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Summary. The method of Bayesian model selection for join point regression models is devel-
oped. Given a set of K C 1 join point models M0, M1, . . . , MK with 0, 1, . . . , K join points respec-
tively, the posterior distributions of the parameters and competing models Mk are computed by
Markov chain Monte Carlo simulations. The Bayes information criterion BIC is used to select
the model Mk with the smallest value of BIC as the best model. Another approach based on
the Bayes factor selects the model Mk with the largest posterior probability as the best model
when the prior distribution of Mk is discrete uniform. Both methods are applied to analyse the
observed US cancer incidence rates for some selected cancer sites.The graphs of the join point
models fitted to the data are produced by using the methods proposed and compared with the
method of Kim and co-workers that is based on a series of permutation tests. The analyses
show that the Bayes factor is sensitive to the prior specification of the variance σ2, and that the
model which is selected by BIC fits the data as well as the model that is selected by the permu-
tation test and has the advantage of producing the posterior distribution for the join points. The
Bayesian join point model and model selection method that are presented here will be integrated
in the National Cancer Institute’s join point software (http://www.srab.cancer.gov/joinpoint/) and
will be available to the public.

Keywords: Annual percentage change; Bayes factor; Bayes information criterion; Markov
chain Monte Carlo methods; Permutation test

1. Introduction

A question that is of particular interest when analysing cancer incidence and mortality rates is
whether or not there has been a change in the trend over time and, if there has been a change,
when it occurred. Questions of this type play an important role in measuring progress against
cancer and in assessing the effect of population intervention on the outcome of disease. For
example, a change in trend for lung cancer incidence may reflect the population effect of anti-
tobacco programmes or changes in the trend for cancer mortality may be the result of new
screening modalities. In addition to helping to explain what factors influence trends, identifying
when changes occur also plays a role in defining the current trend. In past cancer statistics
publications (Ries et al., 2002) the current trend has been defined by fitting a line through a
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prespecified number of years usually at the end of the observed data. Although this may be
useful for easily summarizing the most recent trend over a large number of cancer sites for a
fixed period, it may not properly characterize the trend. For this reason, we have found that a
log-linear model with random changepoints has been quite useful in modelling and interpreting
cancer trends. Since the models define a changepoint as a change in slope, but do not allow a
jump in the level at a change, we refer to these types of models as join point models. The current
method for fitting join point models in the annual report to the nation on the status of cancer
(Edwards et al., 2002) and the National Cancer Institute’s cancer statistics review (Ries et al.,
2002) is described by Kim et al. (2000) and briefly reviewed below. The purpose of this paper is
to develop Bayesian model selection methods by using criteria, namely the Bayes factor (BF)
and Bayes information criterion BIC, both to fit a join point regression model to age-adjusted
cancer rates and to provide a measure of uncertainty related to the number of join points in a
data series. The performances of these methods are compared with the permutation-test-based
(PTB) method for fitting a join point model that was developed by Kim et al. (2000).

1.1. Join point model
Let dij and nij denote respectively the cancer counts and population size at time xi, and for age
group j, i=1, . . . , n, j =1, . . . , J: The age-adjusted rates are

ri =
J∑

j=1

cjdij

nij
, i=1, . . . , n,

where cjs are the known standards and ΣJ
j=1cj = 1. Let yi = log.ri/ denote the logarithm of

the observed age-adjusted rates at time xi, i= 1, . . . , n: Under the assumption that the dijs are
independent Poisson random variables with means nijλij, an estimate of var.yi/ was given by
Kim et al. (2000):

wi =var.yi/=
J∑

j=1

c2
jdij

n2
ij

/(
J∑

j=1

cjdij

nij

)2

: .1/

A join point model Mk, with k join points for fitting the observed data {.xi, yi/ : x1 < . . . <

xn; i=1, . . . , n}, was given by Lerman (1980) and Kim et al. (2000):

yi =β0 +β1xi +
k∑

r=1
δr sr.xi/+ "i, .2/

where sr.x/= .x− τr/
+, and a+ =a if a > 0, and a+ =0, otherwise, βT

k = .β0, β1, δ1, . . . , δk/ are
the regression parameters and τT

k = .τ1, . . . , τk/ are the join points, and "1, . . . , "n are zero-mean
random errors. Here, for any vector or matrix v, vT denotes the transpose of v. The annual
percentage change APC of the age-adjusted rates between τk and τk+1 (i.e. for the .k + 1/th
segment) is given by

APCk =100{exp.β1 + δ1 + . . .+ δk/−1}:

Model (2) is also known as a spline model with sr.x/ as the rth basis function evaluated
at x, τr as the corresponding knot and δr as the corresponding coefficient. For k = 0, the join
point model (2), corresponding to a zero join point, is the simple linear regression model yi =
β0 +β1xi +"i. A more general form of model (2), which allows a pth- (p�1/ degree polynomial
on each interval between two consecutive join points, which has p − 1 continuous derivatives
everywhere, can be also considered. However, for analysing the age-adjusted cancer incidence
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Model Selection for Join Point Regression 921

or mortality rates, where we are interested in APC, the single-join-point regression model (2) is
more appropriate.

Several approaches to join point regression models have been considered in the literature;
for example, for a nonparametric formulation see Hinkley (1971), Pettitt (1980) and Kim et al.
(2000), for a likelihood formulation see Hinkley (1970) and for a Bayesian formulation see
Smith (1975, 1980), Carlin et al. (1992), Stephens (1994), Green (1995) and Denison et al.
(1998), among others.

1.2. Review of permutation-test-based approach of Kim et al. (2000)
Kim et al. (2000) developed a nonparametric PTB approach to fit the join point model (2) to
the data yn ={.xi, yi/ : x1 < . . . < xn; i=1, . . . , n}, first assuming that var."i/=σ2, for all i, and
then extending the methodology to handle the case when var."i/ = wi are specified constants.
The model selection based on a series of permutation tests is briefly described as follows. First,
a maximum number k1 and a minimum number k0 of possible join points are selected. Usually
k0 =0 and k1 =3 or k1 =4, depending on the length and complexity of the data series. It begins
with testing the null hypothesis of k0 join points against the alternative of k1 join points, where
0 � k0 < k1. If the null hypothesis is rejected at level α1 and k1 − k0 �2, then we test H0: there
are k0 +1 join points against H0: there are k1 join points. If the null hypothesis of k0 join points
is not rejected and k1 − k0 � 2, then we test H0: there are k0 join points against H1: there are
k1 − 1 join points. The testing procedure continues until testing the null hypothesis of k join
points against the alternative of k +1 join points for some k0 � k < k1. The estimated number
of join points is k +1 if the final null hypothesis is rejected and k otherwise. The level of each test
is adjusted to α1 =α=.k1 − k0/ by using the Bonferroni correction to reach the overall signifi-
cance level of α. The test in each step is carried out by permutation of the residuals. An F -type
statistic F.yn/ is calculated from the original data yn. The residuals "̂n and predicted value ŷn

are obtained by fitting the k0-join-point model under the null hypothesis. The permutations of
the residuals, "̂p.n/, are added back to ŷn to create permuted samples yp.n/ and the test statistic
F.yp.n// is calculated for the permuted sample. The p-value of the test is the proportion of times
that F.yp.n// > F.yn/ over a large number of permutations. The National Cancer Institute has
developed the join point regression software for the analysis of trends by using join point models
(see the Web site http://srab.cancer.gov/joinpoint/index.html).

1.3. Method proposed
We first assume that the errors in model (2) are independent and identically distributed (IID)
with "i ∼N.0, σ2/, a normal distribution with mean 0 and variance σ2: Conditional on a fixed
maximum number of the join points, K, we develop a Bayesian model selection procedure for
comparing the K +1 join point models, {M0, M1, . . . , MK}. For each k =0, 1, . . . , K, model Mk

is characterized by the parameter vector θk = .βT
k , τT

k , σ2/T, where βk ∈R.k+2/ with R denoting
the real line, σ2 > 0 and the join points τ1, . . . , τk take values in {x1, . . . , xn}.

Let π.θk|Mk/ be the prior of θk under model Mk and L.θk|yn/ be the likelihood function
given observed data yn. The posterior distribution of θk is given by

π.θk|Mk, yn/∝π.θk|Mk/ L.θk|yn/:

One model selection approach is based on Schwarz’s Bayes information criterion BIC (Schwarz,
1978; Pauler, 1998; Kass and Wasserman, 1995) for model Mk, i.e.

BIC.Mk/= −2 log{L.θ̂k|yn/}
n

+ p

n
log.n/, .3/
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where θ̂k is usually the maximum likelihood estimate (MLE) of θk and p is the number of
parameters. The BIC approach selects model Mk with the minimum value of BIC as the best
model. Note that log{L.θk|yn/} ∝ log{π.θk|Mk, yn/} − log{π.θk|Mk/} and, if π.θk|Mk/ is a
unimodal function, then, for large n, maximizing log{L.θk|yn/} is equivalent to maximizing
log{π.θk|Mk, yn/}. Thus, an approximation to BIC.Mk/ can be obtained by replacing θ̂k in
equation (3) by the mode of the posterior distribution (Tan et al., 2003). However, as men-
tioned in Section 2.2, the BIC computation works for any choice of θk, such as the mean,
median or mode, as long as it is a high density point. For example, Spiegelhalter et al. (2002)
used the posterior mean to compute the deviance information criterion DIC, which is related
to BIC. As a remark, we mention that the Bayesian version of BIC based on the posterior mode
rather than the MLE is not necessary if our goal is just to select the best join point model.
However, since we are also interested in the posterior distribution of the join point locations,
we use the ‘Bayesian’ version of BIC.

The second approach of model selection compares the BF and selects the model with the
largest value. The BF (Berger, 1985) for comparing a pair of models Mk and Ml is defined by

Bkl = P.Mk|yn/=P.Ml|yn/

P.Mk/=P.Ml/
: .4/

The term P.Mk|yn/=P.Ml|yn/, in the numerator of equation (4), is the posterior odds ratio,
and the term in the denominator, P.Mk/=P.Ml/, is the prior odds ratio. Under the uniform
prior distribution over the set {M0, M1, . . . , MK}, i.e. P.Mk/ = 1=.K +1/, k = 0, 1, . . . , K, the
posterior probability of Mk, given the data yn, is given by

P.Mk|yn/=m.yn|Mk/

/
K∑

r=0
m.yn|Mr/, .5/

where m.yn|Mk/ is the marginal likelihood function of model Mk:

m.yn|Mk/=
∫

f.yn|Mk, θk/ π.θk|Mk/dθk, .6/

with f.yn|Mk, θk/ and π.θk|Mk/ denoting respectively the likelihood function and the prior.
Hence, under the uniform prior for the Mks, the approach based on the BF is the same as com-
paring the models by using posterior probabilities P.Mk|yn/ of k join points (k=0, 1, . . . , K). See
Kass and Raftery (1995) for more discussion on the BF. Note that the second approach is highly
prior dependent, whereas the first approach depends on L.θ̂k|yn/ and its delta approximation.

Next, in model (2) we relax the assumption of IID errors by assuming that "i, i=1, . . . , n, are
independent normal N.0, ωiσ

2/ with known weights ωi. Assume that the spacings ∆=xi+1 −xi

between two data points are constant. We further relax the assumption that the join points occur
at the data points xi, i= 1, . . . , n. We augment the data {x1, . . . , xn} by inserting m− 1 equally
spaced points

xi,u =xi +uδ, u=1, . . . , m−1,

in the interval .xi, xi+1/, where δ =∆=m. The cancer trend data will be analysed under three
model assumptions: IID errors, non-IID errors and augmented data.

1.4. Outline of paper
The rest of this paper is organized as follows. The prior–posterior analysis of the join point
regression model Mk in equation (2) is carried out in Section 2. We assume independent normal
priors for the regression parameters, and an inverted gamma prior for the error variances. For
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the join points, we assume that the join points are discrete random variables taking values in
{x1, . . . , xn}. The Bayesian model selection methods (BIC and the BF) are developed in Section
3. The estimation of the marginal likelihoods in equation (6) is based on the Markov chain
Monte Carlo (MCMC) method that was described in Chib (1995). The results of Section 2 are
used, in Section 3, to analyse the observed age-adjusted cancer incidence rates for the period
from 1973 to 1999 for the USA and to identify the changes in the trend for colorectal cancer,
prostate cancer, breast cancer in white women and breast cancer in black women. The data
were collected by the National Cancer Institute’s ‘Surveillance, epidemiology and end result’
(SEER) programme (http://seer.cancer.gov) (1999). The elucidation of prior distribu-
tions of the model parameters is discussed. In particular, the prior for σ2 is assessed through the
weights {wi} as given in equation (1). For comparison, the analyses using the permutation test
for the selected cancer sites are also carried out in this section. Sensitivity of the prior for σ2 and
some extensions of model (2) are discussed in Section 4. Finally, the conclusions are stated in
Section 5.

The data that are analysed in the paper can be obtained from

http://www.blackwellpublishing.com/rss

2. Bayesian model selection

2.1. Prior and posterior distributions
Under model Mk, let the joint prior π.θk|Mk/ of θk = .βT

k , τT
k , σ2/T be specified as follows. Let

βk, τ k and σ2 be independent and be distributed as

βk|Mk ∼Nk+2.β0k, B0k/,

σ2|Mk ∼ IG
(

ν0

2
,
δ0

2

)
,

π.τ1|Mk/∝ 1
n− .2l+k −1/

, τ1 ∈{xl+1, . . . , xn−l−k+1}, l�0,

π.τu|Mk, τu−1 = l′, τu+1 = l′′/∝ 1
l′′ − l′ −1

, τu ∈{l′ +1, . . . , l′′ −1}, u=2, . . . , k,




.7/

where Nm.µ, Σ/ denotes an m-dimensional normal distribution and IG.a=2, b=2/ is the inverted
gamma distribution with mean and variance respectively given by b=.a−2/ and 2b2={.a−4/.a−
2/2}: The distribution of join point τ1 is a discrete uniform distribution on {xl+1, . . . , xn−l−k+1},
leaving out l .�0/ values of x at both ends, and the conditional distribution of τu given {τu−1 =
l′, τu+1 = l′′} is a discrete uniform distribution on {l′ + 1, . . . , l′′ − 1}, u= 2, . . . , k, with τk+1 ≡
xn−1. The likelihood function is

L.θk|yn/∝ 1
.σ2/n=2 exp

[
− 1

2σ2

n∑
i=1

{yi −β0 −β1xi − δ1 s1.xi/− . . . − δk sk.xi/}2
]

∝ 1
.σ2/n=2 exp

{
− 1

2σ2 ‖yn −X.τ1, . . . , τk/βk‖2
}

, .8/

where, for any .n×1/-vector an = .a1, . . . , an/T, ‖an‖=Σn
i=1a2

i and X.τ1, . . . , τk/ is the n× .k +
2/-design matrix with the ith row given by x.τ1, . . . , τk/.i/T = .1, xi, s1.xi/, . . . , sk.xi//.

The posterior distribution of θk is given by

π.θk|Mk, yn/∝π.βk|Mk/ π.τk|Mk/ π.σ2|Mk/
1

.σ2/n=2 exp
{

− 1
2σ2 ‖yn −X.τ1, . . . , τk/βk‖2

}
,
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from which the conditional posterior densities of βk, τk and σ2, under model Mk, are

βk|yn, σ2, τ k ∼Nk+2.β̂k, Bk/,

σ2|yn, βk, τ k ∼ IG
(

ν

2
,
δ

2

)
,

.9/

where

Bk =
(

B−1
0k + 1

σ2 X.τ1, . . . , τk/TX.τ1, . . . , τk/

)−1

,

β̂k =Bk

(
B−1

0k β0k + 1
σ2 X.τ1, . . . , τk/yn

)
,

ν =ν0 +n,

δ = δ0 +‖yn −X.τ1, . . . , τk/βk‖2:

The univariate conditional posterior distributions of τu|τ .−u/
k , u=1, . . . , k, are given by

P.τu = r|yn, βk, σ2, τu−1 = l′, τu+1 = l′′/∝ exp
{

− 1
2σ2 ‖yn −X.τ1, . . . , τu = r, . . . , τk/βk‖2

}
.10/

for r = l′ + 1, . . . , l′′ − 1, where τ
.−u/
k = {τ1, . . . , τu−1, τu+1, . . . , τk} with τ0 = xl+1 and τk =

xn−l−k+1. The MCMC samples from the conditional distributions in expressions (9) and (10)
are standard and can be drawn by using the method that was described in Chib (1995).

When the errors "i, i= 1, . . . , n, are independent but not identically distributed, we assume
that "i ∼N.0, wiσ

2/, where the wi are known and given in equation (1), and σ2 has an inverted
gamma prior as specified in expression (7). In this case, the posterior distribution of the param-
eters is

π.θk|Mk, yn/∝π.βk|Mk/ π.τ k|Mk/ π.σ2|Mk/

× 1
.σ2/n=2 exp

[
− 1

2σ2

n∑
i=1

1
wi

{yi −x.τ1, . . . , τk/.i/Tβk}2
]
:

The conditional posterior distributions of the parameters can be derived as in expressions (9)
and (10).

Suppose that in model (2) we allow the join points to occur not only at the observed val-
ues of the covariate x but also at m − 1 points xi,u between any two consecutive data points
of xi and xi+1. The Bayesian model selection approach for this case can be implemented by
assuming that, under model Mk, the vector of join points τT

k has support on the extended set
{x1, x1,1, . . . , x1,m−1, x2, x2,1, . . . , x2,m−1, x3, . . . , xn−1, xn−1,1, . . . , xn−1,m−1, xn}. Let yi,u be the
unobserved values of the response variable y at xi,u, u=1, . . . , m−1: We rewrite the join point
model (2) as

yi,u =β0 +β1xi,u +
k∑

r=1
δr sr.xi,u/+ "i,u, i=1, . . . , n−1, u=0, . . . , m−1,

yn =β0 +β1xn +
k∑

r=1
δr sr.xn/+ "n,

where yi,0 are observed values and "i,u are IID normal random errors with mean 0 and variance
σ2. Under model Mk, the MCMC algorithm can now be implemented on the original set of
parameters θk = .βT

k , τT
k , σ2/T together with the new set of parameters {yi,u :u=1, . . . , m−1, i=
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1, . . . , n− 1}: Note that the conditional distribution of {yi,u : u= 1, . . . , m− 1, i= 1, . . . , n− 1}
given yn and θk is a multivariate normal distribution and hence is easy to simulate.

2.2. Computation of posterior probabilities P (Mkjyn)
Corresponding to any model Mr, let θr = .βr, τ r, σ2

r / denote the model-specific parameters. The
marginal likelihood for model Mr, in equation (6), can be rewritten as

m.yn|Mr/=
∫

f.yn|Mr, βr, τ r, σ2
r / π.βr, τ r, σ2

r |Mr/ dβr dτ r dσ2
r : .11/

The marginal likelihood m.yn|Mr/ can be expressed (using the Bayes formula) as

m.yn|Mr/= f.yn|Mr, βÅ
r , τÅ

r , σ2Å
r / π.βÅ

r , τÅ
r , σ2Å

r |Mr/

π.βÅ
r , τÅ

r , σ2Å
r |Mr, yn/

, .12/

where .βÅ
r , τÅ

r , σ2Å
r / is a high density point. In particular, .βÅ

r , τÅ
r / are taken to be the mode and

σ2Å
r is taken to be the mean. Note that the posterior mean and mode of σ2 are approximately

equal when n is sufficiently large because the mean-to-mode ratio is .ν0 + n − 2/=.ν0 + n + 2/.
An estimate of the marginal likelihood in equation (12), on the log-scale, is given by

log{m̂.yn|Mr/}= log{f.yn|Mr, βÅ
r , τÅ

r , σ2Å
r / π.βÅ

r , τÅ
r , σ2Å

r |Mr/}− log{π̂.βÅ
r , τÅ

r , σ2Å
r |Mr, yn/},

.13/

where the estimate of the posterior ordinate π̂.βÅ
r , τÅ

r , σ2Å
r |Mr, yn/ is obtained by using the

marginal–conditional decomposition formula

π.βÅ
r , τÅ

r , σ2Å
r |Mr, yn/=π.τÅ

1 |Mr, yn/

{
r∏

u=2
π.τÅ

u |Mr, yn, τÅ
1 , . . . , τÅ

u−1/

}

×π.σ2Å
r |Mr, yn, τÅ

r / π.βÅ
r |Mr, yn, σ2Å

r , τÅ
r /: .14/

In equation (14), the first mass function π.τÅ
1 |Mr, yn/ is estimated from output of the full MCMC

run, for u=2, . . . , r, the mass functions π.τÅ
u |Mr, yn, τÅ

1 , . . . , τÅ
u−1/ are estimated from the output

of a sequence of reduced MCMC runs in which successive join points are fixed at their starred
values τÅ

1 , . . . , τÅ
u−1 and the remaining join points .τv, v=u, u+1, . . . , r/ are sampled along with

the other parameters .βr, σ2
r /, where in each of these MCMC runs τu is set equal to τÅ

u . This
process is simple and ensures that the τÅ

u , u=1, . . . , r, are high density points.
Similarly, we estimate the conditional density π.σ2Å

r |Mr, yn, τÅ
r /. Finally, we evaluate

π.βÅ
r |Mr, yn, σ2Å

r , τÅ
r /. Thus,

π.τÅ
1 |Mr, yn/= 1

G

G∑
g=1

π.τÅ
1 |Mr, yn, τ .g/

2 , . . . , τ .g/
r , β.g/

r , σ.g/2
r /,

π.τÅ
u |Mr, yn, τÅ

1 , . . . , τÅ
u−1/= 1

G

G∑
g=1

π.τÅ
u |Mr, yn, τÅ

1 , . . . , τÅ
u−1,

τ
.g/
u+1, . . . , τ .g/

r , β.g/
r , σ.g/2

r /, u=2, . . . , r,

π.σ2Å
r |Mr, yn, τÅ

r /= 1
G

G∑
g=1

π.σ2Å
r |Mr, yn, τÅ

1 , . . . , τÅ
r , β.g/

r /,




.15/

where π.θÅ|zÅ, w.g// denotes the posterior conditional density of θ evaluated at θÅ when z is set
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at zÅ and the reduced MCMC run is w.g/. The posterior probabilities can now be estimated by

P̂.Mk|yn/= m̂.yn|Mk/

/
K∑

r=0
m̂.yn|Mr/, k =0, . . . , K, .16/

and the BF Bkl can be estimated by

B̂kl = m̂.yn|Mk/=m̂.yn|Ml/:

For other methods for estimating the marginal likelihood see Ritter and Tanner (1992), Newton
and Raftery (1994), Kass and Raftery (1995), Zellner and Min (1995), Chib (1996) and Chib
and Jeliazkov (2001), among others. Chib and Jeliazkov (2001) showed how to improve the
Chib (1995) method when one or more full conditional is sampled by the Metropolis–Hastings
algorithm. Recently, Mira and Nicholls (2004) have provided a modified version of the Chib
and Jeliazkov estimator based on analogies to bridge sampling but usually the gains from this
modification are typically small. Furthermore, this modification does not apply to our problem
here because no conditional distribution is sampled by the Metropolis–Hastings algorithm.

An implementation via reversible jump MCMC sampling (Green, 1995; Denison et al., 1998)
can automatically provide posterior probabilities for the different models. However, the re-
versible jump method is much more delicate and difficult to set up, especially when there are a
few candidate models to consider. In our case, obtaining the marginal likelihood of each model
directly is simpler.

2.3. Computation of Bayes information criterion BIC(Mk)
For the linear model with independent normal errors "i, Schwarz’s (1978) BIC for model Mk is
equivalent to

BIC.Mk/= log
{

RSS.Mk/

n

}
+ p

n
log.n/, .17/

where RSS.Mk/=Σn
i=1.yi − ŷ

.k/
i /2 is the residual sum of squares and ŷ

.k/
i is the predictor of yi

from model Mk based on the modal values of (β0, β1, δ1, . . . , δk/. Model Mk with the minimum
value of BIC is selected as the best model.

It is common to evaluate BIC or the BF at the posterior mode in a Bayesian context since
sometimes the MLE is difficult to find (Chib et al., 2002). In our case, although the MLE can
be estimated, it is convenient to use the posterior mode or mean in the Bayesian setting.

2.4. Bayesian model averaging
In standard practice, data analysts typically select a model from some class of models and then
proceed as if the model selected had generated the data. This approach ignores model uncer-
tainty, leading to overconfident inferences and decisions that are more risky than one thinks they
are (Hoeting et al., 1999). Bayesian model averaging (BMA) provides a coherent mechanism
from accounting for model uncertainty. In particular, predictions based on model averaging are
known to be better than those based on a fixed model (Clyde and George, 2004). Given the
posterior model probabilities P.Mk|yn/ and the predicted value ŷ

.k/
i of yi under model Mk, the

predicted value under BMA is

ŷi =
K∑

k=0
ŷ

.k/
i P̂.Mk|yn/:
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The BMA predictors ŷi, i = 1, . . . , n, are used to generate the plots of predicted values in the
application to several major cancer sites.

3. Application

Prostate cancer and breast cancer are the most common cancers, other than skin cancer, for
US men and women respectively; colorectal cancer is the fourth most common cancer for both
men and women (American Cancer Society, 2004). Because of the progress in cancer detection
methods, e.g. new imaging technologies, tumour markers and biopsy procedures, the incidences
of these three cancer sites have experienced dramatic changes during the last three decades. It
is of interest to examine the trend in incidence for these cancer sites.

The Bayesian model selection approach for the join point models that were developed above
can now be applied to identify changes in the observed age-adjusted cancer incidence trend from
1973 to 1999 for colorectal cancer, prostate cancer, breast cancer in white women and breast
cancer in black women. When fitting the join point model by using this software to SEER data
in previous analyses, the maximum number of join points for any site is 4, so we set K =4. The
value of l is set to 2 because we do not expect join points to occur either at two consecutive years
or at the first two or the last two years.

3.1. Specification of priors
Under model Mk .k = 0, 1, . . . , 4/, the prior means and the prior variances for the regression
parameters were specified as

β0 ∼N.y1, 100/,

β1, δ1, . . . , δk
IID∼ N.0, 10/,

σ2 ∼ IG.ν0=2, δ0=2/:


 .18/

The prior distributions of regression parameters β0, β1 and δ1, . . . , δk are chosen to be quite flat.
The choice of the prior mean of y1 for β0 does not affect the posterior analysis; thus it may be
merely thought of as a starting value.

When the errors are IID, the prior mean and variance for σ2 are taken as
δ0

ν0 −2
=ω

and

2δ2
0

.ν0 −2/2.ν0 −4/
=4ω2,

so that the prior standard error is within two units of the prior mean for σ2. The value of ω
is set to be 0.0001 in the application. The rationale for this choice of the prior mean of σ2 is
as follows. σ2 is the common variance of the yis, and under the Poisson assumptions for the
number of incidence or mortality events, dij, it follows from equation (1) that, for equal values
of the cjs, the variance of yi is of order .ΣJ

j=1dij/−1. For most of the common cancer sites
ΣJ

j=1dij ≈10000 (American Cancer Society, 2004): hence the choice. Another choice of ω is w̄,
which is the average of wi, the variance of "i. This choice is also motivated from equation (1).
However, since w̄ is data dependent, we do not use it in our analysis, but we would study the
sensitivity of the prior distribution of σ2 with respect to ω as the prior mean of σ2. The prior
for τk was taken to be as defined in expression (7) with the default value of l=2.
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When "i ∼N.0, ωiσ
2/, the weight ωi was chosen to be the inverse of the variance of the can-

cer incidence rate obtained from the observed data, and the weights were standardized so that
Σn

i=1 ωi = ω̄.

3.2. Analysis of the incidence data
The Bayesian model selection procedure was applied to the observed age-adjusted incidence
rates in the USA for colorectal cancer, prostate cancer, breast cancer in white women and breast
cancer in black women for the period from 1973 to 1999. The data were obtained from the SEER
programme with the SEER-STAT software (http://www.seer.cancer.gov/seerstat).
The colorectal cancer data are for both males and females and the prostate cancer data relate
to males only. The logarithm of the age-adjusted rate yi at time xi .x1 = 1, . . . , x27 = 27/ were
used in executing the Bayesian model selection computer program with the prior distributions
as stated above.

The convergence of the MCMC samples of the parameters θk = .β0, β1, δ1, . . . , δk, τ1, . . . ,
τk, σ2/ for all four cancer sites after 10000 MCMC simulations excluding 500 burn-in samples
was examined by running the results of the MCMC simulations through the CODA (output anal-
ysis and diagnostics for MCMC simulations) package in R (http://www.fis.iarc.fr/
coda/). As no single method is foolproof, we present the results of Geweke’s (1992) and
Heidelberger and Welch’s (1983) convergence diagnostics. To see how stable the final estimates
of the marginal likelihoods and posterior probabilities were, multiple independent runs were
carried out. Gelman and Rubin’s (1992) diagnostic is also presented by running more than two
parallel chains with starting values that are overdispersed relative to the posterior distribution.
Gelman and Rubin’s (1992) diagnostic calculates the ‘potential scale reduction factor’ R for each
parameter in θk, together with upper and lower confidence limits. Approximate convergence is
diagnosed when the upper limits are close to 1.

The MCMC samples for the parameters for all four cancer sites converge after 10000 simu-
lations. Using colorectal cancer as an example, the Geweke statistics are (−0.04703, 0.84650,
−0.63558, 1.15226, −0.93957, 1.52299, 1.83233) for the parameters .β0, β1, δ1, δ2, τ1, τ2, σ2/.
Both stationarity and interval half-width tests (Heidelberger and Welch, 1983) passed for all
the parameters. 10 independent runs were generated with random starting values for the prior
means, where the starting values are equal to the posterior mean plus or minus twice the pos-
terior standard deviations. For example, the starting values of the prior mean for σ2 is 0:0002±
2×0:00006=0:00008 or 0:00032. The posterior probabilities P.Mk|yn/ for the 10 runs are the
same to the third digits and the best models picked are M2. The posterior means of all the
parameters are essentially the same, as shown in Table 1. The factors R for the parameters
are .1:00, 1:00, 1:01, 1:00, 1:01, 1:01, 1:16/. This strengthens the diagnosis of convergence of the
MCMC algorithm.

Under model Mk, let .β
.g/
0 , β.g/

1 , δ.g/
1 , . . . , δ.g/

k , τ .g/
1 , . . . , τ .g/

k /, g = 1, . . . , G, be the MCMC
samples that are generated (not including the burn-in samples) by using the method that was
described in Section 2.2. Note that .β

.g/
0 , β.g/

1 , δ.g/
1 , . . . , δ.g/

k , τ .g/
1 , . . . , τ .g/

k / are the modal values
for (β0, β1, δ1, . . . , δk, τ1, . . . , τk) from each MCMC run. The predicted value of yi was computed
as

ŷ
.k/
i = 1

G

G∑
g=1

{β
.g/
0 +β

.g/
1 xi + δ

.g/
1 .xi − τ

.g/
1 /+ + . . . + δ

.g/
k .xi − τ

.g/
k /+}:

The BIC value for model Mk was computed by using equation (17) where RSS is based on
ŷ

.k/
i . The default value for the maximum number of join points is K = 4. The estimates of the
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Table 1. Estimates of the regression parameters under the best model M2 for colo-
rectal cancer (1973–1999)

Parameter Results from the Bayesian method Results from the
PTB method

Prior Posterior
Mean Standard

deviation
Mean Standard Mean Standard

deviation deviation

Constant .β0/ 4.0860 10.0000 4.0962 0.0085 4.1080 0.0082
β1 0.0000 3.1623 0.0108 0.0011 0.0105 0.0010
δ1 0.0000 3.1623 −0.0303 0.0025 −0.0308 0.0024
δ2 0.0000 3.1623 0.0233 0.0058 0.0244 0.0066
σ2 0.0001 0.0002 0.0002 0.00006 0.0002

posterior probabilities (16) of the models M0, M1, . . . , M4 were also computed from the posterior
distribution of the parameters.

All the three approaches, the BF, BIC and the PTB method, chose M2 as the optimal model.
As one referee suggested, BIC can be computed by using the MLE. We compared the posterior
estimates from the Bayesian method and the MLEs for θk, k =0, . . . , 4, for all four cancer sites;
they were very close (the data are not shown). Hence, the BIC values that were calculated on
the basis of the posterior estimates and MLEs were similar. As an example, we present the
posterior parameter estimates from the Bayesian method and the MLEs for colorectal cancer in
Table 1. As expected, since the prior distributions of the regression parameters are quite flat, the
Bayes estimates of the regression parameters, and hence the values of APCs, and the variance
parameter σ2 were close to their corresponding estimates based on the PTB method.

In Fig. 1, we show the posterior probabilities p.Mk|yn/ of {Mk, k=0, 1, . . . , 4} in the left-hand
panels and the marginal posterior densities conditional on the best model, P.τr =x|Mk, yn/, for
each of the join points in the right-hand panels. For colorectal cancer (Fig. 1(a)), model M2 with
probability 0.78 is the best model. The histograms underlined with —1— and —2— correspond
to the marginal posterior densities p.τ1|M2, yn/ and p.τ2|M2, yn/ with each summing to 1. The
most probable values (modes) for τ1 and τ2 are 1986 and 1995. The PTB method resulted in
the same best model and join points as the Bayesian method. For comparison, we present the
posterior probabilities p.Mk|yn/ and BIC.Mk/ for all four cancer sites in Table 2. For colorectal
cancer and breast cancer in white women, all three model selection methods picked the same
optimal model.

The unconditional probability that there is a join point at x (x=1975, . . . , 1997/ is

P.x is a join point|yn/=
K∑

k=1

{
k∑

r=1
P.τr =x|Mk, yn/

}
P.Mk|yn/:

This is the average of the posterior probabilities of join points over all models Mk (Fig. 2). The
unconditional probabilities for the join points for colorectal cancer, prostate cancer and breast
cancer in white women have shapes that are similar to their conditional probabilities for the best
model. In Fig. 2, the unconditional probabilities for the join points for breast cancer in black
women show two modes at 1978 and 1985 although the best model based on the BF is M1 with
join point mode at 1977. This is because model M2 also has substantial posterior probability
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Fig. 1. Posterior probabilities P .Mkjyn/ and P .τr jMk, yn/ under the best model based on the BF for four can-
cer sites: (a) colorectal cancer; (b) prostate cancer; (c) breast cancer in white women; (d) breast cancer in
black women
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Fig. 1 (continued )

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/54/5/919/7113011 by guest on 19 Septem

ber 2024



932 R. C. Tiwari, K. A. Cronin, W. Davis, E. J. Feuer, B.Yu and S. Chib

Table 2. Posterior probabilities P .Mkjyn/ and Bayes information criterion BIC.Mk/ for the four
cancer sites†

Cancer site Best model Bayesian model Probabilities for the following values of k:
(PTB) selection criterion

0 1 2 3 4

Colorectal cancer M2 BF, p.Mk|yn/ 0.00 0.21 0.78 0.00 0.00
BIC.Mk/ −5.90 −7.90 −8.59 −6.16 −5.32

Prostate cancer M4 BF, p.Mk|yn/ 0.00 0.00 0.00 0.01 0.99
BIC.Mk/ −3.51 −3.92 −5.65 −5.82 −4.53

Breast cancer M2 BF, p.Mk|yn/ 0.00 0.00 0.95 0.04 0.00
(white women) BIC.Mk/ −5.64 −5.87 −6.98 −6.36 −5.90

Breast cancer M2 BF, p.Mk|yn/ 0.00 0.63 0.36 0.00 0.00
(black women) BIC.Mk/ −5.81 −6.03 −6.12 −5.07 −4.55

†Numbers in italics indicate the optimal model Mk from the BF or BIC method.

0.35 of being the best model. Note that the sum of the unconditional probabilities is not 1 over
all x. The probabilities in Fig. 2 stand for a series of success probabilities for a Bernoulli trial at
x from 1975 to 1999.

For all four sites, the graphs of the join point models by using the fitted values ŷ
.k/
i under the

best model Mk selected by the three model selection methods are given in Fig. 3, which also
gives the plots of predicted value ŷi by using BMA. The predicted values of yi from the PTB
method are very close to those from BIC and the BF and to those from BMA. When the PTB
method and both Bayesian methods pick the same best model Mk, the regression coefficients
.β0, β1, δ1, . . . , δk/, and hence the APC values, are very close (the results are not shown).

The priors that were employed for the regression coefficients in the Bayesian analysis were
quite flat. To study the sensitivity of the prior for σ2 with respect to the choice of prior mean
ω for σ2, we took the prior variance of σ2 to be 4ω2. For the application, the value of ω was
chosen to be 0.0001. As the value of w̄ for most of the common cancer sites, e.g. prostate, lung,
breast and colorectal, is of the order 0.0001 the Bayesian analysis using w̄ as the prior mean for
σ2 led to the same number of join points as with ω = 0:0001. It is interesting that we did not
observe any additional join points for any of the four cancer sites that were analysed above when
we lowered ω from 10−4 to say 10−6. When we increased ω from 10−4 to 10−2, the number of
join points that were selected by BIC remained the same as reported in Table 2 for all four cancer
sites; the number of join points that were selected by the BF, however, decreased to 1, 2, 0 and 0
for colorectal cancer, prostate cancer, breast cancer in white women and breast cancer in black
women respectively. This showed that the BF method was sensitive to the specification of the
prior value ω. We also examined a rare cancer site, i.e. brain cancer. The PTB method selected
one join point and the BIC method selected one join point for both ω =10−4 and ω =10−2.

When the errors were not identically distributed, the standardized inverses of the variances
for cancer mortality rates were used as weights ωi in the analysis. Because the weights were close
throughout 1973–1999, the results remained similar, i.e. the same numbers of join points were
picked and the parameter estimates were close. When the join points were allowed to be between
two data points in the augmented data xi, xi,1, . . . , xi,m−1, xi+1, i=1, . . . , n−1, with m=2, the
same numbers of join points were picked and the parameter estimates were close. However,
compared with Fig. 2, the posterior distributions of the join points were more spread, but the
shape and range of the histograms remained the same.
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Fig. 2. Unconditional probabilities that there is a join point at a specified year x for (a) colorectal cancer, (b) prostate cancer, (c) breast cancer in white
women and (d) breast cancer in black women
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Fig. 3. Predicted values ŷ under the best join point models and BMA (�, data point; , BF; � – � – �, BIC; . . . . . . ., PTB method;– – –, BMA): (a) colorectal
cancer; (b) prostate cancer; (c) breast cancer in white women; (d) breast cancer in black women
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4. Simulation studies

Let n = 27 and x ∈ {1, 2, . . . , 27}. Assume that the join point model is log-linear with normal
error ",

log.y/=β0 +β1x+
k0∑

r=1
δr.x− τr/

+ + ", "∼N.0, σ2/,

with the true number of join points k0 = 1 or k0 = 2, β0 = 5, β1 = log.1 + 0:01 APC1/ and δr =
log.1+0:01 APCr+1/− log.1+0:01 APCr/. The parameters (APCr, σ2) are specified in Tables 3
and 4. The signal-to-noise ratio |δr|=σ indicates the magnitude of the change. The simulations
were carried out as follows.

(a) Generate the data from the above models.
(b) Fit the Bayesian join point models and PTB join point model with 5% significance level to

the simulated data. To reduce the computation time, the maximum number of join points
K is set to be 3. The prior specifications for the parameters θk = .β0, β1, δ1, . . . , δk, τ1, . . . ,
τk, σ2/ are given in expression (18). The prior mean and variance for σ2 are ω and 4ω2. To
assess the sensitivity to the prior of σ2, the models were fitted for ω =10−6, 10−4, 10−2.

(c) Find the best join point model Mk with k join points and the corresponding coefficients
.β0, β1, δ1, . . . , δk/ and the Bayesian estimates of the join point locations .τ1, . . . , τk/.

(d) Repeat steps (a)–(c) 500 times. Find the frequencies of the best model Mk that has the
correct number of join points, i.e. k=k0. The posterior means τ̂j are rounded to the closest
integer. The root-mean-square error (RMSE) of the estimates of the join points, τ̂j, was
calculated as

Table 3. Optimal model Mk selected from three model selection methods and the RMSE of join point esti-
mates τ̂k for the one-join-point model log.y/Dβ0 Cβ1x C δ1.x � τ1/C C ", where τ1 D13

σ2 APC |δ1|=σ Method ω %(M0) %(M1) %(M2) %(M3) ∆(τ̂1|M1)

0.0002 (3,2) 0.7 PTB 1.8 97.4 0.8 — 1.633
BIC 10−4 — 85.6 9.4 5.0 1.610
BIC 10−2 — 97.2 2.8 — 1.464
BF 10−4 2.4 97.4 0.2 — 1.572
BF 10−2 100.0 — — — †

(3,1) 1.4 PTB — 99.0 1.0 — 0.623
BIC 10−4 — 84.4 10.2 5.4 0.608
BIC 10−2 — 97.4 2.6 — 0.658
BF 10−4 — 100.0 — — 0.620
BF 10−2 — 100.0 — — 0.659

0.0010 (3,2) 0.3 PTB 68.0 31.4 0.6 — 3.485
BIC 10−4 20.4 64.2 10.4 5.0 3.224
BIC 10−2 26.6 68.8 4.4 0.2 2.574
BF 10−4 80.4 19.6 — — 3.148
BF 10−2 99.6 0.4 — — 3.536

(3,1) 0.6 PTB 4.4 94.4 1.2 — 1.604
BIC 10−4 — 85.0 8.2 6.8 1.561
BIC 10−2 — 94.8 4.8 0.4 1.579
BF 10−4 3.4 96.4 0.2 — 1.532
BF 10−2 36.6 63.4 — — 1.531

†Not applicable.
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Table 4. Optimal model Mk selected from three model selection methods and the RMSE of join point
estimates τ̂k for a two-join-point model log.y/ D β0 C β1x C δ1.x � τ1/C C δ2.x � τ2/C C ", where τ1 D 8 and
τ2 D18

σ2 APC (|δ1|=σ, |δ2|=σ) Method ω %(M0) %(M1) %(M2) %(M3) ∆(τ̂1|M2) ∆(τ̂2|M2)

0.0002 (2,3,1) (0.7,1.4) PTB 0.2 48.4 50.8 0.6 1.904 0.874
BIC 10−4 — 9.6 79.0 11.4 2.251 0.836
BIC 10−2 — 23.2 69.6 7.2 4.311 1.247
BF 10−4 — 66.6 33.4 — 2.102 0.800
BF 10−2 95.8 4.2 — — † †

(1,3,1) (1.4,1.4) PTB — 0.4 99.6 — 0.895 0.870
BIC 10−4 — — 86.2 13.8 0.866 0.851
BIC 10−2 — — 95.6 4.4 1.248 0.769
BF 10−4 3.4 0.2 96.4 — 0.865 0.827
BF 10−2 100.0 — — — † †

0.0010 (2,3,1) (0.3,0.6) PTB 36.4 56.4 7.2 — 3.362 2.108
BIC 10−4 5.0 51.8 36.0 7.2 4.068 2.003
BIC 10−2 8.0 63.4 27.8 0.8 3.701 1.365
BF 10−4 57.4 40.8 1.8 — 3.266 2.309
BF 10−2 97.4 2.6 — — † †

(1,3,1) (0.6,0.6) PTB 49.6 14.4 36.0 — 2.133 2.022
BIC 10−4 11.0 4.8 74.8 9.4 2.269 2.088
BIC 10−2 17.8 6.4 72.2 3.6 2.235 1.636
BF 10−4 92.0 2.8 5.2 — 2.410 1.871
BF 10−2 100.0 — — — † †

†Not applicable.

∆.τ̂j|Mk; k =k0/=√
[average of {.τ̂j − τj/2 : Mk, k =k0}], j =1, . . . , k:

Tables 3 and 4 give the percentages of selecting the best model Mk by the Bayesian model selec-
tion methods (the BF and BIC) and the PTB method and the RMSE of the join point estimates
τ̂j, j = 1, . . . , k, conditioning on the best model Mk. The results from ω = 10−6 were very close
to those from ω =10−4 and are not shown here. The PTB method is used as the bench-mark for
the comparison with the Bayesian methods (the BF and BIC).

The results for the one-join-point model (Table 3) are summarized below.

(a) The PTB methods selected the correct model M1 with high percentages except for σ2 =
0:0010 and |δ1|=σ =0:3.

(b) When ω = 10−2, the BIC method picked numbers of M1 which were similar to those of
the PTB method or even outperformed the PTB method (σ2 = 0:0010 and |δ1|=σ =0:3).
When ω =10−4, the BIC method selected M1 less often.

(c) When σ2 =0:0002 and |δ1|=σ=1:4, the BF method was perfect. However, the BF method
was sensitive to the value ω for the prior. When ω increases from 10−4 to 10−2, the BF
method picked the correct model M1 less often.

(d) The RMSEs for τ̂1 from the three methods were very close.

Thus, the prior mean of the error variance, ω, does affect the Bayesian model selection meth-
ods. The BF method is more sensitive. When ω =10−2, the BIC method outperformed the PTB
method.
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The results for the two-join-point model (Table 4) are summarized below.

(a) The PTB method picked the correct model M2 fewer times when σ2 increased or |δr|=σ
decreased. For example, when σ2 =0:0010 and .|δ1|=σ, |δ2|=σ/= .0:3, 0:6/, the PTB meth-
od picked the correct model M2 only 7.2% of times.

(b) The BIC method performed well, especially for ω =10−2.
(c) The BF method was sensitive to the prior specification ω. The BF method performed

well when the change in APC is big and prior ω =10−4. When ω =10−2, the BF method
essentially picked the model without any join point.

(d) The RMSEs conditioned on the correct model M2 were similar for all the three models.

Overall, the BIC and the PTB methods selected similar numbers of join points. When the var-
iance σ2 = 0:001 or |δr|=σ is small, the BIC worked better compared with the PTB. Generally,
the BIC method performed better than the PTB and BF methods under the scenarios that were
considered in the simulation study.

5. Discussion

The Bayesian model selection method based on the BF and BIC, as demonstrated through the
analysis that is carried out in Section 3.2, is a good competitor to the existing PTB approach and
has an advantage over the latter as it yields a probability density of the models M0, . . . , MK and
the distribution of the join points conditional on the best model Mk. In cases where the posterior
probabilities are not concentrated at one mode, as in the case of breast cancer in black women
(see Fig. 1(d)), we need to examine the results further. The Bayesian approach also produces a
probability distribution on the locations of the join points corresponding to any of the models
M0, . . . , MK. However, for pure model selection BIC based on the MLE suffices.

On the basis of the results of the application and simulation, we believe that, for the Bayesian
analysis to be competitive with the frequentist PTB method, the BIC method with a prior for
σ2 with a mean such as ω = 0:01 is appropriate. There was no effect on the results when we
lowered l, the number of observations that are left out at the two ends, from 2 to 0 or to 1. Also,
increasing the number of runs from 10000 to 20000 did not make any significant difference in
the outcomes of the Bayesian analysis.

As a demonstration, we ran an augmented model M2 for colorectal cancer. The posterior dis-
tributions of join points τ1 and τ2 were more spread than their distributions in Fig. 1 (not shown
here). Thus, introducing augmented data points xiu without having their observed yiu-values did
not help in selecting the best model as it did not result in higher posterior probabilities for the
join points. For non-IID errors discussed above, the augmented data case is more complicated
as it requires the specification of weights {wi} at the augmented values of y.

Finally, the Bayesian model selection methodology that is developed here can be extended
to incorporate the case when join points are continuous. For example, we may assume that the
normalized spacings (gaps) defined by the join points have a Dirichlet distribution over the time
interval .x1, xn/. In this case, the posterior density of a join point conditional on the rest and
other parameters is a mixture of normal densities and is easy to simulate from. The results will
be addressed in a separate paper.

6. Conclusion

Bayesian model selection based on the BF and BIC for comparing a given number of join point
regression models was developed and applied to study the trend in the US age-adjusted cancer
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incidence rates for the prostate and colorectal cancer sites. The MCMC method of Chib (1995)
was used to generate the samples from the posterior, and to estimate the marginal likelihood of
the models under comparison. For the cancer data that were examined here, we found that the
BIC method compared quite well with the PTB method. The robustness of the Bayesian model
selection methods with respect to the choice of the prior for the error variance in the model was
studied, and some extensions were stated.

We recommend the Bayesian methods as a useful supplement to the PTB method, since the
posterior distribution of the number and location of the join points gives additional insight into
the plausibility of other join point models which could have been selected.
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