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Abstract

In this paper we theoretically and empirically examine structural changes in a
dynamic term-structure model of zero-coupon bond yields. To do this, we develop
a new arbitrage-free one latent and two macro-economics factor affine model to
price default-free bonds when all model parameters are subject to change at un-
known time points. The bonds in our set-up can be priced straightforwardly once
the change point model is formulated in the manner of Chib (1998) as a specific
unidirectional Markov process. We consider five versions of our general model -
with 0, 1, 2, 3 and 4 change points - to a collection of 16 yields measured quarterly
over the period 1972:I to 2007:IV. Our empirical approach to inference is fully
Bayesian with priors set up to reflect the assumption of a positive term-premium.
The use of Bayesian techniques is particularly relevant because the models are
high-dimensional (containing up to 209 parameters) and non-linear, and because
it is more straightforward to compare our different change point models from
the Bayesian perspective. Our estimation results indicate that the model with
3 change points is most supported by the data and that the breaks occurred in
1980:II, 1985:IV and 1995:II. These dates correspond (in turn) to the time of a
change in monetary policy, the onset of what is termed the great moderation,
and the start of technology driven period of economic growth. We also utilize the
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Bayesian framework to derive the out-of-sample predictive densities of the term-
structure. We find that the forecasting performance of the 3 change point model
is substantially better than that of the other models we examine. (JEL G12, C11,
E43)

1 Introduction

In this paper we theoretically and empirically examine structural changes in a dynamic

term-structure model of zero-coupon bond yields. We do our analysis in the setting of

arbitrage-free multi-factor affine models of the type developed in Duffie and Kan (1996)

and Dai and Singleton (2000) though we allow for both latent and macro-economic

factors along the lines of Ang and Piazzesi (2003), Ang, Dong, and Piazzesi (2007) and

Chib and Ergashev (2009). We depart from the existing modeling of structural changes,

however, by relying on a change point process rather than the Markov switching process

of Dai, Singleton, and Yang (2007), Bansal and Zhou (2002), and Ang, Bekaert, and

Wei (2008).

The model we develop and estimate provides a new perspective on the dynamics of

zero-coupon bond prices and yields. One reason is because our change-point approach

reflects a different view of regime-changes. In a change point specification, a regime once

occupied and vacated is never visited again. In contrast, in a Markov switching model,

the regimes recur, which implies that a regime occupied in the past (whether distant or

near) can occur in the future. The latter assumption may not be germane if one believes

that the confluence of conditions that determine a regime are unique and not repeated.

Another reason is because we derive bond prices under the assumption that all pa-

rameters in the model can change whereas in previous work some parameters are assumed

to be constant across regimes. Thus, in our formulation, we do not have to decide which

parameters are constant and which break. As we show, bond prices can be obtained

straightforwardly once the change point process is formulated in the manner of Chib

(1998) as a specific unidirectional Markov process.

Our empirical analysis involves a large collection of yields. This allows us to get finer

view of the term-structure than is possible with a smaller set of maturities. In particular,

we apply our model to 16 yields of US T-bills measured quarterly between 1972:I and

2007:IV. An added benefit of working with these many yields is that (in comparison
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with models with fewer yields) the model with 16 yields produces the best forecasts of

the term-structure. The reason for this, which apparently has not been documented or

exploited before, is that the addition of new yields introduces only the parameters that

represent the pricing error variances, but because the parameters are subject to several

cross-equation restrictions, the additional outcomes are helpful in estimation and, hence,

in predictive inferences.

A notable aspect of our approach is that the prior distribution is motivated by eco-

nomic considerations. Specifically, our prior on the parameters reflects the assumption of

a positive term-premium, following Chib and Ergashev (2009). Another aspect is that

our estimation approach which is implemented by tuned Markov chain Monte Carlo

methods, is both feasible and reliable. We apply this approach successfully to fit a

model that has 209 parameters. Models of this size in this context would be difficult

to fit by non-Bayesian methods because of the severe non-linearities and the potential

multi-modality of the likelihood function. Our Bayesian approach is also relevant in this

context because it offers a straightforward way to compare different change point models

through marginal likelihoods and Bayes factors.

In the estimation, we consider 5 different versions of the general model. These models,

which we label as M0, M1, M2, M3 and M4, contain 0, 1, 2, 3 and 4 change-points,

respectively. Our main findings are as follows. The 3 change point model,M3, is the one

that is most supported by the data and that the breaks occurred in 1980:II, 1985:IV and

1995:II. These change-points can be attributed, in turn, to changes in monetary policy,

the onset of what is termed the great moderation, and the start of the technology driven

period of economic growth. Thus, the most recent break occurs in 1995, not 1985, as is

commonly believed. That the underlying distribution of the term-structure is different in

the regimes isolated by these change-points can be seen in Figure 1 where we display the

5%, 50% and 95% quantiles of the yield curve data categorized by regime. As we discus

below, the model estimation reveals that the parameters across regimes are substantially

different, which provides support to our approach of letting all the parameters vary

across regimes. We find, for instance, that the mean-reversion parameters in the factor

dynamics and the factor loadings are regime-specific. We conclude our empirical analysis

by predicting the yield curve out-of-sample and find that the predictive performance of
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our best model is substantially better than that of the other models we consider.
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(a) 1972:I-1980:I (b) 1980:II-1985:III (c) 1985:IV-1995:I (d) 1995:II-2006:IV

Figure 1: Term structure of interest rates. Data summary of the term-structure -
data obtained from http://www.federalreserve.gov/econresdata/researchdata.htm. The graphs
display the 5%, 50% and 95% quantiles of the yield curve for bonds of maturity 1, 2, 3, 4, 5,
6, 7, 8, 10, 12, 16, 20, 24, 28, 36 and 40 quarters.

The rest of the paper is organized as follows. In Section 2 we present our change

point term-structure model and derive the resulting bond prices. We outline the prior-

posterior analysis of our model in Section 3, deferring details of the MCMC simulation

procedure to the appendix of the paper. Section 4 deals with the empirical analysis of

the real data and Section 5 has our conclusions.

2 Model Specification

In this section we develop our model of bond pricing under regime changes. Essentially,

we will explain the dynamics of bond prices in terms of the evolution of a discrete time,

discrete-state variable {st} that takes one of the values {1, 2, ..,m+ 1} such that st = j

indicates that the time t observation has been drawn from the jth regime, and in terms

of the evolution of three continuous factors ft consisting of one latent variable ut and two

observed macroeconomic variables mt. Let Pt(st, τ) denote the price of the bond at time

t in regime st that matures in period (t+τ). Then, under risk-neutral (or arbitrage-free)

pricing, we have that

Pt(st, τ) = Et [κt,st,t+1Pt+1(st+1, τ − 1)] (2.1)
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where Et is the expectation over (ft+1, st+1), conditioned on (ft, st), under the physical

measure, and κt,st,t+1 is the stochastic discount factor (SDF) that converts a time (t+ 1)

payoff into a payoff at time t in regime st. The corresponding state-dependent yields for

each time t and maturity τ are thence available as

Rt,τ,st = − logPt(st, τ)

τ

Our goal now is to characterize the stochastic evolution of st and the factors ft and

describe our model of the SDF κt,st,t+1 in terms of the short-rate process and the market

price of factor risks. Given these ingredients, we then derive the prices of our default-free

zero coupon bonds that satisfy the preceding risk-neutral pricing condition.

2.1 Change Point Process

We assume that economic agents are infinitely lived and face a possible infinity of change-

points or, equivalently, regime changes. As is typical in finance and economic theorizing,

we assume that these agents know the parameters in the various regimes. The regime

in period t is denoted by st ∈ {1, 2, ...} with no terminal regime. We assume that these

agents know the current and past values of the state variable. The central uncertainty

from the perspective of these agents is that the state of the next period is random -

either the current regime continues or the next possible regime emerges, following the

process of change-points in Chib (1998). When st = j, the tth observation is assumed

to be drawn from regime j. We refer to the times {t1, t2, ...} at which st jumps from

one value to the next as the change-points. We will also suppose that the parameters in

the regimes induced by these change-points are different.

As mentioned in Section 1, we describe the stochastic evolution of st in terms of a

change point instead of a Markov switching process. Specifically, we suppose that from

one time period to the next st can either stay at the current value j or jump to the next

higher value (j + 1). In this sense {st} can be viewed as a unidirectional process. Thus,

in this formulation, return visits to a previously occupied state are not possible. Then, it

follows that the jth change point occurs at time (say) tj when stj−1 = j and stj = j + 1.

We further assume that st follows a Markov process with transition probabilities given

by pjk = Pr[st+1 = k|st = j] and pjk = 1− pjj, k = j + 1.
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This formulation of the change point model in terms of a restricted unidirectional

Markov process facilitates bond pricing (as we show below). It also makes obvious

how the change point assumption differs from the Markov-switching regime process in

Dai et al. (2007), Bansal and Zhou (2002) and Ang et al. (2008) where the transition

probability matrix is unrestricted and previously occupied states can be revisited. As

we have argued above, there are strong reasons for looking at the term structure from

the change point perspective.

2.2 Factor Process

Next, we suppose that the distribution of ft+1, conditioned on (ft, st, st+1), is determined

by a Gaussian regime-specific mean-reverting first-order autoregression given by

ft+1 = µst+1
+ Gst+1(ft − µst) + ηt+1 (2.2)

where on letting N3(., .) denote the 3-dimensional normal distribution, ηt+1|st+1 ∼
N3(0,Ωst+1), and for st and st+1 ranging from j = 1 to m + 1, µj is a 3 × 1 vector

and Gj is a 3× 3 matrix. In the sequel, we will express ηt+1 in terms of a vector of i.i.d.

standard normal variables ωt+1 as

ηt+1 = Lst+1ωt+1 (2.3)

where Lst+1 is the lower-triangular Cholesky decomposition of Ωst+1 .

Thus, the factor evolution is a function of the current and previous states (in contrast,

the dynamics in Dai et al. (2007) depend only on st whereas those in Bansal and Zhou

(2002) and Ang et al. (2008) depend only on st+1). This means that the expectation

of ft+1 conditioned on (ft, st = j, st+1 = k) is a function of both µj and µk. The

appearance of µj in this expression is natural because one would like the autoregression

at time (t+ 1) to depend on the deviation of ft from the regime in the previous period.

Of course, the parameter µj can be interpreted as the expectation of ft+1 when regime

j is persistent. The matrices {Gj} can also be interpreted in the same way as the

mean-reversion parameters in regime j.
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2.3 Stochastic Discount Factor

We complete our modeling by assuming that the SDF κt,st,t+1 that converts a time (t+1)

payoff into a payoff at time t in regime st is given by

κt,st,t+1 = exp

(
−rt,st −

1

2
γ ′t,stγt,st − γ ′t,stωt+1

)
(2.4)

where rt,st is the short-rate in regime st, γt,st is the vector of time-varying and regime-

sensitive market prices of factor risks and ωt+1 is the i.i.d. vector of regime independent

factor shocks in (2.3). The SDF is independent of st+1 given st as in the model of Dai

et al. (2007).

We suppose that the short rate is affine in the factors and of the form

rt,st = δ1,st + δ′2,st(ft − µst) (2.5)

where the intercept δ1,st varies by regime to allow for shifts in the level of the term

structure. The multiplier δ2,st : 3× 1 is also regime-dependent in order to capture shifts

in the effects of the macroeconomic factors on the term structure. This is similar to

the assumption in Bansal and Zhou (2002) but a departure from both Ang et al. (2008)

and Dai et al. (2007) where the coefficient on the factors is constant across regimes.

A consequence of our assumption is that the bond prices that satisfy the risk-neutral

pricing condition can only be obtained approximately. The same difficulty arises in the

work of Bansal and Zhou (2002).

We also assume that the dynamics of γt,st are governed by

γt,st = γ̃st + Φst(ft − µst) (2.6)

where γ̃st : 3 × 1 is the regime-dependent expectation of γt,st and Φst : 3 × 3 is a

matrix of regime-specific parameters. We refer to the collection (γ̃st , Φst) as the factor-

risk parameters. Note that in this specification γt,st is the same across maturities but

different across regimes. A point to note is that negative market prices of risk have the

effect of generating a positive term premium. This is important to keep in mind when

we construct the prior distribution on the risk parameters.

It is easily checked that E [κt,st,t+1|ft, st = j] is equal to the price of a zero coupon

bond with τ = 1:

E [κt,st,t+1|ft, st = j] =

j+1∑
st+1=j

pjst+1E [κt,st,t+1|ft, st = j, st+1] (2.7)
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= exp (−rt,j) , j ∈ {1, 2, ..,m}

In other words, the SDF satisfies the intertemporal no-arbitrage condition (Dai et al.

(2007)).

We note that regime-shift risk is equal to zero in our version of the SDF. We make

this assumption because it is difficult to identify this risk from our change-point model

where each regime-shift occurs once. In the models of Ang et al. (2008) and Bansal and

Zhou (2002) regime risk cannot also be isolated since it is confounded with the market

price of factor risk.

2.4 Bond Prices

Under these assumptions, we now solve for bond prices that satisfy the risk-nuetral

pricing condition

Pt(st, τ) = Et [κt,st,t+1Pt+1(st+1, τ − 1)] (2.8)

Following Duffie and Kan (1996), we assume that Pt(st, τ) is a regime-dependent expo-

nential affine function of the factors taking the form

Pt(st, τ) = exp(−τRt,τ,st) (2.9)

where Rt,τ,st is the continuously compounded yield given by

Rt,τ,st =
1

τ
ast(τ) +

1

τ
bst(τ)′(ft − µst) (2.10)

and ast(τ) is a scalar function and bst(τ) is a 3× 1 vector of functions, both depending

on st and τ .

We find the expressions for the latter functions by the method of undetermined

coefficients. By the law of the iterated expectation, the risk-neutral pricing formula in

(2.8) can be expressed as

1 = Et

{
Et,st+1

[
κt,st,t+1

Pt+1(st+1, τ − 1)

Pt(st, τ)

]}
(2.11)

where the inside expectation Et,st+1 is conditioned on st+1, st and ft. Subsequently, as

discussed in Appendix A, one now substitutes Pt(st, τ) and Pt+1(st+1, τ − 1) from (2.9)

and (2.10) into this expression, and integrate out st+1 after a log-linearization. We
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match common coefficients and solve for the unknown functions. When j ∈ {1, ..,m}
and k = j + 1, this procedure produces the following recursive system for the unknown

functions

aj(τ) =
(
pjj pjk

)( δ1,j − γ̃jL′jbj(τ − 1)− bj(τ − 1)′LjL
′
jbj(τ − 1)/2 + aj(τ − 1)

δ1,j − γ̃jL′kbk(τ − 1)− bk(τ − 1)′LkL
′
kbk(τ − 1)/2 + ak(τ − 1)

)
bj(τ) =

(
pjj pjk

)( δ2,j + (Gj − LjΦj)
′ bj(τ − 1)

δ2,j + (Gk − LkΦj)
′ bk(τ − 1)

)
(2.12)

where τ runs over the positive integers. These recursions are initialized by setting

ast(0) = 0 and bst(0) = 03×1 for all st. It is readily seen that the resulting intercept and

factor loadings are determined by the weighted average of the two potential realizations

in the next period where the weights are given by the transition probabilities pjj and

(1 − pjj), respectively. Thus, the bond prices in regime st = j (j ≤ m) incorporate

the expectation that the economy in the next period will continue to stay in regime j,

or that it will switch to the next possible regime k = j + 1, each weighted with the

probabilities pjj and 1− pjj, respectively.

Note that when we consider inference with a given sample of data of size n it is

necessary to assume (from the perspective of the econometrician) that the number of

regimes (which we denote by m + 1) is finite and less than n. In that case, we suppose

that pm+1,m+1 = 1 and set pjk = 0 in the above recursions once j = m + 1. The

assumption of an absorbing final state is needed because in any estimation setting with

a finite observation window one must have an upper limit on the number of change-

points (equivalently, the number of possible regimes). The econometrician or statistician

does not need to make any assumption about what happens outside the sample when

the estimation and dating of the change-points is done. Inference about the change-

point then follows in an efficient way from the approach of Chib (1998). An upper

limit on the number of change-points does not of course imply that agents (who are

infinitely lived) have not considered the possibility of breaks beyond the observation

window. The observation window imposes restrictions on the econometricians but not

on the underlying economic agents. Another point to note is that in estimation of the

m change-point model, the (m+ 1)st regime is the upper limit on the number of regimes

and that fewer regimes may be supported by the data.

Figure 2 summarizes the economy that we have just described in terms of a directed
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ft+1ftft−1
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Rt+1RtRt−1

Figure 2: Directed graph of model linkages.

acyclic graph. In the beginning of period t, a regime realization occurs. This realization

is governed with the regime in the previous period as indicated by the direction of

the arrow connecting st−1 to st. Then given the regime at time t, the corresponding

model parameters Θt are taken from the full collection of model parameters. These

determine the functions ast(τ) and bst(τ) according to the recursions in (2.12) and

(??). Conditioned on the parameters and ft−1, ft is generated by the regime-specific

autoregressive process in (2.2). Finally, from (2.10), ast(τ), bst(τ) and ft determine the

yields of all maturities. Notice that in Dai et al. (2007) the dashed line in figure 2 is

absent since ft is assumed to be drawn independently of st.

2.5 Regime-specific Term Premium

As is well known, under risk-neutral pricing, after adjusting for risk, agents are indif-

ferent between holding a τ -period bond and a risk-free bond for one period. The risk

adjustment is the term premium. In the regime-change model, this term-premium is

regime specific. For each time t and in the current regime st = j, the term-premium for

a τ -period bond can be calculated as

Term-premiumτ,t,st = (τ − 1)Cov (lnκt,st,t+1, Rt+1,st+1,τ−1|ft, st = j) (2.13)

= −pjjbj(τ − 1)′Ljγt,j − pjkbk(τ − 1)′Lkγt,j
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where k = j + 1. One can see that if Lj, which quantifies the size of the factor shocks

in the current regime st = j, is large, or if γt,j, the market prices of factor risk, is highly

negative, then the term premium is expected to be large. Even if Lj in the current

regime is small, one can see from the second term in the above expression that the

term premium can be big if the probability of jumping to the next possible regime is

high and Lk in that regime is large. In our empirical implementation we calculate this

regime-specific term premium for each time period in the sample.

3 Estimation and Inference

In this section we consider the empirical implementation of our yield curve model. In

order to get a detailed perspective of the yield curve and its dynamics over time we

operationalize our pricing model on a data set of 16 yields of US T-bills measured

quarterly between 1972: I and 2007: IV on the maturities given by

{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 20, 24, 28, 36, 40}

quarters. For these data, we consider five versions of our general model, with 0, 1, 2, 3

and 4 change points and denoted by {Mm}4
m=0. The largest model that we fit, namely

M4, has a total of 209 free parameters. We fit these various models by tuned Bayesian

methods as we discuss below and then compare the competing models through marginal

likelihoods, Bayes factors and the predictive performance out of sample.

To begin, let the 16 yields under study be denoted by

(Rt1, Rt2, .., Rt16)′ , t = 1, 2, ..., n, (3.1)

where Rt,τ denotes the yield of τ -period maturity bond at time t, Rti = Rt,τi and τi is

the ith maturity (in quarters). Let the two macro factors be denoted by

mt = (mt1, mt2) , t = 1, 2, ..., n

where mt1 is the inflation rate and mt2 is the real GDP growth rate. We also let

Sn = {st}nt=1

denote the sequence of (unobserved) regime indicators.
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We now specify the set of model parameters to be estimated. First, the unknown

elements of Gst and Φst are denoted by

gst = {Gij,st}i,j=1,2,3 and φst = {Φjj,st}j=1,2,3

where Gij,st and Φij,st denote the (i, j)th element of Gst and Φst , respectively. The

unknown elements of Ωst are defined as

λst = {l21,st , l
∗
22,st , l31,st , l32,st , l

∗
33,st}

where these are obtained from the decomposition Ωst = LstL
′
st with Lst expressed as 1/400 0 0

l21,st exp(l∗22,st) 0
l31,st l32,st exp(l∗33,st)

 (3.2)

The elements of λst are unrestricted. Next, the parameters of the short-rate equation

are expressed as δst = (δ1,st × 400, δ′2,st)
′ and those in the transition matrix P by

p = {pjj, j = 1, 2, ..,m}. Finally, the unknown pricing error variances σ2
i,st are collected

in reparameterized form as

σ∗2 = {σ∗2i,st = diσ
2
i,st , i = 1, .., 7, 8, .., 16 and st = 1, 2, ..,m + 1}

where d1 = 30, d2 = d16 = 40, d3 = d12 = 200, d4 = 350, d5 = d6 = d11 = 500, d7 = 3000,

d9 = 1500, d10 = 1000, d13 = d14 = d15 = 200. These positive multipliers are introduced

to increase the magnitude of the variances.

Under these notations, for any given model with m change-points, the parameters of

interest can be denoted as ψ = (θ,σ∗2, u0) where

θ = {gst , µm,st , δst , γ̃st , φst , λst , p}m+1
st=1

and u0 is the latent factor at time 0. Note that to economize on notation, we do not

index these parameters by a model subscript.

3.1 Joint distribution of the yields and macro factors

We now derive the joint distribution of the yields and the macro factors conditioned on

Sn and ψ. This joint distribution can be obtained without marginalization over {ut}nt=1
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if we assume (following, for example, Chen and Scott (2003) and Dai et al. (2007)) that

one of the yields is priced exactly without error. This is the so-called basis yield. Under

this assumption the latent factor can be expressed in terms of the observed variables

and eliminated from the model, as we now describe.

Assume that Rt8 (the eighth yield in the list above) is the basis yield which is priced

exactly by the model. Let Rt denote the remaining 15 yields (which are measured with

pricing error). Define āi,st = ast(τi)/τi and b̄i,st = bst(τi)/τi where ast(τi) and bst(τi)

are obtained from the recursive equations in (2.12). Also let ā8,st (āst) and b̄8,st (b̄st) be

the corresponding intercept and factor loadings for Rt8 (Rt), respectively. Then, since

the basis yield is priced without error, if we let

b̄8,st =

(
b̄8,u,st

b̄8,m,st

)
(3.3)

we can see from (2.10) that Rt8 is given by

Rt8 = ā8,st + b̄8,u,stut + b̄′8,m,st(mt − µm,st) (3.4)

On rewriting this expression, it follows that ut is

ut =
(
b̄8,u,st

)−1 (
Rt8 − ā8,st − b̄′8,m,st(mt − µm,st)

)
(3.5)

Conditioned on mt and st, this represents a one-to-one map between Rt8 and ut. If we

let

zt =

(
Rt8

mt

)
,

αst =

( (
b̄8,u,st

)−1
b̄′8,m,stµm,st −

(
b̄8,u,st

)−1
ā8,st

02×1

)
, and (3.6)

Ast =

( (
b̄8,u,st

)−1 −
(
b̄8,u,st

)−1
b̄′8,m,st

02×1 I2

)
then one can check that ft can be expressed as

ft = αst + Astzt (3.7)

It now follows from equation (2.10) that conditioned on zt (equivalently ft), st and the

model parameters ψ, the non-basis yields Rt in our model are generated according to

the process

Rt = āst + b̄st(ft − µst) + εt, εt ∼ iidN (0,Σst) (3.8)
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where

Σst = diag(σ2
1,st , σ

2
2,st , .., σ

2
7,st , σ

2
9,st , .., σ

2
16,st).

In other words,

p(Rt|zt, st,ψ) = p(Rt|ft, st,ψ) (3.9)

= N15(Rt|āst + b̄st(ft − µst),Σst)

In addition, the distribution of zt conditioned on zt−1, st and st−1 is obtained straight-

forwardly from the process generating ft given in equation (2.2) and the linear map

between ft and zt given in equation (3.7). In particular,

p(zt|zt−1, st, st−1,ψ) = p(ft|ft−1, st, st−1,ψ) det (Ast) (3.10)

= N3(µst + Gst(ft−1 − µst−1
),Ωst)|

(
b̄8,u,st

)−1 |

If we let

yt = (Rt, zt) and y = {yt}nt=1

it follows that the required joint density of y conditioned on (Sn,ψ) is given by

p(y|Sn,ψ) =
n∏
t=1

N15(Rt|āst + b̄st(ft − µst),Σst) (3.11)

×N3(µst + Gst(ft−1 − µst−1
),Ωst)|

(
b̄8,u,st

)−1 | (3.12)

3.2 Prior Distribution

Because of the size of the parameter space, and the complex cross-maturity restrictions

on the parameters, the formulation of the prior distribution can be a challenge. Chib

and Ergashev (2009) have tackled this problem and shown that a reasonable approach

for constructing the prior is to think in terms of the term structure that is implied by the

prior distribution. The implied yield curve can be determined by simulation: simulating

parameters from the prior and simulating yields from the model given the parameters.

The prior can be adjusted until the implied term structure is viewed as satisfactory on

a priori considerations. Chib and Ergashev (2009) use this strategy to arrive at a prior

distribution that incorporates the belief of a positive term premium and stationary but

persistent factors. We adapt their approach for our model with change-points, ensuring
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that the yield curve implied by our prior distribution is upward sloping. We assume, in

addition, that the prior distribution of the regime specific parameters is identical across

regimes. We arrive at our prior distribution in this way for each of the five models we

consider - with 0, 1, 2, 3 and 4 change-points.

We begin by recalling the identifying restrictions on the parameters. First, we set

µu,st = 0 which implies that the mean of the short rate conditional on st is δ1,st . Next,

the first element of δ2,st , namely δ21,st , is assumed to be non-negative. Finally, to enforce

stationarity of the factor process, we restrict the eigenvalues of Gst to lie inside the unit

circle. Thus, under the physical measure, the factors are mean reverting in each regime.

These constraints are summarized as

R = {Gj, δ21,j|δ21,j ≥ 0, 0 ≤ pjj ≤ 1, |eig(Gj)| < 1 for j = 1, 2, ..,m + 1} (3.13)

All the constraints in R are enforced through the prior distribution.

The free parameters in θ and σ∗2 are assumed to be mutually independent. Our prior

distribution on θ is normal N (θ̄, V̄θ) truncated by the restrictions in R. In particular,

the N (θ̄, V̄θ) distribution has the form

m∏
st=1

N (pstst |p̄stst , V̄pstst
)

×
m+1∏
st=1

{
N (gst |ḡst , V̄gst

)N (µm,st |µ̄m,st , V̄µm,st
)N (δst |δ̄st , V̄δst

)
}

×
m+1∏
st=1

{
N (γ̃st |γ̄st , V̄γ̃st

)N (φst |φ̄st , V̄φst
)N (λst |λ̄st , V̄λst

)
}

which we explain as follows.

First, the prior on pjj (j = 1, ..,m) is truncated normal, truncated to the interval

(0, 1), with a standard deviation of 0.28. The mean of these distributions is model-

specific. For example, in theM1 model, the mode is 0.986, so that the a priori expected

duration of stay in regime 1 is about 70 quarters in relation to a sample period of 140

quarters. In theM2,M3 andM4 models, the prior mean of the transition probabilities

is specified to imply 50, 40 and 33 quarters of expected duration in each regime. It is

important to note that we work with a truncated normal prior distribution on these

transition probabilities instead of the more conventional beta distribution because āst
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and b̄st in the equation (3.8) are a function of pjj, which eliminates any benefit from the

use of a beta functional form. Second, we construct a 9× 1 vector ḡst from the matrix

Ḡst = diag(0.95, 0.8, 0.4)

and let V̄gst
be a 9 × 9 diagonal matrix with each diagonal element equal to 0.1. This

choice of prior incorporates the prior belief that the latent factor is more persistent than

the macro factors. Third, we assume that µ̄m,st × 400 = (4, 3)′ and V̄µm,st
× 4002 =

diag(25, 1). Thus, the prior mean of inflation is assumed to be 4% and that of real GDP

growth rate to be 3%. The standard deviations of 5% and 1% produces a distribution

that covers the most likely values of these rates. Fourth, based on the Taylor rule

intuition that the response of the short rate to an increase of inflation and output

growth tend to be positive, we let

δ̄st = (6, 0.8, 0.4, 0.4)′

and the let the prior standard deviations be (5, 0.4, 0.4, 0.4). Fifth, we assume that

γ̄st = (−0.5,−0.5,−0.5)′ and V̄γ̃st
= diag(0.1, 0.1, 0.1)

where the prior mean of γ̃st is negative in order to suggest an upward sloping average

yield curve in each regime. Sixth, we assume that

φ̄st = (1, 1, 1)′ and V̄φst
= diag(1, 1, 1)

where the positive prior is justified from the intuition that positive shocks to macroeco-

nomic fundamentals should tend to decrease the overall risk in the economy. Seventh,

we let

λ̄st = (0, 0, 0, 0, 1)′ and V̄λst
= diag(4, 4, 4, 4, 4)

so that the prior of Lst is relatively weak. This leads to considerable prior variation in

the implied yield curve.

Next, we place the prior on the 15 × (m + 1) free parameters of σ∗2. Each σ∗2i,st

is assumed to have an inverse-gamma prior distribution IG(v̄, d̄) with v̄ = 4.08 and

d̄ = 20.80 which implies a mean of 10 and standard deviation of 14.
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Finally, we assume that the latent factor u0 at time 0 follows the steady-state distri-

bution in regime 1

u0 ∼ N (0, Vu) (3.14)

where Vu =
(
1−G2

11,1

)−1
.

To show what these assumptions imply for the outcomes, we simulate the parame-

ters 50,000 times from the prior, and for each drawing of the parameters, we simulate

the factors and yields for each maturity and each of 50 quarters. The median, 2.5%

and 97.5% quantile surfaces of the resulting term structure in annualized percents are

reproduced in Figure 3. Because our prior distribution is symmetric among the regimes,

the prior distribution of the yield curve is not regime-specific. It can be seen that the

simulated prior term structure is gently upward sloping on average. Also the assumed

prior allows for considerable a priori variation in the term structure.
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Figure 3: The implied prior term structure dynamics. These graphs are based on
50,000 simulated draws of the parameters from the prior distribution. In the graphs on the left,
the “Low”, “Median”, and “High” surfaces correspond to the 2.5%, 50%, and 97.5% quantile
surfaces of the term structure dynamics in annualized percents implied by the prior distribution.
In the second graph, the surfaces of the first graph are averaged over the entire period of 50
quarters.

3.3 Posterior Distribution and MCMC Sampling

Under our assumptions it is now possible to calculate the posterior distribution of the

parameters by MCMC simulation methods. Our MCMC approach is grounded in the

recent developments that appear in Chib and Ergashev (2009) and Chib and Rama-

murthy (2010). The latter paper introduces an implementation of the MCMC method
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(called the tailored randomized block M-H algorithm) that we adopt here to fit our

model. The idea behind this implementation is to update parameters in blocks, where

both the number of blocks and the members of the blocks are randomly chosen within

each MCMC cycle. This strategy is especially valuable in high-dimensional problems

and in problems where it is difficult to form the blocks on a priori considerations.

The posterior distribution that we would like to explore is given by

π(Sn,ψ|y) ∝ p(y|Sn,ψ)p(Sn|ψ)π(ψ) (3.15)

where p(y|Sn,ψ) is the distribution of the data given the regime indicators and the

parameters, p(Sn|ψ) is the density of the regime-indicators given the parameters and the

initial latent factor, and π(ψ) is the joint prior density of u0 and the parameters. Note

that by conditioning on Sn we avoid the calculation of the likelihood function p(y|ψ)

whose computation is more involved. We discuss the computation of the likelihood

function in the next section in connection with the calculation of the marginal likelihood.

The idea behind the MCMC approach is to sample this posterior distribution iter-

atively, such that the sampled draws form a Markov chain with invariant distribution

given by the target density. Practically, the sampled draws after a suitably specified

burn-in are taken as samples from the posterior density. We construct our MCMC sim-

ulation procedure by sampling various blocks of parameters and latent variables in turn

within each MCMC iteration. The distributions of these various blocks of parameters

are each proportional to the joint posterior π(Sn,ψ|y). In particular, after initializing

the various unknowns, we go through 4 iterative steps in each MCMC cycle. Briefly, in

Step 2 we sample θ from the posterior distribution that is proportional to

p(y|Sn,ψ)π(u0|θ)π(θ) (3.16)

The sampling of θ from the latter density is done by the TaRB-MH method of Chib

and Ramamurthy (2010). In Step 3 we sample u0 from the posterior distribution that

is proportional to

p(y|Sn,ψ)p(Sn|ψ)π(u0|θ) (3.17)

In Step 4, we sample Sn conditioned on ψ in one block by the algorithm of Chib (1996).

We finish one cycle of the algorithm by sampling σ∗2 conditioned on (Sn,θ) from the
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posterior distribution that is proportional to

p(y|Sn,ψ)π(σ∗2) (3.18)

Our algorithm can be summarized as follows.

Algorithm: MCMC sampling

Step 1 Initialize (Sn,ψ) and fix n0 (the burn-in) and n1 (the MCMC sample size)

Step 2 Sample θ conditioned on (y,Sn, u0,σ
∗2)

Step 3 Sample u0 conditioned on (y,θ,Sn)

Step 4 Sample Sn conditioned on (y,θ, u0,σ
∗2)

Step 5 Sample σ∗2 conditioned on (y,θ,Sn)

Step 6 Repeat Steps 2-6, discard the draws from the first n0 iterations and save the

subsequent n1 draws.

Full details of each of these steps are given in appendix B.

3.4 Marginal Likelihood Computation

One of our goals is to evaluate the extent to which the regime-change model is an im-

provement over the model without regime-changes. We are also interested in determining

how many regimes best describe the sample data. Specifically, we are interested in the

comparison of 5 models which in the introduction were named as M0, M1, M2, M3

and M4. The most general model is M4 that has 4 possible change points, 1 latent

factor and 2 macro factors. We do the comparison in terms of marginal likelihoods and

their ratios which are called Bayes factors. The marginal likelihood of any given model

is obtained as

m(y) =

∫
p(y|Sn,ψ)p(Sn|ψ)π(ψ)d(Sn,ψ) (3.19)

This integration is obviously infeasible by direct means. It is possible, however, by the

method of Chib (1995) which starts with the recognition that the marginal likelihood

can be expressed in equivalent form as

m(y) =
p(y|ψ∗)π(ψ∗)

π(ψ∗|y)
(3.20)
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where ψ∗ = (θ∗,σ∗∗2, u∗0) is some specified (say high-density) point of ψ = (θ,σ∗2, u0).

Provided we have an estimate of posterior ordinate π(ψ∗|y) the marginal likelihood can

be computed on the log scale as

ln m̂(y) = ln p(y|ψ∗) + ln π(ψ∗)− ln π̂(ψ∗|y) (3.21)

Notice that the first term in this expression is the likelihood. It has to be evaluated

only at a single point which is highly convenient. The calculation of the second term is

straightforward. Finally, the third term is obtained from a marginal-conditional decom-

position following Chib (1995). The specific implementation in this context requires the

technique of Chib and Jeliazkov (2001) as modified by Chib and Ramamurthy (2010)

for the case of randomized blocks.

As for the calculation of the likelihood, the joint density of the data y = (y1, ...,yn)

is, by definition,

p(y|ψ) =
n−1∑
t=0

ln p (yt+1|It,ψ) (3.22)

where

p (yt+1|It,ψ) =
m+1∑
st+1=1

m+1∑
st=1

p (yt+1|It, st, st+1,ψ) Pr[st, st+1|It,ψ]

is the one-step ahead predictive density of yt+1, and It consists of the history of the

outcomes Rt and zt up to time t. On the right hand side, the first term is the density of

yt+1 conditioned on (It, st, st+1,ψ) which is given in equation (3.11), whereas the second

term can be calculated from the law of total probability as

Pr[st = j, st+1 = k|It,ψ] = pjk Pr[st = j|It,ψ] (3.23)

where Pr[st = j|It,ψ] is obtained recursively starting with Pr[s1 = 1|I0,ψ] = 1 by the

following steps. Once yt+1 is observed at the end of time t + 1, the probability of the

regime Pr[st+1 = k|It,ψ] from the previous step is updated to Pr[st+1 = k|It+1,ψ] as

Pr[st+1 = k|It+1,ψ] =
m+1∑
j=1

Pr[st = j, st+1 = k|It+1,ψ] (3.24)

where

Pr[st = j, st+1 = k|It+1,ψ] =
p [yt+1|It, st = j, st+1 = k,ψ] Pr[st = j, st+1 = k|It,ψ]

p [yt+1|It,ψ]
(3.25)

This completes the calculation of the likelihood function.
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4 Results

We apply our modeling approach to analyze US data on quarterly yields of sixteen US

T-bills between 1972:I and 2007:IV. These data are taken from Gurkaynak, Sack, and

Wright (2007). We consider zero-coupon bonds of maturities 1, 2, 3, 4, 5, 6, 7, 8, 10, 12,

16, 20, 24, 28, 36, and 40 quarters. We let the basis yield be the 8 quarter (or 2 year)

bond which is the bond with the smallest pricing variance. Our macroeconomic factors

are the quarterly GDP inflation deflator and the real GDP growth rate. These data are

from the Federal reserve bank of St. Louis.

We work with 16 yields because our tuned Bayesian estimation approach is capable

of handling a large set of yields. The involvement of these many yields also tends to

improve the out-of-sample predictive accuracy of the yield curve forecasts. To show this,

we also fit models with 4, 8, and 12 yields to data up to 2006. The last 4 quarters of 2007

are held aside for the validation of the predictions of the yields and the macro factors.

These predictions are generated as described in Section 4.4. We measure the predictive

accuracy of the forecasts in terms of the posterior predictive criterion (PPC) of Gelfand

and Ghosh (1998). For a given model with λ number of the maturities, PPC is defined

as

PPC = D + W (4.1)

where

D =
1

λ + 2

λ+2∑
i=1

T∑
t=1

Var (ỹi,t|y,M) , (4.2)

W =
1

λ + 2

λ+2∑
i=1

T∑
t=1

[yi,t − E (ỹi,t|y,M)]2 (4.3)

{ỹt}t=1,2,..,T are the predictions of the yields and macro factors {yt}t=1,2,..,T under model

M, and ỹi,t and yi,t are the ith components of ỹt and yt, respectively. The term D is

expected to be large in models that are restrictive or have redundant parameters. The

term W measures the predictive goodness-of-fit. As can be seen from Table 1, the model

with 16 maturities outperforms the models with fewer maturities. The reason for this

behavior is simple. The addition of a new yield introduces only one parameter (namely

the pricing error variance) but because of the many cross-equation restrictions on the
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The number No change point model
of maturities(λ) D W PPC

4 6.293 4.821 11.114
8 5.827 4.758 10.585
12 4.621 4.191 8.812
16 4.011 3.520 7.531

Table 1: Posterior predictive criterion. PPC is computed by 4.1 to 4.3. We use the data
from the most recent break time point, 1995:II to 2006:IV due to the regime shift, and out of
sample period is 2007:I-2007:IV. Four yields are of 2, 8, 20 and 40 quarters maturity bonds
(used in Dai et al. (2007)). Eight yields are of 1, 2, 3, 4, 8, 12, 16 and 20 quarters maturity
bonds( used in Bansal and Zhou (2002)). Twelve yields are of 1, 2, 3, 4, 5, 6, 8, 12, 20, 28,
32 and 40 quarters maturity bonds. Sixteen yields are of 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 20,
24, 28, 32 and 40 quarters maturity bonds.

parameters, the additional outcome helps to improve inferences about the common model

parameters, which translates into improved predictive inferences.

4.1 Sampler Diagnostics

We base our results on 50,000 iterations of the MCMC algorithm beyond a burn-in of

5,000 iterations. We measure the efficiency of the MCMC sampling in terms of the

metrics that are common in the Bayesian literature, in particular, the acceptance rates

in the Metropolis-Hastings steps and the inefficiency factors (Chib (2001)) which, for

any sampled sequence of draws, are defined as

1 + 2
K∑
k=1

ρ(k), (4.4)

where ρ(k) is the k-order autocorrelation computed from the sampled variates and K is

a large number which we choose conservatively to be 500. For our biggest model, the

average acceptance rate and the average inefficiency factor in the M-H step are 72.9%

and 174.1, respectively. These values indicate that our sampler mixes well. It is also

important to mention that our sampler converges quickly to the same region of the

parameter space regardless of the starting values.
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4.2 The Number and Timing of Change Points

Table 2 contains the marginal likelihood estimates for our 5 contending models. As can

be seen, the M3 is most supported by the data. We now provide more detailed results

for this model.

Model lnL lnML n.s.e. Pr[Mm|y] change point

M0 -1488.1 -1215.5 1.39 0.00
M1 -1279.4 -955.5 1.77 0.00 1986:II
M2 -935.1 -665.4 1.92 0.00 1985:IV, 1995:II
M3 -473.4 -256.1 2.27 1.00 1980:II, 1985:IV, 1995:II
M4 -313.8 -281.4 2.62 0.00 1980:II, 1985:IV, 1995:II, 2002:III

Table 2: Log likelihood (lnL), log marginal likelihood (lnML), posterior probability
of each model (Pr[Mm|y]) under the assumption that the prior probability of each
model is 1/5, and change point estimates.

Our first set of findings relate to the timing of the change-points. Information about

the change-points is gleaned from the sampled sequence of the states. Further details

about how this is done can be obtained from Chib (1998). Of particular interest are

the posterior probabilities of the timing of the regime changes. These probabilities are

given in Figure 4. The figure reveals that the first 32 quarters (the first 8 years) belong

to the first regime, the next 23 quarters (about 6 years) to the second, the next 38

quarters (about 9.5 years) to the third, and the remaining quarters to the fourth regime.

Rudebusch and Wu (2008) also find a change point in the year of 1985. The finding of a

break point in 1995 is striking as it has not been isolated from previous regime-change

models.

We would like to emphasize that our estimates of the change points from the models

without macro factors are exactly the same as those from the change point models with

macro factors. We do not report those results in the interest of space. In addition, the

results are not sensitive to our choice of 16 maturities, as we have confirmed.

4.3 Parameter Estimates

Table 3 summarizes the posterior distribution of the parameters. One point to note is

that the posterior densities are generally different from the prior given in section 3.2,
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Figure 4: Model M3: Pr(st = j|y). The posterior probabilities for each t are based on
50,000 MCMC draws of st - these probabilities are plotted along with the 16 yields in annualized
percents (probabilities are multiplied by 20 for legibility).

which implies that the data is informative about these parameters. We focus on various

aspects of this posterior distribution in the subsequent subsections.

24



Regime 1 Regime 2 Regime 3 Regime 4

0.90 0.07 0.15 0.95 -0.01 0.03 0.92 0.15 0.31 0.93 0.04 0.23
(0.06) (0.10) (0.15) (0.03) (0.07) (0.06) (0.06) (0.21) (0.17) (0.04) (0.17) (0.29)

G -0.24 0.67 -0.07 -0.07 0.73 -0.10 0.15 0.35 0.08 0.02 0.91 0.01
(0.26) (0.23) (0.12) (0.05) (0.05) (0.03) (0.06) (0.14) (0.08) (0.02) (0.13) (0.06)
-0.06 -0.16 0.26 0.09 -0.35 0.52 -0.04 0.00 0.34 -0.03 -0.37 0.19
(0.25) (0.23) (0.17) (0.17) (0.24) (0.17) (0.09) (0.21) (0.13) (0.08) (0.26) (0.15)

µ 0.00 4.99 3.54 0.00 5.88 2.63 0.00 2.56 2.62 0.00 1.49 3.22
×400 (2.17) (0.90) (0.41) (1.00) (0.41) (0.49) (0.80) (0.53)

1.00 1.00 1.00 1.00

L 0.11 1.72 0.10 1.48 0.11 0.74 -0.47 0.82
×400 (0.40) (0.19) (0.44) (0.13) (0.34) (0.13) (0.59) (0.12)

-0.67 -0.62 4.28 0.24 0.27 4.58 -0.55 -0.18 2.00 -0.13 -0.20 2.03
(0.88) (0.39) (0.14) (0.62) (0.41) (0.17) (0.56) (0.14) (0.12) (0.89) (0.14) (0.11)

δ1 9.23 2.78 4.42 4.34
×400 (1.69) (1.60) (1.18) (1.00)

δ2 1.16 0.09 0.17 1.29 0.25 0.16 0.72 0.31 0.26 0.57 0.56 0.10
(0.13) (0.23) (0.22) (0.16) (0.23) (0.15) (0.09) (0.26) (0.21) (0.07) (0.37) (0.25)

γ -0.28 -0.40 -0.22 -0.34 -0.65 -0.21 -0.58 -0.56 -0.05 -0.34 -0.25 -0.19
(0.28) (0.30) (0.26) (0.25) (0.21) (0.26) (0.28) (0.33) (0.24) (0.25) (0.25) (0.27)

Φ 0.99 0.98 0.93 0.53 0.89 0.65 0.91 0.94 0.98 0.98 0.93 0.98
(1.08) (1.09) (1.08) (1.07) (1.08) (1.12) (1.08) (1.09) (1.09) (1.09) (1.10) (1.09)

p00 0.934
(0.028)

p11 0.986
(0.004)

p22 0.987
(0.003)

Table 3: Model M3: Parameter estimates. This table presents the posterior mean
and standard deviation based on 50,000 MCMC draws beyond a burn-in of 5,000. The 95%
credibility interval of parameters in bold face does not contain 0. Standard deviations are in
parenthesis. The yields are of 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 20, 24, 28, 36 and 40 quarters
maturity bonds. Values without standard deviations are fixed by the identification restrictions.

4.3.1 Factor Process

Figure 5 plots the average dynamics of the latent factors along with the short rate.

This figure demonstrates that the latent factor movements are very close to those of the

short rate. The estimates of the matrix G for each regime show that the mean-reversion

coefficient matrix is almost diagonal. The latent factor and inflation rate also display

different degrees of persistence across regimes. In particular, the relative magnitudes

of the diagonal elements indicates that the latent factor and the inflation factor are
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Figure 5: Model M3: Estimates of the latent factor. The short rate in percent is
demeaned and estimates of the latent factor are calculated as the average of factor drawings
given the 50,000 MCMC draws of the parameters.

less mean-reverting in regime 2 and 4, respectively. For a more formal measure of this

persistence, we calculate the eigenvalues of the coefficient matrices in each regime. These

are given by

eig(G1) =

 0.851
0.709
0.267

 , eig(G2) =

 0.978
0.814
0.401


eig(G3) =

 0.935
0.312
0.366

 , eig(G4) =

 0.913 + 0.044i
0.913− 0.044i

0.204


It can be seen that the second regime has the largest absolute eigenvalue close to 1.

Because the factor loadings for the latent factor (δ21,st) are significant whereas those for

inflation (δ22,st) are not, the latent factor is responsible for most of the persistence of

the yields.

Furthermore, the diagonal elements of L3 and L4 are even smaller than their coun-

terparts in L1 and L2. This suggest a reduction in factor volatility starting from the

middle of the 1980s, which coincides with the period that is called the great moderation

(Kim, Nelson, and Piger (2004)).
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4.3.2 Factor Loadings

The factor loadings in the short rate equation, δ2,st are all positive, which is consistent

with the conventional wisdom that central bankers tend to raise the interest rate in

response to a positive shock to the macro factors. It can also be seen that δ2,st along

with Gst and Lst are different across regimes, which makes the factor loadings regime-

dependent across the term structure as revealed in figure 6. This finding lends support

to our assumption of regime-dependent factor loadings.
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(a) Latent (b) Inflation (c) GDP growth

Figure 6: Model M3: Estimates of the factor loadings, b̄st . The factor loadings
represent the average simulated factor loadings from the retained 50,000 MCMC iterations.

4.3.3 Term Premium

Figure 7 plots the posterior distribution of the term premium of the two year maturity

bond over time. It is interesting to observe how the term premium varies across regimes.

In particular, the term premium is the lowest in the most recent regime (although the

.025 quantile of the term premium distribution in the first regime is lower than the

.025 quantile of term premium distribution in the most current regime). This can be

attributed to the lower value of factor volatilities in this regime. Moreover, we find that

these changes in the term premium are not closely related to changes in the latent and

macro-economic factors although the parameters in Φst tend to be less informed by the

data due to the high persistence of the factors. A similar finding appears in Rudebusch,
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Sack, and Swanson (2007).
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Figure 7: ModelM3: Term premium. The figure plots the 2.5%, 50% and 97.5% quantile
of the posterior term premium based on 50,000 MCMC draws beyond a burn-in of 5,000
iterations.

4.3.4 Pricing Error Volatility

In Figure 8 we plot the term structure of the pricing error standard deviations. As

in the no-change point model of Chib and Ergashev (2009), these are hump-shaped in

each regime. One can also see that these standard deviations have changed over time,

primarily for the short-bonds. These changes in the volatility also help to determine the

timing of the change-points.
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Figure 8: Model M3: Term Structure of the Pricing Error Volatility. The figures
display the 2.5%, 50% and 97.5% quantile of the posterior standard deviation of the pricing
errors.

4.4 Forecasting and Predictive Densities

A principle objective of this paper is to compare the forecasting abilities of the affine

term structure models with and without regime changes. In the Bayesian paradigm, it

is relatively straightforward to simulate the predictive density from the MCMC output.

By definition, the predictive density of the future observations, conditional on the data,

is the integral of the density of the future outcomes given the the parameters with

respect to the posterior distribution of the parameters. If we let yf denote the future

observations, the predictive density under model Mm is given by

p(yf |Mm,y) =

∫
ψ

p(yf |Mm,y,ψ)π(ψ|Mm,y)dψ (4.5)

This density can be sampled by the method of composition as follows. For each MCMC

iteration (beyond the burn-in period), conditioned on fn and the parameters in the

current terminal regime (which is not necessarily regime m + 1), we draw the factors

fn+1 based on the equation (2.2). Then given fn+1, the yields Rn+1 are drawn using

equation (3.8). These two steps are iterated forward to produce the draws fn+i and

Rn+i, i = 1, 2, .., T . Repeated over the course of the MCMC iterations, these steps

produce a collection of simulated macro factors and yields that is a sample from the

predictive density.

We summarize the sampled predictive densities in Figure 9. The top panel gives the

forecast intervals from the M0 model and the bottom panel has the forecast intervals

from the M3 model. Note that in both cases the actual yield curve in each of the four
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Figure 9: Predicted yield curve. The figures present four quarters ahead forecasts of the
yields on the T-bills. The top panel is based on the no change point model and the bottom
panel on the three change point model. In each case, the 2.5%, 50% and 97.5% quantile curves
are based on 50,000 forecasted values for the period 2007:I-2007:IV. The observed curves are
labeled “Real”.

quarters of 2007 is bracketed by the corresponding 95% credibility interval though the

intervals from the M3 model are tighter.

For a more formal forecasting performance comparison, we tabulate the PPC for

each case in Table 4. We also include in the last column of this table an interesting set

of results that make use of the regimes isolated by our M3 model. In particular, we

fit the no-change point model to the data in the last regime but ending just before our

different forecast periods (2005:I-2005:IV, 2006:I-2006:IV and 2007:I-2007:IV). As one

would expect, the forecasts from the no-change point model estimated on the sample

period of the last regime are similar to those from theM3 model. Thus, given the regimes

we have isolated, a poor-man’s approach to forecasting the term-structure would be to
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model M0 M1 M2 M3 M4 M0

sample period (1972:I-2006:IV) (1995:II-2006:IV)

D 12.548 5.401 4.156 4.720 4.599 4.011
W 5.678 4.896 4.201 3.415 2.902 3.520
PPC 18.226 10.297 8.357 8.126 7.501 7.531

(a) forecast period: 2007:I-2007:IV

model M0 M1 M2 M3 M4 M0

sample period (1972:I-2005:IV) (1995:II-2005:IV)

D 12.606 5.799 4.157 4.097 7.011 4.271
W 2.137 5.658 4.432 1.817 3.036 2.390
PPC 14.743 11.457 8.589 5.914 10.047 6.661

(b) forecast period: 2006:I-2006:IV

model M0 M1 M2 M3 M4 M0

sample period (1972:I-2004:IV) (1995:II-2004:IV)

D 13.474 5.187 3.572 4.609 7.190 3.919
W 2.367 5.787 4.442 1.977 2.657 2.359
PPC 15.841 10.974 8.014 6.587 9.847 6.278

(c) forecast period: 2005:I-2005:IV

Table 4: Posterior predictive criterion. PPC is computed by (4.1) to (4.3).

fit the no-change arbitrage-free yield model to the last regime. Of course, the predictions

from theM3 model produce a smaller value of the PPC than those from the no-change

point model that is fit to the whole sample. This, combined with the in-sample fit of the

models as measured by the marginal likelihoods, suggests that the change point model

outperforms the no-change point version. These findings not only reaffirm the finding of

structural changes, but also suggest that there are gains to incorporating regime changes

when forecasting the term structure of interest rates.

5 Concluding Remarks

In this paper we have developed a new model of the term structure of zero-coupon

bonds with regime changes. This paper complements the recent developments in this

area because it is organized around a different model of regime changes than the Markov

switching model that has been used to date. It also complements the recent work on

affine models with macro factors which has been done in settings without regime changes.
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The models we fit involve more bonds than has ever been attempted in the literature.

This in turn leads to a better fit to the data. Furthermore, we incorporate some recent

developments in Bayesian econometrics that make it possible to estimate the large scale

models in this paper.

Our empirical analysis suggests that the term structure has gone through three

change points, and that the term structure and the risk premium are materially different

across regimes. Our analysis also shows that there are gains in predictive accuracy by

incorporating regime changes when forecasting the term structure of interest rates.

A Bond Prices under Regime Changes

By the assumption of the affine model, we have

Pt(st, τ) = exp
(
−ast(τ)− bst(τ)′(ft − µst)

)
(A.1)

and Pt+1(st+1, τ − 1) = exp
(
−ast+1(τ − 1)− bst+1(τ − 1)′(ft+1 − µst+1

)
)
.

Let hτ,t+1 denote

Pt+1(st+1, τ − 1)

Pt(st, τ)
= exp

[
−ast+1(τ − 1)− bst+1(τ − 1)′(ft+1 − µst+1

) + ast(τ) + bst(τ)′(ft − µst)
]

(A.2)

It immediately follows from the bond pricing formula that

1 = Et

[
κt,st,t+1

Pt+1(st+1, τ − 1)

Pt(st, τ)

]
(A.3)

= Et [κt,st,t+1hτ,t+1] .

Then by substitution

κt,st,t+1hτ,t+1 (A.4)

= exp[−rt,st −
1

2
γ ′t,stγt,st − γ ′t,stL−1

st+1
ηt+1

− ast+1(τ − 1)− bst+1(τ − 1)′
(
ft+1 − µst+1

)
+ ast(τ) + bst(τ)′

(
ft − µst

)
]

= exp[−rt,st −
1

2
γ ′t,stγt,st −

(
γ ′t,stL

−1
st+1

+ bst+1(τ − 1)′
)
ηt+1 + ζτ,st,st+1]

= exp[−rt,st −
1

2
γ ′t,stγt,st −

(
γt,st + bst+1(τ − 1)′Lst+1

)
ωt+1 + ζτ,st,st+1]

= exp[−rt,st −
1

2
γ ′t,stγt,st +

1

2
Γt,τΓ′t,τ + ζτ,st,st+1] exp[−1

2
Γt,τΓ′t,τ − Γt,τωt+1]
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where

ζτ,st,st+1 = ast(τ) + bst(τ)′
(
ft − µst

)
− ast+1(τ − 1)− bst+1(τ − 1)′Gst+1

(
ft − µst

)
Γt,τ = γ ′t,st + bst+1(τ − 1)′Lst+1

and ωt+1 = L−1
st+1

ηt+1 ∼ N (0, Ik+m). Given ft, st+1 and st, the only random variable in

κt,t+1hτ,t+1 is ωt+1. Then since

Et

(
exp[−1

2
Γt,τΓ′t,τ − Γt,τωt+1]

)
= 1 (A.5)

we have that

E [κt,st,t+1hτ,t+1|ft, st+1, st] = exp[−rt,st −
1

2
γ ′t,stγt,st +

1

2
Γt,τΓ′t,τ + ζτ,st,st+1].

Using log-approximation exp(y) ≈ y + 1 for a sufficiently small y leads to

E [κt,st,t+1hτ,t+1|ft, st+1, st] (A.6)

= exp[−rt,st −
1

2
γ ′t,stγt,st +

1

2

(
γ ′t,st + bst+1(τ − 1)′Lst+1

) (
γ ′t,st + bst+1(τ − 1)′Lst+1

)′
+ ζτ,st,st+1]

≈ −rt,st + γ ′t,stL
′
st+1

bst+1(τ − 1) +
1

2

(
bst+1(τ − 1)′Lst+1L

′
st+1

bst+1(τ − 1)
)

+ ζτ,st,st+1 + 1

= −
(
δ1,st + δ′2,st

(
ft − µst

))
+
(
γ̃st + Φst

(
ft − µst

))′
L′st+1

bst+1(τ − 1)

+
1

2

(
bst+1(τ − 1)′Lst+1L

′
st+1

bst+1(τ − 1)
)

+ ζτ,st,st+1 + 1

Given the information at time t,(i.e. ft and st = j), integrating out st+1 yields

E [κt,st,t+1hτ,t+1|ft, st = j] =
∑

st+1=j,k

pjst+1E [κt,st,t+1hτ,t+1|ft, st+1, st = j] (A.7)

= 1 where k = j + 1.

Thus we have

0 =
∑

st+1=j,k

pjst+1 {E [κt,st,t+1hτ,t+1|ft, st+1, st = j]− 1} since
∑

st+1=j,k

pjst+1 = 1 (A.8)

= pjj (E [κt,st,t+1hτ,t+1|ft, st+1 = j, st = j]− 1) + pjk (E [κt,st,t+1hτ,t+1|ft, st+1 = k, st = j]− 1)

≈ −pjj
(
δ1,j + δ′2,j

(
ft − µst

))
+ pjj

(
γ̃j + Φj

(
ft − µst

))′
L′jbj(τ − 1)

+
1

2
pjj
(
bj(τ − 1)′LjL

′
jbj(τ − 1)

)
+ pjjζτ,j,j

− pjk
(
δ1,j + δ′2,j

(
ft − µst

))
+ pjk

(
γ̃j + Φj

(
ft − µst

))′
L′kbk(τ − 1)
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+
1

2
pjk (bk(τ − 1)′LkL

′
kbk(τ − 1)) + pjkζτ,j,k

Matching the coefficients on ft and setting the constant terms equal to zero we obtain

the recursive equation for ast(τ) and bst(τ) given the initial conditions ast(0) = 0 and

bst(0) = 03×1 implied by the no-arbitrage condition. Finally imposing the restrictions

on the transition probabilities establishes the proof.

B MCMC Sampling

This section provides the details of the MCMC algorithm given in section 3.4. The

algorithm is coded in Gauss 9.0 and executed on a Windows Vista 62-bit machine with

a 2.66 GHz Intel Quad Core2 CPU. About 12 days are needed to generate 50,000 MCMC

draws in the 3 change-point model. In contrast, a random-walk M-H algorithm takes

about 2 days to complete 1 million iterations but with unknown reliability and much

less efficient exploration (Chib and Ramamurthy (2009)).

Step 2 Sampling θ

We sample θ conditioned on (Sn, u0,σ
∗2) by the tailored randomized block M-H

(TaRB-MH) algorithm introduced in Chib and Ramamurthy (2010). The schemat-

ics of the TaRB-MH algorithm are as follows. The parameters in θ are first ran-

domly partitioned into various sub-blocks at the beginning of an iteration. Each

of these sub-blocks is then sampled in sequence by drawing a value from a tai-

lored proposal density constructed for that particular block; this proposal is then

accepted or rejected by the usual M-H probability of move (Chib and Greenberg

(1995)). For instance, suppose that in the gth iteration, we have hg sub-blocks of

θ

θ1, θ2, . ., θhg

If ψ−i denotes the collection of the parameters in ψ except θi, then the proposal

density q
(
θi|y,ψ−i

)
for the ith block conditioned on ψ−i is constructed by a

quadratic approximation at the mode of the current target density π
(
θi|y,ψ−i

)
.

In our case, we let this proposal density take the form of a student t distribution

with 15 degrees of freedom

q
(
θi|y,ψ−i

)
= St

(
θi|θ̂i,Vθ̂i

,15
)

(B.1)
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where

θ̂i = arg max
θi

ln{p(y|Sn,θi,ψ−i)π(θi)} (B.2)

and Vθ̂i
=

(
−∂

2 ln{p(y|Sn,θi,ψ−i)π(θi)

∂θi∂θ
′
i

)−1

|θi=θ̂i
.

Because the likelihood function tends to be ill-behaved in these problems, we cal-

culate θ̂i using a suitably designed version of the simulated annealing algorithm.

In our experience, this stochastic optimization method works better than the stan-

dard Newton-Raphson class of deterministic optimizers.

We then generate a proposal value θ†i which, upon satisfying all the constraints, is

accepted as the next value in the chain with probability

α(θ
(g−1)
i ,θ†i |y,ψ−i) (B.3)

= min

{
p(y|Sn,θ†i ,ψ−i)π(θ†i )

p(y|Sn,θ
(g−1)
i ,ψ−i)π(θ

(g−1)
i )

St(θ
(g−1)
i |θ̂i,Vθ̂i

,15)

St(θ†j|θ̂i,Vθ̂i
,15)

, 1

}
.

If θ†i violates any of the constraints inR, it is immediately rejected. The simulation

of θ is complete when all the sub-blocks

π
(
θ1|y,Sn,ψ−1

)
, π
(
θ2|y,Sn,ψ−2

)
, . . . , π(θhg |y,Sn,ψ−hg) (B.4)

are sequentially updated as above.

Step 3 Sampling the initial factor

Given the prior in equation (3.14), u0 is updated conditioned on θ,m0 and f1 = (u1

m′1)′, where m0 is given by data and u1 is obtained from the equation (3.5). In

the following, it is assumed that all the underlying coefficients are those in regime

0. Then

u0|f1,θ∼N1 (ū0,U0) (B.5)

where

ū0 = U0

(
Σ−1
u +H∗′Ω∗11,0u

∗
1

)
, U0 =

(
Σ−1
u +H∗′Ω∗11,1H

∗)
and on letting

G0 =

(
G11,1 G12,1

G21,1 G22,1

)
, Ω1 =

(
Ω11,1 Ω12,1

Ω21,1 Ω22,1

)
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H∗ = G11,1−Ω12,1Ω−1
22,1G21,1, Ω∗11,1 = Ω11,1−Ω12,1Ω−1

22,1Ω21,1

u∗1 = u1 − Ω12,1Ω−1
22,1(m1 − µm,1) +

(
Ω12,1Ω−1

22,1G22,1−G12,1

)
(m0 − µm,1)

Step 4 Sampling regimes

In this step one samples the states from p[Sn|In,ψ] where In is the history of the

outcomes up to time n. This is done according to the method of Chib (1996) and

Chib (1998) by sampling Sn in a single block from the output of one forward and

backward pass through the data.

The forward recursion is initialized at t = 1 by setting Pr[s1 = 1|I1,ψ] = 1. Then

one first obtains Pr[st = j|It,ψ] for all j = 1, 2, ..,m + 1 and t = 1, 2, .., n by

calculating

Pr[st = j|It,ψ] =

j∑
i=j−1

Pr[st−1 = i, st = j|It,ψ] (B.6)

where

Pr[st−1 = i, st = j|It,ψ] =
p [yt|It−1, st−1 = i, st = j,ψ] Pr[st−1 = i, st = j|It−1,ψ]

p [yt|It−1,ψ]

This can be done by the equations (3.22)-(3.25).

In the backward pass, one simulates Sn by the method of composition. One samples

sn from Pr[sn = 1|In,ψ]. We remark that in this sampling step, sn can take any

value in {1, 2, .., m + 1}. For instance, if sn turns out to be m and not (m + 1),

then m is taken to be the absorbing regime and the parameters of regime (m+ 1)

are drawn from the prior in that iteration. In our data, however, (m+ 1) is always

drawn because the last change point occurs in the interior of the sample and,

therefore, the distribution Pr[sn = 1|In,ψ] has almost a unit mass on (m + 1).

Then for t = 1, 2, .., n− 1 we sequentially calculate

Pr[st = j|It, st+1 = k, St+2,ψ] = Pr[st = j|It, st+1 = k,ψ] (B.7)

=
Pr[st+1 = k|st = j] Pr[st = j|It,ψ]∑k

j=k−1 Pr[st+1 = k|st = j] Pr[st = j|It,ψ]

where St+1 = {st+1, .., sn} denotes the set of simulated states from the earlier steps.

A value st is drawn from this distribution and it is either the value k or (k − 1)

conditioned on st+1 = k.
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Step 5 Sampling the variances of the pricing errors

A convenient feature of our modeling approach is that, conditional on the history

of the regimes and factors, the joint distribution of the parameters in σ∗2 is an-

alytically tractable and takes the form of an inverse gamma density. Thus, for

i ∈ {1, 2, .., 7, 9, .., 16} and j = 1, 2, ..,m + 1, σ∗2i,j is sampled from

IG

{
v̄ +

∑n
t=1 I (st = j)

2
,
d̄ +

∑n
t=1 di,jI (st = j)(Rti − āi,j − b̄′i,j(ft − µj))2

2

}
(B.8)

where I (·) is the indicator function.
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