Valuations and Dynamics of Negotiations

Armando Gomes*
Washington University in St. Louis
April 2018

Abstract

This paper analyzes three-party negotiations in the presence of externalities. We obtain a close form solution for the Markov perfect equilibrium of a multilateral non-cooperative bargaining model, yielding an equilibrium value and dynamics of negotiations that are supported by experimental studies. Players’ values are monotonically increasing (or decreasing) in the amount of negative (or positive) externalities that they impose on others. Moreover, players’ values are continuous and piecewise linear on the worth of bilateral coalitions, and are inextricably related to their negotiation strategies: the equilibrium value is the Nash bargaining solution when no bilateral coalitions form; the Shapley value when all bilateral coalitions form; or the nucleolus, when either one bilateral coalition among ‘natural partners’ or two bilateral coalitions including a ‘pivotal player’ form.

JEL: C71, C72, C78, D62.

Keywords: Coalitional bargaining, externalities, value, negotiations, mergers and acquisitions.

*I would like to thank Francis Bloch, George Mailath, Steven Matthews, John Nash, Debraj Ray, Alvaro Sandroni, Thomas Sjostrom and seminar participants at Brown University, New York University, University of Pennsylvania, Penn State, Stockholm School of Economics, University of Texas, and the Stony Brook Game Theory Conference. E-mail: gomes@wustl.edu.
1 Introduction

This paper studies multilateral negotiations in the presence of externalities. These problems are important in economics, appearing in such diverse areas as mergers and acquisitions, bankruptcy and international treaty negotiations, as well as the formation of labor unions and coalitional governments. For example, mergers create synergies to the firms merging, but often also impose externalities on the remaining firms in the industry.\footnote{In the railway industry in the 1990s, the mergers among Conrail, CSX and Norfolk Southern were predicted to provide the merged firm significant economies of scale and scope by consolidating railroad tracks and were also expected to generate significant losses to the firms left out of the merger (Esty and Millett (2005)).}

What is the dynamics of negotiations? How do the parties involved form valuations and/or prices at which transactions will take place? Our goal in this paper is to propose and analyze a standard strategic model of negotiations and to derive a close form solution answering the questions above.

While bilateral negotiations have been extensively studied, much less is known about the more complex problem of three-player negotiations specially when the threat of coalition formation (or partial mergers) is an integral part of the negotiations. The goal of this paper is to fill out this gap in the literature by providing decision makers an intuitive off-the-shelf solution for three-player negotiations with externalities. The results obtained for three-player games are helpful in extending our understanding one step beyond bilateral interactions, and is useful in applications where coalition formation and externalities play an important role. The focus on three-player games is natural because coalitional games with more than three-players are too complex to yield a simple close form solution.

The bargaining model analyzed in this paper is a natural non-cooperative dynamic multilateral negotiation model (see literature review below). In our model there are three players who can either form bilateral coalitions and/or the grand coalition among three-players. A set of parameters describe the payoff flows generated by the grand coalition and all bilateral coalitions,
including the amount of externalities they impose on excluded players. The bargaining game evolves over time with players making offers followed by responses every period.

We derive the close form solution for the equilibrium value, referred to as the coalitional bargaining value (CBV), and show that it is a continuous and piecewise linear function of the parameters of the game. Specifically, the space of all games is divided into four convex regions (eight including all permutations), and in each region the CBV is a linear function of the parameters of the game. For three-player games without externalities, in one of the regions the CBV coincides with the Nash bargaining solution, in another region with the Shapley value, and in the remaining regions with the nucleolus. For three-player games with externalities, a similar treatment applies as long as an adjusted measure for the worth of pairwise coalitions is used to generalize the Shapley value and the nucleolus. This adjustment involves measuring the worth of a pairwise coalition by adding the amount of negative externalities (or subtracting the amount of positive externalities) that it creates for the excluded player.

The solution proposed in this paper has been already empirically tested in the context of mergers and acquisitions by Croson, Gomes, McGinn, and Noth (2004). They experimentally compared the new equilibrium value and the dynamics of coalition formation proposed in an earlier version of this paper to that of competing concepts in situations with and without externalities. Their experimental results indicate that the CBV performs significantly better than other leading solution concepts. Moreover, they show that the dynamics of coalition formation is as predicted by our model in over 75% of the experiments conducted. Overall the experimental results support the predictions of the new equilibrium concept, indicating that it is an attractive off-the-shelf solution concept to use by decision-makers for three-player negotiations with and without externalities.

Given the practical importance of takeover negotiations, the results should be of interest to practitioners. Boone and Mulherin (2007) document that about half of the takeover targets are sold by negotiations with acquirers and
about half of them are sold through auctions. There are several papers in the finance literature studying takeover bidding (such as Grossman and Hart (1988), Fishman (1988), Marquez and Yilmaz (2008)) and takeover auctions (such as DeMarzo, Kremer, and Skrzypacz (2005), Gorbenko and Malenko (2014)), while there are few papers focusing on takeover negotiations.

The coalition bargaining value has also implications to the property rights theory of the firm developed by Grossman and Hart (1986) and Hart and Moore (1990)—henceforth GHM. In the GHM theory, the firm is a coalition of assets under common ownership, and agents bargain ex-post over the surplus they create, where the value of each agent is obtained according to the Shapley value. Agents choose their optimal investment decisions ex-ante, equating the ex-post marginal value of their investment with the marginal cost of investing. The optimal asset ownership is the one that maximizes the total surplus. Our results, which are supported by experimental studies, indicate the appropriate ex-post solution concept may well be different from the Shapley value, leading to different marginal gains from ex-ante investment, and also different optimal asset ownership.

The equilibrium strategies employed by players have an intuitive economic interpretation in terms of credible outside options (see also Sutton (1986)), which helps us to intuitively understand when a given cooperative solution is a more appropriate solution (e.g., the Shapley value, Nash bargaining, or the nucleolus) for a specific choice of parameters. First, the CBV is equal to the Nash bargaining solution (equal split of the surplus) and no bilateral coalitions form, if the (adjusted) worth of all bilateral coalition is less than a third of the grand coalition value. In this region, no player is able to demand more than an equal share of the surplus because the outside option of forming a bilateral coalition is not credible. Second, the CBV coincides with the (generalized) Shapley value and all bilateral coalitions can form in equilibrium, if the sum of the (adjusted) values of all bilateral coalitions is greater than the grand coalition value. In these games, there is an advantage from being the proposer (first mover advantage) and a disadvantage from being excluded from a bilateral coalition.
Finally, there are two novel cases in which the CBV coincides with the (generalized) nucleolus: games where only the ‘natural coalition’ among two ‘natural partners’ creates significant value, and games where only the two pairwise coalitions including a ‘pivotal player’ create significant value. In the first case, the player excluded from the natural coalition agrees with a payoff lower than an equal split of the surplus, and the natural partners equally split the gains from forming the natural coalition—an outcome that is driven by the fact that only the natural coalition can credibly form in equilibrium. In the second case, both non-pivotal players agree to form a coalition with the pivotal player, receiving a payoff lower than an equal split of the surplus—an outcome that is driven by the fact that only the pairwise coalitions including the pivotal player can credibly form.

There is a large literature studying non-cooperative coalitional bargaining games, and we refer below the most closely related literature. Earlier papers in the area analyzed the properties of games without externalities: Gul (1989), Chatterjee, Dutta, Ray, Sengupta (1993), Okada (1996), Hart and Mas-Colell (1996), Krishna and Serrano (1996), Seidmann and Winter (1998), among many others. Later studies considered the extension to coalitional bargaining games with externalities. For example, Jehiel and Moldovanu (1995), Bloch (1996), Yi (1997), Ray and Vohra (1999) and Gomes (2005, 2015) showed that a much broader range of applications can be analyzed when allowing for externalities. Moreover, they addressed several general properties of the equilibrium (such as efficiency, bargaining delays, existence, stability, uniqueness, and convergence) for games with an arbitrary number of players. The main difference of this paper from the articles above is that we consider in-depth the solution for three-player coalitional games, and derive a new close form solution. Moreover, we establish a new connection between non-cooperative and cooperative solution concepts.2

2Moldovanu (1990), Serrano (1993), and Cornet (2003) also focus on the study of 3-player games. Moldovanu (1990) studies the coalition-proof Nash equilibria without side payments. Among other properties, he shows that if the game is balanced then the equilibrium payoff is in the core. Serrano (1993) studies 3-player bargaining games without externalities in which responders may exit and have endogenous outside options.
The remainder of the paper is organized as follows: Section 2 presents the negotiation model, Section 3 characterizes the equilibrium and derives the explicit formula for the close form solution, Section 4 considers the effect of externalities on the equilibrium, Section 5 studies the relationship of the equilibrium and cooperative game theory concepts, Section 6 considers various illustrative examples, and Section 7 concludes. The Appendix contains the proofs of all propositions.

2 The Bargaining Model

Our game has three players \(N = \{1, 2, 3\} \). Each player owns an indivisible tradeable resource or right, and they can buy or sell resources in exchange of a transfer of utility. Players that acquire resources continue trading, and players that sell their resources leave the game. As a result of trading, different ownership or \textit{coalition structures (c.s.)} may arise, starting from the initial c.s. \([1|2|3]\) in which all resources are owned by different players: the c.s. \([ij|k]\), where one player, either \(i\) or \(j\), owns both resources \(\{i, j\}\), or the c.s. \([N]\) where one player owns all resources. We assume that players owning the same resources play identical strategies, and thus to simplify notation we do not keep track of who owns resources \(\mathcal{C}\), instead referring to this player as \textit{coalition} \(C\).\footnote{Alternatively, we could have interpreted the formation of a coalition as a binding agreement (i.e., not necessarily an ownership agreement), in which the coalition acts as an agent maximizing the aggregate utility of the coalition members.} For example, the coalition \(C\) would arise as a result of mergers among firms.

Players are expected utility maximizers and have a common per period discount factor equal to \(\delta \in [0, 1)\). A set of parameters describes the flow of

\hspace{1cm}

When the order of proposers corresponds to the power players have in the underlying coalition function, the unique Markov perfect equilibrium outcome of the game is the prenucleolus. Cornet (2003) studies 3-player negotiations with externalities using a model in which bargaining takes place using the demand-making framework originally proposed by Binmore (1985). In this framework players sequentially pose demands and accept or reject standing demands from other player(s). In Cornet’s framework, acceptance leads to the formation of a two (or three) player coalition and the game terminates, while in our framework the game goes on even when a two-player coalition has already been formed.
utility (or payoffs) generated by the resources for all the possible c.s. Accordingly, if the c.s. is \([1|2|3]\), the flow of utility to player \(i\) is \((1 - \delta) u_i\); if the c.s. is \([ij|k]\), the flow of utility to coalition \(\{i, j\}\) and player \(k\) are, respectively, equal to \((1 - \delta) U_{ij}\) and \((1 - \delta) U_k\); and finally if the c.s. is \([N]\), the flow of utility to the grand coalition \(N\) is \((1 - \delta) U\). Note that the specification above can capture any positive or negative externalities that the coalition \(\{j, k\}\) creates for player \(i\), whenever \(u_i < U_i\) or \(u_i > U_i\), respectively. The set of parameters \(u\) is also known as a partition function form (see Thrall and Lucas (1963) and Ray and Vohra (1999)). A characteristic function form corresponds to a special partition function form where \(u_i = U_i\), and thus there are no externalities.

Without any loss of generality, we consider thereafter only 0-normalized partition functions, that is \(u_i = 0\) for all \(i \in N\). Furthermore, all partition functions considered are such that the three-player agreement is efficient, i.e., \(U \geq U_i + U_{jk}\) for all distinct \(i, j, k\) and \(U \geq 0\).

We model negotiations as an infinite horizon non-cooperative game with complete information, utilizing the partition function as the basic underlying structure. The negotiation game evolves with players making offers (to acquire the resources of other players) followed by players that have received offers accepting or rejecting them, as in Rubinstein (1982). Specifically, the game is defined recursively by the following extensive form, starting from the c.s. \([1|2|3]\): (Random proposer’s choice) At the beginning of each period one of the players belonging to the current c.s. is randomly chosen to be the proposer. In order to capture the role of the players’ opportunity to propose, if the c.s. is \([1|2|3]\), player \(i\) is proposer with arbitrary probability \(p_i = p_{i|1|2|3}\), and if the c.s. is \([ij|k]\), coalition \(ij\) and player \(k\) are proposers with probabilities \(p_{ij}[ij|k]\) and \(p_k[ij|k]\). (Proposal stage) The proposer then makes one of the following choices: an offer to buy the resources of another

\(^{4}\)Any partition function game as defined above is strategically equivalent to the 0-normalized game with \(u_i' = 0\) and \(U_{ij}' = U_{ij} - u_i - u_j\) and \(U' = U - u_1 - u_2 - u_3\). Thus the equilibrium strategies and values of both games are immediately related. For example, the equilibrium value \(v\) in the general game is related to the equilibrium value \(v'\) in the 0-normalized game by \(v_i = v_i' + u_i\).
player, say \(j \), at price \(t_j \); an offer to buy the resources of both players, say \(j \) and \(k \), at prices \(t_j \) and \(t_k \); or makes no offers (i.e., pass his opportunity to propose).

\textit{(Response stage)} The player(s) receiving the offer respond sequentially either accepting or rejecting the offer (the order of response turns out to be irrelevant). An exchange of ownership then takes place if \textit{all} player(s) receiving the offer accept(s) it. After trading a new c.s. arises (or the c.s. remains the same if any player rejected the offer), with those players selling their resources leaving the game and the proposer remaining in the game. Flow payoffs occur at the end of each period according to the partition function described in the previous paragraph.\(^5\) The game is repeated, after a lapse of one period of time, with a new proposer being randomly chosen as described above, until the game terminates when the c.s. \([N]\) forms.

Our notion of equilibrium is \textit{stationary subgame perfect Nash equilibrium} or \textit{Markov perfect equilibrium (MPE)}. A strategy profile \(\sigma \) is MPE if it is a subgame perfect Nash equilibrium and the strategies are Markovian, i.e., the strategies at each stage of the game do not depend on the history of the game nor on calendar time. Formally, at the proposal stage a Markovian strategy depends only on the current c.s. and who is the proposer; at the response stage a Markovian strategy depends only on the current c.s., the proposer, the offer made by the proposer, and (if a player is the second responding) the response of the first responder.

\section*{3 The Coalition Bargaining Value}

The interesting action happens at the initial stage. After any bilateral agreement, the analysis reduces to a standard two-player bargaining game. It is a well-known result that the random proposer bilateral bargaining game has a unique (stationary) subgame perfect equilibrium (this game is an unessential variation of Rubinstein’s (1982) alternating offer bargaining game). In

\(^5\)For example, the situation in which an offer by player \(i \) is accepted by \(j \) leads to a flow payoff equal to \((1 - \delta) U_{ij} - t_j\) to player \(i \), \((1 - \delta) U_k\) to player \(k \), and player \(j \) leaves the game with a final payoff equal to \(t_j \).
the unique equilibrium, the continuation values of the bilateral game with
c.s. \([ij|k]\) are equal to

\[
V_{ij} = U_{ij} + p_{ij}(\{ij|k\}) (U - U_k - U_{ij}) \quad \text{and} \quad V_k = U_k + p_k(\{ij|k\}) (U - U_k - U_{ij}),
\]

respectively, for coalition \(ij\) and player \(k\). Note that this is the value at
the subgame \([ij|k]\) before the proposer has been chosen. It is also useful
to define the continuation values at the end of subgame \([ij|k]\), after offers
have been rejected, which are equal to

\[
\hat{V}_{ij} = \delta V_{ij} + (1 - \delta) U_{ij} \quad \text{and} \quad \hat{V}_k = \delta V_k + (1 - \delta) U_k.
\]

Consider any MPE \(\sigma\) and let \(v_i\) be the equilibrium continuation value of
player \(i\) when the c.s. is \([1|2|3]\), before the proposer has been chosen. Any
player responding to an offer can, by rejecting it, maintain the negotiations
on the same state. Therefore, when faced with any offer, responders accept
it only if the offer price is above or equal to \(v_i = \delta v_i\). On the other hand,
proposers choose whom to extend an offer to based on which deal produces
the largest gains—always offering the minimum prices that are acceptable.
Specifically, say that player \(i\)’s strategy puts probability \(\sigma_i^\delta(S)\) on making
an offer to form coalition \(S\) (where \(i \in S\)), and let the gain associated
with the formation of coalition \(S\) be \(e_{i,i}^\delta\), which is equal to \(V_{ij}^\delta - v_{i}^\delta - v_{j}^\delta\) if
\(S = \{i,j\}\) (symmetric for \(S = \{i,k\}\), \(U - v_{i}^\delta - v_{j}^\delta - v_{k}^\delta\) if \(S = \{i,k\}\), and zero
if \(S = \{i\}\) (no coalition forms). Note that this implies that in equilibrium
coalition \(S\) forms with probability \(\mu_S^\delta = \sum_{i \in N} p_i \sigma_i^\delta(S)\). Also note that
the value \(v_i\) is endogenously given, and must be equal to \((1 - \mu^\delta_{jk}) v_i +
\mu^\delta_{jk} V_j^\delta + p_i \max_{i \in S} e_{i,i}^\delta\). This is because, when player \(i\) proposes, his value is
\(v_i^\delta + \max_{i \in S \subseteq N} e_{i,i}^\delta\), and when another player proposes, \(i\)’s value is \(V_i^\delta\), if \(i\) is
excluded from the offer, and \(v_i^\delta\) otherwise.

We obtain the equilibrium for all \(\delta > \tilde{\delta}\), where \(\tilde{\delta} < 1\), by constructing
strategies \(\sigma_i^\delta\) satisfying

\[
\sigma_i^\delta(S) = 0 \text{ if } e_S^\delta < \max_{i \in S \subseteq N} e_{i,i}^\delta \text{ for all } i,
\]

(2)
and satisfying

\[v_i^\delta = \delta \left(\mu_{jk}^\delta V_i^\delta + \left(1 - \mu_{jk}^\delta \right) v_i^\delta + \max_{i \in S \subseteq N} \epsilon_S^\delta \right) \]

for all \(i \).

(3)

We are particularly interested in the limit equilibrium value when \(\delta \) converges to one (which corresponds to an arbitrarily small interval between offers). The limit equilibrium value is referred to as the coalition bargaining value (CBV) of the game.

Proposition 1 Consider any 0-normalized three-player game where the grand coalition is efficient (i.e., \(U \geq 0 \) and \(U \geq U_{ij} + U_k \)) and the opportunities to propose satisfy \(p_i < \frac{1}{2} \). Moreover, let \(V_{ij} \) and \(V_i \) be equal to \(V_{ij} = U_{ij} + p_{ij}(\{i \mid j | k \}) (U - U_k - U_{ij}) \) and \(V_k = U_k + p_{k}(\{i | j | k \}) (U - U_k - U_{ij}) \).

There exists a \(\bar{\delta} < 1 \) such that for all \(\delta > \bar{\delta} \) there is an MPE \(\sigma^\delta \) that satisfies the following properties:

Part A. The equilibrium values \(v_i^\delta \) converge to \(v_i \) (the coalition bargaining value) when \(\delta \) converges to one:

Case i: If \(V_{12} \leq (p_1 + p_2) U, V_{13} \leq (p_1 + p_3) U, \) and \(V_{23} \leq (p_2 + p_3) U, \) then

\[v_i = p_i U \text{ for all } i \in N, \]

Case ii: If \(V_{12} \geq (p_1 + p_2) U, V_{13} + \frac{p_2}{p_1 + p_2} V_{12} \leq U, \) and \(V_{23} + \frac{p_3}{p_1 + p_2} V_{12} \leq U, \) then

\[v_1 = \frac{p_1}{p_1 + p_2} V_{12}, v_2 = \frac{p_2}{p_1 + p_2} V_{12}, \text{ and } v_3 = U - V_{12}. \]

Case iii: If \(V_{12} + \frac{p_2}{p_1 + p_2} V_{13} \geq U, V_{13} + \frac{p_2}{p_1 + p_2} V_{12} \geq U, \) and \(V_{12} + V_{13} + V_{23} \leq 2U, \) then

\[v_1 = U - V_2 - V_3, v_2 = V_2, \text{ and } v_3 = V_3. \]

Case iv: If \(V_{12} + V_{13} + V_{23} \geq 2U, \) then

\[v_i = \frac{1}{3} (U - 2V_{jk} + V_{ij} + V_{ik}) \text{ for all } i \in N. \]

Part B: The following coalitions form in each of the cases above (\(\mu_{S}^\delta = \sum_{i \in N} p_i \epsilon_i^\delta (S) \) is the probability of coalition \(S \) forming):
Case i: \(\mu_N^\delta = 1 \) (all \(\mu^\delta_{ij} = 0 \)),
Case ii: \(\mu^\delta_{12} + \mu^\delta_N = 1 \) (\(\mu^\delta_{12} > 0 \) and \(\mu^\delta_{13} = \mu^\delta_{23} = 0 \)),
Case iii: \(\mu^\delta_{12} + \mu^\delta_{13} + \mu^\delta_N = 1 \) (\(\mu^\delta_{12}, \mu^\delta_{13} > 0 \) and \(\mu^\delta_{23} = 0 \)),
Case iv: \(\mu^\delta_{12} + \mu^\delta_{13} + \mu^\delta_{23} = 1 \) (all \(\mu^\delta_{ij} > 0 \) and \(\mu^\delta_N = 0 \)).

In the proof (see appendix) we consider a partition of the parameter space into regions defined by the inequalities i, ii, iii, and iv. In each region, we compute the values \(v_i^\delta \) and the strategies \(\sigma_i^\delta \) satisfying the system of equations and inequalities (2)-(3). We then take the limit of the solution in each region and show that the limit satisfies part A and B of proposition 1 (explicit formulas for \(\mu^\delta_{ij} \)'s are also provided in the appendix).

Note that each case above defines a convex region, and there are a total of eight regions when all permutations are included (three of types ii and iii). Moreover, all games belong to one of the eight regions and the (interior) of the regions are disjoint.

The sequencing of negotiations is different in each region. Intuitively, region i corresponds to the case where no pairwise coalitions create much value, so the threat of forming a pairwise coalition is not credible and would only benefit the excluded player (accordingly the strategies are such that \(\mu^\delta_{ij} = 0 \)). Region ii corresponds to the case where \{1, 2\} is the only bilateral coalition that creates significant value and is the only one that should arise in equilibrium (\(\mu^\delta_{13} = \mu^\delta_{23} = 0 \)). In region iii only pairwise coalitions with player 1 create significant value, so they are the only ones that should arise in equilibrium (\(\mu^\delta_{23} = 0 \)). In region iv, the sum of values created by pairwise coalitions surpass the grand coalition value, and the solution predicts that all pairwise coalitions arise, but not the grand coalition (\(\mu^\delta_N = 0 \)).

Croson, Gomes, McGinn, and Noth (2004) consider games in each of the four regions. Their experimental results for the transition probabilities are in line with proposition 1, part B.\(^6\)

\(^6\)Croson et al. (2004, table VII) experimental results for the transition probabilities from \{1|2|3\} to \{N\}, \{12|3\}, \{13|2\}, \{23|1\}, and \{12|3\} are, respectively: case i, 84%, 11%, 4%, 0, and 2%; case ii, 60%, 26%, 0, 6%, and 7%; case iii, 46%, 20%, 23%, 11%, and 0;
The close form solution exhibited in proposition 1 allows for the evaluation of comparative statics effects associated with changes in the coalitions’ worth and in the proposers’ probabilities. We discuss below how valuations are intrinsically linked to the negotiation strategies, and the intuition for the comparative statics effects.

In region i, the CBV is the split of the surplus according to players’s opportunities to propose. The intuition behind this result is that the threat of any pair of players i and j to form coalition ${i,j}$ is not credible because the most the coalition ${i,j}$ can get by alienating player k is V_{ij}, and $V_{ij} \leq (p_i+p_j)U$, which is the amount they can get by conforming to the equilibrium strategies. In other words, the ability of players to demand more than a proportional split of the surplus by threatening to form a pairwise coalition is an outside option that is not credible (see Sutton (1986)). The CBV prediction has the following comparative statics implication in this region: the expected outcome of players should be insensitive to local changes in the coalition’s worth and is increasing in the proposer probability, as long as the conditions for belonging to region i are maintained.

In region iv, the strategy of proposer i is to choose a player randomly, say j, and offer him the value δv_j to form the pairwise coalition ${i,j}$. Conditional on player i been the proposer and making an offer to player j, the value of left out player k is equal to V_k, which is smaller than v_k because

$$V_k - v_k = \frac{2U - (V_{12} + V_{13} + V_{23})}{3} \leq 0,$$

(obtained after taking into account that $V_k = U - V_{ij}$). Therefore, in this region, there is significant advantage from being included in the first pairwise coalition forming, and a disadvantage from being excluded from it.

The comparative statics with respect to the proposer probability yields a surprising result. Based on the discussion above one would expect that in region iv the value of a player would be increasing in his opportunity to propose, but this is not the case (note that the limit equilibrium values are not a function of the proposer probabilities). The explanation comes case iv, 3%, 42%, 40%, 14%, and 0.
from the analysis of the equilibrium strategies. In the appendix, we show that coalition \(jk \) forms in equilibrium with probability \(\mu_{jk} = p_i \) (in the limit when \(\delta \to 1 \)). Thus increases in player \(i \) proposer probability \(p_i \) are offset by players \(j \) and \(k \) who are more likely to form coalition \(jk \) (and conditional on coalition \(jk \) forming, the value of player \(i \) is \(V_i \leq v_i \)).

It is interesting to note that in region \(iv \), if there are no externalities, the value of players are exactly equal to Shapley value. Recall that the Shapley value is the concept Shapley (1953) derived from axioms, and, in particular, its value for 3-player games is equal to \(Sh_i = \frac{1}{6} (2U - 2U_{jk} + U_{ij} + U_{ik}) \). Thus the Shapley value arises as the equilibrium in situations where players rush to form any pairwise coalitions and there are significant first mover advantages.

4 The Effect of Externalities on the Equilibrium

Coalition formation can impose externalities on the payoffs of players left out whenever \(u_i = 0 < U_i \) (positive externalities) or \(u_i = 0 > U_i \) (negative externalities). Remind that, without any loss of generality, we normalized the game (see footnote 4), so that all \(u_i = 0 \).

Our next result provides a simple way to evaluate the effect of externalities on the equilibrium value. We show that the equilibrium value depends only on an adjusted measure of the coalition’s worth, defined as

\[
\overline{U}_{ij} = U_{ij} - U_k.
\]

That is, \(\overline{U}_{ij} = U_{ij} - U_k \) is the value that coalition \(\{i, j\} \) creates plus (minus) the amount of negative (positive) externalities that it creates for the excluded player \(k \).

Our next result shows that any game with externalities has similar value and dynamics compared to a game without externalities once coalitions’ worth are adjusted accordingly to take externalities into account.

To simplify the notation, we formulate the proposition for the case where all players have an equal opportunity to propose (i.e., \(p_i ([1|2|3]) = \frac{1}{3} \) and \(p_{ij} ([ij|k]) = p_k ([ij|k]) = \frac{1}{2} \)).
Proposition 2 Consider any three-player 0-normalized game where all players have equal probability to propose, and let $U_{ij} = U_{ij} - U_k$. The CBV is:

Case i: If $U_{12} \leq \frac{U}{3}$, $U_{13} \leq \frac{U}{3}$, and $U_{23} \leq \frac{U}{3}$ then

$$v_i = \frac{U}{3} \text{ for all } i;$$

Case ii: If $U_{12} \geq \frac{U}{3}$, $2U_{13} + U_{12} \leq U$, and $2U_{23} + U_{12} \leq U$ then

$$v_1 = v_2 = \frac{1}{4}(U + U_{12}), \text{ and } v_3 = \frac{1}{2}(U - U_{12});$$

Case iii: If $U_{12} + U_{13} + U_{23} \leq U$, $2U_{13} + U_{12} \geq U$, and $2U_{12} + U_{13} \geq U$ then

$$v_1 = \frac{1}{2}(U_{12} + U_{13}), \text{ } v_2 = \frac{1}{2}(U - U_{13}), \text{ and } v_3 = \frac{1}{2}(U - U_{12});$$

Case iv: If $U_{12} + U_{13} + U_{23} \geq U$ then

$$v_i = \frac{1}{6}(2U - 2U_{jk} + U_{ij} + U_{ik}) \text{ for all } i.$$

Note that the proposition shows that players' equilibrium values increase or decrease with the amount of negative or positive externalities they impose on others. Moreover, interestingly, the structure of the equilibrium is not more complex in general for characteristic function games and partition function games in three player games, as long as the proper adjustment to account for externalities are made.

5 Cooperative Solutions and the CBV

We now discuss the CBV's relationship with cooperative solution concepts. The CBV is closely related to classic cooperative game theory solutions for characteristic function games (i.e., partition function games without externalities, where $U_{ij} = U_{ij}$).

Our next result shows that the CBV in regions i, ii, and iii coincides with the nucleolus. We recall that the nucleolus is the concept introduced by Schmeidler (1969), who proved that the nucleolus always exists and is
a unique point belonging to the core of the game, whenever the core is non-empty. Kohlberg (1971) then showed that the nucleolus is a piecewise linear function of the characteristic function of the game, and Brune (1983) computed the nucleolus with its regions of linearity for three-person games (see appendix). We have seen in section 3 that the CBV coincides with the Shapley value in region iv.⁷

Proposition 3 The CBV of any 0-normalized superadditive characteristic function game is the nucleolus, if \(U_{12} + U_{13} + U_{23} \leq U \), or the Shapley value, if \(U_{12} + U_{13} + U_{23} \geq U \).

Note first that belonging to regions i, ii, or iii is indeed equivalent to the constraint \(U_{12} + U_{13} + U_{23} \leq U \). Comparing the formula for the nucleolus derived by Brune (1983) with the formula for the CBV yields the above result (see appendix). While the nucleolus is a concept that is mathematically very attractive and simple, economists have had difficulties in developing a motivation for it. The strategies employed by players in region ii and iii, where the nucleolus arise,⁸ have an intuitive economic interpretation in terms of credible outside options which we now discuss.

For games that satisfy the conditions of case ii, there exists a pair of players \(\{i, j\} \) (natural partners) that are willing to form a pairwise coalition. According to proposition 2, the outcome of negotiations when \(i \) and \(j \) are natural partners is \(v_k = V_k \) and \(v_i = v_j = \frac{V_{ij}}{2} \) whenever case ii holds, which one can easily see is equivalent to \(V_k \leq \frac{V}{3}, V_{ik} \leq v_i + v_k, \) and \(V_{jk} \leq v_j + v_k \) (these inequalities can be verified by substituting expression (1) for \(V_i \) and \(V_{jk} \)). Here is the intuition for the result. Note first that the proposed solution is consistent with coalition \(\{i, j\} \) being the only pairwise coalition forming; consider the alternative and suppose that the coalition \(\{i, k\} \) forms;

⁷ It is also worth pointing out the relationship between the CBV and the core. It is straightforward that the core of a three-player superadditive characteristic function game is non-empty if and only if \(U_{12} + U_{13} + U_{23} \leq 2U \). Therefore, we conclude that the Shapley value is the CBV of all games with an empty core (because whenever the core is empty the game belongs to region iv).

⁸ See section 3 for a discussion of the equilibrium in region i.
then the payoff for the coalition is V_{ik} and the payoff of the player left out is V_j. But since $V_{ik} \leq v_i + v_k$, then the coalition $\{i, k\}$ is worse off (with respect to the proposed equilibrium). The payoffs of the players i and j, $v_i = v_j = \frac{V_{jk}}{2}$, are also consistent with the fact that only the pairwise coalition $\{i, j\}$ may form: players i and j bargain over V_{ij} using as disagreement points their zero status quo values.

For games that satisfy the conditions of case iii, a pivotal player is included in all pairwise coalitions that are proposed, and the pairwise coalition between the non-pivotal players is never proposed. According to proposition 2, the outcome of negotiations when player i is pivotal is $v_i = V - V_j - V_k$, $v_j = V_j$, and $v_k = V_k$ whenever case iii holds, which one can easily see is equivalent to $V_{jk} \leq V_j + V_k$, $V_j \leq \frac{V_{jk}}{2}$, and $V_k \leq \frac{V_{jk}}{2}$. The intuition for this result is that players j and k cannot demand a higher payoff than V_j and V_k from player i by threatening to form the coalition $\{j, k\}$, since they would be worse off pursuing this strategy ($V_{jk} \leq V_j + V_k$). Also, note that players j and k are not willing to accept any offer lower than V_j and V_k because they can guarantee this amount by credibly holding out. This is so because if j holds out then i would successfully bargain with k to form a coalition; k’s gains are $\frac{V_{jk}}{2} \geq V_k$, and thus k does not want to hold out when j holds out.

6 Examples

A better understanding of the negotiation strategies can be grasped by analyzing a few specific examples illustrating the cases previously discussed (in all examples we assume that players have equal opportunities to propose).

6.1 Mergers and Acquisitions

We consider first an example in which the merger of two firms may create externalities for the firm left out of the merger.

Three firms compete in an industry in which there are the following merger gains: $u_i = 0$, $U = 1$, $U_{12} = v_H + \theta$, $U_3 = \theta$, $U_{13} = v_{L_1}$, $U_{23} = v_{L_2}$.
and also $U_1 = U_2 = 0$ where $v_H \in \left[\frac{1}{3}, 1 \right]$ and $v_{L_1} \leq v_{L_2} \leq \frac{1-v_H}{2} \leq v_H$.

In this example the merger between firms 1 and 2 may create positive or negative externalities for firm 3 if, respectively $\theta > 0$ or $\theta < 0$. What are the prices at which firms merge? Are there any natural merger partners in this industry? The bargaining value and strategies provide a direct answer to the questions above, as one can easily verify that this game belongs to region ii and thus the coalition bargaining value is

$$v_1 = \frac{1 + v_H}{4}, \quad v_2 = \frac{1 + v_H}{4}, \quad \text{and} \quad v_3 = \frac{1 - v_H}{2},$$

where $v_1 = v_2 \geq v_3$. In this situation, we only expect to see the bilateral merger between firms 1 and 2. Note that as the 12 merger create more negative externalities for firm 3, i.e., θ is more negative, then the gain created by the 12 merger, $v_H + \theta$, can actually be smaller and the merger be still profitable for them. On the contrary, say that firms 1 and 3 merge. Their profitability increases by v_{L_1}, and there are still gains from further consolidation with firm 2. Firm 2 and conglomerate $\{1,3\}$ split the merger gains in a Nash bargaining way, each getting, respectively, \(\frac{1}{2} (1 - v_{L_1}) \) and \(\frac{1}{2} (1 + v_{L_1}) \). Note that the value of the conglomerate $\{1,3\}$ is \(\frac{1}{2} (1 + v_{L_1}) \leq \frac{1}{4} (3 - v_H) = v_1 + v_3 \). Therefore, one can predict that firms 1 and 3 are not going to merge, and by the same reasoning, one can also rule out a merger between firms 2 and 3.

Consider now a merger between firms 1 and 2. How should the value of the 12 merger be split among firms 1 and 2? Firm 2 has an apparent stronger bargaining position than firm 1 because $v_{L_1} \leq v_{L_2}$ and thus it seems reasonable that firm 2 should receive a higher share of the value than firm 1. However, this intuitive idea is wrong: Firm 2 does not have any credible outside options other than to merge with firm 1, and thus in equilibrium we predict that the firms 1 and 2 will get an equal value.

6.2 Market Games

Our second example is a market game in which there is one seller and two buyers. The example focuses on the case without externalities, but any
similar seller-buyer market game with externalities can be also handled by
considering the transformations proposed in Section 4 to obtain the corre-
sponding game without externalities.

Consider the negotiation game where \(u_i = U_i = 0, U_{12} = v_H = 1, \)
\(U_{13} = v_L, U_{23} = 0, \) and \(U = v_H = 1, \) with \(v_L < v_H = 1. \) In this game player
1 is the seller, player 2 is the high valuation buyer, and player 3 is the low
valuation buyer.

By proposition 1 we have that the coalition bargaining value is
\[
\begin{align*}
 v_1 &= \frac{v_H}{2} + \frac{v_L}{6}, \\
 v_2 &= \frac{v_H - v_L}{2} + \frac{v_L}{6} = \frac{1}{2} v_H - \frac{1}{3} v_L, \quad \text{and} \\
 v_3 &= \frac{v_L}{6},
\end{align*}
\]

because \(\overline{U}_{12} + \overline{U}_{13} + \overline{U}_{23} = v_H + v_L = 1 + v_L > 1. \)
Note that if the valuation of the buyers are the same \(v_H = v_L = 1 \) then the only point in the core of
the market game is \((1,0,0),\) where the seller extracts all the surplus from
the two buyers. In this case the CBV, which is equal to \((\frac{4}{5}, \frac{1}{5}, \frac{1}{5})\), does not
belong to the core.

Are the CBV predictions reasonable? Shouldn’t we expect competition
between the two buyers to drive the good’s price to 1, as the core predicts?
The main reason why the seller can’t extract the entire surplus from the
buyers is that both buyers have the option of forming a cartel to bid for
the good and then buy it at a very low price (0.5), rather than initiating
a bidding war. The seller knows about that all too well, and, rather than
auctioning the good, the seller prefers to negotiate an intermediate price
(between 0.5 and 1) with one buyer, leaving the second buyer with nothing.
Because all agreements are binding after a deal is sealed (i.e., either a buyers’
cartel is formed or the good is sold) there is no way for the excluded player
to undo the deal by enticing one of the players with a slightly better offer.

6.3 Intra-firm Bargaining and Unionization

Consider the problem of bargaining for wages among a firm and its workers.
The problem we address is similar to the one studied in Stole and Zwiebel
\footnote{This solution generalizes the solution of the one-seller two-buyer market game in
Osborne and Rubinstein (1990) when players are allowed to use contracts and resell the
resource.}
Following Stole and Zwiebel (1996), consider a firm (player 1) and two workers (or worker groups, denoted players 2 and 3), with a production (or revenue) function $F(n)$ with $n = 0, 1, \text{or} 2$ workers, and let w be the outside wage of workers. Define the profit function $\pi(n) = F(n) - nw$, and let $\pi(0) = 0$ (zero profit with no workers).

This situation induces a payoff function with 0-normalized payoffs equal to:\footnote{Kovenock and Widdows (1989) also analyze negotiations between a firm and two unions. They show that the sequencing of negotiations is related to what contingent contracts are available to unions.}

$$u_i = U_i = 0; \quad U_{12} = U_{13} = \pi(1); \quad U_{23} = 0; \quad U = \pi(2),$$

where we assume $\pi(2) > \pi(1) > 0$.

We interpret the coalition between the workers (i.e., \{2, 3\}) as unionization to collective bargain with the firm, and the coalition between the firm and one worker (i.e., \{1, 2\} or \{1, 3\}) as a collective bargaining agreement with a worker, who may receive a higher wage than the excluded worker.

What are the firm’s share of the profits and the employee wages? When do we expect to have workers unionizing to bargain with the firm? The answer to this question depends on whether the profit function $\pi : \{0, 1, 2\} \rightarrow \mathbb{R}$ is convex or concave, or whether the marginal profit function is decreasing or increasing (i.e., $\pi(2) - \pi(1) \leq \pi(1) - \pi(0)$).

- **If the profit function is concave the equilibrium values are given by the Shapley value, and any pairwise coalition can form including unionization;**

- **If the profit function is convex the equilibrium values are given by the nucleolus. In equilibrium, the firm bargains with each worker separately and there is no unionization.**

\footnote{The associated payoff function is: $u_1 = F(0) = 0; \quad u_2 = U_2 = u_3 = U_3 = w; \quad U_{12} = U_{13} = F(1); \quad U_{23} = 2w; \quad U = F(2)$, which, by footnote 4, yields the 0-normalized payoffs above.}
In the concave profit function case, i.e., the marginal contribution of the first worker is greater than the marginal contribution of the second worker. In this case there is either unionization, which will allow the workers to extract more surplus from the firm, followed by bargaining with the firm, or just negotiation between the firm with one worker, who gets a specially favored wage contract, followed by negotiation with remaining worker, who will receive a lower wage. This result follows immediately as a corollary of Proposition 3 since concavity is equivalent to

\[U_{12} + U_{13} + U_{23} = 2\pi(1) > U = \pi(2) \iff \pi \text{ concave.} \]

The ex-ante value of each player \(v_i \) is the Shapley value (case iv of Proposition 2). Note that, \(v_i > V_i \), and thus there is a first mover advantage, and a significant disadvantage from being excluded of the pairwise coalition that forms first (see discussion at the end of Section 3).\(^\text{12}\)

In the convex profit function case, when the marginal contribution of the second worker is smaller than the marginal contribution of the first worker, then

\[U_{12} + U_{13} + U_{23} = 2\pi(1) < U = \pi(2) \iff \pi \text{ convex.} \]

Thus, by Proposition 3, the coalition bargaining value is equal to the nucleolus. It is immediate to verify that this game belongs to region iii of Proposition 2, which yields the corresponding formulas for the players’ values, in which there is no first mover advantage.

7 Conclusion

This paper explicitly derives the solution of a standard model for three-player negotiations with externalities. The analysis shows how the players’ values are inextricably related to the equilibrium sequencing of negotiations. A simple way to deal with externalities is developed: add to the worth of each player

\[^{12}\text{The values of each player are } v_1 = \frac{1}{3} (\pi(2) + \pi(1)), \text{ and } v_2 = v_3 = \frac{1}{3} (\pi(2) - \frac{1}{3}\pi(1)), \text{ and thus the workers’ expected wage is } \bar{w} = v_2. \text{ However, the value of an excluded worker, say worker 2, is } V_2 = \frac{1}{2} (\pi(2) - \pi(1)), \text{ and thus his wage is } \bar{w} + V_2, \text{ which is less than the expected wage because } V_2 - v_2 = \frac{1}{3} (\pi(2) - 2\pi(1)) < 0, \text{ in the concave profit function case.}\]

19
a bilateral coalition the amount of negative externalities (or subtract the amount of positive externalities) that it creates for the excluded player. Players' equilibrium values are monotonically increasing or decreasing in the amount of negative or positive externalities they impose on others.

We show that the equilibrium value can be any of the following: the Nash bargaining solution, in the case where the value of all (adjusted) pairwise coalitions are less than a third of the grand coalition value; the Shapley value, in the case where the sum of the (adjusted) values created by all pairwise coalitions is greater than the grand coalition value; or the nucleolus, in the case where only the ‘natural coalition’ among two ‘natural partners’ creates significant value, and in the case where only the two pairwise coalitions including a ‘pivotal player’ create significant value.

We believe that the solution is economically intuitive and the experimental results of Croson, Gomes, McGinn, and Noth (2004) testing the model indicate that it is an interesting candidate to be an off-the-shelf solution for applications, filling a gap in the literature. A natural (difficult) next step for future research is to derive close form solutions for games with an arbitrary number of players and externalities. Moreover, it would be interesting to establish links between the solution and existing or novel cooperative solution concepts (see for example Maskin (2003)). The results in this paper suggest that any plausible solution concept that applies to all games is likely to be a piecewise linear function, and it would be important to explicitly indicate the negotiation strategies associated with each region of linearity.
Appendix

Proof of Proposition 1: First note that cases i-iv form a partition of the parameter space: the union of cases i, ii, and iii is the half-space $V_{12} + V_{13} + V_{23} \leq 2U$ (and so it follows that i, ii, and iii is a partition of the half-space) and case iv corresponds to the complementary half-space $V_{12} + V_{13} + V_{23} \geq 2U$.

Denote limits when δ converges to one without the superscript δ: $v_i = \lim_{\delta \to 1} v_i^\delta$, $V_{ij} = \lim_{\delta \to 1} V_{ij}^\delta$, and $e_S^\delta = \lim_{\delta \to 1} \frac{de^\delta}{d\delta}$, etc. We have that $\frac{dv_i^\delta}{d\delta} + \frac{dv_j^\delta}{d\delta} = (U - W_{ij})$ where $W_{ij} = U_{ij} + U_k$ and $V_k^\delta + V_j^\delta = \delta U + (1 - \delta) W_{ij}$.

We consider below a partition of the parameter space into open regions defined by strict inequalities i, ii.a-b, iii.a-d (subdivisions of cases ii and iii in which the strategies are slightly different but the limit solutions turn out to be the same), and iv.

We first will address the situation in which all inequalities are strict. Also we will first assume that superadditivity holds strictly, that is, $U > 0$ and $U - U_{ij} + U_k > 0$. In the final step of the proof we address the situation in which any of the inequalities may not be strict.

Consider the analysis of each of the regions separately in the remainder of the proof.

Case (i): In this case the limit solution transition probability is

$$\mu_N = 1.$$

The following inequalities (i) below must hold:

$$V_{12} < (p_1 + p_2) U$$
$$V_{13} < (p_1 + p_3) U$$
$$V_{23} < (p_2 + p_3) U$$

Whenever (i) holds let $\sigma^\delta (N) = 1$ and $v_i^\delta = \delta p_i U$ (so $\mu_N = 1$). Eqs. (3) hold because $v_i^\delta = \delta p_i e_i^\delta + \delta v_i^\delta$, $e_i^\delta = U - \sum_{i \in N} v_i^\delta$ (note that $v_i = p_i U$). Ineqs. (2) hold because $e_S^\delta \geq e_i^\delta$ for all $S \subset N$: the excesses are equal to $e_N^\delta = (1 - \delta) U$, $e_{ij}^\delta = V_{ij}^\delta - \delta (p_i + p_j) U$, $e_i^\delta = 0$ and the inequalities hold because $V_{ij} < (p_i + p_j) U$ for all $i, j \in N$.

Case (ii): Case ii is composed of two disjoint subcases (or a total of 6 cases counting all three symmetric pairs).

Subcase (ii.a): In this case the following inequalities (ii.a) below hold. The only non-zero transition probabilities are given by

$$\mu_N = p_k,$$
$$\mu_{ij} = 1 - \mu_N.$$
\(\lim_{\epsilon \to 0} - \epsilon \mu \geq \pi \) (There are a total of three symmetric cases): Whenever (ii.a) holds let \(\sigma_i^\delta (\{i, j\}) = 1, \sigma_j^\delta (\{i, j\}) = 1 \) and \(\sigma_k^\delta (N) = 1 \) (so \(\mu_N = p_k \) and \(\mu_{ij} = p_i + p_j \)), and \(\nu^\delta \) be the solution of the system of linear eqs. (3):

\[
\begin{align*}
V_{ij} &> (p_i + p_j) U \\
(p_i + p_j)V_{ik} + p_jV_{ij} &< (p_i + p_j) U \\
(p_i + p_j)V_{jk} + p_iV_{ij} &< (p_i + p_j) U \\
V_{ij} - (p_i + p_j)^2(U - W_{ij}) &> (p_i + p_j) U
\end{align*}
\]

Eqs. (3) have only one solution for all \(\delta \) (that can be obtained applying, for example, Cramer’s rule) and this solution converges to \(v_i = \frac{p_iV_{ij}}{p_i + p_j} \) and \(v_j = \frac{p_jV_{ij}}{p_i + p_j} \), \(v_k = V_{ij} \). Ineqs. (2) holds if there exists \(\overline{\delta} < 1 \) such that for all \(\delta \in [\overline{\delta}, 1) \),

\[
\begin{align*}
\nu^\delta_N &\geq \max\{\nu_i^\delta, \nu_j^\delta, 0\} \text{ and } e^\delta_{ij} \geq e^\delta_N = \max\{e^\delta_i, e^\delta_k, e^\delta_j, 0\}.
\end{align*}
\]

\((e^\delta_{ij} \geq e^\delta_N)\): First note that both excesses \(e^\delta_N = (1 - \delta)(\delta(p_i + p_j)(U - W_{ij}) + U) \) and \(e^\delta_{ij} = \frac{(1-\delta)\nu_{ij}^\delta}{\nu_i^\delta - \nu_j^\delta} \) converge to zero when \(\delta \) converges to one. To show that \(e^\delta_{ij} \geq e^\delta_N \), for all \(\delta \in [\overline{\delta}, 1) \), we prove that \(e'_{ij} < e'_{N} : e'_{ij} = -\frac{v_i}{p_i} \) and \(\frac{d e_{ij}^\delta}{d \delta} = -(p_i + p_j)(U - W_{ij}) + U \), so the inequality above holds because it is equivalent to \(\frac{V_{ij}}{p_i + p_j} > (p_i + p_j)(U - W_{ij}) + U \). (last inequality in ii.a). Note that this inequality implies that \(V_{ij} > (p_i + p_j)U + (p_i + p_j)^2(U - W_{ij}) \geq (p_i + p_j)U \) because by supperadditive \((U \geq W_{ij})\).

\((e^\delta_N \geq e^\delta_{ik} \text{ and } e^\delta_{ik} \geq e^\delta_{jk}\)): This inequality holds because \(\lim_{\delta \to -1} e^\delta_{ik} = 0 > \lim_{\delta \to -1} e^\delta_{ij} = V_{ij} - \frac{p_iV_{ij}}{p_i + p_j} = V_i - \frac{p_iV_{ij}}{p_i + p_j} - V_k \), which corresponds to the second inequality in ii.a.

By symmetry, \(e^\delta_N \geq e^\delta_{jk} \) corresponds to the third inequality in ii.a.

\((e^\delta_N \geq 0)\): This inequality holds if \((p_i + p_j)(U - W_{ij}) + U > 0 \) which is always true due to supperadditivity.

Subcase (ii.b): In this case the only non-zero transition probabilities are given by

\[
\begin{align*}
\mu_N &= \frac{(p_i + p_j)(2U - W_{ij}) - V_{ij}}{(p_i + p_j)(U - W_{ij})}, \\
\mu_{ij} &= 1 - \mu_N.
\end{align*}
\]
The following inequalities (ii.b) below must hold:

\[V_{ij} > (p_i + p_j) U \]
\[(p_i + p_j) V_{ik} + p_j V_{ij} < (p_i + p_j) U \]
\[(p_i + p_j) V_{jk} + p_i V_{ij} < (p_i + p_j) U \]
\[V_{ij} - (p_i + p_j)^2 (U - W_{ij}) < (p_i + p_j) U \] \hspace{1cm} (ii.b)

(The there are a total of three symmetric cases) ii.b strategy: players \(i\) and \(j\) randomize over the choices \(\{i, j\}\) and \(N\), and player \(k\) chooses \(N\) (let the associated transition probability be \(\mu^\delta\)). The transition probability is such that \(\mu^\delta_{ij} \geq 0\), \(\mu^\delta_{in} \geq 0\), and \(\mu^\delta_{ij} + \mu^\delta_{in} = 1\), and, in addition, \(\mu^\delta_{iN} \in [p_k, 1]\), because player \(k\)'s only choice is \(N\), and \(k\) proposes with probability \(p_k\). Moreover, given any transition probability \(\mu^\delta\) satisfying the conditions above, we can always find a strategy profile \(\sigma^\delta\) with associated transition probability \(\mu^\delta\). Let \(\mu^\delta\) and \(v^\delta\) be a solution of the (non-linear) system of eqs. (3):

\[v_i^\delta = \delta p_i e^\delta + \delta v_i^\delta \]
\[v_j^\delta = \delta p_j e^\delta + \delta v_j^\delta \]
\[v_k^\delta = \delta p_k e^\delta + \delta (\mu^\delta_{ij} V_k^\delta + \mu^\delta_{iN} v_k^\delta) \]
\[e^\delta = U - \sum_{i \in N} v_i^\delta \]
\[e^\delta = V_{ij}^\delta - v_i^\delta - v_j^\delta \]
\[1 = \mu^\delta_{ij} + \mu^\delta_{iN} \]

The system of equations excluding the third and last eqs. and the variables \(\mu^\delta_{ij}\) and \(\mu^\delta_{iN}\), is linear and can be solved using Cramer's rule. The solution converges to \(v_i = \frac{p_i V_{ij}}{p_i + p_j}\), and \(v_k = V_k = U - V_{ij}\). After the expressions for \(v_k^\delta\) and \(e^\delta\) have been obtained we can solve for \(\mu^\delta_{ij}\) and \(\mu^\delta_{iN}\) considering the third and last eqs. (The solution also converges to \(\mu_N = \frac{(p_i + p_j)(2U - W_{ij}) - V_{ij}}{(p_i + p_j)(U - W_{ij})}\) and \(\mu_{ij} = \frac{V_{ij} - (p_i + p_j) U}{(p_i + p_j)(U - W_{ij})}\). The restriction \(\mu_N > p_k = (1 - p_i - p_j)\) on the transition probability corresponds to \(V_{ij} < (p_i + p_j) U + (p_i + p_j)^2 (U - W_{ij})\), and the restriction \(\mu_{ij} > 0\), corresponds to, \(V_{ij} > (p_i + p_j) U\), and both holds. Moreover, ineqs. (2) hold.

\((e^\delta \geq e^\delta_{ik}\) and \(e^\delta \geq e^\delta_{jk}\): The \(\lim_{\delta \rightarrow 1} e^\delta = 0 > \lim_{\delta \rightarrow 1} e^\delta_{ik} = V_{ik} - \frac{p_i V_{ij}}{p_i + p_j} - V_k < 0 \Leftrightarrow (p_i + p_j) V_{ik} + p_j V_{ij} < (p_i + p_j) U\). Also \(e^\delta \geq 0\) for \(\delta < 1\). Symmetrically, \(e^\delta \geq e^\delta_{jk}\) also holds, because \(\lim_{\delta \rightarrow 1} e^\delta_{jk} = V_{jk} - \frac{p_j V_{ij}}{p_i + p_j} - V_k < 0 \Leftrightarrow (p_i + p_j) V_{jk} + p_i V_{ij} < (p_i + p_j) U\).

Consider the decomposition of case iii into four subcases iii.a-iii.d. Figure 1 illustrates each of the subcases (projected in the \(V_{12}-V_{13}\) space). Note that, as figure 3 illustrates, all four subcases have a common intersection point.

Case (iii): Case iii is composed of 4 disjoint subcases (or a total of 6 cases counting all three symmetric pairs).
Subcase (iii.a): In this case the only non-zero transition probabilities are given by
\[\mu_{12} = p_1 + p_2, \]
\[\mu_{13} = p_3. \]

The following inequalities (iii.a) below must hold:
\[
(p_2 - p_3) V_{12} + (1 - 2p_3) V_{13} < (1 - 2p_3) U + p_1 p_3 (-U + (1 - p_3) (W_{12} - W_{13}))
\]
\[
(p_1 + p_2) V_{13} + p_2 V_{12} > (p_1 + p_2) U + p_1 p_3 (U - W_{13})
\]
\[
V_{12} + V_{13} + V_{23} < 2U
\]

(there are a total of six symmetric cases corresponding to all permutations of the players). iii.a strategy: players 1 and 2 choose \(\{1, 2\}\) and player 3 chooses \(\{1, 3\}\), and \(v^\delta\)'s are the (unique) solution of the system of linear eqs. (3)

\[
v^\delta_1 = \delta p_1 e^\delta_{12} + \delta v^\delta_1
\]
\[
v^\delta_2 = \delta p_2 e^\delta_{12} + \delta ((p_1 + p_2) v^\delta_2 + p_3 V^\delta_2)
\]
\[
v^\delta_3 = \delta p_3 e^\delta_{13} + \delta ((p_1 + p_2) V^\delta_3 + p_3 v^\delta_3)
\]
\[
e^\delta_{12} = V^\delta_{12} - v^\delta_1 - v^\delta_2
\]
\[
e^\delta_{13} = V^\delta_{13} - v^\delta_1 - v^\delta_3
\]

The limit solution is \(v_1 = U - V_2 - V_3\), and \(v_j = V_j\) for \(j = 2, 3\). Ineqs. (2) are \(e^\delta_{12} \geq e^\delta_{13}, e^\delta_{13} \geq e^\delta_N,\) and \(e^\delta_{13} \geq e^\delta_{23}\) for all \(\delta \in [0, 1)\) : all the excesses \(e^\delta_{12},\)
Thus, e_{13}^δ and e_{N}^δ converge to zero as δ converges to one. So we analyze the derivatives of the excesses evaluated at $\delta = 1$ (see also case ii.a) which are equal to $e_{12}^\prime = -(p_1)^{-1}(V_{12} + V_{13} - U)$; $e_{13}^\prime = -(p_1p_3)^{-1}((p_1 + p_2)(V_{13} - U) + p_2V_{12}) + (U + (1 - p_3)(W_{12} - W_{13}))$, $e_N^\prime = p_3W_{13} + (1 - p_3)W_{12} - 2U$. The ineq. $e_{12}^\delta \geq e_{13}^\delta$ holds for $\delta \in [\delta, 1)$, because $p_1 + p_2 + p_3 = 1$ and first inequality in iiii.a, imply $e_{13}^\delta - e_{12}^\delta = -(p_1p_3)^{-1}((p_2 - p_3)V_{12} + (1 - 2p_3)(V_{13} - U)) > 0$, and the inequality $e_{13}^\delta > e_{12}^\delta$ holds for $\delta \in [\delta, 1)$, because the inequality in iiii.a imply $e_{13}^\delta - e_{12}^\delta = (p_1p_3)^{-1}((p_1 + p_2)(V_{13} - U) + p_2V_{12} - p_1p_3(U - W_{13})) > 0$, and finally $e_{13}^\delta \geq e_{23}^\delta$ holds because $\lim_{\delta \to 1} e_{13}^\delta = 0 > \lim_{\delta \to 1} e_{23}^\delta$; $\lim_{\delta \to 1} e_{23}^\delta = V_{23} - v_2 - v_3 = V_{23} - (U - V_{13}) - (U - V_{12}) = V_{12} + V_{13} + V_{23} - 2U < 0$.

Subcase (iii.b): In this case the only non-zero transition probabilities are given by

$$
\begin{align*}
\mu_{12} &= p_1 + p_2, \\
\mu_{13} &= \frac{(p_1 + p_2)V_{13} + p_2V_{12} - (p_1 + p_2)U}{p_1(U - W_{13})}, \\
\mu_N &= 1 - \mu_{12} - \mu_{13}.
\end{align*}
$$

The following inequalities (iii.b) below must hold:

\begin{align*}
(p_1 + p_2)V_{13} + p_2V_{12} &> (p_1 + p_2)U \\
(p_1 + p_2)V_{13} + p_2V_{12} &< (p_1 + p_2)U + p_1p_3(U - W_{13}) \quad \text{(iii.b)} \\
(p_1 + p_3)V_{12} + p_3V_{13} &> (p_1 + p_3)U + p_1(p_1 + p_2)(U - V_{12}) \\
V_{12} + V_{13} + V_{23} &< 2U
\end{align*}

(there are six symmetric cases corresponding to all permutations of the players).

iii.b strategy: players 1 and 2 choose \{1, 2\}, and player 3 randomizes over the choice of \{1, 3\} or N. The transition prob. must satisfy $\mu_{13}^\delta + \mu_{13}^\delta = p_3$, because player 3 is the only player choosing \{1, 3\} and N (and 3 is proposer with prob. p_3), and $\mu_{13}^\delta \geq 0$ and $\mu_{13}^\delta \geq 0$ (reciprocally, given any μ^δ satisfying the restrictions above, a strategy profile with transition prob. equal to μ^δ can be constructed). Let μ^δ and v^δ’s be a solution of the (non-linear) system of eqs. (3),

\begin{align*}
v_1^\delta &= \delta p_1 e_1^\delta + \delta v_1^\delta \\
v_2^\delta &= \delta p_2 e_2^\delta + \delta (1 - \mu_{13}^\delta) v_2^\delta + \mu_{13}^\delta V_2^\delta \\
v_3^\delta &= \delta p_3 e_3^\delta + \delta (p_3 v_3^\delta + (p_1 + p_2) V_3^\delta) \\
e_1^\delta &= V_{13} - v_1^\delta - v_2^\delta \\
e_2^\delta &= V_{13} - v_1^\delta - v_3^\delta \\
e_3^\delta &= U - v_1^\delta - v_2^\delta - v_3^\delta
\end{align*}

The system of equations excluding the second and last eqs. and the variables μ_{13}^δ and μ_N^δ, is a linear system of equations that can be solved using Cramer’s rule. The
solutions converges to $v_1 = U - V_2 - V_3$ and $v_j = V_j$ for $j = 2, 3$. After the expressions for e_2^δ and e_3^δ have been obtained we can solve for μ_{13}^δ and μ_N^δ considering the third and last eqs. The solution converges to $\mu_{13} = \frac{(p_1 + p_2) V_{12} + p_3 V_{13} - (p_1 + p_3) U}{p_1 (U - W_{12})}$, and the restrictions that $\mu_{13} \geq 0$ and $\mu_N \geq 0$ corresponds to inequalities one and two in iii.b. Ineqs. (2) $e_1^\delta \geq e_2^\delta$ and $e_2^\delta \geq e_3^\delta$, for all $\delta \in [\delta, 1)$: Observe that $\lim_{\delta \to 1} e_1^\delta = \lim_{\delta \to 1} e_2^\delta = 0$, and so we analyze the derivatives of e_1^δ and e_2^δ at $\delta = 1$.

Differentiating with respect to δ the expressions for e_1^δ and e_2^δ obtained from the solutions of the system of equations above yield $e_1' = -p_1^{-1} v_1 = -(p_1 + p_3) U - (p_1 + p_3) V_{12} + p_3 V_{13} - (p_1 + p_3) (U - W_{12})$. The ineq. $e_2 - e_1 = p_1^{-1} ((p_1 + p_2) V_{13} + p_2 V_{12} - p_2 U + p_1 (p_1 + p_2) U - W_{12})) > 0$ holds (because $p_1 + p_2 + p_3 = 1$ and the third inequality in iii.b), which implies that $e_1^\delta \geq e_2^\delta$ for all $\delta \in [\delta, 1)$ for some $\delta < 1$ close enough to one. As we have already argued (see iii.a), $e_2^\delta \geq e_3^\delta$ holds whenever $V_{12} + V_{13} + V_{23} < 2U$.

Subcase (iii.c): In this case the only non-zero transition probabilities are given by

\[
\begin{align*}
\mu_{12} &= \frac{(p_1 + p_3) V_{12} + p_3 V_{13} - (p_1 + p_3) U}{p_1 (U - W_{12})}, \\
\mu_{13} &= \frac{(p_1 + p_2) V_{13} + p_2 V_{12} - (p_1 + p_2) U}{p_1 (U - W_{13})}, \\
\mu_N &= 1 - \mu_{13} \mu_{12}.
\end{align*}
\]

The following inequalities (iii.c) below must hold:

\[
\begin{align*}
(p_1 + p_3) V_{12} + p_3 V_{13} &> (p_1 + p_3) U \\
(p_1 + p_2) V_{13} + p_2 V_{12} &> (p_1 + p_2) U \\
(p_1 + p_3) V_{12} + p_3 V_{13} - (p_1 + p_3) U &< \frac{(p_1 + p_2) V_{13} + p_2 V_{12} - (p_1 + p_2) U}{p_1 (U - W_{12})} + \frac{(p_1 + p_2) V_{13} + p_2 V_{12} - (p_1 + p_2) U}{p_1 (U - W_{13})} < 1 \\
(p_1 + p_3) V_{12} + p_3 V_{13} &< (p_1 + p_3) U + p_1 (p_1 + p_2) (U - W_{12}) \\
(p_1 + p_2) V_{13} + p_2 V_{12} &< (p_1 + p_2) U + p_1 (p_1 + p_3) (U - W_{13}) \\
V_{12} + V_{13} + V_{23} &< 2U
\end{align*}
\]

(there are total of three such symmetric cases): all players randomize over the choices of $\{1, 2\}$, $\{1, 3\}$ and N. The transition probabilities μ_{12}^δ and μ_{13}^δ (and $\mu_N^\delta = 1 - \mu_{13}^\delta - \mu_{12}^\delta$) must satisfy $\mu_{13}^\delta \geq 0$, $\mu_{12}^\delta \geq 0$ and $\mu_N^\delta = 1 - \mu_{13}^\delta - \mu_{12}^\delta \geq 0$, and in addition, because players 1 and 2 are the only players that can choose $\{1, 2\}$, the weight assigned to μ_{12}^δ must satisfy, $\mu_{12}^\delta \leq p_1 + p_2$. Also, the same considerations applies to $\{1, 3\}$, and thus $\mu_{13}^\delta \leq p_1 + p_3$. Let μ^δ and ν^δ be a solution of the
non-linear system of eqs. (3):

\[
\begin{align*}
\delta_1 &= \delta p_1 e^\delta + \delta v_1^\delta \\
\delta_2 &= \delta p_2 e^\delta + \delta ((1 - \mu_1) v_2^\delta + \mu_1 V_2^\delta) \\
\delta_3 &= \delta p_3 e^\delta + \delta ((1 - \mu_2) v_3^\delta + \mu_2 V_3^\delta) \\
e^\delta &= V_{12} - v_1 - v_2 \\
e^\delta &= V_{13} - v_1 - v_3 \\
\mu_N^\delta &= 1 - \mu_1^\delta - \mu_2^\delta
\end{align*}
\]

The system of four equations (eqs. 1, 4, 5, and 6 above) and four variables \((v_1^\delta, v_2^\delta, v_3^\delta, \text{and } e^\delta)\) is a linear system that has a unique solution that converges to \(v_1 = U - V_2 - V_3, v_j = V_j \text{ for } j = 2, 3.\) The solution for \(\mu_1^\delta \text{ and } \mu_2^\delta \) \((\text{and } \mu_N^\delta = 1 - \mu_1^\delta - \mu_2^\delta)\) can be directly obtained from eqs. 2 and 3 above and converge to, \(\mu_1^\delta = \frac{p_1(U - W_1)}{p_1(U - W_{13})} \text{ and } \mu_2^\delta = \frac{(p_1 + p_2) V_{12} - p_1 V_{13} - (p_1 + p_2) U}{p_1(U - W_{13})}.\) Note that the conditions \(\mu_1^\delta > 0, \mu_2^\delta > 0, \text{ and } 1 - \mu_1^\delta - \mu_2^\delta > 0\) correspond to the first three inequalities in iii.c. Moreover the restrictions \(\mu_1^\delta < p_1 + p_2 \text{ and } \mu_2^\delta < p_1 + p_3\) correspond respectively to the fourth and fifth inequalities in iii.c. The last inequality guarantees that \(e^\delta_2 \geq e^\delta_23.\)

Subcase (iii.d): In this case the only non-zero transition probabilities are given by \(\mu_1^\delta \text{ and } \mu_2^\delta = 1/\mu_1^\delta,\) where \(\mu_1^\delta \) is the unique solution in the interval \((p_2, 1 - p_3)\) of the quadratic equation

\[
p_1 (W_{12} - W_{13}) \mu_1^2 + (V_{13} + V_{12} - U - p_1 (U + W_{12} - W_{13})) \mu_1 - ((p_1 + p_3) (V_{12} - U) + p_3 V_{13}) = 0.
\]

The following inequalities (iii.d) below must hold:

\[
\begin{align*}
(p_2 - p_3) V_{12} + (1 - 2p_3) V_{13} > (1 - 2p_3) U + p_3 p_1 (-U + (1 - p_3) (W_{12} - W_{13}) \\
(p_3 - p_2) V_{13} + (1 - 2p_2) V_{12} > (1 - 2p_2) U + p_2 p_1 (-U + (1 - p_2) (W_{13} - W_{12}) \\
\frac{p_1 (U - W_{13})}{p_1 (U - W_{12})} + \frac{(p_1 + p_3) V_{12} + p_3 V_{13} - (p_1 + p_3) U}{p_1 (U - W_{12})} > 1
\end{align*}
\]

\(V_{12} + V_{13} + V_{23} < 2U\) (iii.d)

(the are total of three such symmetric cases): player 1 randomizes over the choices \(\{1, 2\} \text{ and } \{1, 3\}\), and players 2 and 3 choose \(\{1, 2\}\) and \(\{1, 3\}\), respectively. The transition probabilities associated with the strategy profile are such that \(\mu_j^\delta \geq p_j\) for \(j = 2, 3\) because player \(j\)'s only choice is coalition \(\{1, j\}\) and player \(j\) proposes
with probability p_j. Consider the non-linear system of eqs. (3):

\[
\begin{align*}
v_1^\delta &= \delta p_1 e^\delta + \delta v_1^\delta \\
v_2^\delta &= \delta p_2 e^\delta + \delta (\mu^\delta v_2^\delta + (1 - \mu^\delta) V_2^\delta) \\
v_3^\delta &= \delta p_3 e^\delta + \delta (\mu^\delta V_3^\delta + (1 - \mu^\delta) v_3^\delta) \\
e^\delta &= V_1^\delta - v_1^\delta - v_2^\delta \\
e^\delta &= V_3^\delta - v_1^\delta - v_3^\delta
\end{align*}
\]

(where $\mu^\delta = \mu_{12}^\delta$ and $\mu_{13}^\delta = 1 - \mu^\delta$). We first prove that there exist a solution of the system with $\mu^\delta \in (p_2, 1 - p_3)$ for all $\delta \in [\overline{\delta}, 1)$, for some $\overline{\delta} < 1$. The first step is to solve the system of (linear) eqs. composed of eqs. 1, 2, 4, and 5 for the variables $v_1^\delta, v_2^\delta, v_3^\delta$, and e^δ as a function of μ^δ. Now, replacing the expressions for v_2^δ and e^δ into eq. 3, yields a quadratic equation in μ, $q^\delta(\mu) = 0$. The quadratic expression $q^\delta(\mu)$ evaluated at $\delta = 1$ yields, $q(\mu) = p_1 (W_{12} - W_{13}) \mu^2 + (V_{13} + V_{12} - U - p_1 (U + W_{12} - W_{13})) \mu - ((p_1 + p_3) (V_{12} - U) + p_3 V_{13})$. Developing the expressions for $q(p_2)$ and $q(1 - p_3)$ yields $q(p_2) = -(p_3 - p_2) V_{13} - (1 - 2p_2) (V_{12} - U) + p_2 p_1 (-U + (1 - p_2) (W_{13} - W_{12})) < 0$, and $q(1 - p_3) = (p_2 - p_3) V_{12} + (1 - 2p_3) (V_{13} - U) - p_3 p_1 (-U + (1 - p_3) (W_{12} - W_{13})) > 0$. Therefore, by the continuity of $q(\mu)$ with respect to μ, the quadratic equation $q(\mu) = 0$ has one solution in the interval $(p_2, 1 - p_3)$. Moreover, by continuity with respect to δ, there exists $\overline{\delta} < 1$, such that all equations $q^\delta(\mu) = 0$ (for all $\delta \in [\overline{\delta}, 1)$) also have one solution $\mu^\delta \in (p_2, 1 - p_3)$. The solutions v_j^δ and e^δ obtained are such that $\lim_{\delta \to 1} e^\delta = 0$ (this can be obtained directly from the first equation), and $v_1 = \lim_{\delta \to 1} v_j^\delta = V_j$ for $j = 2, 3$, and $v_1 = \lim_{\delta \to 1} v_1^\delta = U - V_2 - V_3$, (the second equation, in the limit, is $v_2 = \mu_{12} v_1^\delta + \mu_{13} V_2$, which combined with $\mu_{12} + \mu_{13} = 1$ and the third equation yields the expressions above for the limit equilibrium payoffs).

In eqs. (2): $e^\delta \geq e^\delta_N$, for all $\delta \in [\overline{\delta}, 1)$, where $e^\delta_N = U - \sum_{i=1}^3 v_i^\delta$. Because $\lim_{\delta \to 1} e^\delta = \lim_{\delta \to 1} e^\delta_N = 0$, it is sufficient to show that $e' < e_N'$. Adding up the first three eqs. yields $\sum_{i=1}^3 v_i^\delta = \delta \mu_{12}^\delta (V_{12}^\delta + V_{22}^\delta) + \delta \mu_{13}^\delta (V_{13}^\delta + V_{23}^\delta)$, and the derivative with respect to δ is $\sum_{i=1}^3 v_i' = 2U - \mu_{12} W_{12} - \mu_{13} W_{13}$, which implies that $g = e_N' - e' = \frac{\mu_{13}}{p_1} - 2U + \mu_{12} W_{12} + \mu_{13} W_{13}$. Differentiating the second eq. in the system with respect to δ yields (at $\delta = 1$), $-\frac{p_3}{p_1} v_1' = \mu_{13} \left(v_1' - V_1' \right) - V_2$. But note that $\frac{dv^\delta}{d\delta} = \sum_{i=1}^3 \frac{dv_i^\delta}{d\delta} - \left(\frac{dv_1^\delta}{d\delta} + \frac{dv_2^\delta}{d\delta} \right)$ and from the fifth equation in the system, $v_1' - V_1' = - (g + (U - W_{13}))$. Therefore, $\mu_{13} = \frac{p_2 V_2^\delta - V_2}{p_1 + p_2 (U - W_{13})} = \frac{(p_1 + p_2) V_{13} + p_2 V_{12} - (p_1 + p_2) U}{p_1 + p_2 (U - W_{13})}$ and a symmetric equation holds for μ_{12}. But g is the solution of $\mu_{12} = \mu_{13}$, and the solution of $\mu_{13} = (p_2 + p_3) V_{13} - (p_1 + p_3) U$ is 1, because $\mu_{13} + \mu_{12} = 1$, thus $g > 0$ (because of the third inequality in (iii.d) which shows $e^\delta \geq e^\delta_N$ and concludes this case.

28
Case (iv): In this case only non-zero transition probabilities are given by

\[\begin{align*}
\mu_{12} &= p_3, \\
\mu_{13} &= p_2, \\
\mu_{23} &= p_1.
\end{align*} \]

The following inequality (iv) below must hold:

\[V_{12} + V_{13} + V_{23} > 2U \]

(iv)

Strategy: all players randomize over pairwise coalitions \(\{i,j\} \) (including the proposers). The associated transition probabilities satisfy \(\mu_{12}^\delta + \mu_{13}^\delta + \mu_{23}^\delta = 1 \), and moreover, the transition probabilities must satisfy the inequalities \(\mu_{12}^\delta + \mu_{13}^\delta \geq p_1 \) (because 1’s only choices are \(\{1,2\} \) and \(\{1,3\} \), and 1 is proposer with probability \(p_1 \)) and, similarly, \(\mu_{12}^\delta + \mu_{23}^\delta \geq p_2 \) and \(\mu_{13}^\delta + \mu_{23}^\delta \geq p_3 \). Note also that given any transition probability \(\mu \) satisfying the conditions above, we can always find a strategy profile \(\sigma \) with associated transition probability \(\mu^\delta \). Let \(\mu^\delta \) and \(v^\delta \) be a solution of the system of non-linear eqs. (3):

\[\begin{align*}
v_1^\delta &= \delta p_1 v_1^\delta + \delta ((\mu_{12}^\delta + \mu_{13}^\delta) v_1^\delta + \mu_{23}^\delta V_1^\delta) \\
v_2^\delta &= \delta p_2 v_2^\delta + \delta ((\mu_{12}^\delta + \mu_{23}^\delta) v_2^\delta + \mu_{13}^\delta V_2^\delta) \\
v_3^\delta &= \delta p_3 v_3^\delta + \delta ((\mu_{13}^\delta + \mu_{23}^\delta) v_3^\delta + \mu_{12}^\delta V_3^\delta) \\
e^\delta &= V_{12}^\delta - v_1^\delta - v_2^\delta \\
e^\delta &= V_{13}^\delta - v_1^\delta - v_3^\delta \\
e^\delta &= V_{23}^\delta - v_2^\delta - v_3^\delta \\
1 &= \mu_{12}^\delta + \mu_{13}^\delta + \mu_{23}^\delta
\end{align*} \]

Substituting \(v_i = \frac{1}{3} (U + V_{ij} + V_{ik} - 2V_{jk}) \), \(\mu_{ij} = p_k \), and \(e = \frac{1}{3} (V_{12} + V_{13} + V_{23} - 2U) \) into eqs. show that it is a solution for \(\delta = 1 \). By the implicit function theorem (IFT) a solution of the system for all \(\delta \in [0,1] \), for some \(\delta < 1 \), is also guaranteed because the Jacobian evaluated at the solution point and \(\delta = 1 \) (where the Jacobian is the natural one associated the system of the equations) is a non-singular matrix. Thus the problem of finding solutions for \(\delta \) in a neighborhood of \(\delta = 1 \) satisfies all conditions of the IFT.\(^{13}\) Moreover, for \(\delta \) close enough to one, the solution also satisfies the inequalities such as \(\mu_{12}^\delta + \mu_{13}^\delta > p_1 \) (the inequality \(\mu_{12} + \mu_{13} = p_3 + p_2 > p_1 \) is strict because \(p_1 < \frac{1}{2} \) and \(p_1 + p_2 + p_3 = 1 \)) and \(e^\delta > 0 \) (because \(e^1 = \frac{1}{3} (V_{12} + V_{13} + V_{23} - 2U) > 0 \) is strict). Ineq. (2) is \(e^\delta \geq e^\delta \). Since \(\lim_{\delta \to 1} e^\delta_N = 0 \) and \(\lim_{\delta \to 1} e^\delta > 0 \) we can guarantee that there exists \(\delta < 1 \) such that \(e^\delta \geq e^\delta_N \) for all \(\delta \in [0,1] \).

Consider now any game in the frontier of any of the regions we considered above (i.e., assume that some of the strict inequalities are binding). Note that such game

\(^{13}\)Note that the Jacobian associated with all other cases considered before, evaluated at \(\delta = 1 \), are singular, and thus we cannot apply the IFT to the previous cases.
can be approximated by a sequence interior games. Because the results holds for all games in the interior, and the MPE correspondence is an upper hemi-continuous correspondence of the parameters of the game, it implies that the results also hold for all games in the frontier.

Q.E.D.

PROOF OF Proposition 3: Let \(v \) and \(\eta \) denote the CBV and the nucleolus, respectively. According to Brune (1983), the nucleolus of a three-person 0-normalized superadditive game satisfying \(U_{12} \geq U_{13} \geq U_{23} \):

- If \(U_{12} \leq \frac{U}{3} \) then \(\eta = (\frac{U}{3}, \frac{U}{3}, \frac{U}{3}) \).
- If \(U_{12} \geq \frac{U}{3} \) and \(U_{12} + 2U_{13} \leq U \) then \(\eta = (\frac{U+U_{12}}{4}, \frac{U+U_{12}}{4}, \frac{U-U_{12}}{2}) \).
- If \(U_{12} + 2U_{23} \leq U \) and \(U_{12} + 2U_{13} \geq U \) then \(\eta = (\frac{U+U_{12}}{4}, \frac{U-U_{12}}{2}, \frac{U-U_{12}}{2}) \).
- If \(2(U_{13} + U_{23}) - U_{12} \geq U \) then \(\eta = (\frac{U+U_{12}+U_{13}-2U_{23}}{3}, \frac{U+U_{13}+U_{23}-2U_{12}}{3}, \frac{U+U_{13}+U_{23}-2U_{12}}{3}) \).

We have argued before that the union of cases i, ii, and iii is equal to the half-space \(V_{12} + V_{13} + V_{23} \leq 2U \), which, after using expression (1), is equal to \(U_{12} + U_{13} + U_{23} \leq U \).

First note that the CBV and the nucleolus coincide for games in regions i-iii: if case i holds then obviously \(v = \eta \); if case ii holds, which is equivalent to \(U_{12} \geq \frac{U}{3} \), \(2U_{13} + U_{12} \leq U \), and \(2U_{23} + U_{12} \leq U \), then \(v = (\frac{U+U_{12}}{4}, \frac{U+U_{12}}{4}, \frac{U-U_{12}}{2}) \).

Note that the inequalities imply that \(U_{12} \geq U_{13} \) and \(U_{12} \geq U_{23} \). Now if \(U_{13} \geq U_{23} \) then \(v = \eta \), and similarly, by the symmetry in the nucleolus formula, if \(U_{23} \geq U_{13} \) then also \(v = \eta \); if case iii holds, which corresponds to (a) \(2U_{13} + U_{12} \geq U \), (b) \(U_{12} + U_{13} + U_{23} \leq U \), and \(U_{12} + U_{13} \geq U \) then \(v = (\frac{U+U_{12}}{2}, \frac{U-U_{12}}{2}, \frac{U-U_{12}}{2}) \).

Note that the inequalities imply \(U_{12} \geq U_{13} \) and \(U_{12} \geq U_{23} \). Now suppose that \(U_{13} \geq U_{23} \). Combining inequalities a and b above (more precisely consider (a) + 2(b) \(\geq 0 \)) yields \(U_{12} + 2U_{23} \leq U \), which implies that \(v = \eta \). A similar argument applies to the symmetric case where \(U_{23} \geq U_{13} \). Thus the CBV coincides with the nucleolus whenever \(U_{12} + U_{13} + U_{23} \leq U \).

Now, if condition \(U_{12} + U_{13} + U_{23} \geq U \) holds, which is equivalent to \(V_{12} + V_{13} + V_{23} \geq 2U \), then the CBV is equal to \(v = \frac{1}{6} (2(U - U_{jk}) + U_{ij} + U_{ik}) \), which is equal to the Shapley value.

Q.E.D.
References

