S = R = [0, 2].

When he chooses a ∈ (0, 2] the signal s is uniform on [0, a] with density 1
a
.When he chooses

a = 0 the signal s is zero with probability 1, i.e., his action is revealed. The agent’s utility

is u = a+ 2r and the principal’s losses are l = a+ r.
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This example has a simple optimal solution,33 yet it is rich enough to show that both the

economics and the mathematics of the problem help to inform the choice of the topology,

and that randomization plays a central role in this choice.

Consider a sequence of incentive compatible mechanisms where in mechanism n, the

principal recommends the action a = 2/n, and pays the agent according to the contract

cn : S → R given by

cn (s) =

{
2 if s ∈

[
1
n
, 2
n

]
0 otherwise

.

The principal’s expected loss from mechanism n is 1 + 2
n
. If our continuity and compact-

ness approach is to be successful, this sequence of mechanisms must have a subsequence that

admits a limit mechanism that is incentive compatible and in which the principal’s losses

are no greater than 1, the limit of her losses along the subsequence. Under what topology is

this the case?

Given the previous literature (e.g., Page (1987,1991)), it is natural to begin with the

topology of pointwise convergence applied to {cn}. Since cn(s)→n 0 for every s, cn converges

pointwise to the contract c∗ ≡ 0 in which the agent is paid zero regardless of the signal. But

given the contract c∗, the agent’s uniquely optimal action is a = 2 leading to losses of 2 for

the principal. Thus, even though the sequence of contracts cn has a pointwise limit, the limit

contract c∗ creates a discontinuous upward jump in the principal’s losses. So, the topology

of pointwise convergence applied to the contract space does not work.34

Instead, for each n, let us consider the (ex-ante) joint distribution, βn, over rewards,

signals and actions, (r, s, a), that is induced by cn. Under cn, the agent takes action a = 2/n

and the signal is equally likely to be in [0, 1/n), in which case r = 0, as it is to be in

[1/n, 2/n], in which case r = 2. So the joint distribution, βn, on R× S ×A gives probability
1/2 to {(r, s, a)} = {0} × [0, 1/n) × {2/n} and gives probability 1/2 to {(r, s, a)} = {2} ×
[1/n, 2/n]×{2/n}. In the spirit of Migrom and Weber (1985), we may call βn a distributional
mechanism.35 Then, βn converges in the weak* topology to the probability measure β

∗ ∈
∆(R × S × A) that assigns probability 1/2 to (r, s, a) = (0, 0, 0) and probability 1/2 to

(r, s, a) = (2, 0, 0). In particular, (s, a) = (0, 0) with probability one at the limit.

Thus, under the weak* topology, the given sequence of distributional mechanisms yields

a well-defined limit distribution β∗ over rewards, signals and actions. While β∗ does not

itself constitute a mechanism, it does generate a natural guess for one. The principal should

33The prinicpal should ask the agent to take action a = 0 and the principal should give the agent an
expected reward of 1 if the signal s = 0 occurs and a reward of 0 otherwise.
34Things can be even worse for the topology of pointwise convergence since some sequences of contracts

(e.g., such as in Example 2.3) have no pointwise convergent subsequence at all.
35For simplicity, the present example is one of pure moral hazard. In general a distributional mechanism

will also include the distribution over types.
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recommend the action a = 0, and, if the signal s = 0 is observed —the only signal given

positive probability by β∗ —the agent should be paid randomly, receiving r = 0 or r = 2

each with probability 1/2. Since β∗ places all weight on s = 0, it does not pin down rewards

when s 6= 0. However, since these signals don’t occur when the agent chooses a = 0, setting

rewards to r = 0 for any such s is a natural choice, since the only role of rewards at

such “out-of-equilibrium” signals is to discourage non-compliant actions. The mechanism

so constructed from β∗ is incentive compatible and generates expected losses of 1 for the

principal, as desired.

We take several lessons from this example. First, sequences of deterministic mechanisms,

even those with seemingly natural deterministic limits, may have no economically relevant

deterministic limit, but do have economically relevant limits that may involve randomization.

Second, when mechanisms are interpreted in terms of the joint distributions that they induce

on rewards, signals and actions, the mathematically natural mode of convergence is weak*

convergence of measures. In this example, weak* convergence not only provides a limit

distribution that generates a natural candidate for a limit mechanism, this limit mechanism

has the crucial properties that it is incentive compatible and does not cause the principal’s

losses to discontinuously jump up, precisely as needed for the effi cacy of the continuity and

compactness approach to existence.

The heart of the construction in this paper is to generalize this example by showing that,

under weak assumptions, and with the weak* topology on the joint distribution over rewards,

signals, actions, and types induced by the mechanism, the space of incentive compatible

mechanisms is compact and the principal’s loss function is lower semicontinuous.

8.1 The Metric Space of Distributional Mechanisms

The topology of weak* convergence of measures has two key advantages. First, closed subsets

of probability measures on compact sets are compact, and second, expectations of bounded

continuous functions are continuous in the underlying measure. It is therefore natural to

define a metric on the space of mechanisms in terms of the measures they induce on the

ambient space R× S × A× T.
If X and Y are measurable spaces, if η ∈ ∆(X), and if γ : X → ∆(Y ) is a transition

probability, define η ⊗ γ ∈ ∆(Y ×X) such that for all measurable sets B ⊆ X and C ⊆ Y,

(η ⊗ γ) (B × C) =

∫
B

γ(C|x)dη(x).

That is, η⊗γ is the joint probability measure on Y ×X induced by the marginal probability

measure η (·) ∈ ∆(X) and the “conditional” probability measure γ (·|x) ∈ ∆(Y ) for each
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x ∈ X.
Let d∆ be any metric for the weak* topology on ∆(R×S×A×T ). Define a metric, dM ,

on the space of incentive-compatible (IC ) mechanisms, M, by

dM((α, κ), (α′, κ′)) = d∆(H ⊗ α⊗ P ⊗ κ,H ⊗ α′ ⊗ P ⊗ κ′).

That is, the distance between two mechanisms is determined by the distance between the

probability measures that the two mechanisms induce on R× S × A× T.
Under dM , two IC mechanisms (α, κ), (α′, κ′) ∈ M are considered equivalent if α(·|t) =

α′(·|t) for H a.e. t ∈ T and κ(·|s, a, t) = κ′(·|s, a, t) for H ⊗ α⊗ P a.e. (s, a, t) ∈ S ×A× T .
That is, dM considers equivalent any two mechanisms whose distributions on R×S×A×T
are the same when the agent always reports his type honestly and takes the recommended

action, even though the two mechanisms might be different when the agent falsely reports

his type or fails to take the recommended action.36 Both the principal and the agent are

indifferent between any two IC mechanisms that are equivalent in this sense.

The metric dM is similar to that which is induced on behavioral strategies by Milgrom

and Weber’s (1985) use of distributional strategies in Bayesian games. As such, for any

(α, κ) ∈M, let us call any probability measure in∆(R×S×A×T ) of the formH⊗α⊗P⊗κ,
a distributional mechanism.

Suppose that the set M of IC mechanisms is nonempty. If every mechanism in M yields

the principal infinite losses, then all the mechanisms inM are (trivially) optimal. Otherwise,

the search for an optimal mechanism can be restricted to a nonempty subset of M,

Mc ≡ {(α, κ) ∈M : L (α, κ) ≤ c}

for some non-negative c.

Our approach to proving existence is to show that under the metric dM , L (α, κ) is lower

semicontinuous on M and, for all c ≥ 0, Mc is a compact subset of M. The existence of a

loss-minimizing incentive compatible mechanism then follows immediately. Thus, the central

underlying result of this paper is the following.

Theorem 8.3 EndowM with the dM -metric. Under Assumptions 4.1-4.9, Mc is a compact

subset of M for all c ≥ 0, and the principal’s loss function L : M → [0,+∞] defined in (3.1)

is lower semicontinous. Thus, ifM is nonempty, then the principal’s problem (3.2) possesses

a solution.
36Thus, as when considering functions in Lp spaces in analysis, a “point”(α, κ) in the metric space (M,dM )

is the equivalence class of mechanisms (α′, κ′) such that H ⊗ α′ ⊗ P ⊗ κ′ = H ⊗ α⊗ P ⊗ κ.

27



Before turning to the proof we provide suffi cient conditions for the set of incentive com-

patible mechanisms, M, to be nonempty. These conditions cover a variety of common appli-

cations.

Proposition 8.4 Suppose that Assumptions 4.1, 4.3, and 4.4 hold and that there is a

measurable φ : S → R such that φ(s) ∈ Φs for every s, and such that,∫
S

u(φ(s), s, a, t)dP (s|a, t) is continuous in a for each t.

Then an incentive compatible mechanism exists, i.e., M is nonempty.

The proof of Proposition 8.4, which can be found in the Appendix, uses results on mea-

surable selections of solutions to parameterized optimization problems.

Remark 8.5 Given the other assumptions, the displayed continuity requirement in Propo-

sition 8.4 is satisfied if either (a) some fixed reward is always feasible and the agent’s utility

given that reward does not depend on the signal, or (b) the funciton φ is continuous and,

for each t,
∫
{s:u(φ(s),s,a,t)>n} u(φ(s), s, a, t)dP (s|a, t)→n 0 uniformly in a ∈ A.

One implication of Theorem 8.3 is that mechanisms that come close to giving the principal

his minimum loss are close, in the dM -metric, to an optimal mechanism. Hence, studying the

optimal mechanism does not lose relevance if one is considering a principal who, for whatever

reason, is only approximately optimizing.

9 A Sketch of the Proof

The heart of the proof of Theorem 8.3 is to show that Mc = {(α, κ) ∈ M : L(α, κ) ≤ c} is
dM -compact for every c ∈ R since this immediately implies that L : M → [0,∞] is lower

semicontinuous. Suppose then that (αn, κn) is a sequence of mechanisms in Mc. We must

show that there is a subsequence (αnj , κnj) and there is (α∗, κ∗) ∈ Mc such that (αnj , κnj)

dM -converges to (α∗, κ∗).

For any mechanism, let us define a participant’s equilibrium payoff to be that obtained

when the agent always reports truthfully and always takes the recommended action.

To convey the essence of the proof, we shall make several simplifying assumptions here.

In particular, let us start by assuming that all spaces, R, S,A, and T, are compact, and that

the payoff functions u(r, s, a, t) and l(r, s, a, t) are continuous. Then, finding a subsequence

(αnj , κnj) and a limit mechanism (α∗, κ∗) ∈ Mc such that the principal’s and the agent’s

equilibrium payoffs along the subsequence converge to their equilibrium payoffs at the limit

is straightforward.
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Indeed, given (αn, κn), we may consider its distributional mechanism H ⊗αn⊗P ⊗ κn ∈
∆(R×S×A×T ).Given our simplifying compactness assumption,∆(R×S×A×T ) is compact

in the weak* topology and so there is a subsequence H ⊗ αnj ⊗ P ⊗ κnj and a probability
measure β∗ ∈ ∆(R×S×A×T ) to which H⊗αnj ⊗P ⊗κnj weak* converges. Moreover, we
show with the aid of standard results that β∗ can be decomposed as β∗ = H ⊗ α∗ ⊗ P ⊗ κ∗

for some mechanism (α∗, κ∗). Notice then that (αnj , κnj) dM -converges to (α∗, κ∗).

The principal’s equilibrium payoff along the subsequence is∫
l(r, s, a, t)dκnj(r|s, a, t)dP (s|a, t)dαnj(a|t)dH(t) ≤ c,

and, by the definition of weak* convergence (and our simplifying assumption that l(·) is
continuous) this payoff sequence converges to∫

l(r, s, a, t)dκ∗(r|s, a, t)dP (s|a, t)dα∗(a|t)dH(t) ≤ c,

which is the principal’s equilibrium payofffrom the mechanism (α∗, κ∗). Similarly, the agent’s

equilibrium payoff converges. So, if (α∗, κ∗) is incentive compatible we would have (α∗, κ∗) ∈
Mc and we would be done.

But there is a diffi culty. The diffi culty is that weak*-convergence does not pin down

(α∗, κ∗) at out-of-equilibrium reports and actions that are available to the agent and so it is

entirely possible that (α∗, κ∗) is not incentive compatible. The “hard”part of the proof is

to refine the convergence of the subsequence so that incentive compatibility is maintained.

We next sketch how this is done.

The mechanism (αnj , κnj) is incentive compatible if (see fn. 15) there is a subset of types

T 0 such that H(T 0) = 1 and for every t, t′ ∈ T 0,

∫
R×S×A

u (r, s, a, t) dκnj (r|s, a, t) dP (s|a, t) dαnj(a|t)

≥
∫
A

sup
a∈A

∫
R×S

u (r, s, a, t) dκnj (r|s, a′, t′) dP (s|a, t)

 dαnj(a
′|t′).

So, incentive compatibility will be maintained at the limit so long as for every t, t′ ∈ T 0 the

agent’s equilibrium payoff from (αnj , κnj) when his type is t converges to his equilibrium

payoff at the limit (α∗, κ∗), and his payoff from any false report of t′ does not jump up at

the limit.

Since the needed limit results must hold for all t, t′ ∈ T 0, what we require is a pointwise
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convergence result in the agent’s type. When there are finitely many or even countably

many types, this poses no particular diffi culty over and above the single-type case. However,

when there are a continuum of possible types, as occurs in many applications, it may be

impossible to find a subsequence along which convergence occurs pointwise in the agent’s

true and announced types t and t′. It is here where we use the insight of Page (1987,1991), who

noted that one can make use of a powerful result due to Komlos (1967) and its generalization

by Balder (1990), to obtain the necessary pointwise convergence. But some preparation is

needed.

First, let’s strengthen one of our informational assumptions, Assumption 4.7, and suppose

that for all a, t, a′, t′, the measures Pa,t and Pa′,t′ are mutually absolutely continuous. Then,

given the Radon-Nikodym derivative ga,t/a′,t′ , we may write

dP (s|a, t) = ga,t/a′,t′(s)dP (s|a′, t′).

Defining νnj(·|a′, t′) = P (·|a′, t′)⊗ κnj(·|·, a′, t′) ∈ ∆(R× S), we may then write

dκnj (r|s, a, t) dP (s|a, t) = ga,t/a′,t′(s)dνnj(r, s|a′, t′).

Consequently, and using that ga,t/a,t(s) = 1 for Pa,t a.e. s, the IC inequality can be

written as,

∫
R×S×A

u (r, s, a, t) dνnj(r, s|a, t)dαnj(a|t)

≥
∫
A

sup
a∈A

∫
R×S

u (r, s, a, t) ga,t/a′,t′(s)dνnj(r, s|a′, t′)

 dαnj(a
′|t′).

The interpretation suggested by this notation is that after the agent reports t′, the mechanism

uses αnj(·|t′) to randomly recommend to the agent an action a′, which then determines

νnj(·|a′, t′), a joint distribution over R× S. The agent’s action choice now only affects what
we may regard as his surrogate utility function, u(r, s, a, t)ga,t/a′,t′(s).

So, given t′, we can view the mechanism as jointly choosing a′ ∈ A and νnj(·|a′, t′) ∈
∆(R×S) and revealing these to the agent before the agent chooses his action. With this point

of view in mind, define µnj(·|t′) = αnj(·|t′)⊗ δνnj (·|·,t′)(·), where δνnj (·|a′,t′)(·) ∈ ∆(∆(R× S))

is the Dirac measure that puts probability one on νnj(·|a′, t′) ∈ ∆(R × S) for any a′ chosen
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by αnj(·|t′). Then we can write the IC inequality as

∫
∆(R×S)×A

 ∫
R×S

u (r, s, a, t) dν(r, s)

 dµnj(ν, a|t)

≥
∫

∆(R×S)×A

sup
a∈A

∫
R×S

u (r, s, a, t) ga,t/a′,t′(s)dν(r, s)

 dµnj(ν, a
′|t′).

and we are finally in a position to apply the Komlos-Balder pointwise convergence result.

The Komlos-Balder result permits us to show (see Lemma A.4) that the subsequence nj
can be chosen so that for all t ∈ T 0 (more precisely, for all t in a set that differs from T 0 by

an H-measure zero set of types) the Cesaro mean of the sequence of probability measures

µnj(·|t) ∈ ∆(∆(R×S)×A) weak* converges to some µ∗(·|t) ∈ ∆(∆(R×S)×A).37 So, even

though the subsequence itself need not converge pointwise in the agent’s type, its Cesaro

mean will, and as we are about to see, this turns out to suffi ce because the average of

incentive compatible mechanisms is itself an incentive compatible mechanism.

The next step is to show that supa∈A
∫
R×S u(r, s, a, t)ga,t/a′,t′(s)dν is lower semicontinuous

in (ν, a′). It is here that another of our informational assumptions, Assumption 4.8 plays its

key role. In particular, note that under the stronger assumption that ga,t/a′,t′(s) itself is lower

semi-continuous in (s, a′), for each a, t, and t′, the integral is lower-semicontinous in (ν, a′) ,

and so the supremum over a is as well. We prove this for the general case in Lemma A.6.

We may thus conclude that for every t, t′ ∈ T 0,

∫
∆(R×S)×A

 ∫
R×S

u (r, s, a, t) dν(r, s)

 dµ∗(ν, a|t)

≥
∫

∆(R×S)×A

sup
a∈A

∫
R×S

u (r, s, a, t) ga,t/a′,t′(s)dν(r, s)

 dµ∗(ν, a′|t′).

Finally, it is shown that, by applying to µ∗ the reverse of the construction that created µnj ,

one can obtain the limit mechanism (α∗, κ∗) that, when substituted into the above inequality,

is seen to be incentive compatible.

37 i.e., 1
N

∑N
j=1 µnj (·|t) weak* converges to µ

∗(·|t) as N →∞, for H a.e. t ∈ T 0.
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10 Proof of Theorem 8.3

IfMc = {(α, κ) ∈M : L(α, κ) ≤ c} is dM -compact, then it is dM -closed. Consequently, since
L : M → [0,∞] is nonnegative, this would establish that L is lower semicontinuous. Hence,

it suffi ces to show that Mc is dM -compact for every c ∈ R.
Fix any c ∈ R, and consider any sequence (αn, κn) ∈ Mc. If Pa,t(Sa′,t′) < 1 for some

a, t, a′, t′, then without loss of generality, we may assume that, for every n, κn({r∗}|s, a, t) = 1

for all (s, a, t) ∈ S×A×T such that s /∈ Sa,t (a measurable subset of S×A×T by Assumption
4.7) That is, we may assume without loss of generality that if the signal indicates that the

agent either lied about his type or did not take the recommended action, then the agent is

assigned a worst possible reward. Since (by Assumption 4.9) the new κn, when it differs from

the old, makes the punishment for not complying as severe as possible, the new mechanism

remains incentive compatible. Moreover, the new mechanism is dM -equivalent to the old

because the mechanism is unchanged on a set having probability one when the agent is

truthful and takes the recommended action.

We will show that the sequence (αn, κn) ∈Mc has a subsequence that dM -converges to a

limit in Mc. We proceed in several steps.

Step 1: Associate with each mechanism (αn, κn) a transition probability µn : T → ∆(∆(R×
S)× A).

For each n, define νn : A × T → ∆(R × S) as follows. For every (a, t) ∈ A × T and for
every E ∈ B(R× S),

νn(E|a, t) =

∫
R×S

1E(r, s)dκn(r|s, a, t)dP (s|a, t).

Then νn : A×T → ∆(R×S) is a transition probability by Proposition 7.29 in Bertsekas and

Shreve (1978), henceforth BS. Define γn : A×T → ∆(∆(R×S)) by γn({νn(·|a, t)}|a, t) = 1

for every (a, t) ∈ A×T. Then γn is measurable because it is the composition of the measurable
(BS, Prop. 7.26) function νn : A × T → ∆(R × S) and the continuous function that maps

any ν ∈ ∆(R × S) into the Dirac measure δν(·) ∈ ∆(∆(R × S)) that puts probability one

on ν. Hence, being measurable, γn : A× T → ∆(∆(R× S)) is a transition probability (BS,

Prop. 7.26).

For each t ∈ T, define µn : T → ∆(∆(R × S) × A) as follows. For every t ∈ T and for
every E ∈ B(∆(R× S)× A),

µn(E|t) =

∫
∆(R×S)×A

1E(ν, a)dγn(ν|a, t)dαn(a|t).
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Then µn : T → ∆(∆(R×S)×A) is a transition probability (BS, Prop. 7.29). In particular,

µn(·|t) ∈ ∆(∆(R× S)× A) for every t ∈ T.

Step 2: Establish the equivalence of expectations using H ⊗ αn ⊗ P ⊗ κn or using H ⊗ µn.
For any measurable function ζ : R × S × A × T → R and for any n, we can calculate

the expectation of ζ by using either H ⊗ αn ⊗ P ⊗ κn or using H ⊗ µn as follows, where

νn : A× T → ∆(R× S) and γn : A× T → ∆(∆(R× S)) are as defined in Step 1.∫
ζ(r, s, a, t)dκn(r|s, a, t)dP (s|a, t)dαn(a|t)dH(t)

=

∫
A×T

(∫
R×S

ζ(r, s, a, t)dvn(r, s|a, t)
)
dαn(a|t)dH(t)

=

∫
T

∫
A

(∫
∆(R×S)

(∫
R×S

ζ(r, s, a, t)dν(r, s)

)
dγn(ν|a, t)

)
dαn(a|t)dH(t)

=

∫
T

(∫
A

∫
∆(R×S)

(∫
R×S

ζ(r, s, a, t)dν(r, s)

)
dγn(ν|a, t)dαn(a|t)

)
dH(t)

=

∫
T

(∫
∆(R×S)×A

(∫
R×S

ζ(r, s, a, t)dν(r, s)

)
dµn(ν, a|t)

)
dH(t). (10.1)

Step 3: For each n, find a subsequence {nj} of {n} such that
{
H ⊗ µnj

}
and the Cesaro

mean of {µnj(·|t)} converge.
We will show in particular that there exists a transition probability µ∗ : T → ∆(∆(R ×

S)×A) and a subsequence {nj} of {n} such that
{
H ⊗ µnj

}
converges to H ⊗ µ∗ and such

that the Cesaro mean38 of {µnj(·|t)} converges to µ∗(·|t) for H almost every t ∈ T.
This step follows from Lemma A.4 in the Appendix, which relies heavily on Balder (1990).

Without loss, we may assume that the original sequence {n} has these properties. Then, in
particular, letting µ̄m(·|t) denote the m-th Cesaro mean of {µn(·|t)}, we have

µ̄m(·|t) =
1

m

m∑
n=1

µn(·|t)→m µ∗(·|t), H a.e. t ∈ T. (10.2)

Step 4: Use µ∗ to construct a candidate limit mechanism (α∗, κ∗).

For each t ∈ T, define the closed set

Wt = {(ν, a) ∈ ∆(R× S)× A : ν(Φ) = 1 and margSν = Pa,t}.39

38The Cesaro mean of a sequence {xn} is the sequence whosem-th term (sometimes called them-th Cesaro
mean of {xn}) is 1

m

∑m
n=1 xn.

39Wt is the intersection of the two closed sets {ν : ν(Φ) = 1} × A and {(ν, a) : margSν = Pa,t}. The first
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Construct α∗.

By BS Corollary 7.27.1, there is a transition probability α∗ : T → ∆(A) and a transition

probability η∗ : A×T → ∆(∆(R×S)) such that for every t ∈ T, µ∗(·|t) = α∗(·|t)⊗ η∗(·|·, t).
Further, µ∗(Wt|t) = 1 for H a.e t ∈ T, since µ̄m(Wt|t) = 1 for every m. Hence, for H a.e. t,

η∗(·|a, t) places probability 1 on {ν ∈ ∆(R × S) : ν(Φ) = 1 and margSν = Pa,t} for α∗(·|t)
a.e. a ∈ A.

Collapse a Lottery.

Note that η∗ takes each element of A× T to a probability measure on ∆(R× S), rather

than to an element of ∆ (R× S) . For each (a, t) define ν∗ (·|a, t) ∈ ∆(R × S) so that for

every E ∈ B(R× S),

ν∗(E|a, t) =

∫
∆(R×S)

ν(E)dη∗(ν|a, t). (10.3)

Hence, for H a.e. t, ν∗(Φ|a, t) = 1 and the marginal of ν∗(·|a, t) on S is Pa,t for α∗(·|t) a.e.
a ∈ A. Also, because for each E ∈ B(R × S), ν(E) is a measurable real-valued function of

ν on ∆(R × S), BS Prop. 7.29 implies that ν∗(E|a, t) is a measurable real-valued function
of (a, t) on A× T. Hence, ν∗ : A× T → ∆(R× S) is a transition probability.

A consequence of the definition of ν∗ is that for every ζ : R × S × A× T → [0,∞) that

is measurable in (r, s) for each (a, t),∫
∆(R×S)

(∫
R×S

ζ(r, s, a, t)dν(r, s)

)
dη∗(ν|a, t) =

∫
R×S

ζ(r, s, a, t)dν∗(r, s|a, t). (10.4)

Construct κ∗.

Again, by BS Corollary 7.27.1, there exists a transition probability P̃ : A×T → ∆(S) and

a transition probability κ∗ : S ×A× T → ∆(R) such that for all a, t, ν∗(·|a, t) = P̃ (·|a, t)⊗
κ∗(·|·, a, t). But because the marginal of ν∗(·|a, t) on S is P (·|a, t) for H ⊗ α∗ a.e. (a, t) we

must have P̃ (·|a, t) = P (·|a, t) for H ⊗α∗ a.e. (a, t), and so ν∗(·|a, t) = P (·|a, t)⊗ κ∗(·|·, a, t)
for H ⊗α∗ a.e. (a, t). Also, since ν∗(Φ|a, t) = 1 holds for H ⊗α∗ a.e. (a, t), κ∗(Φs|s, a, t) = 1

for all (s, a, t) in a measurable subset Z of S × A× T such that [H ⊗ α∗ ⊗ P ](Z) = 1.40 To

satisfy the formal definition of a mechanism, modify κ∗(Φs|s, a, t) on (S ×A× T )\Z so that
κ∗(Φs|s, a, t) = 1, e.g. by setting κ∗(·|s, a, t) = κ1(·|s, a, t) for all (s, a, t) ∈ (S ×A× T )\Z.41

Finally, modify κ∗ so that κ∗({r∗(s, a, t)}|s, a, t) = 1 if s /∈ Sa,t.42

set is closed by the portmanteau theorem because Φ is closed and the second set is closed because Pa,t is
continuous in a.
40Z = {(s, a, t) ∈ S ×A× T : κ(Φs|s, a, t) = 1} is measurable since κ is a transition probability and Φs is

the slice of a measurable (indeed closed) subset of R× S.
41κ1 is the second coordinate of the first term in our original sequence of mechanisms (α1, κ1), (α2, κ2)... .
42The modified κ∗ is still a transition probability since {(s, a, t) : s ∈ Sa,t} is measurable by Assumption

4.7, and r∗ is a measurable function by 4.9.
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The mechanism (α∗, κ∗) ∈M is our candidate limit mechanism. By reasoning as in Step

2 combined with (10.4), for any measurable ζ : R× S × A× T → R, we have,∫
ζ(r, s, a, t)dκ∗(r|s, a, t)dP (s|a, t)dα∗(a|t)dH(t)

=

∫
T

(∫
∆(R×S)×A

(∫
R×S

ζ(r, s, a, t)dν(r, s)

)
dµ∗(ν, a|t)

)
dH(t). (10.5)

Step 5: Rewrite the utility to a deviating agent.

If the sets Sa,t in Assumption 4.7 are such that Pa,t(Sa′,t′) < 1 for some a, t, a′, t′, then let

r∗ ∈ R be as in Assumption 4.9 and define u∗(s, a, t) = u(r∗, s, a, t) for all (s, a, t). Otherwise,

define u∗(s, a, t) = 0 for all (s, a, t). Hence, in either case, u (r, s, a, t)− u∗ (s, a, t) ≥ 0 for all

(r, s, a, t). For any ν ∈ ∆(R× S), a, a′ ∈ A, and t, t′ ∈ T, define

U∗(ν, a, t, a
′, t′) =

∫
S

u∗ (s, a, t) dP (s|a, t) +

∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]ga,t/a′,t′(s)dν (r, s) .

We will show that for each n, the utility to an agent of type t who reports type t′ and

then best responds conditional on whatever action a′ is recommended, can be written as∫
∆(R×S)×A

sup
a∈A

U∗(ν, a, t, a
′, t′)dµn(ν, a′|t′).43

To see this, note that, in the mechanism (αn, κn), the utility to an agent of type t who

reports type t′ and then optimally chooses an action after receiving a recommended action

is as follows, where νn : A× T → ∆(R× S) and γn : A× T → ∆(∆(R× S)) are as defined

in Step 1: ∫
A

(
sup
a∈A

∫
R×S

u (r, s, a, t) dκn (r|s, a′, t′) dP (s|a, t)
)
dαn(a′|t′)

=

∫
A

sup
a∈A

(∫
R×S

u∗ (s, a, t) dκn (r|s, a′, t′) dP (s|a, t)

+

∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]dκn (r|s, a′, t′) dP (s|a, t)
)
dαn(a′|t′)

=

∫
A

sup
a∈A

(∫
S

u∗ (s, a, t) dP (s|a, t)

+

∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]1Sa′,t′ (s)dκn (r|s, a′, t′) dP (s|a, t)
)
dαn(a′|t′)

43The inegral is well-defined because, as shown in the proof of Lemma A.6 in Appendix II, the integrand,
supa∈A U∗(ν, a, t, a

′, t′), is lower semicontinuous, and hence measurable, as a function of (ν, a′) ∈ ∆(R×S)×A.
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=

∫
A

sup
a∈A

(∫
S

u∗ (s, a, t) dP (s|a, t)

+

∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]ga,t/a′,t′(s)dκn (r|s, a′, t′) dP (s|a′, t′)
)
dαn(a′|t′)

=

∫
∆(R×S)×A

sup
a∈A

(∫
S

u∗ (s, a, t) dP (s|a, t)

+

∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]ga,t/a′,t′(s)dν (r, s)

)
dµn(ν, a′|t′)

=

∫
∆(R×S)×A

sup
a∈A

U∗(ν, a, t, a
′, t′)dµn(ν, a′|t′), (10.6)

where the first equality follows by adding and subtracting u∗ (s, a, t) ; the second equality

follows because (first term) u∗ (s, a, t) does not depend on r and (second term) either because

Pa,t(Sa′,t′) = 1, or, because Pa,t(Sa′,t′) < 1 and κn ({r∗}|s, a′, t′) = 1 for every s ∈ Sa,t\Sa′,t′
and so (by the definition of u∗(s, a, t)) the quantity in square brackets is zero when s ∈
Sa,t\Sa′,t′ ; the third equality follows by Assumptions 4.7 and 4.8; the fourth equality follows
because (∫

R×S
[u (r, s, a, t)− u∗ (s, a, t)]ga,t/a′,t′(s)dκn (r|s, a′, t′) dP (s|a′, t′)

)
=

(∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]ga,t/a′,t′(s)dνn (r, s|a′, t′)
)

=

(∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]ga,t/a′,t′(s)dν (r, s)

)
dγn (ν|a′, t′) ,

and because µn(·|t) = αn(·|t)⊗γn(·|·, t); and where the fifth equality follows by the definition
of U∗.

Step 6: Show that (α∗, κ∗) is incentive compatible.

Incentive compatibility of (αn, κn) along with Step 5 imply that for H a.e. t, and every

t′,∫
∆(R×S)×A

(∫
R×S

u(r, s, a, t)dν(r, s)

)
dµn(ν, a|t) =

∫
u (r, s, a, t) dκn (r|s, a, t) dP (s|a, t) dαn(a|t)

≥
∫

∆(R×S)×A
sup
a∈A

U∗(ν, a, t, a
′, t′)dµn(ν, a′|t′),

(10.7)

where the equality follows from Step 2 with ζ = u.
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Show incentive compatibility in terms of µ∗.

Applying Lemmas A.5 and A.6 to the limits of the Cesaro means of the first and last

terms in (10.7) implies that there is a measurable subset T 1 of T with H(T 1) = 1 such that

for all t, t′ ∈ T 1,∫
∆(R×S)×A

(∫
R×S

u(r, s, a, t)dν(r, s)

)
dµ∗(ν, a|t) ≥

∫
∆(R×S)×A

sup
a∈A

U∗(ν, a, t, a
′, t′)dµ∗(ν, a′|t′),

(10.8)

and where both integrals are finite.

Use incentive compatibility in terms of µ∗ to show incentive compatibility in terms of (α∗, ν∗) .

Recall that for every a ∈ A, η∗(·|a, t) is an element of ∆(∆ (R× S)), i.e., η∗(·|a, t) is a
lottery over elements of ∆(R×S), and that we defined ν∗(·|a, t) ∈ ∆(R×S) to collapse that

lottery. In this step, we show that doing so does not affect incentive compatibility. Indeed,

for all t, t′ ∈ T 1,∫
A

(∫
R×S

u(r, s, a, t)dν∗(r, s|a, t)
)
dα∗(a|t)

=

∫
∆(R×S)×A

(∫
R×S

u(r, s, a, t)dν(r, s)

)
dη∗(ν|a, t)dα∗(a|t)

≥
∫

∆(R×S)×A
sup
a∈A

(∫
S

u∗ (s, a, t) dP (s|a, t)

+

∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]ga,t/a′,t′ (s) dν (r, s)

)
dη∗(ν|a′, t′)dα∗(a′|t′)

≥
∫
A

sup
a∈A

(∫
∆(R×S)

(∫
S

u∗ (s, a, t) dP (s|a, t)

+

∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]ga,t/a′,t′ (s) dν (r, s)

)
dη∗(ν|a′, t′)

)
dα∗(a′|t′)

=

∫
A

sup
a∈A

(∫
S

u∗ (s, a, t) dP (s|a, t)

+

∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]ga,t/a′,t′ (s) dν
∗ (r, s|a′, t′)

)
dα∗(a′|t′),

where the first equality follows from (10.4), the first inequality follows by applying µ∗(·|t) =

α∗(·|t)⊗ η∗(·|·, t) to (10.8), the second inequality follows because the agent is no longer able
to condition his action on the outcome of the lottery η∗(·|a′, t′) over ν ∈ ∆(R× S), and the

final equality follows from (10.4).

Show incentive compatibility of (α∗, κ∗) .

Since ν∗a,t = Pa,t ⊗ κ∗a,t for H ⊗ α∗ a.e. (a, t), it follows that there is an H-measure 1
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subset T 0 of T 1 such that for all t, t′ ∈ T 0,∫
A

(∫
R×S

u(r, s, a, t)dκ∗(r|s, a, t)dP (s|a, t)
)
dα∗(a|t)

≥
∫
A

sup
a∈A

(∫
S

u∗ (s, a, t) dP (s|a, t)

+

∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]ga,t/a′,t′ (s) dκ
∗ (r|s, a′, t′) dP (s|a′, t′)

)
dα∗(a′|t′)

=

∫
A

sup
a∈A

(∫
S

u∗ (s, a, t) dP (s|a, t)

+

∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]1Sa′,t′ (s)dκ
∗ (r|s, a′, t′) dP (s|a, t)

)
dα∗(a′|t′)

=

∫
A

sup
a∈A

(∫
S

u∗ (s, a, t) dP (s|a, t)

+

∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]dκ∗ (r|s, a′, t′) dP (s|a, t)
)
dα∗(a′|t′)

=

∫
A

(
sup
a∈A

∫
R×S

u (r, s, a, t) dκ∗ (r|s, a′, t′) dP (s|a, t)
)
dα∗(a′|t′),

where the first equality follows by Assumptions 4.7 and 4.8, and the second equality follows

either because Pa,t(Sa′,t′) = 1 or because Pa,t(Sa′,t′) < 1 and κn ({r∗}|s, a′, t′) = 1 when

s ∈ Sa,t\Sa′,t′ and so (by the definition of u∗(s, a, t) in Step 5) the quantity in square brackets
is zero when s ∈ Sa,t\Sa′,t′ . Therefore (α∗, κ∗) is almost everywhere incentive compatible and

so, if necessary, we modify it on a measure zero set of types so that it is incentive compatible

(see footnote 15). Hence, after the modification, (α∗, κ∗) ∈M.44

Step 7: Show that (αn, κn)→ (α∗, κ∗) in the dM -metric.

We show that H ⊗αn⊗P ⊗κn converges to H ⊗α∗⊗P ⊗κ∗ in the weak* topology. Let
ζ : R× S × A× T → [0, 1] be continuous. Then,∫

ζ(r, s, a, t)dκn(r|s, a, t)dP (s|a, t)dαn(a|t)dH(t)

=

∫
T

∫
∆(R×S)×A

(∫
R×S

ζ(r, s, a, t)dν(r, s)

)
dµn(ν, a|t)dH(t)

→
∫
T

∫
∆(R×S)×A

∫
R×S

ζ(r, s, a, t)dν(r, s)dµ∗(ν, a|t)dH(t)

=

∫
ζ(r, s, a, t)dκ∗(r|s, a, t)dP (s|a, t)dα∗(a|t)dH(t),

44Define Ū(ν, t, a′, t′) = supa∈A U∗(ν, a, t, a
′, t′). The last three equalities in the previous display show that

supa∈A
∫
R×S u (r, s, a, t) dκ∗ (r|s, a′, t′) dP (s|a, t) = Ū(Pa′,t′ ⊗ κ∗a′,t′ , t, a′, t′). By Lemma A.6, Ū(ν, t, a′, t′) is

u.s.c., and so measurable, in (ν, a′). Consequently, Ū(Pa′,t′ ⊗ κ∗a′,t′ , t, a′, t′) is measurable in a′, being the
composition of measurable functions. This verifies the claim stated in footnote 14.
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where the first equality is from Step 2, the limit follows since H ⊗ µn → H ⊗ µ∗ by Step 3,
and the second equality follows from (10.5).

Step 8: Show that L (α∗, κ∗) ≤ c.

For any (ν, a, t) ∈ ∆(R × S) × A × T, let L(ν, a, t) =
∫
R×S l(r, s, a, t)dν(r, s). Since

(αn, κn) ∈Mc for all n, we have L (αn, κn) ≤ c, and so

c ≥ limm

1

m

m∑
n=1

L(αn, κn)

= limm

1

m

m∑
n=1

∫
T

(∫
∆(R×S)×A

(∫
R×S

l(r, s, a, t)dν(r, s)

)
dµn(ν, a|t)

)
dH(t)

= limm

∫
T

(∫
∆(R×S)×A

L(ν, a, t)dµ̄m(ν, a|t)
)
dH(t)

≥
∫
T

(
limm

∫
∆(R×S)×A

L(ν, a, t)dµ̄m(ν, a|t)
)
dH(t)

≥
∫
T

(∫
∆(R×S)×A

L(ν, a, t)dµ∗(ν, a|t)
)
dH(t)

= L (α∗, κ∗) , (10.9)

where the first and last equalities follow from (10.1) and (10.5) respectively, and the second

inequality follows from Fatou’s lemma. It remains only to justify the third inequality.

By Lemma A.2, L(ν, a, t) is nonnegative and lower semicontinuous on Wt. Therefore,

since µ∗(Wt|t) = 1 for H a.e. t ∈ T (see Step 4), (10.2) and Lemma A.1 yield the third

inequality.

Steps 6-8 together imply that (αn, κn)→ (α∗, κ∗) ∈Mc, completing the proof that Mc is

compact. Q.E.D.

11 Restrictions on the Mechanism

The function Φ allows considerable flexibility in ruling out certain rewards as a function of

the signal, including various ex-post constraints such as lower and upper bounds on payments

or other restrictions that a court or law might place on what can be enforced within a con-

tract. But the legal system or economic forces might equally well constrain the mechanism

in its totality. One simple case is a participation constraint asking that the agent be given a

minimal utility at the ex-ante stage. Another example might be a law that prevents insur-

ance policies from having more than some percentage gap between premiums and expected

payouts. Our machinery is general enough that it can accommodate such restrictions on the

set of mechanisms. At the end of this section, we illustrate how the results here yield an
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existence result when the model includes some simple dynamics involving outside options.

LetM ′ ⊆M be any subset of the set of incentive compatible mechanisms. The principal’s

M ′-restricted problem is

min
(α,κ)∈M ′

L(α, κ).

Let

Mc = {(α, κ) ∈M : L (α, κ) ≤ c} ,

be the set of incentive compatible mechanisms that yield the principal expected losses no

greater than c.

Corollary 11.1 Suppose that Assumptions 4.1-4.9 hold and thatM ′ is nonempty. If, under

the metric dM , either M ′ is closed or M ′ ∩Mc is closed for every c ∈ R, then the principal’s
M ′-restricted problem possesses a solution.

The proof follows immediately from Theorem 8.3 because a closed subset of a compact

set is compact.

Below we illustrate the value of Corollary 11.1 with a number of useful applications. We

assume throughout that Assumptions 4.1-4.9 hold. Before getting to the applications, we

first identify a collection of subsets M ′ of M that are closed.

Lemma 11.2 Suppose that g : R×S×A×T → R and ξ : T → R are measurable functions
such that: g(r, s, a, t) ≥ ξ(t) for every (r, s, a, t), g(r, s, a, t) is lower semicontinuous in (r, s, a)

for each t, and
∫
|ξ(t)| dH(t) <∞. Then, for any b ∈ R, the set

M ′ = {(α, κ) ∈M :

∫
g (r, s, a, t) dκ (r|s, a, t) dP (s|a, t) dα (a|t) dH(t) ≤ b}

is dM -closed.

Proof. Suppose that (αn, κn) in M ′ dM -converges to (α̂, κ̂) ∈M, i.e., that H ⊗αn⊗P ⊗ κn
weak* converges to H ⊗ α̂⊗ P ⊗ κ∗. Then, by Lemma A.7 part (ii) (with X = R× S ×A),

b ≥ limn

∫
gd(H ⊗ αn ⊗ P ⊗ κn) ≥

∫
gd(H ⊗ α̂ ⊗ P ⊗ κ̂). Hence, (α̂, κ̂) ∈ M ′ and so M ′ is

dM -closed. Q.E.D.

The first application of Corollary 11.1 considers a situation in which a regulator places

an upper bound, π0, on the principal’s expected profits conditional on a subset of types.

Example 11.3 Suppose that the principal’s measurable profit function is π : R×S×A×T →
R, which might differ from −l, the negative of the principal’s disutility (there may be non-
monetary aspects of the principal’s loss function that the regulator does not care about).
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Suppose that there is a measurable ξ : T → R such that π(r, s, a, t) ≥ ξ(t) for all t ∈ T and∫
|ξ(t)| dH(t) <∞. Suppose also that π (r, s, a, t) is lower semicontinuous in (r, s, a) for each

t. Then, for any measurable subset T̂ of T,

M ′ = {(α, κ) ∈M :

∫
1T̂ (t)π (r, s, a, t) dκ (r|s, a, t) dP (s|a, t) dα (a|t) dH(t) ≤ π0},

is dM -closed by Lemma 11.2 (with g = 1T̂π).

Our next example includes situations where a regulator insists that the principal sign up

a certain fraction of types, or induces a certain fraction of types to take a specific action. For

example, the principal could be a bank, and the constraint could be that a certain fraction

of loans are made to a certain class of borrowers.

Example 11.4 Suppose that ζ : A × T → R is measurable and that for each t ∈ T,

ζ(a, t) is upper semicontinuous in a. Suppose also that there is a nonnegative measurable

ξ : T → [0,∞) such that ζ(a, t) ≤ ξ(t) for all t ∈ T and
∫
ξ(t)dH(t) < ∞. Let M ′ =

{(α, κ) ∈ M :
∫
ζ (a, t) dα (a|t) dH (t) ≥ b}. Then, by Lemma 11.2 (with g = −ζ), M ′ is

dM -closed.

Next, consider a regulation that certain outcomes must be rare, as might be desired in

financial markets.

Example 11.5 Let So be an open subset of S. LetM ′ = {(α, κ) ∈M :
∫
A×T P (So|a, t) dα (a|t) dH (t) ≤

b}. Then, because P (So|·) is bounded and P (So|a, t) is l.s.c. in a for each t, Lemma 11.2
(with g(·) = P (So|·)), implies that M ′ is dM -closed.

The next examples illustrate how, with appropriate restrictions on the space of mecha-

nisms, our model can capture situations in which the principal and the agent have decisions

that must be made at the interim stage, i.e., after the agent learns his type, but before

the agent takes an action. Our model up to now includes only one such decision, i.e., the

principal’s choice of the contract.

In the first set of such examples, the agent’s reward, r = (r1, r2), has two coordinates.45

It is assumed that the first coordinate, r1, can as usual be chosen by the principal after the

signal is observed, but that the second coordinate, r2, must be chosen by the principal at

the interim stage, immediately after the agent reports his type. So, r1 should be interpreted

as the reward specified by the contract, while r2 should be interpreted as an additional

decision(s) that the principal controls.

45Each coordinate can be multidimensional.
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Example 11.6 Suppose that R = R1 × R2 and that, for every s, Φs = Φ1s × R2. If the

principal can choose r1 after observing the signal s, but must choose r2 before observing

the signal s, then the mechanism, (α, κ), must be restricted to the set M ′ = {(α, κ) ∈ M :

H ⊗ α ⊗ P ⊗ κ can be written as H ⊗ α1 ⊗ P ⊗ κ1, where α1 : T → ∆ (R2 × A) and

κ1 : R2×S×A×T → ∆ (R1) are transition probabilities}. The proof that M ′ is closed is in

the Appendix. Several examples follow. In each example, the principal’s choice of r2 must

occur at the interim stage and in examples (a) and (b) r2 is unobservable to the agent.

(a) r2 is the effort exerted by the principal toward a joint project with the agent.

(b) r2 is the principal’s choice of how intensively to monitor the agent. In particular, sup-

pose that the functions u and l can be written as u(r1, r2, s, a, t) = u1 (r1, d, s, a, t) f (s|r2, a, t)

and l(r1, r2, s, a, t) = l1 (r1, d, s, a, t) f (s|r2, a, t), where f ≥ 0 and
∫
S
f (s|r2, a, t) dP (s|a, t) =

1 for every r2, a, t. Then, we may interpret dP (s|r2, a, t) = f (s|r2, a, t) dP (s|a, t) as the sig-
naling technology that is determined in part by the principal’s choice of r2, and we may

interpret u1 and l1 as the agent’s and the principal’s payoff functions.

(c) r2 is the principal’s decision regarding an interim outside option. In particular,

suppose that R2 = {rO, rA} and u(r1, rO, s, a, t) = uO(t) and l(r1, rO, s, a, t) = lO(t). Then,

rO is interpreted as the principal’s decision to take the outside option (effectively excluding

the agent), and rA is interpreted as the principal’s decision to allow the agent to choose an

action.

The next example illustrates how our model can capture a situation in which both the

principal and the agent have outside options that are available only at the interim stage.46

Example 11.7 Model this as in part (c) of the previous example, where lO(t) and uO(t) are

the payoffs to the principal and agent when either one of them takes their interim outside

option and the agent’s type is t. For the same reason as there, we must restrict the principal

to IC mechanisms in the set M ′ defined there. But now, in addition, we must constrain the

mechanism (α, κ) so that∫
R×S×A

u (r, s, a, t) dκ (r|s, a, t) dP (s|a, t)dα (a|t) ≥ uO (t) , H a.e. t ∈ T, (11.1)

because the agent can opt out after learning his type. Note that the principal can satisfy

this constraint by opting out at the interim stage. Call this additional constraint set M ′′.

Thus, we are interested in the principal’s M ′ ∩M ′′-restricted problem. In the Appendix we

show that M ′ ∩M ′′ ∩Mc is dM -closed for every c ∈ R, implying that Corollary 11.1 applies.
46We have already discussed in Section 3 how our model can capture outside options for the agent that are

available at the time he chooses his action. Such outside options might be available to the agent in addition
to the availability of an interim outside option.
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Our final example adds to the principal’s problem an additional constraint requiring that

the agent receives some minimum ex-ante expected utility. A similar example would add a

constraint requiring that the principal’s ex-ante expected loss is below some give bound.

Example 11.8 Suppose that there is a measurable ξ : T → [0,∞) such that u(r, s, a, t) ≤
ξ(t) for all t ∈ T and

∫
ξ(t)dH(t) < ∞. Prior to learning his type, the agent can take an

outside option and receive utility uO or he can choose to participate in the mechanism. Thus,

the principal must choose a mechanism from

M ′ = {(α, κ) ∈M :

∫
u (r, s, a, t) dκ (r|s, a, t) dP (s|a, t) dα (a|t) dH(t) ≥ uO}

in order to get the agent to participate. In the Appendix we show thatM ′∩Mc is dM -closed

for every c ∈ R, implying that Corollary 11.1 applies.

Taken together, Examples 11.6, 11.7, and 11.8 show that our Assumptions 4.1-4.9 yield

the existence of an optimal mechanism for the principal in the following simple dynamic

setting. At date 1, both the principal and the agent can choose to quit or continue. If either

quits, payoffs are realized and the game ends. If they both continue, then at date 2, the

agent learns his type and can decide whether to quit or continue. If he quits payoffs are

realized and the game ends. If he continues, then at stage 3, the agent reports his type

to the principal and the principal can decide whether to quit or to continue. If she quits,

payoffs are realized and the game ends. If she continues, then at date 4, the principal makes

all decisions that are under her control, one of which is the choice of the agent’s contract. At

date 5, the principal recommends an action for the agent and the agent chooses any action

from those that are available. Payoffs are realized and the game ends.

12 Random vs. Deterministic Mechanisms

An important feature of our setup is that it allows for randomized mechanisms. However,

depending on the setting, the optimal mechanism may or may not require randomization over

rewards. Moreover, in various economic situations randomization may be precluded despite

being beneficial to the principal. In this section we study these two separate issues. First,

we provide suffi cient conditions under which full optimality can be achieved without ran-

domization over rewards. Second, we consider restricted settings in which only deterministic

mechanisms are permitted.
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12.1 Suffi cient Conditions for the Optimality of Deterministic Con-

tracts

In this section we show that risk aversion and separability imply that mechanisms with

deterministic contracts are fully optimal. This intuitive result follows because any nontrivial

randomization over the agent’s reward is strictly worse for the principal than the agent’s

certainty equivalent. It is noteworthy that the conditions required for this result are quite

strong. We are not aware of economically interesting conditions that rule out randomization

over recommended actions, especially beyond the case of pure moral hazard with action-

independent risk attitudes towards rewards.

Let D = {δr|r ∈ R} ⊆ ∆ (R) be the set of Dirac measures on R. Say that a mechanism

(α, κ) has deterministic rewards if κ (·|s, a, t) ∈ D for H ⊗α⊗P a.e. (s, a, t) in S×A×T.47

Proposition 12.1 Let e : ∆ (R)× S → R be measurable. Suppose that for all (s, a, t) and

all ρ ∈ ∆ (Φs),

1. e (ρ, s) ∈ Φs

2.
∫
u (r, s, a, t) dρ = u (e (ρ, s) , s, a, t) , and

3.
∫
l (r, s, a, t) dρ ≥ l (e (ρ, s) , s, a, t) .

Then, an optimal mechanism with deterministic rewards exists. If
∫
l (r, s, a, t) dρ >

l (e (ρ, s) , s, a, t) for all ρ /∈ D, then every optimal mechanism has deterministic rewards.

The proof is simply to start from an optimal mechanism (α, κ) , and for each (s, a, t) define

κ̂ (·|s, a, t) = δe(κ(·|s,a,t),s). The certainty-equivalence function e leaves all utility calculations

for the agent (compliant or otherwise) unaffected, and weakly lowers the expected cost to the

principal. It does so strictly if on a positiveH⊗α⊗P -measure set of (s, a, t) , κ (·|s, a, t) /∈ D,
and if

∫
l (s, r, a, t) dρ > l (s, e (ρ, s) , a, t) for all ρ /∈ D.

Holmström’s (1979) suffi cient statistic result implies that in a pure moral hazard problem

in which both the principal and the agent are risk averse with separable utilities, and where

the payment space is convex, randomization over payments is never optimal. The following

example, which is a simple implication of Proposition 12.1, generalizes Holmström’s result

to a setting that allows for adverse selection.

Example 12.2 Let R = [0,∞) and for each s let Φs be an interval of real numbers, and let

u (r, s, a, t) = v (r, s) τ (s, a, t) + θ (s, a, t) , where for each s, v (r, s) is continuous, concave,

and strictly increasing in r, and l (r, s, a, t) = ϕ (r, s)σ (s, a, t) + ξ (s, a, t) where for each s,

ϕ (r, s) is convex and strictly increasing in r, and where the functions τ and σ are positive.

47If (α, κ) has deterministic rewards we may define a deterministic contract c : S × A × T → R by
κ (·|s, a, t) = δc(s,a,t). Measurability of c follows directly from the fact that κ is a transition probability.
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For each s and for each ρ ∈ ∆ (Φs) , because v(·, s) is continuous, we may define e (ρ, s) so

that v(e(ρ, s), s) =
∫
v (r, s) dρ(r), i.e., so that e(ρ, s) is the agent’s certainty equivalent to ρ.

Then, condition 1 is satisfied since v(·, s) is strictly increasing and since ρ puts probability
1 on the interval Φs. Condition 2 is satisfied by construction. Condition 3 is satisfied since

e (ρ, s) ≤
∫
rdρ by Jensen’s inequality, and the inequality in 3 is strict if ρ is non-degenerate

and, either v(r, s) is strictly concave in r for all s (so that e (ρ, s) <
∫
rdρ) or ϕ(r, s) is

strictly convex in r for all s.

12.2 Restriction to Deterministic Mechanisms

As discussed in Section 8, some applications may preclude randomization over recommended

actions or rewards. In this section we provide conditions under which our main result extends

to such setups. The key to such results is to consider a subset of mechanisms M ′ in which

randomization is precluded. IfM ′ is closed under the dM—metric, then Corollary 11.1 applies.

Consider first the case in which the set of types is at most countable, where it is without

loss of generality that all types have positive probability. If (αn, κn) is any sequence of

mechanisms such that αn(·|t) puts probability one on some action for every t, and (αn, κn)

dM -converges to (α, κ), then, in particular, H ⊗ αn weak* converges to H ⊗ α. But this

means that αn(·|t) weak* converges to α(·|t) for every t, and so α(·|t) also puts probability
one on some action. Hence, the subset M ′ of mechanisms that do not allow randomization

over contracts is dM -closed and so we have the following result.

Proposition 12.3 Suppose that Assumptions 4.1-4.9 hold and that there are at most count-

ably many agent types. Then, the principal’s problem, when restricted to mechanisms that

do not randomize over recommended actions, possesses a solution provided that at least one

such incentive-compatible mechanism exists.

By essentially the same reasoning, a similar result holds when the principal is, in addition,

restricted to deterministic contracts (i.e., contracts that do not randomize over rewards)

if we add the restriction that the signal space is at most countable and has the discrete

topology (the agent’s action set can still be a continuum). Call a mechanism deterministic

if, conditional on the reported type, it does not randomize over recommended actions, and,

conditional on the reported type, recommended action, and observed signal, it does not

randomize over rewards. Corollary 11.1 yields the following result.

Proposition 12.4 Suppose that Assumptions 4.1-4.9 hold, that there are at most countably

many types and countably many signals, and that the signal space has the discrete topology.

Then, the principal’s problem, when restricted to deterministic mechanisms, possesses a

solution provided that at least one such incentive-compatible mechanism exists.
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Corollary 11.1 also allows us to provide an existence result for deterministic mechanisms

when the countability assumptions in the previous propositions fail. This result makes use of

the stronger informational assumptions considered in Section 6.48 In particular, we assume

here that Pa,t(E) =
∫
E
f(s|a, t)dQ(s) for every measurable E ⊆ S.

Let G1 be a set of measurable functions from T to A and let G2 be a set of measur-

able functions from S × T to R. Any mapping in G1 specifies, for any type of the agent,

the action from A that he is expected to take. Any mapping from G2 specifies, for any

type of the agent, the contract (i.e., the function from signals to rewards) that governs his

compensation. In applications, the sets G1 and G2 should ideally arise from economically

meaningful restrictions on the space of mechanisms and contracts that are permitted. The

set of feasible deterministic mechanisms here is then G = G1 × G2, whose typical element

is a function from S × T into A × R. We endow this set with the topology of H × Q a.e.

pointwise convergence. Corollary 11.1 yields the following result.

Proposition 12.5 Suppose that the conditions in Corollary 6.1 are satisfied and that G is

sequentially compact. If G contains at least one incentive-compatible mechanism, then the

principal’s problem restricted to mechanisms in G possesses a solution.

13 Multiple Agents

In this section, we show how Theorem 8.3 leads to an existence result for a model in which

a single principal interacts with multiple agents. The notation will be as in the single

agent case except for the presence of a subscript i ∈ {1, ..., I} for each of the I agents.
So, Ti and Ai are agent i’s type and action spaces, and T = ×iTi, A = ×iAi. We shall
assume that the agents’types are drawn from T according to H ∈ ∆(T ). Agent i’s utility

function is ui : R × S × A × T → R. A mechanism here is (α, κ) specifying transition

probabilities κ : S × A × T → ∆(R) and α : T → ∆(A) and where κ(Φs|s, a, t) = 1 for all

(s, a, t) ∈ S × A× T.
The mechanism (α, κ) works as follows. Nature draws a vector of types t according H.

Each agent i simultaneously learns his type ti, and then privately reports his type to the

mechanism. For any vector of reported types t′ ∈ T, the mechanism chooses a vector of ac-

tions a′ ∈ A according to α(·|t′). Each agent i is then privately informed of his recommended
action a′i. Then all agents simultaneously choose an action, with agent i choosing an action

from Ai. For any vector of chosen actions a ∈ A, a signal s ∈ S is drawn according to

48For this result it is possible to relax the informational assumptions in Section 6 to some extent by
allowing Q to depend on type.
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Pa,t ∈ ∆(S). Finally, a reward r ∈ R is drawn according κ(·|s, a′, t′). Agent i receives utility
ui(r, s, a, t) and the principal receives loss l(r, s, a, t).

13.1 Absolute Continuity: Types and Signals

For every agent i, let Hi denote the marginal of H on Ti and let H̄ = ×iHi denote the

product of the marginals. We shall assume from now on that H is absolutely continuous

with respect to the product of its marginals H̄.49 Consequently, by the Radon-Nikodym

theorem, there is a measurable h : T → [0,∞) such that for every measurable C ⊆ T,

H(C) =

∫
C

h(t)dH1(t1)...dHI(tI) =

∫
C

h(t)dH̄(t). (13.1)

We shall also assume from now on that there is Q ∈ ∆(S) such that for every (a, t), Pa,t

is absolutely continuous with respect to Q. Specifically, we assume that there is a measurable

f : S × A× T → [0,∞) such that for every (a, t) ∈ A× T and for every measurable subset
E of S,

P (E|a, t) =

∫
E

f(s|a, t)dQ(s). (13.2)

This is the same assumption that was made in the single-agent model to arrive at the

“standard case”there (see Section 6).

13.2 Incentive Compatibility

For any mechanism (α, κ), and for any agent i, by BS Proposition 7.27 we may decompose

H̄⊗α ∈ ∆(A×T ) as H̄⊗α = Hi⊗αi⊗βi for some transition probabilities αi : Ti → ∆(Ai)

and βi : Ai × Ti → A−i × T−i. Moreover, the transition probability αi is unique up to an Hi

measure zero set of types, and the transition probability βi is unique up to subset of Ai×Ti
that has measure zero according to the marginal of H̄ ⊗ α on Ai × Ti, which, it should be
noted, is equal to Hi⊗αi. Because αi is unique only Hi almost everywhere, it is most natural

to define incentive compatibility so that only almost all (rather than all) untruthful reports

are non-improving.50

The mechanism (α, κ) is incentive compatible if for every agent i, there is a measurable

49This important and useful condition was first introduced by Milgrom and Weber (1985).
50Analagous to footnote 15, one can ensure that, for each agent i, the IC inequality (13.3) below holds for

all reports t′i ∈ Ti by first choosing any t0i ∈ T 0i and treating any report t′i ∈ Ti\T 0i made by agent i as if he
had reported t0i . Adjusting the mechanism in this way for every agent leaves the mechanism unchanged on
the probablity-one set ×ni=1T 0i , and makes any report t′i ∈ Ti by any agent i payoff-equivalent (for all agents
and for the principal) to some report in T 0i .
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T 0
i ⊆ Ti such that Hi(T

0
i ) = 1, and, for all ti, t′i ∈ T 0

i ,∫
R×S×A×T−i

ui(r, s, a, ti, t−i)h(ti, t−i)f(s|a, ti, t−i)dκ(r|s, a, ti, t−i)dQ(s)dβi(a−i, t−i|ai, ti)dαi(dai|ti)

≥
∫
Ai

sup
ai∈Ai

{∫
R×S

×A−i×T−i

ui(r, s, ai, a−i, ti, t−i)h(ti, t−i)f(s|ai, a−i, ti, t−i)

dκ(r|s, a′i, a−i, t′i, t−i)dQ(s)dβi(a−i, t−i|a′i, t′i)
}
dαi(a

′
i|t′i), 51 (13.3)

Remark 13.1 To obtain type ti’s conditional expected utility, divide both sides of (13.3)

by
∫
h(ti, t−i)d (×j 6=iHj(tj)) when this quantity is positive.

Remark 13.2 Condition (13.1) has the important implication that certain conditional dis-

tributions depend on i’s true type ti only through the Radon-Nikodym derivative h(ti, t−i).

These conditional distributions are, first, the conditional distribution over the recommended

action a′i given that i’s type is ti and that he reported t
′
i, and second, the conditional distri-

bution over the others’actions and types (a−i, t−i) given that i’s type is ti and that he was

asked to take action a′i after reporting type t
′
i. This is why αi(·|t′i) and βi(·|·, t′i) in (13.3)

depend only on the reported type t′i and not also on the true type ti.

Remark 13.3 Changing the transition probabilities αi or βi on any measure zero sets where

they are not uniquely defined does not affect whether (α, κ) satisfies (13.3). Therefore, the

incentive compatibility of any (α, κ) does not depend on which particular versions of the

transition probabilities αi and βi are chosen.

13.3 The Induced Single-Agent-i Model

In this section, we show how the incentive constraint (13.3) can be written in a useful form

that resembles the single-agent incentive constraint from Definition 3.2.

Given the multi-agent model above, let us define, for any agent i, the single-agent-i

model to be a principal-agent model with a single agent as in Section 3, but where the

reward space is Ri = R × A−i × T−i, the signal space is S, the signal is always drawn

according to Q, the action space is Ai, the type space is Ti with prior Hi and, for any

51As discussed previously in footnote 14, the outer integral on the right-hand side is with respect to the
completion of the measure αi(·|t′i), although, at the optimum, this technical caveat is not required.
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(ri, s, ai, ti) = ((r, a−i, t−i), s, ai, ti) ∈ Ri × S × Ai × Ti the agent’s utility is ũi(ri, s, ai, ti) =

ui(r, s, a, t)h(t)f(s|a, t) and the principal’s loss is l̃(ri, s, ai, ti) = l(r, s, a, t)h(t)f(s|a, t).
Let (α, κ) be any mechanism for the multi-agent model, and choose transition probabili-

ties αi : Ti → ∆(Ai) and βi : Ai × Ti → A−i × T−i so that H̄ ⊗ α = Hi ⊗ αi ⊗ βi.
As previously noted, the marginal of H̄ ⊗α on Ai× Ti is Hi⊗αi. Consequently, because

Q ∈ ∆(S) is constant as a transition probability into ∆(S), the marginal of H̄ ⊗ α ⊗ Q on

S ×Ai × Ti is Hi ⊗ αi ⊗Q. But then Hi ⊗ αi ⊗Q is also the marginal of H̄ ⊗ α⊗Q⊗ κ on
S×Ai×Ti. Hence, by BS Proposition 7.27, there is a transition probability κi : S×Ai×Ti →
∆(R×A−i× T−i), such that H̄ ⊗ α⊗Q⊗ κ = Hi⊗ αi⊗Q⊗ κi ∈ ∆(R× S × T ×A). Since

H̄ ⊗ α = Hi ⊗ αi ⊗ βi we have, for every agent i,

Hi ⊗ αi ⊗ βi ⊗Q⊗ κ = Hi ⊗ αi ⊗Q⊗ κi ∈ ∆(R× S × T × A). (13.4)

In particular, for every agent i and for Hi-a.e. ti ∈ Ti,

αi(·|ti)⊗ βi(·|·, ti)⊗Q⊗ κ(·|·, ti) = αi(·|ti)⊗Q⊗ κi(·|·, ti), (13.5)

and, for Hi-a.e. t′i ∈ Ti and for αi(·|t′i) a.e. a′i ∈ Ai.

βi(·|a′i, t′i)⊗Q⊗ κ(·|·, a′i, t′i) = Q⊗ κi(·|·, a′i, t′i). (13.6)

By (13.5), for every agent i, for Hi-a.e. ti ∈ Ti,∫
R×S×A×T−i

ui(r, s, a, t)h(t)f(s|a, t)dκ(r|s, a, t)dQ(s)dβi(a−i, t−i|ai, ti)dαi(ai|ti)

=

∫
Ri×S

ũi(ri, s, ai, ti)dκi(ri|s, ai, ti)dQ(s)dαi(ai|ti). (13.7)

By (13.6), for every agent i, for every ti ∈ Ti and for Hi-a.e. t′i ∈ Ti,∫
Ai

(
sup
ai∈Ai

∫
R×S

×A−i×T−i

ui(r, s, ai, a−i, t)h(t)f(s|a, t)dκ(r|s, a′i, a−i, t′i, t−i)dQ(s)dβi(a−i, t−i|a′i, t′i)
)
dαi(a

′
i|t′i)

=

∫
Ai

(
sup
ai∈Ai

∫
Ri×S

ũi(ri, s, ai, ti)dκi(ri|s, a′i, t′i)dQ(s)

)
dαi(a

′
i|t′i). (13.8)

In view of (13.7) and (13.8), (α, κ) is incentive compatible iff for every i, for Hi-a.e.
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ti ∈ Ti, and for Hi-a.e. t′i ∈ Ti,∫
Ri×S

ũi(ri, s, ai, ti)dκi(ri|s, a′i, t′i)dQ(s)dαi(ai|ti)

≥
∫
Ai

(
sup
ai∈Ai

∫
Ri×S

ũi(ri, s, ai, ti)dκi(ri|s, a′i, t′i)dQ(s)

)
dαi(a

′
i|t′i), (13.9)

where αi : Ti → ∆(Ai) and κi : S×Ai×Ti → ∆(A−i×T−i) are transition probabilities such
that H̄ ⊗ α⊗Q⊗ κ = Hi ⊗ αi ⊗Q⊗ κi
We have therefore established the following.

Proposition 13.4 A mechanism (α, κ) is incentive compatible for the multi-agent model iff

for every agent i, there are transition probabilities αi : Ti → ∆(Ai) and κi : S × Ai × Ti →
∆(A−i×T−i) such that H̄⊗α⊗Q⊗κ = Hi⊗αi⊗Q⊗κi and (αi, κi) is incentive compatible

for the single-agent-i model.

The proof of the following result is in the appendix and uses Proposition 13.4 and Theorem

8.3.

Theorem 13.5 Suppose that for each agent i ∈ {1, ..., I}, Assumptions 4.1-4.6 hold for
the single-agent-i model. Then, provided that at least one multi-agent incentive-compatible

mechanism exists, a mechanism that minimizes the principal’s expected losses exists for the

multi-agent model.52

Conditions for the existence of at least one multi-agent incentive-compatible mechanism

are provided by the following.

Proposition 13.6 Suppose that Assumptions 4.1, 4.3, and 4.4 hold and that there are

measurable functions φ : S → R and ξ : T → [0,∞), such that φ(s) ∈ Φs for every

s,
∫
ξ(t)dH(t) < ∞, and, letting vi(a, t) =

∫
S
ui(φ(s), s, a, t)dP (s|a, t) for each agent i ∈

{1, ..., I}, |vi(a, t)| ≤ ξ(t) for every a and t, and vi(a, t) is continuous in a for each t. Then

at least one multi-agent incentive-compatible mechanism exists.

A Appendix

Lemma A.1 Let X and Y be Polish spaces, let {yn} ⊆ Y converge to ŷ and let {γn} ⊆ ∆(X)
weak* converge to γ̂ ∈ ∆(X). If ζ : X×Y → R is bounded below and is lower semicontinuous
at (x, ŷ) for γ̂ a.e. x ∈ X, then

limn

∫
X

ζ(x, yn)dγn(x) ≥
∫
X

ζ(x, ŷ)dγ̂(x).

52Conditions on ui, l, f, and h under which ũi and l̃ satisfy the assumptions of this theorem are analogous
to those presented in Remark 6.2.
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Proof. Let ζ(x, y) = lim inf(x′,y′)→(x,y) ζ(x′, y′) for every (x, y) ∈ X × Y. Then ζ is l.s.c.,
ζ ≤ ζ, and ζ(x, ŷ) = ζ(x, ŷ) for γ̂ a.e. x ∈ X. Hence,

limn

∫
X

ζ(x, yn)dγn(x) ≥ limn

∫
X

ζ(x, yn)dγn(x)

≥
∫
X

ζ(x, ŷ)dγ̂(x)

=

∫
X

ζ(x, ŷ)dγ̂(x),

where the first inequality follows because ζ ≤ ζ, the second follows by BS Proposition 7.31
because ζ is bounded below and lower semicontinuous, and the equality follows because
ζ(x, ŷ) = ζ(x, ŷ) for γ̂ a.e. x ∈ X. Q.E.D.

Proof of Proposition 8.4. Since
∫
S
u(φ(s), s, a, t)dP (s|a, t) is continuous in a for each t,

Wagner (1977, Theorem 9.1 part (ii)) implies that there is a measurable function â : T → A
such that, for each t, â(t) maximizes

∫
S
u(φ(s), s, a, t)dP (s|a, t) among all a ∈ A (recall

that A is compact, and hence a maximum exists for each t). Then, the mechanism that
recommends â(t) when the report is t and assigns the reward φ(s) when the signal is s is
incentive compatible. Q.E.D.

Recall that Wt = {(ν, a) ∈ ∆(R × S) × A : ν(Φ) = 1 and margSν = Pa,t} is closed.
Define nonnegative functions L and U , each mapping ∆(R × S) × A × T into [0,∞), by
L(ν, a, t) =

∫
R×S l(r, s, a, t)dν(r, s), and U(ν, a, t) =

∫
R×S u(r, s, a, t)dν(r, s).

Lemma A.2 For any t ∈ T, the functions L(ν, a, t) and U(ν, a, t) are nonnegative and
lower semicontinuous in (ν, a) on Wt, and, for any ε > 0 such that εl(r, s, a, t)− u(r, s, a, t)
is bounded below in (r, s, a), the function εL(ν, a, t) − U(ν, a, t) is lower semicontinuous in
(ν, a) on Wt.

Proof. Fix t ∈ T. We give the proof only for L(ν, a, t) since the others are similar. The
nonnegativity of L(ν, a, t) follows from the nonnegativity of l(r, s, a, t) so we need only show
lower semicontinuity. Suppose that (νn, an) → (ν̃, ã) ∈ Wt ⊆ ∆(R × S) × A. We wish to
show that limnL(νn, an, t) ≥ L(ν̃, ã, t).
Let D = {(r, s, a) ∈ R×S×A : l(·, t) is not l.s.c. at (r, s, a)}. Then D is measurable since

it is the set on which l(·, t) is not equal to its (lower semicontinuous) lower envelope. Let
Dã = {(r, s) : (r, s, ã) ∈ D} be the slice of D through ã, and let D(s,ã) = {r : (r, s, ã) ∈ D}
be the slice of D through (s, ã).
Since (ν̃, ã) ∈ Wt, the marginal of ν̃ on S is Pã,t. By Assumption 4.4, there is a measurable

subset of signals, S̃ say, such that P (S̃|ã, t) = 1 and such that l(·, t) is lower semicontinuous
at (r, s, ã) for every (r, s) ∈ R× S̃. Then,

ν̃(Dã) =

∫
R×S

1D(s,ã)(r)dν̃(r, s)

=

∫
R×S̃

1D(s,ã)(r)dν̃(r, s)

= 0,
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where the second equality follows since ṽ(R × S̃) = P (S̃|ã, t) = 1 and the third because
D(s,ã) = ∅ for every s ∈ S̃.
Therefore, l(·, t) is lower semicontinuous at (r, s, ã) except for (r, s) ∈ Dã, a subset of

R× S that has ν̃ measure zero. Hence,

limnL(νn, an, t) = limn

∫
R×S

l(r, s, an, t)dνn(r, s)

≥
∫
R×S

l(r, s, ã, t)dν̃(r, s)

= L(ν̃, ã, t),

where the inequality follows from Lemma A.1. Q.E.D.

Lemma A.3 For every t ∈ T and for every c ∈ R, the set {µ ∈ ∆(Wt) :
∫
L(ν, a, t)dµ(ν, a) ≤

c} is compact.

Proof. Let us first establish,

(∗) if ζ : Z → [0,+∞) is lower semicontinuous on a Polish space Z, and if {z ∈ Z : ζ(z) ≤ c}
is compact for every c ∈ R,, then Γc = {γ ∈ ∆(Z) :

∫
ζ(z)dγ(z) ≤ c} is compact for

every c ∈ R.

To see (∗), note first that Γc is closed since
∫
ζdγ is a lower semicontinuous function of γ

by BS, Proposition 7.31. Choose ε > 0. If γ ∈ Γc, then because ζ ≥ 0, γ{z : ζ(z) > c/ε} < ε
(Markov’s inequality). Hence, each γ in Γc places probability at least 1− ε on the compact
set {z : ζ(z) ≤ c/ε}, and so Γc is tight. Prohorov’s theorem implies that Γc, being closed, is
compact, proving (∗).
Fix t ∈ T , fix c ∈ R, and let C = {(ν, a) ∈ Wt : L(ν, a, t) ≤ c}. Since, by Lemma A.2,

L(ν, a, t) is lower semicontinous in (ν, a) on the closed set Wt, the set C is closed. Hence, it
suffi ces, by (∗), to show that C is compact.
Fix any ε > 0. Since Pa,t is continuous in a on the compact set A, {Pa,t}a∈A is compact

and hence by Prohorov’s theorem tight. Hence, there is a compact subset Y of S such that
P (Y |a, t) > 1− ε/2 for every a ∈ A. Let D = {(r, s) ∈ Φ : s ∈ Y and there exists a ∈ A such
that l(r, s, a, t) ≤ 2c/ε}. Then, the closure of D is compact by Assumptions 4.1 and 4.5.
Consider any sequence (νn, an) ∈ C. We must show that (νn, an) has a subsequence that

converges to a point in C. Since l ≥ 0 and Y ⊆ S,we have

c ≥
∫
R×S

l(r, s, an, t)dνn(r, s)

≥
∫
R×Y

l(r, s, an, t)dνn(r, s). (A.1)

Since νn(Φ) = 1, we have l(r, s, an, t) > 2c/ε for νn a.e. (r, s) ∈ (R × Y )\D. Therefore,
since l ≥ 0, (A.1) implies that νn((R × Y )\D) ≤ ε/2. Since D ⊆ R × Y, νn((R × Y )\D) =
νn(R× Y )− νn(D) and so

νn(D) ≥ νn(R× Y )− ε/2
= P (Y |an, t)− ε/2
> 1− ε,
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where the equality follows because (νn, an) ∈ C ⊆ Wt implies that the marginal of νn on S
is P (·|an, t). A fortiori, each νn gives the closure of D, a compact set, probability at least
1− ε.
Thus {νn} is a tight set of measures and hence, by Prohorov’s theorem, the sequence

νn has a convergent subsequence. The sequence an, being in the compact set A, also has
a convergent subsequence. Thus, (νn, an) ∈ C has a convergent subsequence whose limit,
because C is closed, is in C. Hence, C is compact. Q.E.D.

The next lemma is based heavily on Balder (1990). Indeed, conclusions (ii) and (iii) are
a direct application of Balder’s Theorem 2.1. But conclusion (i) is new, and is a consequence
of our more specialized environment.

Lemma A.4 Let {µn} be a sequence of transition probabilities from T to ∆(∆(R×S)×A)
such that µn(·|t) ∈ ∆ (Wt) for every t ∈ T, and supn

∫
∆(R×S)×A×T L(ν, a, t)dµn(ν, a|t)dH(t) <

∞. Then there is a transition probability µ∗ from T to∆(∆(R×S)×A), there is a measurable
function φ : T → R, and there is a subsequence {nj} of {n}, such that, (i) H ⊗ µnj →
H ⊗ µ∗, (ii) the Cesaro mean of {µnj(·|t)} converges to µ∗(·|t), H a.e. t ∈ T, (iii) the
Cesaro mean of {

∫
∆(R×S)×A L(ν, a, t)dµnj(ν, a|t)} converges to φ(t), H a.e. t ∈ T, and (iv)∫

∆(R×S)×A L(ν, a, t)dµ∗(ν, a|t) ≤ φ(t), H a.e. t ∈ T.53

Proof. Lemma A.3 implies that for every c ∈ R and for every t ∈ T the set of measures
Λc,t = {µ ∈ ∆(Wt) :

∫
∆(R×S)×A L(ν, a, t)dµ(ν, a) ≤ c} is relatively compact.

Let X = ∆(R × S) × A. Since X is Polish, it contains countably many open subsets
U1, U2, ... that generate its topology. Let d be any metric on X and for each i, k ∈ N,
let ξi,k : X → R be the continuous function defined by ξi,k(x) = 1

1+kd(x,Ui)
, and for each

µ ∈ ∆(X), define αi,k(µ) =
∫
Y
ξi,k(x)dµ(x). Then A = {αi,k} is a countable set of affi ne

continuous functions that countably separates∆(X) as defined in Balder (1990). The desired
results (ii), (iii), and (iv) can now be obtained by following the proof of Theorem 2.1 in
Balder (1990), whose equation (2.6) shows that there is c ∈ R, which may depend on t,
such that the Cesaro mean of {µn(·|t)} is contained in Λc,t.

54 This latter fact, since Λc,t is
relatively compact, can then be used in place of Balder’s inf-compactness assumption on
h(t, µ) =

∫
∆(R×S)×A L(ν, a, t)dµ(ν, a).

Thus, we may conclude that there are mappings µ∗ : T → ∆(X) and φ : T → R, and that
there is a subsequence {n′j} of {n} such that the Cesaro mean of any subsequence of {µn′j(·|t)}
converges to µ∗(·|t) and the Cesaro mean of any subsequence of {

∫
X
L(x, t)dµn′j(x|t)} con-

verges to φ(t), with both limits holding for H a.e. t ∈ T.55
Since φ is the pointwise H-a.e. limit of measurable functions, it is measurable. Each

µn(·|·), being a transition probability, is a measurable function from T to ∆(X) by BS,
Proposition 7.26. Therefore, since µ∗(·|t) is the pointwise H-a.e. limit of the Cesaro mean
of {µn′j(·|t)}, µ

∗ : T → ∆(X) is measurable and hence a transition probability by the same
proposition.

53In fact, the subsequence {nj} can be chosen so that, for all further subsequences, the two Cesaro mean
convergence results, (ii) and (iii), hold also for the further subsequence. But we will not need this stronger
result.
54For (iv), note that L(ν, a, t) is lower semicontinous in (ν, a) on Wt by Lemma A.2.
55The H measure zero set of types for which the limits fail to hold can depend on the subsequence of {n′j}

that is chosen.
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To complete the proof, it suffi ces to show that there is a subsequence {nj} of {n′j} such
that (i) holds. Then, by what we have already proven, (ii) and (iii) will also hold. So, we
turn to (i).
Since the Cesaro mean of any subsequence of {µn′j(·|t)} converges to µ

∗(·|t) for H a.e.
t ∈ T, the Cesaro mean of any subsequence of {H ⊗ µn′j} converges to H ⊗ µ∗ (use the
definition of weak* convergence and apply the dominated convergence theorem). To show
that (i) holds, it suffi ces to show that there is a subsequence {nj} of {n′j} such that {H⊗µnj}
converges since, if it converges, it must converge to H ⊗ µ∗ because, as we have just seen,
its Cesaro mean converges to H ⊗ µ∗. By Prohorov’s theorem, it therefore suffi ces to show
that the sequence {H ⊗ µn′j} of probability measures in ∆(X × T ) has a tight subsequence.

For every j, let vj = H ⊗ µn′j , and for every m, let ν̄m = 1
m

∑m
j=1 νj be the m-th Cesaro

mean of {H ⊗ µn′j}. As argued in the previous paragraph, ν̄m → H ⊗ µ∗. Therefore, by
Prohorov’s theorem, {ν̄m} is a tight set in ∆(X × T ).
Let αk and βk be strictly increasing sequences of positive real numbers that converge to

1 and that satisfy (1−αk)/(1−βk) = (1/2)k+1.56 The tightness of the set {ν̄m} implies that,
for each positive integer k, there is a compact subset Ck of X × T such that ν̄m(Ck) > αk
holds for every m = 1, 2, .... Therefore,

ν1(Ck) + ...+ νm(Ck)

m
> αk, for every k,m ∈ {1, 2, ...}.

Letting Jk,m = {j ≤ m : νj(Ck) ≤ βk}, and JCk,m = {1, . . . ,m} \Jk,m, we have

mαk <
∑
j∈Jk,m

νj(Ck) +
∑
j∈JCk,m

νj(Ck)

≤ #Jk,mβk + (m−#Jk,m)1,

so that
#Jk,m ≤

1− αk
1− βk

m =
1

2k+1
m, for every k,m ∈ {1, 2, ...}.

Consequently,

# ∪∞k=1 Jk,m ≤
∞∑
k=1

1

2k+1
m =

m

2
, for every m ∈ {1, 2, ...}.

But then, since # {j ≤ m} = m,

# ∩∞k=1 J
C
k,m ≥ m− m

2
=
m

2
, for every m ∈ {1, 2, ...}.

The last inequality, since it holds for every positive integer m, implies that there are
infinitely many indices j ∈ {1, 2, ...} such that,

νj(Ck) > βk for all k ∈ {1, 2, ...}.

Since βk → 1, the collection of these indices j furnishes a tight subsequence of the sequence

56For example, αk = 1− 1
k2k+1

and βk = 1− 1
k .
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ν1, ν2, ..., as desired. Q.E.D.

Lemma A.5 Let {µn}, µ∗, and φ be as in Lemma A.4 and suppose that the subsequence
{nj} there is reindexed as {n}. Recall that U(ν, a, t) =

∫
R×S u(r, s, a, t)dν(r, s). Then, for H

a.e. t ∈ T, ∫
∆(R×S)×A

U(ν, a, t)dµ̄
n
(ν, a|t)→n

∫
∆(R×S)×A

U(ν, a, t)dµ∗(ν, a|t),

where µ̄n denotes the n
th Cesaro mean of {µn}.

Proof. By Lemma A.4 (ii) and (iii), we may let t ∈ T be any type from the H measure
one set types such that µ̄n(·|t)→ µ∗(·|t) and

∫
∆(R×S)×A L(ν, a, t)dµ̄n(ν, a|t)→ φ(t). Fix this

t ∈ T for the remainder of the proof.
The function U(·, t) is, by Lemma A.2, lower semicontinuous. Therefore, because µ̄

n
(·|t)→

µ∗(·|t),
lim inf

n

∫
X

U(x, t)dµ̄
n
(x|t) ≥

∫
X

U(x, t)dµ∗(x|t), H a.e. t ∈ T. (A.2)

It remains to establish the reverse inequality for the limsup.
Let Z = R× S × A. By Assumption 4.6,

lim sup
z∈Z:u(z,t)→∞

u(z, t)

l(z, t)
= 0. (A.3)

We claim that, for every ε > 0, there exists cε > 0 (cε may depend on t) such that

u(z, t) ≤ εl(z, t) + cε, ∀z ∈ Z. (A.4)

To see this, suppose the contrary. Then, there exists ε0 > 0, and, for every positive integer
m, there exists zm ∈ Z such that,

u(zm, t) > ε0l(zm, t) +m. (A.5)

Then, u(zm, t)→m ∞. But (A.5) implies that u(zm, t) > ε0l(zm, t), contradicting (A.3) and
establishing the claim.
Inequality (A.4) is employed in Balder (1990), and we follow his usage here. By the

definitions of U and L, it follows that, for every ε > 0,

U(x, t) ≤ εL(x, t) + cε, ∀x ∈ X. (A.6)

Consequently, ∫
U(x, t)dµ̄n(x|t) ≤ ε

∫
L(x, t)dµn(x|t) + cε

→ εφ(t) + cε <∞.

Therefore, the nonnegative sequence {
∫
U(x, t)dµ̄n(x|t)} is bounded and so if we let σ =

lim supn
∫
U(x, t)dµ̄n(x|t), then σ ∈ [0,∞).

Note that for t fixed and for any ε > 0, εl(z, t) − u(z, t), as a function of z is bounded
below (by (A.4)). It follows that εL(x, t) − U(x, t) is lower semicontinuous in x on Wt (by
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Lemma A.2) and is bounded below (by (A.6)). Thus, for any ε > 0,

εφ(t)− σ = lim
n

∫
εL(x, t)dµn(x|t)− lim sup

n

∫
U(x, t)dµ̄n(x|t)

= lim inf
n

∫
(εL(x, t)− U(x, t)) dµ̄n(x|t)

≥
∫

(εL(x, t)− U(x, t)) dµ∗(x|t)

= ε

∫
L(x, t)dµ∗(x|t)−

∫
U(x, t)dµ∗(x|t),

where the inequality follows because εL(x, t)−U(x, t) is bounded below and lower semicon-
tinuous on Wt. Taking the limit as ε→ 0 of the inequality εφ(t)− σ ≥ ε

∫
L(x, t)dµ∗(x|t)−∫

U(x, t)dµ∗(x|t) implies, since
∫
L(x, t)dµ∗(x|t) is finite by Lemma A.4 (iv), that σ ≤∫

U(x, t)dµ∗(x|t), as desired. Q.E.D.

Recall from Step 5 of the proof of Theorem 8.3 that

U∗(ν, a, t, a
′, t′) =

∫
S

u∗ (s, a, t) dP (s|a, t) +

∫
R×S

[u (r, s, a, t)− u∗ (s, a, t)]ga,t/a′,t′ (s) dν (r, s) ,

where u (r, s, a, t)− u∗ (s, a, t) ≥ 0 for all (r, s, a, t). Also, either u∗(s, a, t) = u(r∗, s, a, t) for
all (s, a, t) or u∗(s, a, t) = 0 for all (s, a, t), and so in either case (using Assumption 4.4 for
the first case), for every (a, t) ∈ A× T, u∗(·, t) is continuous at (s, a) for Pa,t a.e. s ∈ S.

Lemma A.6 Let {µ̄n} and µ∗ be as in Lemma A.5. For H a.e. t, t′ ∈ T,

limn

∫
∆(R×S)×A

sup
a∈A

U∗(ν, a, t, a
′, t′)dµ̄n(ν, a′|t′) ≥

∫
∆(R×S)×A

sup
a∈A

U∗(ν, a, t, a
′, t′)dµ∗(ν, a′|t′).

Proof. Because µ̄n(Wt′ |t′) = µ∗(Wt′|t′) = 1, for all n, it suffi ces by BS, Proposition 7.31, to
show that for any t, t′ ∈ T, supa∈A U∗(ν, a, t, a

′, t′) is lower semicontinuous in (ν, a′) on the
closed set Wt′ . Let (νn, a

′
n) be a sequence in Wt′ converging to (ν0, a

′
0). Fix any ε > 0 and

choose a0 ∈ A such that U∗(ν0, a0, t, a
′
0, t
′) + ε ≥ supa∈A U∗(ν0, a, t, a

′
0, t
′). Choose a sequence

an in A converging to a0 according to Assumption 4.8. For any (a, t), (a′, t′) ∈ A× T , recall
that ga,t/a′,t′ : S → [0,∞] denotes the Radon-Nikodym derivative of Pa,t(·∩Sa′,t′) with respect
to Pa′,t′ .
For every m ∈ {1, 2, ...} define ξm : S → [0,+∞] and ξ

m
: S → [0,+∞] by

ξm(s) = inf{gam,t/a′m,t′ (s) , gam+1,t/a′m+1,t′(s), ...} and ξm(s) = lim inf
s′→s

ξm(s′).

Then, ξ
m
is lower semicontinuous (it is the lower envelope of the function ξm) and ξ

m
≤

ξm ≤ gan,t/a′n,t′ for all n ≥ m.
Since ξm ≤ ξm+1 implies ξm ≤ ξ

m+1
, we may define ξ : S → [0,+∞] by

ξ(s) = lim
m
ξ
m

(s).
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By the definition of U∗, for each n,

U∗(νn, an, t, a
′
n, t
′) =

∫
S

u∗ (s, an, t) dP (s|an, t)+
∫
R×S

[u (r, s, an, t)−u∗ (s, an, t)]gan,t/a′n,t′ (s) dνn (r, s) .

(A.7)
Consider the first term on the right-hand side of (A.7) Because u∗(·, t) is nonnegative and
continuous at (s, a0) for Pa0,t a.e. s ∈ S, Lemma A.1 implies

limn

∫
S

u∗ (s, an, t) dP (s|an, t) ≥
∫
S

u∗ (s, a, t) dP (s|a0, t).

For the second term on the right-hand side of (A.7), letting û denote the nonnegative function
u− u∗, we have for every m,

limn

∫
R×S

û (r, s, an, t) gan,t/a′n,t′ (s) dνn (r, s) ≥ limn

∫
R×S

û (r, s, an, t) ξm(s)dνn (r, s)

≥
∫
R×S

û (r, s, a0, t) ξm(s)dν0 (r, s)

→ m

∫
R×S

û (r, s, a0, t) ξ(s)dν0 (r, s)

≥
∫
R×S

û (r, s, a0, t) ga0,t/a′0,t′(s)dν0 (r, s) ,

where the first inequality follows because gan,t/a′n,t′ (s) ≥ ξ
m

(s) for all n ≥ m, the second
inequality follows by Lemma A.1 because û(·, t)ξ

m
(·) is nonnegative and lower semicontinuous

at (r, s, a0) for ν0 a.e. (r, s) (since the marginal of ν0 on S is Pa0,t and by Assumption 4.4;
see the proof of Lemma A.1 for a complete and similar argument), the limit follows by the
monotone convergence theorem since ξ

m
(s) ↑ ξ(s), and the final inequality follows because

û is nonnegative and Assumption 4.8 implies that ξ(s) ≥ ga0,t/a′0,t′(s) for all s ∈ S. Hence,

limn sup
a∈A

U∗(νn, a, t, a
′
n, t
′) ≥ limnU∗(νn, an, t, a

′
n, t
′)

≥ U∗(ν0, a0, t, a
′
0, t
′)

≥ sup
a∈A

U∗(ν0, a, t, a
′
0, t
′)− ε.

Since ε > 0 is arbitrary, we are done. Q.E.D.

Lemma A.7 Recall that our space of types T is Polish with prior H ∈ ∆(T ). Let X be any
Polish space, and let βn ∈ ∆(X×T ) be any sequence that weak* converges to β ∈ ∆(X×T )
such that the marginal of each βn on T is H. Then,
(i) limn

∫
g(x, t)dβn =

∫
g(x, t)dβ for every measurable g : X × T → R such that g(x, t)

is continuous in x for each t and such that there exists a measurable ξ : T → R such that∫
|ξ(t)| dH(t) <∞ and |g(x, t)| ≤ |ξ(t)| for every (x, t), and,

(ii) limn

∫
g(x, t)dβn ≥

∫
g(x, t)dβ for every measurable g : X × T → R such that g(x, t) is

lower semicontinuous in x for each t and such that there exists a measurable ξ : T → R such
that

∫
|ξ(t)| dH(t) <∞ and g(x, t) ≥ ξ(t) for every (x, t).

Proof. Since βn → β and the marginal of each βn on T is H, the marginal of β on T is
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also H. So, by Corollary 7.27.2 of Bertsekas and Shreve and by parts (a) and (b) of Theorem
2.2 in Balder (1988), (i) and (ii) are equivalent. Hence it suffi ces to prove (i). Suppose then
that g : X × T → R and ξ : T → R are measurable, that g(x, t) is continuous in x for each
t, that |g(x, t)| ≤ |ξ(t)| for every (x, t), and that

∫
|ξ| dH <∞.

For any positive integer m define

gm(x, t) =


m,
−m,
g(x, t),

if g(x, t) > m
if g(x, t) < −m
otherwise,

and let Tm = {t ∈ T : |ξ(t)| ≤ m}.
Fix any ε > 0. Since

∫
|ξ(t)| dH(t) < ∞, we may choose m so that

∫
T\Tm |ξ(t)| dH(t) <

ε/2. Since g − gm = 0 on X × Tm and |g − gm| ≤ |g| ≤ |ξ| , and since the marginal of β on
T is H, we have

∣∣∣∣∫ gdβn −
∫
gdβ

∣∣∣∣ ≤ ∣∣∣∣∫ (g − gm)dβn

∣∣∣∣+

∣∣∣∣∫ gmdβn −
∫
gmdβ

∣∣∣∣+

∣∣∣∣∫ (gm − g)dβ

∣∣∣∣
≤

∫
X×(T\Tm)

|g| dβn +

∣∣∣∣∫ gmdβn −
∫
gmdβ

∣∣∣∣+

∫
X×(T\Tm)

|g| dβ

≤
∣∣∣∣∫ gmdβn −

∫
gmdβ

∣∣∣∣+ 2

∫
T\Tm

|ξ| dH

≤
∣∣∣∣∫ gmdβn −

∫
gmdβ

∣∣∣∣+ ε. (A.8)

So, if for every positive integer m,∫
gmdβn →n

∫
gmdβ, (A.9)

then, by (A.8), lim supn
∣∣∫ gdβn − ∫ gdβ∣∣ ≤ ε. Since ε > 0 is arbitrary, (i) would hold and

the proof would be complete. Hence, it suffi ces to prove (A.9).
Fix any positive integer m and any ε > 0. Since βn weak* converges to β, the set

of probability measures {β, β1, β2, ...} is compact and hence tight by Prohorov’s theorem.
Therefore, there is a compact C ⊆ X×T such that β(C) > 1−ε/8m and βn(C) > 1−ε/8m
for every n. Let X1 be the projection of C on X and let T1 be the projection of C on T. Then
X1×T1 is compact and contains C, and so β(X1×T1) > 1−ε/8m and βn(X1×T1) > 1−ε/8m
for every n.
Let γ be the restriction of gm to X1 × T1 and let H1 be the restriction of H to the Borel

subsets of T1. By Theorem 2.1 in Jacobs (1967) (and because a continuous function on a
compact set is uniformly continuous), there is an open subset U1 of T1 (i.e., U1 = U ∩ T1 for
some open subset U of T ) such that H1(U1) < ε/8m and such that γ1, the restriction of γ to
D := X1 × (T1\U1), is continuous. By the Tietze extension theorem, we may extend γ1 to a
continuous function γ̃ : X × T → R such that |γ̃| ≤ m (since |γ1| ≤ m on X1 × (T1\U1)).
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Note that gm = γ̃ on D and that |gm − γ̃| ≤ |gm|+ |γ̃| ≤ 2m. Hence, for every n,∣∣∣∣∫ gmdβn −
∫
gmdβ

∣∣∣∣ ≤ ∣∣∣∣∫ (gm − γ̃)dβn

∣∣∣∣+

∣∣∣∣∫ γ̃dβn −
∫
γ̃dβ

∣∣∣∣+

∣∣∣∣∫ (γ̃ − gm)dβ

∣∣∣∣
=

∣∣∣∣∫
(X×T )\D

(gm − γ̃)dβn

∣∣∣∣+

∣∣∣∣∫ γ̃dβn −
∫
γ̃dβ

∣∣∣∣+

∣∣∣∣∫
(X×T )\D

(γ̃ − gm)dβ

∣∣∣∣
≤ 2mβn((X × T )\D) +

∣∣∣∣∫ γ̃dβn −
∫
γ̃dβ

∣∣∣∣+ 2mβ((X × T )\D), (A.10)

and, because the marginal of βn on T is H,

βn((X × T )\D) = βn(X × T )− βn(D)

= 1− βn(X1 × (T1\U1))

= 1− βn(X1 × T1) + βn(X1 × U1)

< 1− (1− ε/8m) + βn(X × U1)

= ε/8m+H1(U1)

< ε/4m, (A.11)

and similarly,
β((X × T )\D) < ε/4m. (A.12)

Substituting (A.11) and (A.12) into (A.10) gives, for every n,∣∣∣∣∫ gmdβn −
∫
gmdβ

∣∣∣∣ < ∣∣∣∣∫ γ̃dβn −
∫
γ̃dβ

∣∣∣∣+ ε.

Since γ̃ is continuous and bounded on X × T, limn

∣∣∫ γ̃dβn − ∫ γ̃dβ∣∣ = 0 and so
lim supn

∣∣∫ gmdβn − ∫ gmdβ∣∣ ≤ ε. Since ε > 0 was arbitrary, this proves (A.9) and com-
pletes the proof. Q.E.D.

Proof for Example 11.6. To see that M ′ is dM -closed, suppose that the sequence
(αn, κn) ∈M ′ dM -converges to (α̂, κ̂). Then, for each (αn, κn) there is a requisite (α1n, κ1n),
such that H⊗αn⊗P ⊗κn = H⊗α1n⊗P ⊗κ1n. By Corollary 7.27.2 of Bertsekas and Shreve
we may write

H ⊗ α̂⊗ P ⊗ κ̂ = H ⊗ α1 ⊗ γ ⊗ κ1, (A.13)

where α1 : T → ∆ (R2 × A) , γ : R2 × A × T → ∆ (S) , and κ1 : R2 × S × A × T →
∆ (R1) are transition probabilities. Since (αn, κn) ∈M ′ dM -converges to (α̂, κ̂), the sequence
H ⊗ α1n ⊗ P ⊗ κ1n weak* converges to H ⊗ α1 ⊗ γ ⊗ κ1 and so all of the various marginals
also weak* converge. In particular, H ⊗ α1n ⊗ P weak* converges to H ⊗ α1 ⊗ γ and
H ⊗ α1n weak* converges to H ⊗ α1. Consequently, for any continuous and bounded g :
R2 × S ×A× T → R,

∫
gdγdα1dH = limn

∫
gdPdα1ndH =

∫
gdPdα1dH, where the second

equality follows from Lemma A.7 part (i), since the continuity of Pa,t in a for each t implies
that

∫
S
g(r2, s, a, t)dP (s|a, t), a measurable function of (r2, a, t), is continuous in (r2, a) for

each t. Hence,
∫
gdγdα1dH =

∫
gdPdα1dH for any bounded and continuous g, and so

H ⊗α1⊗ γ = H ⊗α1⊗P which, by (A.13) implies that H ⊗ α̂⊗P ⊗ κ̂ = H ⊗α1⊗P ⊗ κ1.
We conclude that (α̂, κ̂) ∈M ′, as desired. Q.E.D.
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Proof for Example 11.7. We will show that M ′ ∩ M ′′ ∩ Mc is dM -closed for every
c ∈ R. Since M ′ is dM -closed by Example 11.6, it suffi ces to show that M ′′ ∩ Mc is dM -
closed. But in fact, M ′′ ∩Mc is dM -compact. Indeed, suppose that (αn, κn) is any sequence
in M ′′ ∩ Mc. The proof of Theorem 8.3 establishes that there is a subsequence (αnj , κnj)
that dM -converges to some (α∗, κ∗) ∈ Mc such that (see Lemma A.5) the Cesaro mean of∫
u (r, s, a, t) dκnj (r|s, a, t) dP (s|a, t)dαnj (a|t) converges to

∫
u (r, s, a, t) dκ∗ (r|s, a, t) dP (s|a, t)dα∗ (a|t)

for H a.e. t. Since, for each j,
∫
u (r, s, a, t) dκnj (r|s, a, t) dP (s|a, t)dαn (a|t) ≥ uO (t) for H

a.e. t, we may conclude that
∫
u (r, s, a, t) dκ∗ (r|s, a, t) dP (s|a, t)dα∗ (a|t) ≥ uO(t) for H a.e.

t, i.e., that (α∗, κ∗) ∈M ′′. It follows that M ′′ ∩Mc is dM -compact. Q.E.D.

Proof for Example 11.8. We will show that M ′ ∩ Mc is dM -closed for every c ∈ R.
But in fact, M ′ ∩ Mc is dM -compact. Indeed, suppose that (αn, κn) is any sequence in
M ′ ∩ Mc. The proof of Theorem 8.3 establishes that there is a subsequence (αnj , κnj)
that dM -converges to some (α∗, κ∗) ∈ Mc such that (see Lemma A.5) the Cesaro mean of∫
u (r, s, a, t) dκnj (r|s, a, t) dP (s|a, t)dαnj (a|t) converges to

∫
u (r, s, a, t) dκ∗ (r|s, a, t) dP (s|a, t)dα∗ (a|t)

for H a.e. t. By the dominated convergence theorem (recall that u is nonnegative),∫
ud[H⊗αnj⊗P ⊗κnj ] converges to

∫
ud[H⊗α∗⊗P ⊗κ∗]. Since, for each j,

∫
ud[H⊗αnj⊗

P ⊗ κnj ] ≥ uO, we may conclude that
∫
ud[H ⊗ α∗ ⊗ P ⊗ κ∗] ≥ uO, i.e., that (α∗, κ∗) ∈M ′.

It follows that M ′ ∩Mc is dM -compact. Q.E.D.

Proof of Theorem 13.5. Let (αn, κn) be a sequence of incentive compatible mechanisms for
the multi-agent model such that the principal’s expected loss along the sequence converges
to the infimum of her expected losses, l∗, among all incentive compatible mechanisms. That
is,

lim
n

∫
l(r, s, a, t)dκn(dr|s, a, t)dP (s|a, t)dαn(a|t)dH(t) = l∗.

As in Section 13.3, for every agent i and for every n, we may define transition probabilities
αni : Ti → ∆(Ai) and κni : S × Ai × Ti → ∆(A−i × T−i) so that H̄ ⊗ αn ⊗ Q ⊗ κn =
Hi ⊗ αni ⊗ Q ⊗ κni ∈ ∆(R × S × T × A). Then, by Proposition 13.4, (αni , κ

n
i ) is incentive

compatible in the single-agent-i model.
By hypothesis, for every i, the single-agent-i model satisfies Assumptions 4.1-4.6. More-

over, since in the single-agent-i model the signal is drawn according to Q ∈ ∆(S) for every
a, t, Assumptions 4.7, 4.8, and 4.9 hold trivially. Consequently, the hypotheses of Theorem
8.3 hold in the in the single-agent-i model for every i.
By the distributional mechanism compactness result established in Theorem 8.3 we may

choose a single subsequence {nj} of {n} such that, for each i, there is a mechanism (α∗i , κ
∗
i )

that is incentive compatible for the single-agent-i model and

lim
j
Hi ⊗ αnji ⊗Q⊗ κ

nj
i = Hi ⊗ α∗i ⊗Q⊗ κ∗i , for every i,

where, for each i, convergence is with respect to the weak* topology on ∆(Ri×S×Ai×Ti) =
∆(R× S × A× T ).
Since H̄ ⊗ αnj ⊗Q⊗ κnj = Hi ⊗ αnji ⊗Q⊗ κ

nj
i for every i and j,

lim
j
H̄ ⊗ αnj ⊗Q⊗ κnj = lim

j
Hi ⊗ αnji ⊗Q⊗ κ

nj
i = Hi ⊗ α∗i ⊗Q⊗ κ∗i , for every i.

Because for every j the marginal of H̄ ⊗ αnj ⊗ Q ⊗ κnj on T is H̄, the marginal of
limj H̄⊗αnj ⊗Q⊗κnj on T is also H̄. By BS Proposition 7.27, we may therefore decompose
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limj H̄⊗αnj⊗Q⊗κnj (an element of ∆(R×S×A×T )) as H̄⊗ α̂⊗ P̃ ⊗ κ̂ for some transition
probabilities α̂ : T → ∆(A), P̃ : A× T → S, and κ̂ : S × A× T → ∆(R).
Since H̄ ⊗ αnj ⊗ Q ⊗ κnj →∗ H̄ ⊗ α̂ ⊗ P̃ ⊗ κ̂ implies that H̄ ⊗ αnj ⊗ Q →∗ H̄ ⊗ α̂ ⊗ P̃

and that H̄ ⊗ αnj →∗ H̄ ⊗ α̂, we claim that H̄ ⊗ α̂⊗ P̃ ⊗ κ̂ = H̄ ⊗ α̂⊗Q⊗ κ̂. To see this,
let g : S × A× T → R be continuous and bounded. Then

lim
j

∫
g(s, a, t)dQ(s)dαnj(a|t)dH̄(t) = lim

j

∫
A×T

(∫
S

g(s, a, t)dQ(s)

)
dαnj(a|t)dH̄(t)

=

∫
A×T

(∫
S

g(s, a, t)dQ(s)

)
dα̂(a|t)dH̄(t)

=

∫
g(s, a, t)dQ(s)dα̂(a|t)dH̄(t),

where the second equality follows by (A.7) part (i) because H̄⊗αnj →∗ H̄⊗α̂ and the function
of (a, t) in parentheses is continuous in a for each t. Since g is an arbitrary continuous and
bounded function and the left-hand side limit is equal to the last expression on the right-hand
side, we may conclude that H̄⊗αnj⊗Q→∗ H̄⊗ α̂⊗Q. But since H̄⊗αnj⊗Q→∗ H̄⊗ α̂⊗ P̃
we must have H̄ ⊗ α̂⊗ P̃ = H̄ ⊗ α̂⊗Q and so H̄ ⊗ α̂⊗ P̃ ⊗ κ̂ = H̄ ⊗ α̂⊗Q⊗ κ̂ as claimed.
So, we have shown that

H̄ ⊗ α̂⊗Q⊗ κ̂ = lim
j
H̄ ⊗ αnj ⊗Q⊗ κnj

= lim
j
Hi ⊗ αnji ⊗Q⊗ κ

nj
i

= Hi ⊗ α∗i ⊗Q⊗ κ∗i , for every i. (A.14)

Since each (α∗i , κ
∗
i ) is incentive compatible for the single-agent-i model, Proposition 13.4

implies that (α̂, κ̂) is incentive compatible for the multi-agent model.
Finally, for any agent i,

l∗ = lim
j

∫
l(r, s, a, t)dκnj(r|s, a, t)dP (s|a, t)dαnj(a|t)dH(t)

= lim
j

∫
l(r, s, a, t)h(t)f(s|a, t)dκnj(r|s, a, t)dQ(s)dαnj(a|t)dH̄(t)

= lim
j

∫
l̃(ri, s, ai, ti)dκ

nj
i (ri|s, ai, ti)dQ(s)dα

nj
i (ai|ti)dHi(ti)

≥
∫
l̃(ri, s, ai, ti)dκ

∗
i (ri|s, ai, ti)dQ(s)dα∗i (ai|ti)dHi(ti)

=

∫
l(r, s, a, t)h(t)f(s|a, t)κ̂(dr|s, a, t)dQ(s)dα̂(a|t)dH̄(t)

=

∫
l(r, s, a, t)κ̂(dr|s, a, t)dP (s|a, t)dα̂(a|t)dH(t),

where the third equality follows from the definition of (αni , κ
n
i ), the inequality follows from

the lower semicontinuity (established in Theorem 8.3) of the principal’s loss function in the
single-agent-i model, and the second-last equality follows from (A.14). Hence the incentive
compatible mechanism (α̂, κ̂) yields losses no greater than l∗ for the principal, which, by
the definition of l∗ implies that (α̂, κ̂) is loss minimizing among all incentive compatible
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mechanisms. Q.E.D.

Proof of Proposition 13.6 Consider the I-player Bayesian game between the agents
in which each agent i’s utility as a function of the profiles of actions and types is vi(a, t)
and in which types are drawn according to H. By hypothesis, vi (a, t) is jointly measurable,
continuous in a for each t, and H-integrably bounded. By Balder (1988, Proposition 3.1) a
Nash equilibrium exists for this Bayesian game. Let (αi)i∈I be this equilibrium, where each
αi : Ti → ∆(Ai) is a transition probability. Then, the multi-agent mechanism (α, κ) defined
by α (·|t) = ×Ii=1αi (·|ti) and κ (·|s, a, t) = δφ(s) for every (s, a, t), is incentive compatible.
Q.E.D.
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