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A B S T R A C T

In this paper we consider the simulation-based Bayesian analysis of stochastic volatility in mean
(SVM) models. Extending the highly efficient Markov chain Monte Carlo mixture sampler for
the SV model proposed in Kim et al. (1998) and Omori et al. (2007), we develop an accurate
approximation of the logarithm of the non-central chi-squared distribution as a mixture of thirty
normal distributions. Under this mixture representation, we sample the parameters and latent
volatilities in one block. We also detail a correction of the small approximation error by using
additional Metropolis–Hastings steps. The proposed method is extended to the SVM model with
leverage. The methodology and models are applied to excess holding yields and S&P500 returns
in empirical studies, and the SVM models are shown to outperform other volatility models based
on marginal likelihoods.

1. Introduction

In financial time series, volatility clustering, the phenomenon of persistent volatility, is well known to exist. One way to model
time-varying volatility, or volatility clustering, is by using the stochastic volatility (SV) model of Taylor (2008). In the simplest
version of this model, the standard deviation of the outcome is given by an exponential transformation of an unobserved log-
variance variable ℎ𝑡, where ℎ𝑡 in turn is modeled by a stationary first-order autoregressive process. The model in this basic form can
be viewed as a state-space model in which the measurement equation is nonlinear in the latent variance ℎ𝑡. A significant variant of
this standard SV model is one in which the standard deviation of the outcome exp(ℎ𝑡∕2) appears as a predictor variable in the mean
of the measurement equation. This is called the SV in mean model (SVM) and is similar in spirit to the ARCH in mean (ARCH-M)
model introduced by Engle et al. (1987). Like the standard SV model, the SVM model has also been used in various fields, including
macroeconomics and finance (see Koopman and Hol Uspensky, 2002; Berument et al., 2009; Mumtaz and Zanetti, 2013; Cross et al.,
2023).

In the Markov chain Monte Carlo (MCMC) estimation of model parameters for the SV-type models, it is often observed that
sampling one latent variable conditional on all the other latent variables and parameters, which is referred to as the single-move
sampler, is inefficient in the sense that MCMC draws are highly autocorrelated. To address this issue, Kim et al. (1998) introduced
the mixture sampler as a highly efficient Bayesian estimation method for the standard SV model. This approach was extended to
SV models with jumps and fat-tailed errors in Chib et al. (2002) and to SV models with leverage in Omori et al. (2007).
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In the existing literature, the SVM model without leverage has been estimated by the multi-move (block) sampler (Shephard and
itt, 1997 and Omori and Watanabe, 2008), for example, Abanto-Valle et al. (2011, 2012), and Leão et al. (2017), and by other

similar approaches, for example, Chan (2017) and Abanto-Valle et al. (2021, 2023). There is no known mixture sampler approach for
SVM models with leverage. In this paper, we develop efficient MCMC based algorithms for SVM models, with and without leverage,
hat are based on accurate representations of these models in terms of mixtures of conditionally Gaussian linear state-space models,
ust as in the approach of Kim et al. (1998). However, due to the 𝛽 exp(ℎ𝑡∕2) term in the mean equation, instead of characterizing
the distribution of a central chi-squared distribution with one degrees of freedom in terms of mixtures of normal distributions, a
mixture representation to the distribution of a non-central chi-squared distribution with one degrees of freedom is needed, in which
the non-centrality parameter is 𝛽2. We show that the latter distribution has an infinite series expansion. Our estimation approach
uses a truncated version of this series expansion to develop a highly efficient fitting algorithm. It can be viewed as a generalized
mixture sampler. Furthermore, the small approximation error due to the truncation can be corrected by a data augmentation method
by incorporating a pseudo-target probability density whose marginal probability density is the exact conditional posterior density.

We apply our proposed method to excess holding yields and S&P500 returns data, and show that SVM models outperform other
SV models based on marginal likelihoods. The rest of this paper is organized as follows. Section 2 introduces the SVM model and
escribes the novel mixture sampler as an efficient sampling method for such models. The MCMC simulation and the particle filter
re described in Section 3. Section 4 illustrates the performance of this sampling method using the simulated data for several cases.

Section 5 further extends the SVM model to incorporate the leverage effect. Finally, in Section 6, we apply our proposed SVM model
to financial data and perform a model comparison. Conclusion and remarks are given in Section 7.

2. Stochastic volatility in mean model

2.1. SVM model

We define the stochastic volatility in mean (SVM) model as follows:

𝑦𝑡 = 𝛽 exp(ℎ𝑡∕2) + 𝜖𝑡 exp(ℎ𝑡∕2), 𝑡 = 1,… , 𝑛, (1)

ℎ𝑡+1 = 𝜇 + 𝜙(ℎ𝑡 − 𝜇) + 𝜂𝑡, 𝑡 = 1,… , 𝑛 − 1, (2)
(

𝜖𝑡
𝜂𝑡

)

i.i.d.∼ 𝑁(0, 𝛴), 𝛴 =
(

1 0
0 𝜎2

)

, (3)

ℎ1 ∼ 𝑁
(

𝜇 , 𝜎2

1 − 𝜙2

)

, (4)

where 𝑁(𝑚, 𝑆) denotes normal distribution with mean vector 𝑚 and covariance matrix 𝑆, 𝜃 = (𝜇 , 𝜙, 𝜎2, 𝛽) is a model parameter
vector of interest, and ℎ = (ℎ1,… , ℎ𝑛)′ is the logarithm of the latent volatility vector. We use the standard deviation exp(ℎ𝑡∕2) in
the mean equation, rather than the variance exp(ℎ𝑡), to match the units of the outcome variable. For 𝛽 ≠ 0, we denote it as the
stochastic volatility in mean (SVM) model. The standard stochastic volatility (SV) model is obtained as a special case with 𝛽 = 0.
For 𝜃, we assume the prior distribution

𝜇 ∼ 𝑁(𝜇0, 𝜎20 ),
𝜙 + 1
2

∼ 𝐵 𝑒𝑡𝑎(𝑎, 𝑏),

𝜎2 ∼ 𝐼 𝐺
( 𝑛0
2
,
𝑠0
2

)

, 𝛽 ∼ 𝑁(𝑏0, 𝐵0).

where 𝐵 𝑒𝑡𝑎(𝑎, 𝑏) denotes beta distribution with parameters (𝑎, 𝑏) and 𝐼 𝐺(𝑎, 𝑏) denotes inverse gamma distribution with parameters
𝑎, 𝑏) whose probability density function is

𝜋(𝑥|𝑎, 𝑏) ∝ 𝑥−(𝑎+1) exp(−𝑏𝑥), 𝑥 > 0, 𝑎, 𝑏 > 0.

We let 𝑓 (𝑦, ℎ|𝜃) and 𝜋(𝜃) denote the probability density function of (𝑦, ℎ) given 𝜃 and the prior probability density function of 𝜃
where 𝑦 ≡ (𝑦1,… , 𝑦𝑛)′. The posterior density function of (ℎ, 𝜃) is given in Appendix A.

Remark. It is straightforward to include the constant term in the measurement equation. However, noting that 𝛽 × exp(ℎ𝑡∕2) ≈
𝛽 × (1 + ℎ𝑡∕2), it is often confounded with 𝛽 and therefore omitted in this paper.

2.2. Transformation of the measurement equation

To sample ℎ from its conditional distribution, we transform Eq. (1) as below:

𝑦∗𝑡 = ℎ𝑡 + 𝜖∗𝑡 , 𝑦∗𝑡 = log(𝑦2𝑡 ), 𝜖∗𝑡 = log(𝛽 + 𝜖𝑡)2, (5)

Since (𝛽 + 𝜖𝑡) ∼ 𝑁(𝛽 , 1), its square (𝛽 + 𝜖𝑡)2 ∼ 𝜒2
1 (𝛽

2) where 𝜒2
1 (𝛽

2) denotes the non-central chi-square distribution with the non-
centrality parameter 𝛽2 and one degrees-of-freedom. The special case with 𝛽 = 0 is considered in Kim et al. (1998) and Omori et al.
(2007), who introduced the idea of accurately approximating the probability of the logarithm of the central chi-square distribution
with one degrees of freedom, log𝜒2(0),
1

2 
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Table 1
Selection of (𝑝𝑖 , 𝑚𝑖 , 𝑣2𝑖 , 𝑎𝑖 , 𝑏𝑖) introduced in Omori et al. (2007).

𝑖 𝑝𝑖 𝑚𝑖 𝑣2𝑖 𝑎𝑖 𝑏𝑖
1 0.00609 1.92677 0.11265 1.01418 0.50710
2 0.04775 1.34744 0.17788 1.02248 0.51124
3 0.13057 0.73504 0.26768 1.03403 0.51701
4 0.20674 0.02266 0.40611 1.05207 0.52604
5 0.22715 −0.85173 0.62699 1.08153 0.54076
6 0.18842 −1.97278 0.98583 1.13114 0.56557
7 0.12047 −3.46788 1.57469 1.21754 0.60877
8 0.05591 −5.55246 2.54498 1.37454 0.68728
9 0.01575 −8.68384 4.16591 1.68327 0.84163
10 0.00115 −14.65000 7.33342 2.50097 1.25049

𝑓 (𝜖∗𝑡 ) =
1

√

2𝜋
exp

( 𝜖∗𝑡 − exp(𝜖∗𝑡 )
2

)

, −∞ < 𝜖∗𝑡 < ∞,

by a mixture of normal distributions. Below, we elaborate a highly accurate approximation of the distribution of 𝜖∗𝑡 given 𝛽 ≠ 0
by the mixture of normal distributions. Let 𝑝(𝑥; 𝜈 , 𝜆) be the probability density function of 𝜒2

𝜈 (𝜆). It can be expressed as an infinite
mixture of central 𝜒2 probability density functions (see, e.g. Johnson et al., 1995):

𝑝(𝑥; 𝜈 , 𝜆) =
∞
∑

𝑗=0

⎧

⎪

⎨

⎪

⎩

(

𝜆
2

)𝑗

𝑗!
exp

(

−𝜆
2

)

⎫

⎪

⎬

⎪

⎭

𝑝(𝑥; 𝜈 + 2𝑗 , 0),

𝑝(𝑥; 𝜈 + 2𝑗 , 0) = 𝑥
𝜈
2+𝑗−1

2
𝜈
2+𝑗𝛤 ( 𝜈2 + 𝑗)

exp
(

−𝑥
2

)

.

Setting 𝜈 = 1 and noting that

𝑝(𝑥; 1 + 2𝑗 , 0) =
𝑥𝑗𝛤

(

1
2

)

2𝑗𝛤
(

1
2 + 𝑗

) × 𝑝(𝑥; 1, 0),

we obtain the expression

𝑝(𝑥; 1, 𝜆) =
∞
∑

𝑗=0

⎧

⎪

⎨

⎪

⎩

(

𝜆
2

)𝑗

𝑗!
exp

(

−𝜆
2

)

⎫

⎪

⎬

⎪

⎭

𝑥𝑗𝛤
(

1
2

)

2𝑗𝛤
(

1
2 + 𝑗

) × 𝑝(𝑥; 1, 0). (6)

Let 𝑓 (𝑢; 𝜆) denote the probability density function of 𝑈 ∼ log𝜒2
1 (𝜆). Using (6), it follows that

𝑓 (𝑢; 𝜆) =
∞
∑

𝑗=0

(

𝜆
2

)𝑗

𝑗!
exp

(

−𝜆
2

) exp(𝑢𝑗)𝛤
(

1
2

)

2𝑗𝛤
(

1
2 + 𝑗

) × 𝑓 (𝑢; 0). (7)

As in Omori et al. (2007), we consider the mixture of ten normal distributions to approximate 𝑓 (𝑢; 0), the probability density function
of log𝜒2

1 (0),

𝑓 (𝑢; 0) ≈
𝐾
∑

𝑖=1
𝑝𝑖𝑣

−1
𝑖 𝜙

(

𝑢 − 𝑚𝑖
𝑣𝑖

)

, 𝐾 = 10, (8)

where 𝜙(⋅) denotes the probability density function of the standard normal distribution. The values of (𝑝𝑖, 𝑚𝑖, 𝑣2𝑖 ) are taken from Omori
et al. (2007) and are reproduced in Table 1. The columns labeled 𝑎𝑖 and 𝑏𝑖 will be used when we consider the model with leverage
in Section 5.

By substituting Eqs. (8) to (7), we obtain

𝑓 (𝑢; 𝜆) ≈
∞
∑

𝑗=0

(

𝜆
2

)𝑗

𝑗!
exp

(

−𝜆
2

) exp(𝑢𝑗)𝛤
(

1
2

)

2𝑗𝛤
(

1
2 + 𝑗

)

𝐾
∑

𝑖=1
𝑝𝑖𝑣

−1
𝑖 𝜙

(

𝑢 − 𝑚𝑖
𝑣𝑖

)

=
𝐾
∑

𝑖=1

∞
∑

𝑗=0
𝑝𝑖 exp

(

−𝜆
2

) 𝛤
(

1
2

)

2𝑗𝑗!𝛤
(

1
2 + 𝑗

)

(𝜆
2

)𝑗
exp

(

𝑚𝑖𝑗 +
𝑗2𝑣2𝑖
2

)

× 1
√

2
exp

{

−
(𝑢 − (𝑚𝑖 + 𝑗 𝑣2𝑖 ))2

2𝑣2𝑖

}

2𝜋 𝑣𝑖

3 
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Fig. 1. True and approximation densities of log𝜒2
1 (𝛽

2) for 𝛽 = 0.3, 0.5 and 0.7.

=
𝐾
∑

𝑖=1

∞
∑

𝑗=0
𝑝𝑖 exp

(

−𝜆
2
+ 𝑚𝑖𝑗 +

𝑗2𝑣2𝑖
2

) 𝛤
(

1
2

)

2𝑗𝑗!𝛤
(

1
2 + 𝑗

)

(𝜆
2

)𝑗

×𝑣−1𝑖 𝜙

(

𝑢 − (𝑚𝑖 + 𝑗 𝑣2𝑖 )
𝑣𝑖

)

≈
𝐾
∑

𝑖=1

𝐽
∑

𝑗=0
�̃�𝑖,𝑗𝑣

−1
𝑖 𝜙

( 𝑢 − �̃�𝑖,𝑗

𝑣𝑖

)

, (9)

where

�̃�𝑖,𝑗 =
𝑤𝑖,𝑗

∑𝐾
𝑖=1

∑𝐽
𝑗=0 𝑤𝑖,𝑗

, 𝑤𝑖,𝑗 = 𝑝𝑖 exp

(

−𝜆
2
+ 𝑚𝑖𝑗 +

𝑗2𝑣2𝑖
2

) 𝛤
(

1
2

)

2𝑗𝑗!𝛤
(

1
2 + 𝑗

)

(𝜆
2

)𝑗
,

and �̃�𝑖,𝑗 = 𝑚𝑖 + 𝑗 𝑣2𝑖 . In the last equality, we truncate the summation at 𝑗 = 𝐽 and normalize �̃�𝑖,𝑗 to ensure that ∑𝐾
𝑖=1

∑𝐽
𝑗=0 �̃�𝑖,𝑗 = 1.

This expression implies that the probability density function of log𝜒2
1 (𝜆) is approximated by the mixture of 𝐾(𝐽 + 1) normal

distributions. Especially, when 𝜆 = 0 and 𝐽 = 0, the approximation (9) reduces to (8). The extent of the impact on the approximation
is based on the value 𝑤𝑖,𝑗 which includes 𝜆 = 𝛽2. The coefficient 𝛽 of volatility exp(ℎ𝑡∕2) is estimated to be less than one in past
empirical studies. When 𝜆 = 𝛽2 is less than 1.0, 𝐽 = 1 or 2 makes ∑𝐾

𝑖=1
∑𝐽

𝑗=0 𝑤𝑖,𝑗 more than 0.9. For 𝐽 = 2, Figs. 1 and 2 show
the true and approximate densities of log𝜒2

1 (𝛽
2) for 𝛽 = 0.3, 0.5 and 0.7 (equivalently, 𝛽 = −0.3,−0.5 and −0.7) and the difference

between the two densities, respectively. Since these differences are quite small and the approximation almost overlaps the true
probability density of log𝜒2

1 (𝛽
2) even for 𝛽 = 0.7, we employ 𝐽 = 2 in this paper. That is, we approximate the probability density of

𝜖∗𝑡 |𝛽 ∼ log𝜒2
1 (𝛽

2) by

𝑓 (𝜖∗𝑡 |𝛽) ≈
10
∑

𝑖=1

2
∑

𝑗=0
�̃�𝑖,𝑗𝑣

−1
𝑖 𝜙

( 𝑢 − �̃�𝑖,𝑗

𝑣𝑖

)

, (10)

where

�̃�𝑖,𝑗 =
𝑝𝑖 exp

(

𝑚𝑖𝑗 +
𝑗2𝑣2𝑖
2

)

1
2𝑗 𝑗!𝛤 (1∕2+𝑗)

(

𝛽2

2

)𝑗

∑10
𝑖=1

∑2
𝑗=0 𝑝𝑖 exp

(

𝑚𝑖𝑗 +
𝑗2𝑣2𝑖
2

)

1
2𝑗 𝑗!𝛤 (1∕2+𝑗)

(

𝛽2
2

)𝑗
, �̃�𝑖,𝑗 = 𝑚𝑖 + 𝑗 𝑣2𝑖 .

Let 𝑠𝑡 = (𝑠1𝑡, 𝑠2𝑡) ∈ {(𝑖, 𝑗)|𝑖 = 1,… , 𝐾 , 𝑗 = 0,… , 𝐽} denote the component of the mixture of the normal densities in (10) at time 𝑡.
Given 𝑠𝑡 = (𝑖, 𝑗), we have 𝜖∗𝑡 |𝑠𝑡 = (𝑖, 𝑗) ∼ 𝑁(�̃�𝑖,𝑗 , 𝑣2𝑖 ) and we see that the SVM model can be approximated by the linear Gaussian state
space form

𝑦∗𝑡 = �̃�𝑠1𝑡 ,𝑠2𝑡 + ℎ𝑡 + (𝑣𝑠1𝑡 , 0)𝑧𝑡, (11)
ℎ𝑡+1 = 𝜇(1 − 𝜙) + 𝜙ℎ𝑡 + (0, 𝜎)𝑧𝑡,

𝑡 = 1,… , 𝑛 − 1, ℎ1 ∼ 𝑁
(

𝜇 , 𝜎2

1 − 𝜙2

)

, |𝜙| < 1, (12)

𝑧𝑡 = (𝑧1𝑡, 𝑧2𝑡)′ ∼ 𝑁(0, 𝐼2),
where 𝑦∗𝑡 = log(𝑦2𝑡 ). In the following sections, �̃�𝑠1𝑡 ,𝑠2𝑡 and �̃�𝑠1𝑡 ,𝑠2𝑡 are abbreviated as �̃�𝑠𝑡 and �̃�𝑠𝑡 , and we write 𝑣2𝑠𝑡 instead of 𝑣2𝑠1𝑡 .

3. MCMC simulation and associated particle filter
4 
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Fig. 2. Differences between the true density of log𝜒2
1 (𝛽

2) and the approximate densities for 𝛽 = 0.3, 0.5 and 0.7.

3.1. MCMC algorithm

Algorithm 1 (Generalized Mixture Sampler, GMS). Let us denote 𝜃 = (𝛼 , 𝛽) where 𝛼 = (𝜇 , 𝜙, 𝜎2). The Markov chain Monte Carlo
simulation is implemented in four blocks:

1. Initialize ℎ and 𝜃 = (𝛼 , 𝛽).
2. Generate 𝛽|𝛼 , ℎ, 𝑦 ∼ 𝜋(𝛽|𝛼 , ℎ, 𝑦).
3. Generate (𝛼 , ℎ)|𝛽 , 𝑦 ∼ 𝜋(𝛼 , ℎ|𝛽 , 𝑦).
4. Go to Step 2.

Step 2. Generation of 𝛽|𝛼 , ℎ, 𝑦
The conditional posterior distribution of 𝛽 is normal with mean 𝑏1 and variance 𝐵1 where

𝑏1 = 𝐵1
(

𝑋′𝛺−1𝑦 + 𝐵−1
0 𝑏0

)

, 𝐵−1
1 = 𝑋′𝛺−1𝑋 + 𝐵−1

0 ,

and

𝑋 =

⎛

⎜

⎜

⎜

⎜

⎝

exp(ℎ1∕2)
exp(ℎ2∕2)

⋮
exp(ℎ𝑛∕2)

⎞

⎟

⎟

⎟

⎟

⎠

, 𝛺 = diag
(

exp(ℎ1), exp(ℎ2),… , exp(ℎ𝑛)
)

.

Thus we generate 𝛽 ∼ 𝑁(𝑏1, 𝐵1).

Step 3. Generation of (𝛼 , ℎ)|𝛽 , 𝑦
As discussed in the previous section, we sample ℎ using the mixture sampler using the mixture of normal distributions. Since

our approximation is highly accurate, we can use this mixture approximation directly in Step 3, as in Step 2 of Algorithm 1 in Chib
et al. (2002). However, one can remove the small approximation error with an additional MH step, as detailed in Algorithm 2, GMS
with MH algorithm (GMH), given in the Appendix A, but due to the fact that the tailored mixture very closely fits the non-central
chi-squared distribution, this additional step would be rarely necessary.

Let 𝑓𝑁 (⋅|𝑚, 𝑠2) denote the probability density of 𝑁(𝑚, 𝑠2), and let 𝜋(𝛼) denote the prior density of 𝛼. Define our target density in
Step 3 as

𝜋∗(𝛼 , ℎ, 𝑠|𝛽 , 𝑦) = 𝜋∗(𝛼 , ℎ|𝛽 , 𝑠, 𝑦) × 𝑞(𝑠),

= 𝜋∗(ℎ|𝛼 , 𝛽 , 𝑠, 𝑦)𝜋∗(𝛼|𝛽 , 𝑠, 𝑦) × 𝑞(𝑠),

𝑞(𝑠) =
𝑛
∏

𝑡=1
�̃�𝑠𝑡 , 𝑦∗𝑡 = log(𝑦2𝑡 ),

where

𝜋∗(ℎ|𝛼 , 𝑠, 𝛽 , 𝑦∗) =
∏𝑛

𝑡=1 𝑔(𝑦
∗
𝑡 |ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡)

𝑚(𝑦∗|𝛼 , 𝑠, 𝛽) ×
𝑛−1
∏

𝑡=1
𝑓𝑁 (ℎ𝑡+1|𝜇(1 − 𝜙) + 𝜙ℎ𝑡, 𝜎2) × 𝑓𝑁

(

ℎ1
|

|

|

|

𝜇 , 𝜎2

1 − 𝜙2

)

.

𝜋∗(𝛼|𝑠, 𝛽 , 𝑦∗) ∝ 𝑚(𝑦∗|𝛼 , 𝑠, 𝛽)𝜋(𝛼),
𝑔(𝑦∗𝑡 |ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡) = 𝑓𝑁 (𝑦∗𝑡 |�̃�𝑠𝑡 + ℎ𝑡, 𝑣2𝑠𝑡 ), 𝑡 = 1,… , 𝑛,

and �̃�𝑠𝑡 = �̃�𝑠1𝑡 ,𝑠2𝑡 and �̃�𝑠𝑡 = �̃�𝑠1𝑡 ,𝑠2𝑡 are defined in (10) and (𝑝𝑠1𝑡 , 𝑚𝑠1𝑡 , 𝑣2𝑠1𝑡 ) are given in Table 1. Note that 𝑚(𝑦∗|𝛼 , 𝑠, 𝛽) is a normalizing
constant for 𝜋∗(ℎ|𝛼 , 𝑠, 𝛽 , 𝑦∗) and is evaluated using the Kalman filter algorithm. Only �̃�𝑠𝑡 , which depends on 𝛽, needs to be updated
according to the formula in (10) before sampling. Note that the target density 𝜋∗(𝛼 , ℎ|𝛽 , 𝑦) approximates the true conditional density
𝜋(𝛼 , ℎ|𝛽 , 𝑦) accurately. We generate the sample (𝛼 , ℎ, 𝑠) in two steps.
5 
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(a) Generate 𝑠 ∼ 𝑞(𝑠|ℎ, 𝛼 , 𝛽 , 𝑦∗) where

𝑞(𝑠|ℎ, 𝛼 , 𝛽 , 𝑦∗) =
𝑛
∏

𝑡=1

�̃�𝑠𝑡𝑔(𝑦
∗
𝑡 |ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡)

∑10
𝑖=1

∑2
𝑗=0 �̃�𝑖,𝑗𝑔(𝑦

∗
𝑡 |ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡 = (𝑖, 𝑗))

.

(b) Generate (𝛼 , ℎ) ∼ 𝜋∗(𝛼 , ℎ|𝑠, 𝛽 , 𝑦)

(i) Generate 𝛼 ∼ 𝜋∗(𝛼|𝑠, 𝛽 , 𝑦∗). We first transform 𝛼 to 𝜗 = (𝜇 , log{(1 +𝜙)∕(1 −𝜙)}, log 𝜎2) to remove parameter constraints and
perform the Metropolis–Hastings (MH) algorithm (Chib and Greenberg, 1995) to sample from the conditional posterior
distribution with density 𝜋∗(𝜗|𝑠, 𝛽 , 𝑦) = 𝜋∗(𝛼|𝑠, 𝛽 , 𝑦) × |𝑑 𝛼∕𝑑 𝜗| where |𝑑 𝛼∕𝑑 𝜗| is the Jacobian of the transformation.
Compute the posterior mode �̂� and define 𝜗∗ and 𝛴∗ as

𝜗∗ = �̂�, 𝛴−1
∗ = − 𝜕2 log𝜋∗(𝜗|𝑠, 𝛽 , 𝑦)

𝜕 𝜗𝜕 𝜗′
|

|

|

|𝜗=�̂�
.

Given the current value 𝜗, generate a candidate 𝜗† from the distribution 𝑁(𝜗∗, 𝛴∗) and accept it with probability

𝛼(𝜗, 𝜗†|𝑠, 𝛽 , 𝑦) = min
{

1,
𝜋∗(𝜗†|𝑠, 𝛽 , 𝑦)𝑓𝑁 (𝜗|𝜗∗, 𝛴∗)
𝜋∗(𝜗|𝑠, 𝛽 , 𝑦)𝑓𝑁 (𝜗†|𝜗∗, 𝛴∗)

}

,

where 𝑓𝑁 (⋅|𝜗∗, 𝛴∗) is the probability density of 𝑁(𝜗∗, 𝛴∗). If the candidate 𝜗† is rejected, we take the current value 𝜗 as
the next draw. When the Hessian matrix is not negative definite, we may take a flat normal proposal 𝑁(𝜗∗, 𝑐0𝐼) using
some large constant 𝑐0.

(ii) Generate ℎ|𝛼 , 𝑠, 𝛽 , 𝑦 ∼ 𝜋∗(ℎ|𝛼 , 𝑠, 𝛽 , 𝑦). We generate ℎ = (ℎ1,… , ℎ𝑛) using a simulation smoother introduced by de Jong and
Shephard (1995) and Durbin and Koopman (2002) for the linear Gaussian state space model as in (11)–(12).

3.2. Associated particle filter

We describe how to compute the likelihood 𝑓 (𝑦|𝜃)

𝑓 (𝑦|𝜃) = ∫ 𝑓 (𝑦, ℎ|𝜃)𝑑 ℎ,

numerically as it is necessary to obtain the marginal likelihood, 𝑓 (𝑦) = ∫ 𝑓 (𝑦|𝜃)𝜋(𝜃)𝑑 𝜃 and Bayes factor for the model comparison.
he filtering and the associated particle computations are carried out by the auxiliary particle filter (see e.g. Pitt and Shephard,

1999; Omori et al., 2007). Let us denote 𝑌𝑡 = (𝑦1,… , 𝑦𝑛), and

𝑓 (𝑦𝑡|ℎ𝑡, 𝜃) = 1
√

2𝜋
exp

[

−1
2
ℎ𝑡 −

1
2
{𝑦𝑡 − 𝛽 exp(ℎ𝑡∕2)}2 exp(−ℎ𝑡)

]

𝑓 (ℎ𝑡+1|ℎ𝑡, 𝑦𝑡, 𝜃) = 1
√

2𝜋(1 − 𝜌2)𝜎
exp

{

−
(ℎ𝑡+1 − 𝜇𝑡+1)2

2𝜎2

}

,

𝜇𝑡+1 = 𝜇 + 𝜙(ℎ𝑡 − 𝜇),

and consider the importance function for the auxiliary particle filter

𝑞(ℎ𝑡+1, ℎ𝑖𝑡|𝑌𝑡+1, 𝜃) ∝ 𝑓 (𝑦𝑡+1|𝜇𝑖
𝑡+1, 𝜃)𝑓 (ℎ𝑡+1|ℎ𝑖𝑡, 𝑦𝑡, 𝜃)𝑓 (ℎ𝑖𝑡|𝑌𝑡, 𝜃)

∝ 𝑓 (ℎ𝑡+1|ℎ𝑖𝑡, 𝑦𝑡, 𝜃)𝑞(ℎ𝑖𝑡|𝑌𝑡+1, 𝜃)
where

𝑞(ℎ𝑖𝑡|𝑌𝑡+1, 𝜃) =
𝑓 (𝑦𝑡+1|𝜇𝑖

𝑡+1, 𝜃)𝑓 (ℎ𝑖𝑡|𝑌𝑡, 𝜃)
∑𝐼

𝑗=1 𝑓 (𝑦𝑡+1|𝜇
𝑗
𝑡+1, 𝜃)𝑓 (ℎ

𝑗
𝑡 |𝑌𝑡, 𝜃)

,

𝑓 (𝑦𝑡+1|𝜇𝑖
𝑡+1, 𝜃) =

1
√

2𝜋
exp

[

−1
2
𝜇𝑖
𝑡+1 −

1
2
{𝑦𝑡 − 𝛽 exp(ℎ𝑖𝑡∕2)}

2 exp(−𝜇𝑖
𝑡+1)

]

,

𝜇𝑖
𝑡+1 = 𝜇 + 𝜙(ℎ𝑖𝑡 − 𝜇).

This leads to the following particle filtering.

1. Compute 𝑓 (𝑦1|𝜃) and 𝑓 (ℎ𝑖1|𝑌1, 𝜃) = 𝜋𝑖
1 for 𝑖 = 1,… , 𝐼 .

(a) Generate ℎ𝑖1 ∼ 𝑓 (ℎ1|𝜃) (= 𝑁(𝜇 , 𝜎2∕(1 − 𝜙2))) for 𝑖 = 1,… , 𝐼 .
(b) Compute

𝜋𝑖
1 =

𝑤𝑖
∑𝐼

𝑖=1 𝑤𝑖
, 𝑤𝑖 = 𝑓 (𝑦1|ℎ1, 𝜃), 𝑊𝑖 = 𝐹 (𝑦1|ℎ1, 𝜃),

𝑓 (𝑦1|𝜃) = 𝑤1 =
1

𝐼
∑

𝑤𝑖, 𝐹 (𝑦1|𝜃) = 𝑊 1 =
1

𝐼
∑

𝑊𝑖,
𝐼 𝑖=1 𝐼 𝑖=1

6 
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Fig. 3. Sample paths for 𝜃, ℎ250, and ℎ750. 𝛽 = 0.3.

Fig. 4. Sample autocorrelation functions for 𝜃, ℎ250, and ℎ750. 𝛽 = 0.3.

where 𝑓 (𝑦1|𝜃) and 𝐹 (𝑦1|𝜃) are the marginal density function and the marginal distribution function of 𝑦1 given 𝜃. Let
𝑡 = 1.

2. Compute 𝑓 (𝑦𝑡+1|𝜃) and 𝑓 (ℎ𝑖𝑡+1|𝑌𝑡+1, 𝜃) = 𝜋𝑖
𝑡+1 for 𝑖 = 1,… , 𝐼 .

(a) Sample ℎ𝑖𝑡 ∼ 𝑞(ℎ𝑡|𝑌𝑡, 𝜃), 𝑖 = 1,… , 𝐼 .
(b) Generate ℎ𝑖𝑡+1|ℎ

𝑖
𝑡, 𝑦𝑡, 𝜃 ∼ 𝑓 (ℎ𝑡+1|ℎ𝑖𝑡, 𝑦𝑡, 𝜃) (= 𝑁(𝜇𝑖

𝑡+1, 𝜎2)) for 𝑖 = 1,… , 𝐼 .
(c) Compute

𝜋𝑖
𝑡+1 =

𝑤𝑖
∑𝐼

𝑖=1 𝑤𝑖
, 𝑤𝑖 =

𝑓 (𝑦𝑡+1|ℎ𝑖𝑡+1, 𝜃)𝑓 (ℎ𝑖𝑡+1|ℎ𝑖𝑡, 𝑦𝑡, 𝜃)𝑓 (ℎ𝑖𝑡|𝑌𝑡, 𝜃)
𝑓 (ℎ𝑖𝑡+1|ℎ

𝑖
𝑡, 𝑦𝑡, 𝜃)𝑞(ℎ𝑖𝑡|𝑌𝑡+1, 𝜃)

=
𝑓 (𝑦𝑡+1|ℎ𝑖𝑡+1, 𝜃)𝑓 (ℎ𝑖𝑡|𝑌𝑡, 𝜃)

𝑞(ℎ𝑖𝑡|𝑌𝑡+1, 𝜃)
,

𝑊𝑖 =
𝐹 (𝑦𝑡+1|ℎ𝑖𝑡+1, 𝜃)𝑓 (ℎ𝑖𝑡|𝑌𝑡, 𝜃)

𝑞(ℎ𝑖𝑡|𝑌𝑡+1, 𝜃)
,

𝑓 (𝑦𝑡+1|𝑌𝑡, 𝜃) = 𝑤𝑡+1 =
1
𝐼

𝐼
∑

𝑖=1
𝑤𝑖, 𝐹 (𝑦𝑡+1|𝜃) = 𝑊 𝑡+1 =

1
𝐼

𝐼
∑

𝑖=1
𝑊𝑖.

3. Increment 𝑡 and go to 2.

It can be shown that as 𝐼 → ∞, 𝑤𝑡+1
𝑝
←←←←←←→ 𝑓 (𝑦𝑡+1|𝑌𝑡, 𝜃), and 𝑊 𝑡+1

𝑝
←←←←←←→ 𝐹 (𝑦𝑡+1|𝑌𝑡, 𝜃). Therefore, it follows that

𝑛
∑

𝑡=1
log𝑤𝑡

𝑝
←←←←←←→

𝑛
∑

𝑡=1
log 𝑓 (𝑦𝑡|𝑦1,… , 𝑦𝑡−1, 𝜃),

is a consistent estimate of the conditional log-likelihood and can be used as an input in the calculation of the marginal likelihood
by the method of Chib (1995), as extended to MH sampler output by Chib and Jeliazkov (2001).

4. Illustrative numerical examples

This section illustrates our proposed estimation method using the simulated data. We generate 𝑦 (𝑡 = 1,… , 1000) by setting
𝑡

7 
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Table 2
True values, posterior means, posterior standard deviations, 95% credible intervals, and inefficiency factors. 𝛽 = 0.3.
Par True Mean Std Dev 95% interval IF

𝜇 0 0.091 0.298 (−0.514, 0.673) 5
𝜙 0.97 0.971 0.011 (0.947, 0.988) 5
𝜎 0.3 0.261 0.038 (0.195, 0.344) 10
𝛽 0.3 0.316 0.033 (0.251, 0.380) 1
ℎ250 2.310 1.729 0.459 (0.852, 2.651) 4
ℎ750 2.077 1.675 0.416 (0.888, 2.516) 2

Fig. 5. Log volatilities: True values, 95% credible intervals and posterior median.

𝜙 = 0.97, 𝜇 = 0, 𝜎 = 0.3.
To avoid the case 𝑦𝑡 = 0 which leads to log(𝑦2𝑡 ) = −∞, we introduce very small value 𝑐 and use 𝑦∗𝑡 = log(𝑦2𝑡 + 𝑐). We set 𝑐 equal
to 1.0 × 10−7. For 𝛽, we consider three cases 𝛽 = 0.3, 0.5 and 0.7 to investigate the effect of the approximation error. The common
random numbers are used to generate 𝑦𝑡’s for three cases. In these simulation studies, we specify the prior as

𝜇 ∼ 𝑁(0, 32),
𝜙 + 1
2

∼ 𝐵 𝑒𝑡𝑎(1, 1),

𝜎2 ∼ 𝐼 𝐺
( 0.001

2
, 0.001

2

)

, 𝛽 ∼ 𝑁 (0, 1) .

The prior on (𝜙 + 1)∕2 is set to ensure the stationarity of the latent volatility process. We iterated MCMC simulation 50,000 times
after discarding initial 10,000 MCMC draws as burn-in period.

(i) Case 𝛽 = 0.3. The acceptance rates of the MH algorithms for 𝛼 is 72.8%. The sample paths are given in Fig. 3, and the MCMC
chain mixes quite well. The sample autocorrelation functions are shown in Fig. 4 and they decay very quickly. Table 2 shows
the posterior mean, 95% credible intervals and inefficiency factors (IF). The estimated parameters are close to true values. IF
is calculated by 1 + 2∑∞

𝑠=1 𝜌𝑠 where 𝜌𝑠 is the sample autocorrelation at lag 𝑠. This is interpreted as the ratio of the numerical
variance of the posterior mean from the chain to the variance of the posterior mean from hypothetical uncorrelated draws.
They are overall small as expected, which means that the MCMC sampling is close to the uncorrelated sampling. Note that
those IF’s for ℎ250 and ℎ750 are quite small, which suggests the use of mixture sampler for the MH algorithm for ℎ is highly
efficient. Finally Fig. 5 shows true values, 95% credible intervals and the posterior medians or volatilities. The estimated
smoothed values follow the true values that are almost covered by 95% intervals, indicating that MCMC estimations works
well.

(ii) Case 𝛽 = 0.5. The acceptance rates of the MH algorithms for 𝛼 is 73.2%. The plot of the sample paths and log volatilities
are similar to those in (i) and hence omitted to save space. Table 3 shows the posterior means, 95% credible intervals and
inefficiency factors. The estimated parameters are close to true values, and inefficiency factors (IF) are overall small as in (i).
The IF’s for ℎ250 and ℎ750 are sufficiently small, and indicates that the algorithm is still highly efficient.

(iii) Case 𝛽 = 0.7. The acceptance rates of the MH algorithms for 𝛼 is 75.2%. The convergence seems to become slightly slower,
but the chain mixes well. The plot of the sample paths and log volatilities are similar to those in (i) and hence omitted to save
space. Table 4 shows the posterior means, 95% credible intervals and inefficiency factors. The estimated parameters are close
to true values, and inefficiency factors (IF) are overall relatively small. The IF’s for ℎ250 and ℎ750 are small, and indicates that
the algorithm is still works well.

These simulation results show that our proposed sampling method works well for those 𝛽’s found in the past empirical studies.

Comparison of sampling efficiencies
Next, we compare the sampling efficiency of our proposed method with the method in Chan (2017), which was shown to be

more efficient than the more complex methods of McCausland (2012) and Andrieu et al. (2010). Chan’s method needs to implement
the accept-reject Metropolis–Hastings (ARMH) algorithm (Chib and Greenberg, 1995) (the usual MH algorithm could be used, but
then the rejection rate becomes much higher), using a proposal distribution based on a multivariate normal approximation of the
8 
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Table 3
True values, posterior means, posterior standard deviations, 95% credible intervals, and inefficiency factors. 𝛽 = 0.5.
Par True Mean Std Dev 95% interval IF

𝜇 0 0.104 0.319 (−0.548, 0.734) 31
𝜙 0.97 0.971 0.011 (0.948, 0.988) 13
𝜎 0.3 0.262 0.036 (0.198, 0.339) 15
𝛽 0.5 0.511 0.035 (0.443, 0.579) 2
ℎ250 2.310 1.797 0.461 (0.903, 2.720) 4
ℎ750 2.077 1.645 0.412 (0.875, 2.493) 4

Table 4
True values, posterior means, posterior standard deviations, 95% credible intervals, and inefficiency factors. 𝛽 = 0.7.
Par True Mean Std Dev 95% interval IF

𝜇 0 0.114 0.304 (−0.510, 0.703) 5
𝜙 0.97 0.971 0.010 (0.948, 0.988) 6
𝜎 0.3 0.266 0.036 (0.202, 0.342) 9
𝛽 0.7 0.704 0.037 (0.633, 0.776) 3
ℎ250 2.310 1.874 0.452 (1.008, 2.779) 2
ℎ750 2.077 1.661 0.407 (0.898, 2.500) 2

Table 5
Inefficiency factors of selected ℎ𝑡 ’s with their mean (ℎ) and median (ℎ𝑚𝑒𝑑 ) in our simulation studies. Generalized mixture sampler
(GMS), GMS with MH step for approximation correction (GMH), and Chan’s method (Chan, 2017) (CHN).
ℎ𝑡 𝛽 = 0.3 𝛽 = 0.5 𝛽 = 0.7

GMS GMH CHN GMS GMH CHN GMS GMH CHN

ℎ100 6 11 32 2 26 18 2 94 87
ℎ200 4 32 50 5 21 40 6 85 89
ℎ300 2 12 22 7 31 43 3 116 73
ℎ400 4 23 67 3 41 63 4 82 65
ℎ500 8 10 43 6 32 60 6 88 209
ℎ600 1 17 41 2 35 48 2 38 40
ℎ700 5 18 50 5 26 15 4 51 64
ℎ800 4 12 38 6 71 14 3 56 103
ℎ900 3 11 27 7 48 30 4 25 26
ℎ1000 2 6 23 3 35 42 5 114 99
ℎ 8 28 182 9 68 105 9 135 165
ℎ𝑚𝑒𝑑 7 15 74 7 25 35 4 62 70

Table 6
Computational time (seconds) for our simulation studies. We draw 50,000 MCMC samples after discarding initial 10,000 samples
as burn-in period.

𝛽 = 0.3 𝛽 = 0.5 𝛽 = 0.7
GMS GMH CHN GMS GMH CHN GMS GMH CHN

Time 1792 1910 133,884 1701 1935 134,127 1700 1948 126,168

full conditional distribution, obtained by a second-order Taylor expansion.
Table 5 shows the IFs for selected values (ℎ𝑡, 𝑡 = 100, 200,… , 1000), the mean (ℎ) and the median (ℎ𝑚𝑒𝑑) of ℎ𝑡 for 𝛽 = 0.3, 0.5 and

0.7. Among the three algorithms, the generalized mixture sampler (Algorithm 1, denoted by GMS) is the most efficient with IFs less
han 10. These are substantially smaller than those of the Chan’s method (denote as CHN). The IFs for Algorithm 2, the generalized
ixture sampler with an additional Metropolis–Hastings step (denoted as GMH), are somewhat larger, but still smaller than those

rom the CHN method. We note that the IFs of GMH become larger as the absolute value of 𝛽 increases. However, as shown in the
results of the simulation experiment above and in Appendix A, the resulting posterior estimates by GMS and GMH are almost the
same. The takeaway from this experiment is the striking efficiency of the GMS method.

In addition, we compare the computational times required in each experiment for the three algorithms. As shown in Table 6,
our proposed methods (GMS and GMH) are much faster than the CHN method. This is mainly because (i) GMS and GMH sample
ℎ using the highly efficient and fast simulation smoother, whereas the CHN method is based on an expensive tailoring step that
entails the inversion of a high dimensional covariance matrix in each MCMC iteration; (ii) the AR step of the ARMH algorithm
degrades with many rejections when ℎ is high-dimensional and 𝛽 is large; and (iii) the search for the mode in the tailoring step
by an iterative optimization methods consumes considerable time for longer time series (i.e., as the dimension of ℎ increases). Our
proposed methods encounters none of these difficulties.
9 
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5. Extension to SVM model with leverage (SVML model)

In this section, we consider the SVM model with leverage which we call SVML model. The leverage effect implies the decrease
in the return at time 𝑡 followed by the increase in the volatility at time 𝑡+ 1. Thus we incorporate the correlation 𝜌 between 𝑦𝑡 and
𝑡+1 and replace (3) by

(

𝜖𝑡
𝜂𝑡

)

i.i.d.∼ 𝑁(0, 𝛴), 𝛴 =
(

1 𝜌𝜎
𝜌𝜎 𝜎2

)

. (13)

The negative correlation, 𝜌 < 0, indicates the existence of the leverage effect. Next, we construct the linear and Gaussian state
pace model that approximates the SVM model with leverage using the mixture of the normal densities given in (10). We first let
𝑑𝑡 = 𝐼(𝑦𝑡 ≥ 0) − 𝐼(𝑦𝑡 < 0) where 𝐼(𝐴) = 1 if 𝐴 is true and 𝐼(𝐴) = 0 otherwise. Noting that

𝑦𝑡 =𝑑𝑡 exp(𝑦∗𝑡 ∕2), 𝜖𝑡 = 𝑑𝑡 exp(𝜖∗𝑡 ∕2) − 𝛽

𝜂𝑡|𝜖𝑡 ∼ 𝑁(𝜌𝜎 𝜖𝑡, 𝜎2(1 − 𝜌2)),

we rewrite the conditional distribution as

𝜂𝑡|𝜖𝑡 ∼ 𝑁
(

𝜌𝜎{𝑑𝑡 exp(𝜖∗𝑡 ∕2) − 𝛽}, 𝜎2(1 − 𝜌2)
)

.

Let 𝑠𝑡 = (𝑠1𝑡, 𝑠2𝑡) ∈ {(𝑖, 𝑗)|𝑖 = 1,… , 𝐾 , 𝑗 = 0,… , 𝐽} denote the component of the mixture of normal densities in (10) at time 𝑡.
Given 𝑠𝑡 = (𝑖, 𝑗), we have 𝜖∗𝑡 |𝑠𝑡 = (𝑖, 𝑗) ∼ 𝑁(�̃�𝑖,𝑗 , 𝑣2𝑖 ). Furthermore, we approximate exp(𝜖∗𝑡 ∕2) by exp(�̃�𝑖,𝑗∕2){𝑎𝑖 + 𝑏𝑖(𝜖∗𝑡 − �̃�𝑖,𝑗 )} with
𝑖 = exp(𝑣2𝑖 ∕8), 𝑏𝑖 = 1

2 exp(𝑣
2
𝑖 ∕8), as in Table 1, which minimize the mean square norm

𝐸[exp(𝜖∗𝑡 ∕2) − exp(�̃�𝑖,𝑗∕2){𝑎𝑖 + 𝑏𝑖(𝜖∗𝑡 − �̃�𝑖,𝑗 )}]2.

Thus, the approximate conditional distribution is
𝜂𝑡|𝜖𝑡 ∼ 𝑁

(

𝜌𝜎[𝑑𝑡 exp(�̃�𝑖,𝑗∕2){𝑎𝑖 + 𝑏𝑖(𝜖∗𝑡 − �̃�𝑖,𝑗 )} − 𝛽], 𝜎2(1 − 𝜌2)
)

.

Given 𝑠 = (𝑠1,… , 𝑠𝑛), we find that the SVM model can be approximated by the linear Gaussian state space form

𝑦∗𝑡 = �̃�𝑠1𝑡 ,𝑠2𝑡 + ℎ𝑡 + (𝑣𝑠1𝑡 , 0)𝑧𝑡, (14)

ℎ𝑡+1 = 𝜇(1 − 𝜙) + 𝜌𝜎{𝑑𝑡𝑎𝑠1𝑡 exp(�̃�𝑠1𝑡 ,𝑠2𝑡 ) − 𝛽} + 𝜙ℎ𝑡 (15)

+ (𝑑𝑡𝜌𝜎 𝑏𝑠1𝑡𝑣𝑠1𝑡 exp(�̃�𝑠1𝑡 ,𝑠2𝑡∕2), 𝜎
√

1 − 𝜌2)𝑧𝑡,

𝑡 = 1,… , 𝑛 − 1, ℎ1 ∼ 𝑁
(

𝜇 , 𝜎2

1 − 𝜙2

)

, |𝜙| < 1, (16)

𝑧𝑡 = (𝑧1𝑡, 𝑧2𝑡)′ ∼ 𝑁(0, 𝐼2),
where 𝑦∗𝑡 = log(𝑦2𝑡 ) and 𝑑𝑡 = 𝐼(𝑦𝑡 ≥ 0) − 𝐼(𝑦𝑡 < 0). In the following subsections, �̃�𝑠1𝑡 ,𝑠2𝑡 and �̃�𝑠1𝑡 ,𝑠2𝑡 are abbreviated as �̃�𝑠𝑡 and �̃�𝑠𝑡 ,
and we write 𝑣2𝑠𝑡 , 𝑎𝑠𝑡 , and 𝑏𝑠𝑡 instead of 𝑣2𝑠1𝑡 , 𝑎𝑠1𝑡 , and 𝑏𝑠1𝑡 , respectively. The MCMC algorithm and the particle filter are detailed in
Appendix B.

Extension to the multivariate SVM model

Furthermore, we will give a couple of examples to illustrate how to extend our proposed SVM model to the multivariate models.
As a first example, consider the factor multivariate stochastic volatility (MSV) model proposed by Chib et al. (2006) (see Ishihara
and Omori, 2017 for the model with leverage). Let 𝒚𝑡 = (𝑦1𝑡,… , 𝑦𝑝𝑡)′ and 𝒇 𝑡 = (𝑓1𝑡,… , 𝑓𝑞 𝑡)′ denote the dependent and factor variables
(𝑞 < 𝑝) respectively. The basic factor MSV model is given by

𝒚𝑡 = 𝐁𝒇 𝑡 + 𝐕1∕2
1𝑡 𝝐1𝑡, 𝝐1𝑡 ∼ 𝑁(𝟎, 𝐈𝑝),

𝒇 𝑡 = 𝐕1∕2
2𝑡 𝝐2𝑡, 𝝐2𝑡 ∼ 𝑁(𝟎, 𝐈𝑞),

𝒉𝑡+1 = 𝝁 +Φ(𝒉𝑡−1 − 𝝁) + 𝜼𝑡, 𝜼𝑡 ∼ 𝑁(𝟎,Σ),

𝐕1𝑡 = diag(exp(ℎ1𝑡),… , exp(ℎ𝑝𝑡)), 𝐕2𝑡 = diag(exp(ℎ𝑝+1,𝑡),… , exp(ℎ𝑝+𝑞 ,𝑡)),
Φ = diag(𝜙1,… , 𝜙𝑝, 𝜙𝑝+1,… , 𝜙𝑝+𝑞), Σ = diag(𝜎21 ,… , 𝜎2𝑝 , 𝜎2𝑝+1,… 𝜎2𝑝+𝑞),

where 𝐁 is a 𝑝 × 𝑞 factor loading matrix subject to constraints (𝑏𝑖𝑗 = 0 for 𝑗 > 𝑖 and 𝑏𝑖𝑖 = 1 for 𝑖 ≤ 𝑞). To incorporate the SVM in the
MSV model, we replace the factor equation by

𝒇 𝑡 = 𝐕1∕2
2𝑡 𝜷 + 𝐕1∕2

2𝑡 𝝐2𝑡,

where 𝜷 = (𝛽1,… , 𝛽𝑞)′ is a 𝑞 × 1 vector of weights.
As a second example, we may consider the MSV model with the SVM that is common within a group. Let 𝒚𝑡 = (𝑦1𝑡,… , 𝑦𝑝𝑡)′ and

consider

𝒚𝑡 = exp(ℎ̃𝑡∕2)𝜷 + exp(ℎ̃𝑡∕2)𝝐𝑡, 𝝐𝑡 ∼ 𝑁(𝟎,Σ),
2 2 2
ℎ̃𝑡+1 = 𝜙ℎ̃𝑡 + 𝜂𝑡, 𝜂𝑡 ∼ 𝑁(0, 𝜎 ), Σ = diag(𝜎1 ,… , 𝜎𝑝 ),

10 
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Fig. 6. Time series plot. TB data: 1958Q4–2023Q1.

where 𝜷 = (𝛽1,… , 𝛽𝑝)′. To linearize the measurement equation with respect to ℎ̃𝑡, we define 𝒚∗ = (𝑦∗1𝑡,… , 𝑦∗𝑝𝑡)′ and 𝝐∗𝑡 = (𝜖∗1𝑡,… , 𝜖∗𝑝𝑡)′
where 𝑦∗𝑖𝑡 = log 𝑦2𝑖𝑡 and 𝜖∗𝑖𝑡 = log(𝛽𝑖∕𝜎𝑖 + 𝜖𝑖𝑡∕𝜎𝑖)2. Thus the transformed measurement equation is

𝒚∗𝑡 = 𝝁∗ + ℎ̃𝑡𝟏𝑝 + 𝝐∗𝑡 , 𝝁∗ = (log 𝜎21 ,… , log 𝜎2𝑝 )
′, 𝟏𝑝 = (1,… , 1)′,

Noting that 𝜖∗𝑖𝑡 ∼ log𝜒2
1 (𝛽

2
𝑖 ∕𝜎

2
𝑖 ), we can approximate the noncentral chisquare distribution by the mixture of normal distributions as

we have described.

Remark. Some previous studies considered alternative mean specifications of 𝑦𝑡 using exp(ℎ𝑡) or ℎ𝑡, as in Engle et al. (1987) for
ARCH-M model. We note that our proposed sampler could be utilized to generate ℎ′𝑡𝑠 efficiently, but details are left for our future
work.

6. Empirical studies of excess holding yield data

6.1. Data

This section applies the SVM model with leverage and several alternative models to the following three datasets. The descriptions
of the data (labeled as TB, DGS and S&P500) are given below.1

(1) TB: the excess holding yield using 3 and 6 months treasury bills with 258 observations from the fourth quarter of 1958 to
the first of 2023. It is defined as

𝑦𝑡 =

⎧

⎪

⎨

⎪

⎩

(

1 + 𝑅𝑡
100

)2

1 + 𝑟𝑡+1
100

−
(

1 + 𝑟𝑡
100

)

⎫

⎪

⎬

⎪

⎭

× 100,

at annual rate where 𝑅𝑡 and 𝑟𝑡 are secondary market rates of the 6-month and 3-month Treasury bill (discount basis, percent,
daily, not seasonally adjusted), measured at the beginning of the quarter.

(2) DGS: the excess holding yield using 1 and 3 month market yields on U.S. treasury securities with 266 observations from
August 2001 to September 2023. The excess holding yield, 𝑦𝑡 is defined as

𝑦𝑡 =

⎧

⎪

⎨

⎪

⎩

(

1 + 𝑅𝑡
100

)3

(

1 + 𝑟𝑡+1
100

) (
1 + 𝑟𝑡+2

100

) −
(

1 + 𝑟𝑡
100

)

⎫

⎪

⎬

⎪

⎭

× 100,

at annual rate where 𝑅𝑡 and 𝑟𝑡 are market yields of 3 and 1 month on US Treasury securities at constant maturity of 3 months
(quoted on an investment basis, percent, daily, not seasonally adjusted), measured at the beginning of the month.

(3) S&P500: the excess return using S&P500 index daily return and federal funds rate with 1008 observations from July 1st of
2019 to June 30 of 2023. It is defined as 𝑦𝑡 = 𝑅𝑡 − 𝑟𝑡 at daily rate where 𝑅𝑡 and 𝑟𝑡 are the daily log return of S&P500 (in
percent), and federal funds effective rate (percent, daily, not seasonally adjusted) divided by 360.

The time series plots of three datasets are shown in Figs. 6–8. Volatility clustering phenomena is observed for all three series,
suggesting that the stochastic volatility models are appropriate to describe these excess holding yield data.

1 The data are obtained from the website of Federal Reserve Bank of St. Louis.
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Fig. 7. Time series plot. DGS data: 2001/8–2023/9.

Fig. 8. Time series plot. S&P500 data: 2019/7/1–2023/6/30.

Table 7
Posterior mean, standard deviation, 95% credible interval, inefficient factor and the posterior probability that the parameter is
positive. TB (top row), DGS (middle row), and S&P500 (bottom row).
Par Mean Std Dev 95% interval IF Pr(+)

𝜇 −1.817 0.570 (−2.941, −0.698) 57 0.000
−3.665 0.635 (−4.763, −2.217) 73 0.000
−0.039 0.215 (−0.474, 0.382) 10 0.425

𝜙 0.920 0.024 (0.865, 0.960) 22 1.000
0.903 0.038 (0.813, 0.962) 93 1.000
0.950 0.011 (0.927, 0.969) 14 1.000

𝜎 0.685 0.097 (0.512, 0.894) 18 1.000
0.911 0.120 (0.698, 1.179) 46 1.000
0.327 0.037 (0.260, 0.404) 21 1.000

𝜌 −0.546 0.139 (−0.784, −0.252) 87 0.000
0.051 0.129 (−0.207, 0.305) 37 0.659

−0.698 0.062 (−0.805, −0.563) 11 0.000
𝛽 0.649 0.073 (0.507, 0.793) 29 1.000

0.734 0.076 (0.587, 0.884) 47 1.000
0.060 0.032 (−0.003, 0.124) 5 0.969

ℎ100 −0.648 0.977 (−2.744, 1.108) 18 0.259
−5.490 1.018 (−7.498, −3.576) 49 0.000
−2.252 0.511 (−3.251, −1.248) 4 0.000

6.2. Estimation results for SVM model

Using the same prior distributions as in illustrative examples in Section 4, the proposed SVM models with leverage are fitted
to TB, DGS and S&P500 data. We iterated MCMC simulation 50,000 times after discarding initial 10,000 MCMC draws as burn-in
period using Algorithm 3 in Appendix B. The acceptance rates of the MH algorithms for 𝛼 and (𝛼 , ℎ) are 72.0% and 20.8% with TB
data, 69.5% and 12.8% with DGS data, and 77.3% and 58.9% with S&P500 data, respectively.

Table 7 shows posterior means, standard deviations, 95% credible intervals, inefficiency factors for parameters (IF), and the
posterior probability that the parameter is positive for three datasets. Further, the IF’s for log volatilities, ℎ𝑡’s are found to be less
than 80, which implies that our mixture sampler is highly efficient as shown in Section 4. The coefficient 𝛽 is estimated to be
greater than 0.6 for TB and DGS data, albeit close to zero for S&P500 data. In all cases, we find strong evidence of the positive
risk premium since the posterior probability that 𝛽 is positive is almost one for TB and DGS data and 0.97 for S&P500 data. The
autoregressive parameter 𝜙 for the log volatility process is estimated to be more than 0.9, suggesting the high persistence in the
volatility as found in the various empirical studies in the previous literature. The correlation parameter 𝜌 is estimated to be negative
12 
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Fig. 9. Log volatilities: Moving average of log(𝑦2𝑡 ) − 𝐸(log𝜒2
1 (𝛽

2)), 95% credible intervals and posterior median. TB data.

Fig. 10. Log volatilities: Moving average of log(𝑦2𝑡 ) − 𝐸(log𝜒2
1 (𝛽

2)), 95% credible intervals and posterior median. DGS data.

Fig. 11. Log volatilities: Moving average of log(𝑦2𝑡 ) − 𝐸(log𝜒2
1 (𝛽

2)), 95% credible intervals and posterior median. S&P500 data.

for TB data and S&P500 data, implying a strong evidence of the leverage effect since the posterior probability that 𝜌 is negative is
almost one, 𝑃 𝑟(𝜌 < 0|𝑦) ≈ 1.000. On the other hand, there is no evidence that 𝜌 is negative for DGS data. Finally, Figs. 9–11 show
95% credible intervals and posterior medians for ℎ in the case of TB, DGS and S&P500 data. Noting that

log(𝑦2𝑡 ) = ℎ𝑡 + log𝜒2
1 (𝛽

2),

we further plotted moving average ∑10
𝑠=−10 𝑧𝑡+𝑠∕21 for reference where 𝑧𝑡 = log(𝑦2𝑡 ) −𝐸(log𝜒2

1 (𝛽
2)) is evaluated at the posterior means

of 𝛽. The expected values of log𝜒2
1 (𝛽

2) are computed numerically as −0.88,−0.78, and −1.27 for TB, DGS, and S&P500 using Monte
Carlo integration. The traceplot of the estimated log volatilities is similar to that of the moving average series taking account of 95%
credible intervals. The large volatilities around years 1980, 2008 and 2020/3–2020/4 are well captured by the proposed model as
shown in Figs. 9–11 respectively.

6.3. Model comparison

In this section we use Bayesian marginal likelihoods to conduct a comparison of different stochastic volatility models. We
calculate the marginal likelihood using the method of Chib (1995). Suppressing the model index, this method is based on an identity
introduced in that paper:

log𝑚(𝑦) = log 𝑓 (𝑦|𝜃) + log𝜋(𝜃) − log𝜋(𝜃|𝑦),
where the first term on the right side is the log of the likelihood, the second term is the log of the prior, and the third is the log
of the posterior density. We evaluate each of these terms with the posterior mean of 𝜃. For each model, we calculate the first term
13 
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Table 8
Log marginal likelihood estimation and standard error (in parentheses). TB, DGS, and S&P500 data. SVML and SVL models
include the leverage effect 𝜌. The bold font indicates the largest marginal likelihood.
Model TB DGS S&P500

SVM −186.132(0.019) 68.422(0.016) −1533.027(0.075)
SVML −181.449(0.020) 66.695(0.015) −1508.296(0.059)
SV −231.392(0.020) 16.954(0.020) −1536.776(0.060)
SVL −223.653(0.032) 16.150(0.021) −1509.656(0.039)

using the particle filter method given in Section 3.2, setting 𝐼 = 80,000. To compute the posterior density ordinate, we apply (Chib
and Jeliazkov, 2001) to the MCMC draws from Algorithm 4 in Appendix C.

In Table 8, the SVML model had the highest log marginal likelihood for TB and S&P500 data, while the SVM model had the
highest for DGS data. This implies our proposed model best describes the risk premium and the time varying volatility among
competing models including the standard SV and SVL models. These results are also consistent with high posterior probabilities of
𝑃 𝑟(𝛽 > 0|𝑦) for TB, DGS and S&P500 data, and of 𝑃 𝑟(𝜌 < 0|𝑦) for TB and S&P500 data as given in Table 7 of Section 6.2.

7. Conclusion

In this paper, we have successfully extended the mixture sampler for the SV model to the SVM model of which the mean equation
is described by the standard deviation of the error term as an independent variable. Our main point is the approximation of the
distribution of log𝜒2

1 (𝛽
2) by mixture of normal distributions which is dependent on the parameter 𝛽. This approximation facilitates

efficient sampling, leveraging well-established methods for the linear Gaussian state-space model. It is shown in simulation studies
that our proposed method is implemented easily and works fast and efficiently. In the empirical studies of the excess holding yield
data and S&P500 data, we conducted the model comparison among the SV and SVM models with and without leverage, and found
that our proposed SVM models outperform other models in terms of the marginal likelihood. It shows that there exists the positive
risk premiums and time-varying volatilities for all data, while the leverage effects are found to exist for TB and S&P500 data.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors thank the editor and anonymous referees for their helpful comments. This work is partially supported by JSPS
AKENHI [Grant number: 19H00588, 24H00142]. The computational results are obtained using Rcpp and Ox (see Doornik, 2007).

Appendix A. MH step to correct the approximation error

The posterior density is given by

𝜋(ℎ, 𝜃|𝑦) ∝ 𝑓 (𝑦, ℎ|𝜃)𝜋(𝜃)

∝ (1 + 𝜙)𝑎−
1
2 (1 − 𝜙)𝑏−

1
2 (𝜎2)−

( 𝑛1
2 +1

)

exp
{

− 1
2𝜎2

{𝑠0 + (1 − 𝜙2)(ℎ1 − 𝜇)2}
}

× exp
{

−1
2

𝑛
∑

𝑡=1
[ℎ𝑡 + {𝑦𝑡 − 𝛽 exp(ℎ𝑡∕2)}2 exp(−ℎ𝑡)]

}

× exp
{

− 1
2𝜎2

𝑛−1
∑

𝑡=1
[ℎ𝑡+1 − 𝜇(1 − 𝜙) − 𝜙ℎ𝑡]2

}

× exp
{

−
(𝜇 − 𝜇0)2

2𝜎20

}

exp
{

−
(𝛽 − 𝑏0)2

2𝐵0

}

,

where 𝑛1 = 𝑛0 + 𝑛. To correct the approximation error in Step 3 of Algorithm 1, we implement the additional MH step (Step 4) as
n the following Algorithm 2.

Algorithm 2 (GMS+MH Algorithm, GMH). Let us denote 𝜃 = (𝛼 , 𝛽) where 𝛼 = (𝜇 , 𝜙, 𝜎2). The Markov chain Monte Carlo simulation
s implemented in four blocks:

1. Initialize ℎ and 𝜃 = (𝛼 , 𝛽).
2. Generate 𝛽|𝛼 , ℎ, 𝑦 ∼ 𝜋(𝛽|𝛼 , ℎ, 𝑦) as in Algorithm 1.
3. Generate (𝛼 , ℎ)|𝛽 , 𝑦 ∼ 𝜋(𝛼 , ℎ|𝛽 , 𝑦) as in Algorithm 1.
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Table 9
True values, posterior means, posterior standard deviations, 95% credible intervals, and inefficiency factors. 𝛽 = 0.3.

Algorithm 1 (GMS) Algorithm 2 (GMH)

Par True Mean Std Dev 95% interval IF Mean Std Dev 95% interval IF

𝜇 0 0.091 0.298 (−0.514, 0.673) 5 0.085 0.316 (−0.570, 0.742) 31
𝜙 0.97 0.971 0.011 (0.947, 0.988) 5 0.972 0.011 (0.948, 0.989) 24
𝜎 0.3 0.261 0.038 (0.195, 0.344) 10 0.259 0.037 (0.195, 0.338) 21
𝛽 0.3 0.316 0.033 (0.251, 0.380) 1 0.327 0.033 (0.263, 0.392) 4

Table 10
True values, posterior means, posterior standard deviations, 95% credible intervals, and inefficiency factors. 𝛽 = 0.5.

Algorithm 1 (GMS) Algorithm 2 (GMH)

Par True Mean Std Dev 95% interval IF Mean Std Dev 95% interval IF

𝜇 0 0.104 0.319 (−0.548, 0.734) 31 0.084 0.339 (−0.660, 0.779) 80
𝜙 0.97 0.971 0.011 (0.948, 0.988) 13 0.972 0.010 (0.949, 0.989) 61
𝜎 0.3 0.262 0.036 (0.198, 0.339) 15 0.258 0.035 (0.198, 0.336) 60
𝛽 0.5 0.511 0.035 (0.443, 0.579) 2 0.530 0.034 (0.463, 0.597) 12

Table 11
True values, posterior means, posterior standard deviations, 95% credible intervals, and inefficiency factors. 𝛽 = 0.7.
Par True Algorithm 1 (GMS) Algorithm 2 (GMH)

Mean Std Dev 95% interval IF Mean Std Dev 95% interval IF

𝜇 0 0.114 0.304 (−0.510, 0.703) 5 0.103 0.319 (−0.514, 0.744) 90
𝜙 0.97 0.971 0.010 (0.948, 0.988) 6 0.971 0.011 (0.947, 0.988) 78
𝜎 0.3 0.266 0.036 (0.202, 0.342) 9 0.262 0.035 (0.196, 0.338) 177
𝛽 0.7 0.704 0.037 (0.633, 0.776) 3 0.732 0.037 (0.661, 0.805) 43

4. Conduct MH algorithm to correct the approximation error.
5. Go to step 2.

Step 4. Generation of (𝛼 , ℎ)|𝛽 , 𝑦
Since the mixture sampler is based on the approximation, we can correct the approximation error after the MCMC simulation as

in Kim et al. (1998) and Omori et al. (2007). Instead, we use the data augmentation method to correct it within the MCMC simulation
by MH algorithm with the pseudo target density. We note that the similar approach has been considered for the SV model without
leverage (Del Negro and Primiceri, 2015) and with leverage (Takahashi et al., 2023). Define the pseudo target density

�̃�(𝛼 , ℎ, 𝑠|𝛽 , 𝑦) = 𝜋(𝛼 , ℎ|𝛽 , 𝑦) × 𝑞(𝑠|ℎ, 𝛼 , 𝛽 , 𝑦∗),

𝑞(𝑠|ℎ, 𝛼 , 𝛽 , 𝑦∗) =
𝑛
∏

𝑡=1

�̃�𝑠𝑡𝑔(𝑦
∗
𝑡 |ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡)

∑10
𝑖=1

∑2
𝑗=0 �̃�𝑖,𝑗𝑔(𝑦

∗
𝑡 |ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡 = (𝑖, 𝑗))

,

Note that the marginal density 𝜋(𝛼 , ℎ|𝛽 , 𝑦) is our target density, 𝜋(𝛼 , ℎ|𝛽 , 𝑦) = ∑

𝑠 �̃�(𝛼 , ℎ, 𝑠|𝛽 , 𝑦). We generate sample (𝛼 , ℎ, 𝑠) from the
pseudo target density as follows. Using Step 3 of Algorithm 1, we have a sample from 𝜋∗(ℎ|𝛼 , 𝑠, 𝛽 , 𝑦∗)𝜋∗(𝛼|𝑠, 𝛽 , 𝑦) and let us denote
t as (𝛼†, ℎ†), and let

𝑓 (𝑦𝑡|ℎ𝑡, 𝛼 , 𝛽) = 𝑓𝑁 (𝑦𝑡|𝛽 exp(ℎ𝑡∕2), exp(ℎ𝑡)), 𝑡 = 1,… , 𝑛.

Given the current value (𝛼 , ℎ), accept the candidate (𝛼†, ℎ†) with probability

min
{

1,
�̃�(𝛼†, ℎ†|𝑠, 𝛽 , 𝑦)𝜋∗(ℎ|𝛼 , 𝑠, 𝛽 , 𝑦∗)𝜋∗(𝛼|𝑠, 𝛽 , 𝑦)
�̃�(𝛼 , ℎ|𝑠, 𝛽 , 𝑦)𝜋∗(ℎ†|𝛼†, 𝑠, 𝛽 , 𝑦∗)𝜋∗(𝛼†|𝑠, 𝛽 , 𝑦)

}

= min
{

1,
𝜋(𝛼†, ℎ†|𝛽 , 𝑦)𝑞(𝑠|ℎ†, 𝛼†, 𝛽 , 𝑦∗)𝜋∗(ℎ|𝛼 , 𝑠, 𝛽 , 𝑦∗)𝜋∗(𝛼|𝑠, 𝛽 , 𝑦)
𝜋(𝛼 , ℎ|𝛽 , 𝑦)𝑞(𝑠|ℎ, 𝛼 , 𝛽 , 𝑦∗)𝜋∗(ℎ†|𝛼†, 𝑠, 𝛽 , 𝑦∗)𝜋∗(𝛼†|𝑠, 𝛽 , 𝑦)

}

= min

{

1,
𝑞(𝑠|ℎ†, 𝛼†, 𝛽 , 𝑦∗)∏𝑛

𝑡=1 𝑓 (𝑦𝑡|ℎ
†
𝑡 , 𝛼†, 𝛽)𝑔(𝑦∗𝑡 |ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡)

𝑞(𝑠|ℎ, 𝛼 , 𝛽 , 𝑦∗)∏𝑛
𝑡=1 𝑓 (𝑦𝑡|ℎ𝑡, 𝛼 , 𝛽)𝑔(𝑦∗𝑡 |ℎ†𝑡 , 𝛼†, 𝛽 , 𝑠𝑡)

}

= min

⎧

⎪

⎨

⎪

⎩

1,

∏𝑛
𝑡=1 𝑓 (𝑦𝑡|ℎ

†
𝑡 , 𝛼†, 𝛽)

∑10
𝑖=1

∑2
𝑗=0 �̃�𝑖,𝑗𝑔(𝑦

∗
𝑡 |ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡 = (𝑖, 𝑗))

∏𝑛
𝑡=1 𝑓 (𝑦𝑡|ℎ𝑡, 𝛼 , 𝛽)

∑10
𝑖=1

∑2
𝑗=0 �̃�𝑖,𝑗𝑔(𝑦

∗
𝑡 |ℎ

†
𝑡 , 𝛼†, 𝛽 , 𝑠𝑡 = (𝑖, 𝑗))

⎫

⎪

⎬

⎪

⎭

.

Below we compare estimates using Algorithms 1 and 2 in illustrative examples. The results are quite close to each other, implying
hat the approximation is highly accurate (see Tables 9–11).
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Table 12
True values, posterior means, posterior standard deviations, 95% credible intervals, and inefficiency factors. 𝛽 = 0.3.
Par True CHN (𝛽 = 0.3)

Mean Std Dev 95% interval IF

𝜇 0 0.087 0.300 (−0.516, 0.680) 27
𝜙 0.97 0.971 0.011 (0.947, 0.989) 174
𝜎 0.3 0.262 0.037 (0.196, 0.341) 249
𝛽 0.3 0.328 0.033 (0.263, 0.393) 12

Table 13
True values, posterior means, posterior standard deviations, 95% credible intervals, and inefficiency factors. 𝛽 = 0.5.
Par True CHN (𝛽 = 0.5)

Mean Std Dev 95% interval IF

𝜇 0 0.088 0.319 (−0.573, 0.726) 18
𝜙 0.97 0.972 0.011 (0.949, 0.991) 141
𝜎 0.3 0.258 0.036 (0.192, 0.339) 266
𝛽 0.5 0.530 0.034 (0.464, 0.600) 23

Table 14
True values, posterior means, posterior standard deviations, 95% credible intervals, and inefficiency factors. 𝛽 = 0.7.
Par True CHN (𝛽 = 0.7)

Mean Std Dev 95% interval IF

𝜇 0 0.095 0.312 (−0.527, 0.722) 25
𝜙 0.97 0.971 0.010 (0.950, 0.988) 173
𝜎 0.3 0.262 0.034 (0.197, 0.331) 277
𝛽 0.7 0.730 0.037 (0.658, 0.803) 126

Furthermore, MCMC estimation results using Chan’s method are shown in Tables 12, 13 and 14 for 𝛽 = 0.3, 0.5 and 0.7. Our
roposed methods are found to be more efficient with respect to model parameters as in sampling ℎ𝑡’s.

Appendix B. MCMC algorithm and particle filter for SVM with leverage

B.1. MCMC algorithm

For the SVM with leverage, we set 𝜃 = (𝜇 , 𝜙, 𝜎2, 𝜌). For the prior distribution of 𝜌, we assume 𝜌 ∼ 𝑈 (−1, 1) where 𝑈 (𝑎, 𝑏) denotes
uniform distribution over (𝑎, 𝑏), and the posterior density function of (ℎ, 𝜃) is given by

𝜋(ℎ, 𝜃|𝑦)
∝ 𝑓 (𝑦, ℎ|𝜃)𝜋(𝜃)

∝ (1 + 𝜙)𝑎−
1
2 (1 − 𝜙)𝑏−

1
2 (1 − 𝜌2)−

𝑛−1
2 (𝜎2)−

( 𝑛1
2 +1

)

exp
{

− 1
2𝜎2

{𝑠0 + (1 − 𝜙2)(ℎ1 − 𝜇)2}
}

× exp
{

−1
2

𝑛
∑

𝑡=1
[ℎ𝑡 + {𝑦𝑡 − 𝛽 exp(ℎ𝑡∕2)}2 exp(−ℎ𝑡)]

}

× exp
{

− 1
2𝜎2(1 − 𝜌2)

𝑛−1
∑

𝑡=1
[ℎ𝑡+1 − 𝜇(1 − 𝜙) − 𝜙ℎ𝑡 − 𝜌𝜎{𝑦𝑡 − 𝛽 exp(ℎ𝑡∕2)} exp(−ℎ𝑡∕2)]2

}

× exp
{

−
(𝜇 − 𝜇0)2

2𝜎20

}

exp
{

−
(𝛽 − 𝑏0)2

2𝐵0

}

,

where 𝑛1 = 𝑛0 + 𝑛.

Algorithm 3. Let us denote 𝜃 = (𝛼 , 𝛽) where 𝛼 = (𝜇 , 𝜙, 𝜎2, 𝜌). The Markov chain Monte Carlo simulation is implemented in four
blocks:

1. Initialize ℎ and 𝜃 = (𝛼 , 𝛽).
2. Generate 𝛽|𝛼 , ℎ, 𝑦 ∼ 𝜋(𝛽|𝛼 , ℎ, 𝑦).
3. Generate (𝛼 , ℎ)|𝛽 , 𝑦 ∼ 𝜋(𝛼 , ℎ|𝛽 , 𝑦).
4. Go to step 2.
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Step 2. Generation of 𝛽|𝛼 , ℎ, 𝑦
The conditional posterior distribution of 𝛽 is normal with mean 𝑏1 and variance 𝐵1 where

𝑏1 = 𝐵1
(

𝑋′𝛺−1�̃� + 𝐵−1
0 𝑏0

)

, 𝐵−1
1 = 𝑋′𝛺−1𝑋 + 𝐵−1

0 ,

and

�̃� =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑦1 − 𝜌 exp(ℎ1∕2)𝜎−1{ℎ2 − 𝜇 − 𝜙(ℎ1 − 𝜇)}
𝑦2 − 𝜌 exp(ℎ2∕2)𝜎−1{ℎ3 − 𝜇 − 𝜙(ℎ2 − 𝜇)}

⋮
𝑦𝑛−1 − 𝜌 exp(ℎ𝑛−1∕2)𝜎−1{ℎ𝑛 − 𝜇 − 𝜙(ℎ𝑛−1 − 𝜇)}

𝑦𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑋 =

⎛

⎜

⎜

⎜

⎜

⎝

exp(ℎ1∕2)
exp(ℎ2∕2)

⋮
exp(ℎ𝑛∕2)

⎞

⎟

⎟

⎟

⎟

⎠

,

𝛺 = diag
(

(1 − 𝜌2) exp(ℎ1), (1 − 𝜌2) exp(ℎ2),… , (1 − 𝜌2) exp(ℎ𝑛−1), exp(ℎ𝑛)
)

,

Thus we generate 𝛽 ∼ 𝑁(𝑏1, 𝐵1).

Step 3. Generation of (𝛼 , ℎ)|𝛽 , 𝑦
We define the pseudo target density

�̃�(𝛼 , ℎ, 𝑠|𝛽 , 𝑦) = 𝜋(𝛼 , ℎ|𝛽 , 𝑦) × 𝑞(𝑠|𝛼 , ℎ, 𝛽 , 𝑦∗, 𝑑),

𝑞(𝑠|𝛼 , ℎ, 𝛽 , 𝑦∗, 𝑑) =
𝑛
∏

𝑡=1

�̃�𝑠𝑡𝑔(𝑦
∗
𝑡 , ℎ𝑡+1|ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡, 𝑑)

∑10
𝑖=1

∑2
𝑗=0 �̃�𝑖,𝑗𝑔(𝑦

∗
𝑡 , ℎ𝑡+1|ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡 = (𝑖, 𝑗), 𝑑)

,

where 𝜃 = (𝛼 , 𝛽) and

𝑔(𝑦∗𝑡 ,ℎ𝑡+1|ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡, 𝑑) =
{

𝑓𝑁 (𝑦∗𝑡 |�̃�𝑠𝑡 + ℎ𝑡, 𝑣2𝑠𝑡 )𝑓𝑁 (ℎ𝑡+1|ℎ𝑠𝑡 ,𝑡, 𝜎2(1 − 𝜌2)), 𝑡 < 𝑛,
𝑓𝑁 (𝑦∗𝑡 |�̃�𝑠𝑡 + ℎ𝑡, 𝑣2𝑠𝑡 ) 𝑡 = 𝑛,

ℎ𝑠𝑡 ,𝑡 = 𝜇(1 − 𝜙) + 𝜙ℎ𝑡 + 𝜌𝜎[𝑑𝑡 exp(�̃�𝑠𝑡∕2){𝑎𝑠𝑡 + 𝑏𝑠𝑡 (𝑦
∗
𝑡 − ℎ𝑡 − �̃�𝑠𝑡 )} − 𝛽],

where 𝑦∗𝑡 = log(𝑦2𝑡 ), 𝑑𝑡 = 𝐼(𝑦𝑡 ≥ 0) − 𝐼(𝑦𝑡 < 0). �̃�𝑠𝑡 = �̃�𝑠1𝑡 ,𝑠2𝑡 and �̃�𝑠𝑡 = �̃�𝑠1𝑡 ,𝑠2𝑡 are defined in (10) and (𝑝𝑠1𝑡 , 𝑚𝑠1𝑡 , 𝑣2𝑠1𝑡 , 𝑎𝑠1𝑡 , 𝑏𝑠1𝑡 ) are given
in Table 1. Only �̃�𝑠𝑡 , which depends on 𝛽, needs to be updated according to the formula in (10) before sampling. Note that the
marginal density 𝜋(𝛼 , ℎ|𝛽 , 𝑦) is our target density, 𝜋(𝛼 , ℎ|𝛽 , 𝑦) = ∑

𝑠 �̃�(𝛼 , ℎ, 𝑠|𝛽 , 𝑦). We generate sample (𝛼 , ℎ, 𝑠) from the pseudo target
density in two steps.

(a) Generate 𝑠 ∼ 𝑞(𝑠|ℎ, 𝜃 , 𝑦∗, 𝑑).
(b) Generate (𝛼 , ℎ)|𝜃 , 𝑠, 𝑦 ∼ �̃�(𝛼 , ℎ|𝛽 , 𝑠, 𝑦).

(i) Generate 𝛼 ∼ 𝜋∗(𝛼|𝑠, 𝛽 , 𝑦∗, 𝑑). The target density here is given by

𝜋∗(𝛼|𝑠, 𝛽 , 𝑦∗, 𝑑) ∝ 𝑚(𝑦∗|𝛼 , 𝑠, 𝛽 , 𝑑)𝜋(𝛼),
where

𝑚(𝑦∗|𝛼 , 𝑠, 𝛽 , 𝑑) = ∫

𝑛
∏

𝑡=1
𝑔(𝑦∗𝑡 , ℎ𝑡+1|ℎ𝑡, 𝛼 , 𝑠𝑡, 𝛽 , 𝑑) × 𝑓𝑁

(

ℎ1
|

|

|

|

𝜇 , 𝜎2

1 − 𝜙2

)

𝑑 ℎ,

which we evaluate using Kalman filter algorithm. We first transform 𝛼 to 𝜗 = (𝜇 , log{(1 +𝜙)∕(1 −𝜙)}, log 𝜎2, log{(1 +𝜌)∕(1 −
𝜌)}) to remove parameter constraints, and conduct MH algorithm to sample from the conditional posterior distribution
with density 𝜋∗(𝜗|𝑠, 𝛽 , 𝑦) = 𝜋∗(𝛼|𝑠, 𝛽 , 𝑦) × |𝑑 𝛼∕𝑑 𝜗| where |𝑑 𝛼∕𝑑 𝜗| is the Jacobian of the transformation. Compute the
posterior mode �̂� and define 𝜗∗ and 𝛴∗ as

𝜗∗ = �̂�, 𝛴−1
∗ = − 𝜕2 log𝜋∗(𝜗|𝑠, 𝛽 , 𝑦)

𝜕 𝜗𝜕 𝜗′
|

|

|

|𝜗=�̂�
.

Given the current value 𝜗, generate a candidate 𝜗† from the distribution 𝑁(𝜗∗, 𝛴∗) and accept it with probability

𝛼(𝜗, 𝜗†|𝑠, 𝛽 , 𝑦) = min
{

1,
𝜋∗(𝜗†|𝑠, 𝛽 , 𝑦)𝑓𝑁 (𝜗|𝜗∗, 𝛴∗)
𝜋∗(𝜗|𝑠, 𝛽 , 𝑦)𝑓𝑁 (𝜗†|𝜗∗, 𝛴∗)

}

,

where 𝑓𝑁 (⋅|𝜗∗, 𝛴∗) is the probability density of 𝑁(𝜗∗, 𝛴∗). If candidate 𝜗† is rejected, we take the current value 𝜗 as the
next draw. When the Hessian matrix is not negative definite, we may take a flat normal proposal 𝑁(𝜗∗, 𝑐0𝐼) using some
large constant 𝑐0. The obtained draw is denoted as 𝛼†.

(ii) Generate ℎ|𝛼 , 𝑠, 𝛽 , 𝑦 ∼ 𝜋∗(ℎ|𝛼 , 𝑠, 𝛽 , 𝑦). Given 𝛼 = 𝛼†, we propose a candidate ℎ† = (ℎ†1,… , ℎ†𝑛) using a simulation smoother
introduced by de Jong and Shephard (1995) and Durbin and Koopman (2002) for the linear space Gaussian state space
model as in (14)–(16). The ℎ† is a sample from

𝜋∗(ℎ|𝛼†, 𝑠, 𝛽 , 𝑦∗, 𝑑) =
∏𝑛

𝑡=1 𝑔(𝑦
∗
𝑡 , ℎ𝑡+1|ℎ𝑡, 𝛼†, 𝛽 , 𝑠𝑡, 𝑑)

𝑚(𝑦∗|𝛼†, 𝑠, 𝛽 , 𝑑) × 𝑓𝑁

(

ℎ1
|

|

|

|

𝜇†, 𝜎2†

1 − 𝜙†2

)

,
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(iii) Generate (𝛼 , ℎ) ∼ �̃�(𝛼 , ℎ|𝑠, 𝛽 , 𝑦∗, 𝑑). From (i) and (ii), we have a sample (𝛼†, ℎ†) from 𝜋∗(ℎ|𝛼 , 𝑠, 𝛽 , 𝑦∗, 𝑑)𝜋∗(𝛼|𝑠, 𝛽 , 𝑦∗, 𝑑).
Let

𝑓 (𝑦𝑡,ℎ𝑡+1|ℎ𝑡, 𝛼 , 𝛽)

=

{

𝑓𝑁 (𝑦𝑡|𝛽 exp(ℎ𝑡∕2), exp(ℎ𝑡))𝑓𝑁 (ℎ𝑡+1|ℎ𝑡, 𝜎2(1 − 𝜙2)), 𝑡 < 𝑛
𝑓𝑁 (𝑦𝑡|𝛽 exp(ℎ𝑡∕2), exp(ℎ𝑡)), 𝑡 = 𝑛,

ℎ𝑡 = 𝜇(1 − 𝜙) + 𝜙ℎ𝑡 + 𝜌𝜎{𝑦𝑡 − 𝛽 exp(ℎ𝑡∕2)} exp(−ℎ𝑡∕2).
Given the current value (𝛼 , ℎ), accept the candidate (𝛼†, ℎ†) with probability

min
{

1,
�̃�(𝛼†, ℎ†|𝑠, 𝛽 , 𝑦)𝜋∗(ℎ|𝛼 , 𝑠, 𝛽 , 𝑦∗, 𝑑)𝜋∗(𝛼|𝛽 , 𝑠, 𝑦∗, 𝑑)
�̃�(𝛼 , ℎ|𝑠, 𝛽 , 𝑦)𝜋∗(ℎ†|𝛼†, 𝑠, 𝛽 , 𝑦∗, 𝑑)𝜋∗(𝛼†|𝛽 , 𝑠, 𝑦∗, 𝑑)

}

= min
{

1,
𝜋(𝛼†, ℎ†|𝛽 , 𝑦)𝑞(𝑠|ℎ†, 𝛼†, 𝛽 , 𝑦∗)𝜋∗(ℎ|𝛼 , 𝑠, 𝛽 , 𝑦∗)𝜋∗(𝛼|𝛽 , 𝑠, 𝑦∗, 𝑑)
𝜋(𝛼 , ℎ|𝛽 , 𝑦)𝑞(𝑠|ℎ, 𝛼 , 𝛽 , 𝑦∗)𝜋∗(ℎ†|𝛼†, 𝑠, 𝛽 , 𝑦∗)𝜋∗(𝛼†|𝛽 , 𝑠, 𝑦∗, 𝑑)

}

= min

{

1,
𝑞(𝑠|ℎ†, 𝛼†, 𝛽 , 𝑦∗)∏𝑛

𝑡=1 𝑓 (𝑦𝑡, ℎ†𝑡+1|ℎ
†
𝑡 , 𝛼†, 𝛽)𝑔(𝑦∗𝑡 , ℎ𝑡+1|ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡, 𝑑)

𝑞(𝑠|ℎ, 𝛼 , 𝛽 , 𝑦∗)∏𝑛
𝑡=1 𝑓 (𝑦𝑡, ℎ𝑡+1|ℎ𝑡, 𝛼 , 𝛽)𝑔(𝑦∗𝑡 , ℎ†𝑡+1|ℎ

†
𝑡 , 𝛼†, 𝛽 , 𝑠𝑡, 𝑑)

}

= min

⎧

⎪

⎨

⎪

⎩

1,

∏𝑛
𝑡=1 𝑓 (𝑦𝑡|ℎ

†
𝑡 , 𝛼†, 𝛽)

∑10
𝑖=1

∑2
𝑗=0 �̃�𝑖,𝑗𝑔(𝑦

∗
𝑡 |ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡 = (𝑖, 𝑗))

∏𝑛
𝑡=1 𝑓 (𝑦𝑡|ℎ𝑡, 𝛼 , 𝛽)

∑10
𝑖=1

∑2
𝑗=0 �̃�𝑖,𝑗𝑔(𝑦

∗
𝑡 |ℎ

†
𝑡 , 𝛼†, 𝛽 , 𝑠𝑡 = (𝑖, 𝑗))

⎫

⎪

⎬

⎪

⎭

= min

⎧

⎪

⎨

⎪

⎩

1,

∏𝑛
𝑡=1 𝑓 (𝑦𝑡, ℎ†𝑡+1|ℎ

†
𝑡 , 𝛼†, 𝛽)

∑10
𝑖=1

∑2
𝑗=0 �̃�𝑖,𝑗𝑔(𝑦

∗
𝑡 , ℎ𝑡+1|ℎ𝑡, 𝛼 , 𝛽 , 𝑠𝑡 = (𝑖, 𝑗), 𝑑)

∏𝑛
𝑡=1 𝑓 (𝑦𝑡, ℎ𝑡+1|ℎ𝑡, 𝛼 , 𝛽)

∑10
𝑖=1

∑2
𝑗=0 �̃�𝑖,𝑗𝑔(𝑦

∗
𝑡 , ℎ†𝑡+1|ℎ

†
𝑡 , 𝛼†, 𝛽 , 𝑠𝑡 = (𝑖, 𝑗), 𝑑)

⎫

⎪

⎬

⎪

⎭

.

Remark. As in Algorithm 1, we may skip (iii) of Step 3b since the approximation error is usually small.

B.2. Associated particle filter

We describe how to compute the likelihood 𝑓 (𝑦|𝜃) when there is a leverage effect. Let

𝑓 (𝑦𝑡|ℎ𝑡, 𝜃) = 1
√

2𝜋
exp

[

−1
2
ℎ𝑡 −

1
2
{𝑦𝑡 − 𝛽 exp(ℎ𝑡∕2)}2 exp(−ℎ𝑡)

]

𝑓 (ℎ𝑡+1|ℎ𝑡, 𝑦𝑡, 𝜃) = 1
√

2𝜋(1 − 𝜌2)𝜎
exp

{

−
(ℎ𝑡+1 − 𝜇𝑡+1)2

2(1 − 𝜌2)𝜎2

}

,

𝜇𝑡+1 = 𝜇 + 𝜙(ℎ𝑡 − 𝜇) + 𝜌𝜎 exp(−ℎ𝑡∕2){𝑦𝑡 − 𝛽 exp(ℎ𝑡∕2)},

and consider the importance function for the auxiliary particle filter

𝑞(ℎ𝑡+1, ℎ𝑖𝑡|𝑌𝑡+1, 𝜃) ∝ 𝑓 (𝑦𝑡+1|𝜇𝑖
𝑡+1, 𝜃)𝑓 (ℎ𝑡+1|ℎ𝑖𝑡, 𝑦𝑡, 𝜃)𝑓 (ℎ𝑖𝑡|𝑌𝑡, 𝜃)

∝ 𝑓 (ℎ𝑡+1|ℎ𝑖𝑡, 𝑦𝑡, 𝜃)𝑞(ℎ𝑖𝑡|𝑌𝑡+1, 𝜃)
where

𝑞(ℎ𝑖𝑡|𝑌𝑡+1, 𝜃) =
𝑓 (𝑦𝑡+1|𝜇𝑖

𝑡+1, 𝜃)𝑓 (ℎ𝑖𝑡|𝑌𝑡, 𝜃)
∑𝐼

𝑗=1 𝑓 (𝑦𝑡+1|𝜇
𝑗
𝑡+1, 𝜃)𝑓 (ℎ

𝑗
𝑡 |𝑌𝑡, 𝜃)

,

𝑓 (𝑦𝑡+1|𝜇𝑖
𝑡+1, 𝜃) =

1
√

2𝜋
exp

[

−1
2
𝜇𝑖
𝑡+1 −

1
2
{𝑦𝑡 − 𝛽 exp(ℎ𝑖𝑡∕2)}

2 exp(−𝜇𝑖
𝑡+1)

]

,

𝜇𝑖
𝑡+1 = 𝜇 + 𝜙(ℎ𝑖𝑡 − 𝜇) + 𝜌𝜎 exp(−ℎ𝑖𝑡∕2){𝑦𝑡 − 𝛽 exp(ℎ𝑖𝑡∕2)}.

This leads to the following particle filtering.

1. Compute 𝑓 (𝑦1|𝜃) and 𝑓 (ℎ𝑖1|𝑌1, 𝜃) = 𝜋𝑖
1 for 𝑖 = 1,… , 𝐼 .

(a) Generate ℎ𝑖1 ∼ 𝑓 (ℎ1|𝜃) (= 𝑁(𝜇 , 𝜎2∕(1 − 𝜙2))) for 𝑖 = 1,… , 𝐼 .
(b) Compute

𝜋𝑖
1 =

𝑤𝑖
∑𝐼

𝑖=1 𝑤𝑖
, 𝑤𝑖 = 𝑓 (𝑦1|ℎ1, 𝜃), 𝑊𝑖 = 𝐹 (𝑦1|ℎ1, 𝜃),

𝑓 (𝑦1|𝜃) = 𝑤1 =
1
𝐼

𝐼
∑

𝑖=1
𝑤𝑖, 𝐹 (𝑦1|𝜃) = 𝑊 1 =

1
𝐼

𝐼
∑

𝑖=1
𝑊𝑖,
18 
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where 𝑓 (𝑦1|𝜃) and 𝐹 (𝑦1|𝜃) are the marginal density function and the marginal distribution function of 𝑦1 given 𝜃. Let
𝑡 = 1.

2. Compute 𝑓 (𝑦𝑡+1|𝜃) and 𝑓 (ℎ𝑖𝑡+1|𝑌𝑡+1, 𝜃) = 𝜋𝑖
𝑡+1 for 𝑖 = 1,… , 𝐼 .

(a) Sample ℎ𝑖𝑡 ∼ 𝑞(ℎ𝑡|𝑌𝑡, 𝜃), 𝑖 = 1,… , 𝐼 .
(b) Generate ℎ𝑖𝑡+1|ℎ

𝑖
𝑡, 𝑦𝑡, 𝜃 ∼ 𝑓 (ℎ𝑡+1|ℎ𝑖𝑡, 𝑦𝑡, 𝜃) (= 𝑁(𝜇𝑖

𝑡+1, 𝜎2(1 − 𝜌2))) for 𝑖 = 1,… , 𝐼 .
(c) Compute

𝜋𝑖
𝑡+1 =

𝑤𝑖
∑𝐼

𝑖=1 𝑤𝑖
, 𝑤𝑖 =

𝑓 (𝑦𝑡+1|ℎ𝑖𝑡+1, 𝜃)𝑓 (ℎ𝑖𝑡+1|ℎ𝑖𝑡, 𝑦𝑡, 𝜃)𝑓 (ℎ𝑖𝑡|𝑌𝑡, 𝜃)
𝑓 (ℎ𝑖𝑡+1|ℎ

𝑖
𝑡, 𝑦𝑡, 𝜃)𝑞(ℎ𝑖𝑡|𝑌𝑡+1, 𝜃)

=
𝑓 (𝑦𝑡+1|ℎ𝑖𝑡+1, 𝜃)𝑓 (ℎ𝑖𝑡|𝑌𝑡, 𝜃)

𝑞(ℎ𝑖𝑡|𝑌𝑡+1, 𝜃)
,

𝑊𝑖 =
𝐹 (𝑦𝑡+1|ℎ𝑖𝑡+1, 𝜃)𝑓 (ℎ𝑖𝑡|𝑌𝑡, 𝜃)

𝑞(ℎ𝑖𝑡|𝑌𝑡+1, 𝜃)
,

𝑓 (𝑦𝑡+1|𝑌𝑡, 𝜃) = 𝑤𝑡+1 =
1
𝐼

𝐼
∑

𝑖=1
𝑤𝑖, 𝐹 (𝑦𝑡+1|𝜃) = 𝑊 𝑡+1 =

1
𝐼

𝐼
∑

𝑖=1
𝑊𝑖.

3. Increment 𝑡 and go to 2.

Appendix C. MCMC algorithm to compute the posterior ordinate

This section describes MCMC algorithm which may be used when computing the marginal likelihood. It is a little less efficient
than Algorithm 3, but still efficient enough to compute the posterior ordinate.

Algorithm 4. The Markov chain Monte Carlo simulation is implemented in four blocks:

1. Initialize ℎ and 𝜃.
2. Generate 𝜃|ℎ, 𝑦 ∼ 𝜋(𝜃|ℎ, 𝑦).
3. Generate ℎ|𝜃 , 𝑦 ∼ 𝜋(ℎ|𝜃 , 𝑦).
4. Go to step 2.

Step 2. Generation of 𝜃|ℎ, 𝑦
We first transform 𝜃 to 𝜗 = (𝜇 , log{(1 + 𝜙)∕(1 − 𝜙)}, log 𝜎2, 𝛽 , log{(1 + 𝜌)∕(1 − 𝜌)}), to remove parameter constraints, and conduct

Metropolis–Hastings (MH) algorithm to sample from the conditional posterior distribution with density 𝜋(𝜗|ℎ, 𝑦) = 𝜋(𝜃|ℎ, 𝑦) ×|𝑑 𝜃∕𝑑 𝜗|
where |𝑑 𝜃∕𝑑 𝜗| is the Jacobian of the transformation. Compute the posterior mode �̂� and define 𝜗∗ and 𝛴∗ as

𝜗∗ = �̂�, 𝛴−1
∗ = − 𝜕2 log𝜋(𝜗|ℎ, 𝑦)

𝜕 𝜗𝜕 𝜗′
|

|

|

|𝜗=�̂�
.

Given the current value 𝜗, generate a candidate 𝜗† from the distribution 𝑁(𝜗∗, 𝛴∗) and accept it with probability

𝛼(𝜗, 𝜗†|ℎ, 𝑦) = min
{

1,
𝜋(𝜗†|ℎ, 𝑦)𝑓𝑁 (𝜗|𝜗∗, 𝛴∗)
𝜋(𝜗|ℎ, 𝑦)𝑓𝑁 (𝜗†|𝜗∗, 𝛴∗)

}

,

where 𝑓𝑁 (⋅|𝜗∗, 𝛴∗) is the probability density of 𝑁(𝜗∗, 𝛴∗). If candidate 𝜗† is rejected, we take the current value 𝜗 as the next draw.
hen the Hessian matrix is not negative definite, we may take a flat normal proposal 𝑁(𝜗∗, 𝑐0𝐼) using some large constant 𝑐0.

Step 3. Generation of ℎ|𝜃 , 𝑦
We sample ℎ using the mixture sampler using the mixture of normal distributions as discussed in the previous section. Define

the pseudo target density

�̃�(ℎ, 𝑠|𝜃 , 𝑦) = 𝜋(ℎ|𝜃 , 𝑦) × 𝑞(𝑠|ℎ, 𝜃 , 𝑦∗, 𝑑),

𝑞(𝑠|ℎ, 𝜃 , 𝑦∗, 𝑑) =
𝑛
∏

𝑡=1

�̃�𝑠𝑡𝑔(𝑦
∗
𝑡 , ℎ𝑡+1|ℎ𝑡, 𝜃 , 𝑠𝑡, 𝑑)

∑10
𝑖=1

∑2
𝑗=0 �̃�𝑖,𝑗𝑔(𝑦

∗
𝑡 , ℎ𝑡+1|ℎ𝑡, 𝜃 , 𝑠𝑡 = (𝑖, 𝑗), 𝑑)

,

where

𝑔(𝑦∗𝑡 ,ℎ𝑡+1|ℎ𝑡, 𝜃 , 𝑠𝑡, 𝑑) =
{

𝑓𝑁 (𝑦∗𝑡 |�̃�𝑠𝑡 + ℎ𝑡, 𝑣2𝑠𝑡 )𝑓𝑁 (ℎ𝑡+1|ℎ𝑠𝑡 ,𝑡, 𝜎2(1 − 𝜌2)), 𝑡 < 𝑛,
𝑓𝑁 (𝑦∗𝑡 |�̃�𝑠𝑡 + ℎ𝑡, 𝑣2𝑠𝑡 ) 𝑡 = 𝑛,

ℎ𝑠𝑡 ,𝑡 = 𝜇(1 + 𝜙) + 𝜙ℎ𝑡 + 𝜌𝜎[𝑑𝑡 exp(�̃�𝑠𝑡∕2){𝑎𝑠𝑡 + 𝑏𝑠𝑡 (𝑦
∗
𝑡 − ℎ𝑡 − �̃�𝑠𝑡 )} − 𝛽].

We generate sample (ℎ, 𝑠) from the pseudo target density in two steps.

(a) Generate 𝑠 ∼ 𝑞(𝑠|ℎ, 𝜃 , 𝑦∗, 𝑑).
(b) Generate ℎ|𝜃 , 𝑠, 𝑦 ∼ �̃�(ℎ|𝜃 , 𝑠, 𝑦).
19 
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i. Propose a candidate ℎ† = (ℎ†1,… , ℎ†𝑛) using a simulation smoother introduced by de Jong and Shephard (1995) and Durbin
and Koopman (2002) for the linear space Gaussian state space model as in (14)–(16). The ℎ† is a sample from

𝜋∗(ℎ|𝜃 , 𝑠, 𝑦∗, 𝑑) =
∏𝑛

𝑡=1 𝑔(𝑦
∗
𝑡 , ℎ𝑡+1|ℎ𝑡, 𝜃 , 𝑠𝑡, 𝑑)
𝑚(𝑦∗|𝜃 , 𝑠) × 𝑓𝑁

(

ℎ1
|

|

|

|

𝜇 , 𝜎2

1 − 𝜙2

)

,

where 𝑚(𝑦∗|𝜃 , 𝑠) is a normalizing constant given by

𝑚(𝑦∗|𝜃 , 𝑠) = ∫

𝑛
∏

𝑡=1
𝑔(𝑦∗𝑡 , ℎ𝑡+1|ℎ𝑡, 𝜃 , 𝑠𝑡, 𝑑) × 𝑓𝑁

(

ℎ1
|

|

|

|

𝜇 , 𝜎2

1 − 𝜙2

)

𝑑 ℎ.

ii. Let

𝑓 (𝑦𝑡,ℎ𝑡+1|ℎ𝑡, 𝜃)

=

{

𝑓𝑁 (𝑦𝑡|𝛽 exp(ℎ𝑡∕2), exp(ℎ𝑡))𝑓𝑁 (ℎ𝑡+1|ℎ𝑡, 𝜎2(1 − 𝜌2)), 𝑡 < 𝑛
𝑓𝑁 (𝑦𝑡|𝛽 exp(ℎ𝑡∕2), exp(ℎ𝑡)), 𝑡 = 𝑛,

ℎ𝑡 = 𝜇(1 + 𝜙) + 𝜙ℎ𝑡 + 𝜌𝜎{𝑦𝑡 − 𝛽 exp(ℎ𝑡∕2)} exp(−ℎ𝑡∕2).
Given the current value ℎ, accept the candidate ℎ† with probability

min
{

1,
�̃�(ℎ†|𝜃 , 𝑠, 𝑦)𝜋∗(ℎ|𝜃 , 𝑠, 𝑦∗, 𝑑)
�̃�(ℎ|𝜃 , 𝑠, 𝑦)𝜋∗(ℎ†|𝜃 , 𝑠, 𝑦∗, 𝑑)

}

= min
{

1,
𝜋(ℎ†|𝜃 , 𝑦)𝑞(𝑠|ℎ†, 𝜃 , 𝑦∗, 𝑑)𝜋∗(ℎ|𝜃 , 𝑠, 𝑦∗, 𝑑)
𝜋(ℎ|𝜃 , 𝑦)𝑞(𝑠|ℎ, 𝜃 , 𝑦∗, 𝑑)𝜋∗(ℎ†|𝜃 , 𝑠, 𝑦∗, 𝑑)

}

= min

{

1,
𝑞(𝑠|ℎ†, 𝜃 , 𝑦∗, 𝑑)∏𝑛

𝑡=1 𝑓 (𝑦𝑡, ℎ†𝑡+1|ℎ
†
𝑡 , 𝜃)𝑔(𝑦∗𝑡 , ℎ𝑡+1|ℎ𝑡, 𝜃 , 𝑠𝑡, 𝑑)

𝑞(𝑠|ℎ, 𝜃 , 𝑦∗, 𝑑)∏𝑛
𝑡=1 𝑓 (𝑦𝑡, ℎ𝑡+1|ℎ𝑡, 𝜃)𝑔(𝑦∗𝑡 , ℎ†𝑡+1|ℎ

†
𝑡 , 𝜃 , 𝑠𝑡, 𝑑)

}

= min

⎧

⎪

⎨

⎪

⎩

1,

∏𝑛
𝑡=1 𝑓 (𝑦𝑡, ℎ†𝑡+1|ℎ

†
𝑡 , 𝜃)

∑10
𝑖=1

∑2
𝑗=0 �̃�𝑖,𝑗𝑔(𝑦

∗
𝑡 , ℎ𝑡+1|ℎ𝑡, 𝜃 , 𝑠𝑡 = (𝑖, 𝑗), 𝑑)

∏𝑛
𝑡=1 𝑓 (𝑦𝑡, ℎ𝑡+1|ℎ𝑡, 𝜃)

∑10
𝑖=1

∑2
𝑗=0 �̃�𝑖,𝑗𝑔(𝑦

∗
𝑡 , ℎ†𝑡+1|ℎ

†
𝑡 , 𝜃 , 𝑠𝑡 = (𝑖, 𝑗), 𝑑)

⎫

⎪

⎬

⎪

⎭

.
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