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Abstract

A key question for understanding the cross-section of expected returns of financial
equity assets is the following: which factors, from a given collection of factors, are
risk factors, equivalently, which factors are in the stochastic discount factor (SDF)?
Though the SDF is unobserved, assumptions about which factors (from the available
set of factors) are in the SDF restricts the joint distribution of factors in specific
ways, as a consequence of the economic theory of asset pricing. A different starting
collection of factors that go into the SDF leads to a different set of restrictions
on the joint distribution of factors. The conditional distribution of equity returns
has the same restricted form, regardless of what is assumed about the factors in
the SDF, as long as the factors are tradeable, and hence the distribution of asset
returns is irrelevant for isolating the risk-factors. The restricted factors models are
distinct (non-nested) and do not arise by omitting or including a variable from a full
model, thus precluding analysis by standard statistical variable selection methods,
such as those based on the lasso and its variants. Instead, we develop what we
call a Bayesian model scan strategy in which each factor is allowed to enter or not
enter the SDF and the resulting restricted models (of which there are 114,674 in our
empirical study) are simultaneously confronted with the data. We use a student-t
distribution for the factors, and model-specific independent student-t distribution
for the location parameters, a training sample to fix prior locations, and a creative
way to arrive at the joint distribution of several other model-specific parameters
from a single prior distribution. This allows our method to be essentially a scaleable
and tuned-black-box method that can be applied across our large model space with
little to no user-intervention. The model marginal likelihoods, and implied posterior
model probabilities, are compared with the prior probability of 1/114,674 of each
model to find the best supported model, and thus the factors most likely to be
in the SDF. We provide detailed simulation evidence about the high finite-sample
accuracy of the method. Our empirical study with 13 leading factors reveals that
the highest marginal likelihood model is a student-t distributed factor model with
5 degrees of freedom and 8 risk factors.
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1 Introduction

A fundamental goal of theoretical and empirical finance is to explain and measure the

risk premium (the difference between the expected return of the asset and the risk-free

return) for the cross-section of assets in financial markets. According to the factor theory

of asset pricing, financial assets earn a risk-premium because the returns on those assets

are systematically related to the underlying pricing factors. Such factors are called risk

factors and represent sources of systematic risk affecting all assets. An important element

of the factor theory is that the same set of risk factors affect the risk premium of all

assets, and that these different assets earn different risk premiums because of different

covariances (also called exposures) to the underlying risk factors. The original such risk

factor is the so-called market portfolio proposed in the 1960’s. Knowledge of that risk

factor led to the prescription of market index investing (one just holds a version of the

market portfolio rather than the individual assets), which is a key principle that underpins

the investment/wealth management industry.

According to the theory of asset pricing, a risk-factor is any variable that is in the

stochastic discount factor (SDF), or pricing kernel. In other words, a factor is a risk factor

if it is in the SDF, and it is not a risk factor if it not in the SDF (Cochrane, 2009). The

question of establishing the identity of such risk factors has generated a large literature

in finance (for example, Harvey and Liu, 2017, Fama and French, 2017, Pukthuanthong,

Roll, and Subrahmanyam, 2017) though the question of which factors in total are in

the SDF is far from settled. The importance of settling this question is that, first, it is

central for evaluating portfolio performance and, second, it has a bearing on investment

strategies of both individuals and professional fund-managers. If one determines, for

example, the identity of the relevant risk factors, then from a investment perspective it

is enough to hold the risk factors in an investment portfolio, assuming that the factors

are tradeable assets, rather than the individual assets, a principle referred to as factor

investing. This is because the risk-premium of the individual assets is composed of the risk

arising from the covariance with the returns of the risk factors plus an idiosyncratic risk

which, in principle, can be diversified away. One can avoid having to find the appropriate

diversification strategy by just holding the relevant risk factors (Ang, 2014). Isolating

such risk factors, therefore, has enormous practical implications.
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In this paper we provide a Bayesian approach for isolating the risk factors, namely

the factors that are in the SDF. In particular, if we denote the SDF at time t by Mt, and

let f t : d × 1 denote the factors in contention for being in the SDF, then the goal is to

find the collection of factors xt : dx × 1 (1 ≤ dx ≤ d) from f t that are in the SDF and

the complementary set of factors wt : dw × 1 (dx + dw = d) that are not in the SDF.

For any given decomposition of the factors in this way, the SDF based pricing condition

implies that when the joint distribution of the factors is written in terms of a marginal

distribution of the x-factors and a conditional distribution of the w-factors given the x

-factors, the latter conditional distribution must have zero intercepts (assuming that all

factors are tradeable). A different starting collection of factors that go into xt leads to a

different Mt, which leads to a different set of restrictions on the factor model. This means

that we can identify the x-factors in the SDF by simultaneously confronting each of the

resulting restricted factor models with the data. The conditional distribution of equity

returns has the same restricted form, regardless of what is assumed about the factors in

the SDF, as long as the factors are tradeable, and hence the distribution of asset returns

is irrelevant for isolating the risk-factors. It should be noted that the restricted factor

models are distinct (non-nested) and do not arise by omitting or including a variable from

a full model, thus precluding analysis by standard statistical variable selection methods,

such as those based on the lasso and its variants.

In our empirical analysis we consider a set of 13 potential risk factors and suppose

that the joint distribution of the factors is student-t with unknown degrees of freedom

νf . Under this collection of factors, and a grid consisting of 14 degrees of freedom, our

universe of models consists of (213 − 1) × 14 = 114, 674 possible models. We estimate

each of these models by tuned Bayesian methods and compare these models in terms

of marginal likelihoods. There is a powerful theoretical basis to model comparisons via

marginal likelihoods (for example Chib, Shin, and Simoni, 2017). This theory shows that,

as the sample size goes to infinity, the model picked according to the highest value of the

marginal likelihood is either the true model or the model that is closest to the true model

in the Kullback-Leibler information sense. Of course, ultimately, we are interested in

finite-sample comparisons. With this in mind, much of our approach is devoted to careful

consideration of the prior distribution on the parameters of each of our 114,674 models.
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Our formulation of this prior distribution, which must be proper, can act as a template

for other similar large-scale model comparison problems. Clearly, it is important that the

prior distributions across models should not steer the marginal likelihood to favor one

or the other models. It also must be set-up in a automatic way in order to allow the

comparison of such a large collection of models to proceed in a black-box fashion with

little or no user-intervention.

An important feature of this prior is that starting with a prior on the covariance matrix

of the factors, Ω, it is possible to construct the implied prior on several key parameters of

the model, for any choice of the x and w-factors. This key feature, which we explain in

Section 2, allows us to by-pass the model-by-model prior specification of a large number of

parameters in the universe of possible models. In addition, we set up the hyperparameters

of our prior distribution from a training sample approach, where the training sample

refers to a sample of observations prior to the estimation sample. The use of a training

sample serves to bring a measure of objectivity to this prior that is difficult to ensure

otherwise. We show that the prior we work with satisfies all the criteria enumerated in

the preceding paragraph, namely, it is a black-box prior that requires little to no user-

intervention, is objective and does not predispose the choice of models in contradiction

to the sample evidence. We demonstrate the last of these features by the sample the

prior method of Chib and Ergashev (2009) under which the factor data is simulated for

each model by sampling the parameters from the prior of that model and then sampling

the factors of that model given the parameters. If these sampled distributions are the

same (or approximately the same) across models, then the implication is that the effect of

the model-specific priors is similar, and differences in the marginal likelihoods reflect the

ability of the different models in describing the observed data. We calculate the marginal

likelihoods as a by-product of the Markov chain Monte Carlo (MCMC) simulation output

by the method of Chib (1995) and its Metropolis-Hastings version in Chib and Jeliazkov

(2001).

We thoroughly document the effectiveness of our framework to pick the true model

from the universe of possible models in carefully designed simulation studies that mimic

the real-world features of the factors that are typically employed in this setting. In

this simulation, we involve 11 factors and use our framework to calculate the marginal
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likelihood of all possible models that cover a grid of νf = 4, 8, 16, 32, and ∞ degrees of

freedom, for samples of size T = 600, 1,200 and 2,400, and for 100 replications of the data

for each sample size. The results show that our method is capable of locating the true

model accurately. This accuracy increases with sample size as per the asymptotic theory

of the marginal likelihood.

Finally, we provide detailed results from the application of our method to the actual

data on 13 common risk factors. These are the Fama and French (1993, 2015) factors:

excess market return (MKT), size (SMB), value (HML), profitability (RMW) and invest-

ment (CMA); the Hou, Xue, and Zhang (2015) q-factors: size (ME), profitability (ROE)

and investment (IA); the Carhart (1997) momentum (MOM) factor; the Asness, Frazzini,

and Pedersen (2014) quality minus junk (QMJ) factor; the Pástor and Stambaugh (2003)

liquidity (LIQ) factor; the Frazzini and Pedersen (2014) betting against beta (BAB) fac-

tor; and another version of value (HMLD) factor proposed by Asness and Frazzini (2013).

In this real-data analysis, we use a training sample that runs from January 1968 to Decem-

ber 1972 to form our prior distribution and an estimation sample that runs from January

1973 to December 2015 to estimate and compare 114,674 factor models. This analysis

reveals that the highest marginal likelihood model is a student-t distributed factor model

with 5 degrees of freedom in which MKT, SMB, RMW, ROE, MOM, QMJ, BAB and

HMLD are the x-factors and HML, CMA, ME, IA, LIQ are the w-factors.

Our paper adds to the literature on the use of Bayesian techniques in finance (see,

Ruppert, 2010). For example, Shanken (1987), Harvey and Zhou (1990) use the Bayesian

framework to test the efficiency of a given portfolio, while Avramov and Chao (2006) use

Bayes factors to compare conditional linear factor models with pre-specified traded factors.

More recently, Barillas and Shanken (2018) answer the same question as in this paper by

fitting factor models and comparing marginal likelihoods but, in their framework, both

the likelihood and prior components of the Bayesian model are questionable. First, the

MKT factor is assumed to be a risk-factor in all models, whereas in our formulation the

status of the MKT factor is not pre-established in this way. Second, Barillas and Shanken

(2018) assume that the joint factor distribution is multivariate normal, an assumption

that is at odds with the data. In our empirical study, we show that the multivariate

student-t distribution is better supported than the multivariate normal distribution, and
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that the best model under the normality assumption is quite different from the best-

supported student-t model. Third, and critically, Barillas and Shanken (2018) use off-

the-shelf Jeffreys’ priors on nuisance parameters that violate a required across-models

change-of-variable formula, thus rendering the marginal likelihoods non-comparable. In

extensive simulation experiments, Chib, Zeng, and Zhao (2018) show that, for each of 500

true DGP’s and 100 replications of the data from each of those DGP’s, in a model space

of 2048 models, the Barillas and Shanken (2018) method does not detect the true DGP

even once, even for samples of size 12,000 (corresponding to a thousand years of monthly

data).

The remainder of the paper proceeds as follows. In Section 2 we describe the model,

data and prior. In Section 3 we give the MCMC algorithm for sampling the posterior

distribution and the algorithm for calculating the marginal likelihood. Section 4 deals

with the results from our simulation studies and Section 5 gives the results from the

analysis of the real data. Section 6 concludes the paper.

2 Model, data and prior

2.1 Model

In our framework, each factor can be either present in the SDF (in which case it is called

the x-factor) or absent from the SDF (in which case it is the w-factor). The collection of

factors that are in the SDF are denoted by xt : dx × 1 and the complementary collection

of factors by wt : dw × 1. Now consider the joint model of factors and asset returns.

Writing this joint model as a marginal model of the factors times the conditional model

of the asset returns given the factors it follows that the latter conditional model depends

on both xt (the pricing factors) and the w-factors. Thus, the conditional distribution of

asset returns is the same, regardless of the identity of the risk factors. Therefore, this

conditional model does not help to provide evidence about whether a particular factor is

in the SDF. Henceforth, therefore, it is enough to focus our attention on the factor model.

Barillas and Shanken (2017) make the same point but by a different argument.

Factors: Suppose now that the factors follow the student-t distribution

f t
i.i.d∼ Std(µ,Ω, νf ) , t ≥ 1 (2.1)

6



where µ : d × 1 (the mean vector), Ω : d × d (the positive definite dispersion matrix)

and νf > 2 (the degrees of freedom) are unknown parameters. The student-t assump-

tion is important in the current case because the factor data tends to display fatter tails

than those of the Gaussian distribution (Fama, 1965, Affleck-Graves and Mcdonald, 1989,

Richardson and Smith, 1993, Dufour, Khalaf, and Beaulieu, 2003, Zhou, 1993). Mak-

ing use of the well-known representation of the student-t distribution as a Gamma-scale

mixture of normal distributions, we have that

f t|τ f,t ∼ Nd(µ, τ−1
f,tΩ) (2.2)

τ f,t
i.i.d∼ G

(νf
2
,
νf
2

)
(2.3)

where the scale τ f,t > 0 is latent. Now for a particular model in the universe of possible

models (constructed by letting a collection of factors take the role of the x-factors and

the complementary set take the role of the w-factors), let us suppose that the factors are

rearranged as f t = (xt,wt), and the parameters are partitioned accordingly as

µ =

(
µx
µw

)
and

Ω =

 Ωx
(dx×dx)

Ωxw

Ω′xw
(dw×dx)

Ωw
(dw×dw)

 .

Let

Γ = Ω′xwΩ−1
x : dw × dx

denote the matrix of regression coefficients in the regression of the w-factors on the x-

factors. Conditioned on the scale τ f,t, write the factor model as the marginal distribution

of the x-factors and the conditional distribution of the w-factors given the x-factors,

xt = µx + ηx,t (2.4)

wt = µw + Γ(xt − µx) + ηw·x,t (2.5)

where (
ηx,t
ηw·x,t

)∣∣∣∣τ f,t ∼ Nd(0, τ−1
f,t

(
Ωx 0
0 Ωw·x

))
(2.6)

and

Ωw·x = Ωw − Ω′xwΩ−1
x Ωxw : dw × dw
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A remark about notation. Although it would be more precise to label xt, wt and the

parameters by a model subscript, we refrain from doing so to avoid notational clutter. It

should be understood, however, that every aspect of this factor model is model-specific.

SDF: Now suppose that the SDF Mt, defined following Hansen and Jagannathan

(1991), is given by

Mt = 1− νf − 2

νf
λ′xΩ−1

x (xt − µx) (2.7)

where λx is a vector of unknown coefficients, and each element in the vector λxΩ−1
x (the

market price of factor risks) is nonzero by virtue of the definition of xt. The SDF-based

economic pricing theory dictates that (the tradeable excess returns) f t must satisfy the

vector pricing restrictions

E(Mtf t) = 0 (2.8)

where the expectation is with respect to the joint distribution of f t. By direct calculation

it can be seen that these pricing restrictions require that

µx = λx (2.9)

µw = Γλx (2.10)

or, in other words, that the marginal and conditional distributions of the factors in (2.4)

to (2.6) take the restricted form

xt = λx + ηx,t (2.11)

wt = Γxt + ηw·x,t (2.12)

where (ηx,t,ηw·x,t)|τ f,t are distributed as in (2.6). This shows that assumptions about

which factors are in the SDF restricts the joint distribution of factors in specific ways.

A different starting collection of x-factors leads to a different final model of the factors.

Our idea, therefore, is to simultaneously confront each of these possible restricted factor

models with the data, and compare them in terms of the Bayesian marginal likelihood

criterion. The best supported pricing factors are the x-factors in the model with the

largest marginal likelihood. It may be noted that simultaneous comparison in this way

avoids post-model selection biases (in the frequentist sense), because we enumerate all

the models before the analysis of the data.

We explain our procedure with the help of the following running example.
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Example 1 (q-factor model) Suppose the x-factors are {MKT,ME,ROE, IA} as in the

q-factor model. Then xt = (MKTt,MEt,ROEt, IAt) with length dx = 4 and wt =

(SMBt,HMLt,RMWt,CMAt,MOMt,QMJt,LIQt,BABt,HMLDt) with length dw = 9. In

this case, 
MKTt

MEt

ROEt

IAt

 = λx︸︷︷︸
4×1

+ηx,t (2.13)



SMBt

HMLt
RMWt

CMAt

MOMt

QMJt
LIQt

BABt

HMLDt


= Γ︸︷︷︸

9×4


MKTt

MEt

ROEt

IAt

+ ηw·x,t (2.14)

with Ωx : 4× 4 and Ωw·x : 9× 9.

2.2 Data

In our analysis we involve 13 prominent factors that are often considered in the literature.

The sample of the 13 factors we use here is from January 1968 to December 2015, with 576

observations in total1. Table 1 reports the sample correlation among the factor returns.

As we see from Table 1, most of the factors have significant non-zero correlations.

In our analysis, we use an initial portion of these data, which runs from January 1968

to December 1972 to form our prior distribution, and the subsequent portion, which runs

from January 1973 to December 2015, to estimate and compare all our 114,674 factor

models.

2.3 Prior specification

As mentioned earlier, the model-by-model prior must be proper, i.e., with integral over the

parameter space equal to one. In addition, the prior distributions should, in some sense,

1We thank Lu Zhang for providing us the factors in the q-factor model. Other factors are obtained
from authors’ webpages.
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MKT SMB HML RMW CMA ME ROE IA MOM QMJ LIQ BAB

SMB .27**
HML -.31** -.12*
RMW -.21** -.38** .11*
CMA -.40** -.09 .71** -.06
ME .26** .97** -.08 -.37** -.05

ROE -.20** -.39** -.10 .67** -.08 -.32**
IA -.38** -.19** .69** .06 .91** -.14** .04

MOM -.14* -.05 -.16** .09 .01 -.01 .50** .03
QMJ -.53** -.52** .02 .76** .08 -.50** .69** .15** .26**
LIQ -.07 -.03 .02 .02 .02 -.03 -.05 .02 -.01 .04
BAB -.09 -.02 .39** .25** .32** .01 .26** .34** .19** .19** .06

HMLD -.13* -.01 .77** -.07 .51** -.01 -.45** .50** -.65** -.22** .06 .13*

Table 1: Correlation of candidate risk factors, monthly observations from January 1968 to

December 2015. The top five correlations are in bold. Significance levels: .001 (**), and .01 (*)

be comparable across the different models so that the differences in marginal likelihoods

are not merely caused by the differences in the priors. Finally, it is important that the

formulation of these model-specific priors should require little to no user-intervention.

We now discuss how we specify such a model-specific prior. The parameters of a

particular restricted factor model are given by

θ = (λx,Ωx,Ωw·x,γ)

where γ = vec(Γ) : q × 1 and q = dw × dx. These parameters, in general, lie in a high

dimensional parameter space. For example, in Example 1, the total number of parameters

in the model is 95. If the prior is not formulated sensibly, it is possible that the prior

may concentrate in regions of the parameter space that are in conflict with the model

(likelihood function).

We develop our model-specific prior by using an initial portion of the data (the training

sample) to arrive at the hyperparameters of each prior distribution. In our application,

this training sample runs from January 1968 to December 1972, with 60 observations

in total. From our experience, the specific period used as a training sample is rather

inconsequential because of the fact that the training sample is used primarily for locating

the mean of the prior distribution; the spread of the prior distribution is largely a user-

specified hyper-parameter to ensure adequate uncertainty about the choice of location. Of

course, the training sample is employed solely for the construction of the model-specific

prior and is not used in the model estimation procedure.
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Prior of λx: Based on the training sample, we represent our prior knowledge on each

element of λx, model-by-model, by a product of student-t distributions. We use student-t

distributions, instead of (say) normal distributions, to allow a particular component to

shrink separately of the other components. Also, the thick tails of the student-t distribu-

tion (under our small degrees of freedom) is helpful in avoiding prior-likelihood conflicts.

Let λx = (λ1, ..., λdx). Then, our prior density is given by

π(λx) =
dx∏
i=1

St(λi|ν, λ0,i, sλ) (2.15)

where St(·|ν, λ0,i, sλ) denotes the student-t density. For computational convenience, we

represent this prior density in terms of a scale mixture of normal densities as

π(λx|τ λ) =
dx∏
i=1

N (λi|λ0,i, τ
−1
λ,isλ) (2.16)

π(τ λ) =
dx∏
i=1

G
(
τλ,i

∣∣∣∣ν2 , ν2
)

(2.17)

where N (·|λ0,i, τ
−1
λ,isλ) and G

(
·|ν

2
, ν

2

)
are normal and Gamma densities, respectively, λ0,i

is the prior mean, sλ is the dispersion, ν is the number of degrees of freedom and τ λ =

(τλ,1, ..., τλ,dx) are the latent scale random-variables. In fixing the hyperparameters, we

set λ0 = (λ0,1, ..., λ0,dx) to be the sample average of x-factors in the training sample,

sλ to equal .0025 and ν to equal 2.1 (a choice that ensures that the distribution has a

finite variance plus thick-tails), which implies that the prior standard deviation of each

component of λx is about 0.2291. This is a generously dispersed distribution that implies

a prior range of (2)(.2291), or about 45%, on either side of λ0,i, where the latter quantity

is typically about .1%.

Prior of (Ωx,Ωw·x,γ): For any choice of the x and w-factors, we set up the prior on

these parameters from a single inverse Wishart prior on Ω

Ω ∼ IWd(ρ0, Q0) (2.18)

where ρ0 denotes the degrees of freedom of this distribution and the scale matrix Q0 is

derived from the prior mean Ω0 on Ω as

Q0 = (ρ0 − d− 1)Ω0 (2.19)
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We set ρ0 as d + 6, which leads to Q0 = 5 × Ω0, and set Ω0 as
νf−2

νf
multiplied by the

sample variance-covariance matrix of the factors in the training sample. If we partition

partition Q0 as

Q0 =

Qx,0
dx×dx

Q′g,0

Qg,0
dw×dx

Qw,0
dw×dw

 (2.20)

then from properties of the inverse Wishart distribution it follows that the implied joint

density on Ωx, Ωw·x and γ is

π(Ωx,Ωw·x,γ) = π(Ωx)π(Ωw·x)π(γ|Ωw·x) (2.21)

where (on letting IWd(·|ρ,Q) stand for the d-dimensional inverse Wishart density with

ρ degrees of freedom, and scale matrix Q)

π(Ωx) = IWdx(Ωx|ρ0 − dw, Qx,0) (2.22)

π(Ωw·x) = IWdw(Ωw·x|ρ0, Qw·x,0) (2.23)

π(γ|Ωw·x) = Nq(γ|γ0 = vec(Qg,0Q
−1
x,0), Bγ,0 = Q−1

x,0 ⊗ Ωw·x) (2.24)

Qw·x,0 = Qw,0 − Qg,0Q
−1
x,0Q

′
g,0, “vec” is the column vectorization operator and ⊗ is the

kronecker product operator.

Thus, our prior density on (Ωx,Ωw·x,γ), for all the possible model specifications, is

computed from the same pair of hyperparameters, (ρ0,Ω0). Naturally, the elements of

Ω0 have to be re-arranged depending on the order of the x and w factors in a particular

model. Apart from this qualification, what is important is that we only need to determine

(ρ0,Ω0) once, regardless of the number of factor models that are being compared. This is

not only computationally convenient but maintaining a comparable prior across models

in this way is important in ensuring that differences in marginal likelihoods are due to

the data evidence, and not due to differences in the prior on these parameters.

We note that our prior of γ is conditional on Ωw·x. Because of this dependence, a

Metropolis-Hastings step (Chib and Greenberg, 1995) is needed in sampling the condi-

tional posterior distribution of Ωw·x. Nonetheless, as we show later, the M-H step can be

implemented efficiently with an almost costless proposal distribution.

Given these assumptions, our prior density of θ is now given by the expression

π(θ) = π(λx)π(Ωx)π(Ωw·x)π(γ|Ωw·x) (2.25)
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This prior is a key part of our procedure. As we document later in the paper, careful

testing in simulation experiments shows that our marginal likelihood procedure, based on

this prior, is rather effective in finding the underlying true model. Whether another prior

can perform as well is not relevant for our purposes. What matters is that we have found

a prior construction that works well for this problem.

To illustrate the details of the prior set up, we continue our previous example assuming

νf = 4.

Example 1 (continued) The parameter list in the model is θ = (λx : 4×1,γ : 36×1,Ωx :

4 × 4,Ωw·x : 9 × 9). Under our prior setup, the prior mean on λx is the sample average

of the factors MKT, ME, ROE and IA in the training sample:

λ0 =


.0020
−.0002
.0043
.0067

 (2.26)

The prior mean on Ω is
νf−2

νf
= .5 multiplied by the sample variance-covariance matrix of

the factors MKT, ME, ROE, IA, SMB, HML, RMW, CMA, MOM, QMJ, LIQ, BAB,

and HMLD (in that order) in the training sample.

To see what this prior implies about the (a priori) factor distribution, we use the

sample the prior method of Chib and Ergashev (2009) and generate 100,000 draws from

the prior distribution. Given each generated draw of the parameters, we simulate the 13

factors from the model. To compare the simulated factor distribution from the q-factor

model with those of other models, we repeat the simulation for three alternative models.

In the first alternative model x-factor is QMJ. In the second alternative model, x-factors

are MKT, SMB, HMLD, RMW and CMA. In the third alternative model, x-factors are

MKT, SMB, HML, RMW, ROE, IA, MOM and QMJ. All the alternative models have

νf = 4. Table 2 reports the simulated quantiles from these models.

In general, the implied factor distributions from these models are comparable. There

are small discrepancies across the models for some factors. However, these discrepancies

are driven by the pricing restrictions instead of the priors. To see that, we simulate the

factor distributions from the unrestricted versions of M1, M2, M3 and M4, given by the

equations from (2.4) to (2.6). For the unrestricted factor model, the priors on (Γ,Ωx,Ωw·x)
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M1 M2 M3 M4

lower upper lower upper lower upper lower upper

MKT -0.3322 0.3098 -0.2204 0.2235 -0.2157 0.2267 -0.2212 0.2249
SMB -0.2287 0.2153 -0.2257 0.2229 -0.2124 0.2161 -0.2148 0.2140
HML -0.1053 0.1032 -0.2199 0.2293 -0.1910 0.1986 -0.2106 0.2161
RMW -0.0981 0.1037 -0.1510 0.1487 -0.2109 0.2067 -0.2044 0.2108
CMA -0.0964 0.1018 -0.2240 0.2391 -0.2068 0.2185 -0.1984 0.2068
ME -0.1912 0.1793 -0.2147 0.2116 -0.2157 0.2183 -0.2412 0.2441
ROE -0.1600 0.1706 -0.2056 0.2104 -0.2130 0.2122 -0.2059 0.2150
IA -0.0868 0.0924 -0.2009 0.2150 -0.2005 0.2104 -0.2055 0.2135
MOM -0.1761 0.1882 -0.2933 0.3006 -0.5102 0.5137 -0.2099 0.2226
QMJ -0.2022 0.2148 -0.1423 0.1459 -0.1974 0.2029 -0.2085 0.2133
LIQ -0.1332 0.1405 -0.2135 0.2056 -0.3794 0.3820 -0.4623 0.4573
BAB -0.0986 0.1031 -0.2480 0.2696 -0.3402 0.3573 -0.3983 0.4083
HMLD -0.1270 0.1220 -0.2577 0.2665 -0.2110 0.2151 -0.2378 0.2364

Table 2: Summary for the simulated factor distribution implied by the prior from different

restricted factor models. In M1, x-factor is QMJ. M2 is the q-factor model in Example 1. In

M3, x-factors are MKT, SMB, RMW, CMA and HMLD. In M4, x-factors are MKT, SMB,

HML, RMW, ROE, IA, MOM and QMJ. All the models have νf = 5. The summaries are based

on 100,000 draws. “Lower” and “upper” refer to the .025 and .975 quantiles of the simulated

draws.

are imposed in the same way as in the restricted models; the priors on (µx,µw) are imposed

as those on λx. Table 3 reports the simulated quantiles from the unrestricted factor models.

As expected, the simulated quantiles are the same across the different models.

3 Posterior Computations

3.1 MCMC simulation algorithm

We now discuss the sampling of the posterior distribution by Markov chain Monte Carlo

(MCMC) methods. In this simulation we take advantage of the scale mixture of nor-

mals representation of the student-t distribution and focus on the (augmented) posterior

distribution given by

π(θ, τ f , τ λ|f 1:T ) ∝ p(x1:T |λx,Ωx, τ f )p(w1:T |x1:T ,γ,Ωw.x, τ f )

× π(τ f )π(τ λ)π(λx|τ λ)π(Ωx)π(Ωw·x)π(γ|Ωw·x)
(3.1)

14



M1 M2 M3 M4

lower upper lower upper lower upper lower upper

MKT -0.2195 0.2213 -0.2217 0.2237 -0.2219 0.2226 -0.2212 0.2283
SMB -0.2152 0.2148 -0.2168 0.2115 -0.2194 0.2112 -0.2147 0.2101
HML -0.2069 0.2166 -0.2074 0.2139 -0.2069 0.2167 -0.2055 0.2144
RMW -0.2040 0.2110 -0.2077 0.2086 -0.2060 0.2097 -0.2075 0.2068
CMA -0.2001 0.2143 -0.2030 0.2149 -0.2052 0.2122 -0.2090 0.2140
ME -0.2154 0.2103 -0.2101 0.2116 -0.2121 0.2142 -0.2130 0.2103
ROE -0.2048 0.2123 -0.2058 0.2145 -0.2056 0.2152 -0.2052 0.2133
IA -0.2032 0.2148 -0.2018 0.2128 -0.1994 0.2150 -0.2030 0.2195
MOM -0.2123 0.2164 -0.2110 0.2157 -0.2127 0.2197 -0.2105 0.2235
QMJ -0.2029 0.2156 -0.2030 0.2140 -0.2037 0.2148 -0.2014 0.2121
LIQ -0.2079 0.2120 -0.2115 0.2145 -0.2131 0.2108 -0.2112 0.2162
BAB -0.1994 0.2202 -0.2010 0.2234 -0.2050 0.2148 -0.2031 0.2188
HMLD -0.2088 0.2147 -0.2085 0.2146 -0.2104 0.2171 -0.2136 0.2164

Table 3: Summary for the simulated factor distribution implied by the prior from different

unrestricted factor models. In M1, x-factor is QMJ. M2 is the q-factor model in Example 1.

In M3, x-factors are MKT, SMB, RMW, CMA and HMLD. In M4, x-factors are MKT, SMB,

HML, RMW, ROE, IA, MOM and QMJ. All the models have νf = 5. The summaries are based

on 100,000 draws. “Lower” and “upper” refer to the .025 and .975 quantiles of the simulated

draws.

where f 1:T = (f 1, ...,fT ) denotes the sample data on the factors f t, for t running from

January 1973 to December 2015, and τ f = (τ f,1, ..., τ f,T ) are the latent scales for all T

time periods with distribution given by

π(τ f ) =
T∏
t=1

G
(
τ f,t

∣∣∣∣νf2 , νf2
)

We sample this distribution by MCMC methods (for background on these methods, see

Gelfand and Smith, 1990, Tierney, 1994, Chib and Greenberg, 1995, Chib, 2001, Robert

and Casella, 2005), by iterating on the following steps.

Step 1: Sample each element τ f,t of τ f from the Gamma densities

π(τ f,t|f t,θ) = G
(
τ f,t

∣∣∣∣νf + 1

2
,
νf + η′tblockdiag(Ω−1

x ,Ω−1
w·x)ηt

2

)
, t = 1, ..., T (3.2)

where η′t =
(
(xt − λx)′ , (wt − Γxt)

′)′.
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Step 2: Sample each element of τ λ from the Gamma densities

π(τλ,i|f 1:T ,λx,γ) = G
(
τλ,i

∣∣∣∣ν + 1

2
,
ν + (λi − λ0,i)

2/sλ
2

)
, i = 1, ..., dx (3.3)

Step 2: Sample Ωx from the density π(Ωx|x1:T ,λx, τ f ), which can be derived by

writing the data on the x-factors in matrix form as

Xτf︸︷︷︸
T×dx

= 1τf︸︷︷︸
T×1

λ′x + Ex︸︷︷︸
T×dx

(3.4)

where

Xτf =


√
τ f,1x

′
1

...√
τ f,Tx

′
T

 , 1τf =


√
τ f,1
...√
τ f,T

 (3.5)

and the error matrix Ex follows the matrix normal distribution

vec(Ex) ∼ NT×dx(0,Ωx ⊗ IT )

On combining with the inverse Wishart prior of Ωx in (2.22), it can be seen that

π(Ωx|x1:T ,λx, τ f ) = IWdx(Ωx|ρ1 − dw, Qx,1) (3.6)

where

Qx,1 = Qx,0 + (Xτf − 1τfλ
′
x)′(Xτf − 1τfλ

′
x) (3.7)

and ρ1 = ρ0 + T .

Step 4: Sample λx from the density π(λx|x1:T ,Ωx, τ f , τ λ), which can be derived by

starting with the vectorized form of the model in (3.4):

vec(Xτf ) = (Idx ⊗ 1τf )λx + vec(Ex) (3.8)

Combining with the conditional normal prior of λx in (2.16) and applying standard

Bayesian updates we get that

π(λx|x1:T ,Ωx, τ f , τ λ) = Ndx(λ̂x, Bλ,T ) (3.9)

where

Bλ,T = (B−1
λ,0 + (1′τf 1τf )⊗ Ω−1

x )−1 (3.10)
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λ̂x = Bλ,T (B−1
λ,0λ0 + ((1′τf 1τf )⊗ Ω−1

x )λ̂LS) (3.11)

and

Bλ,0 = diag(sλτ
−1
λ,1, ..., sλτ

−1
λ,dx

) (3.12)

λ̂LS = ((1′τf 1τf )−11′TX)′ (3.13)

Step 5: Sample Ωw·x from the density

π(Ωw·x|w1:T ,x1:T ,γ, τ f ) ∝ p(w1:T |x1:T ,γ,Ωw·x, τ f )π(Ωw·x)π(γ|Ωw·x)

which is not in closed form because of the third term. Following (Chib and Greenberg,

1995), however, we note that the first two terms on the right hand side combine nicely

and can be used as a proposal distribution in a Metropolis-Hastings (M-H) step. The

M-H probability of move then just involves the third term. To combine those first two

terms, express the matrix form of the data on the w-factors as

Wτf︸︷︷︸
T×dw

= Xτf Γ′ + Ew·x︸︷︷︸
T×dw

(3.14)

where

Wτf =


√
τ f,1w

′
1

...√
τ f,Tw

′
T

 (3.15)

and

vec(E ′w·x) ∼ NT×dw(0, IT ⊗ Ωw·x)

Multplying with the inverse Wishart prior of Ωw·x in (2.23), the proposal distribution

becomes

IWdw(ρ1, Qw·x,1) (3.16)

where

Qw·x,1 = Qw·x,0 + (Wτf −Xτf Γ′)′(Wτf −Xτf Γ′) (3.17)

Then, in the M-H step, we propose Ω†w·x from the latter distribution, which we accept

with probability given by

α(Ωw·x,Ω
†
w·x|w1:T ,x1:T ,γ, τ f ) = min

{
1,
Nq(γ|vec(Qg,0Q

−1
x,0), Q−1

x,0 ⊗ Ω†w·x)

Nq(γ|vec(Qg,0Q
−1
x,0), Q−1

x,0 ⊗ Ωw·x)

}
(3.18)
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We stay at the current value Ωw·x if the proposed value is not accepted.

Step 6: Sample γ from the distribution p(γ|w1:T ,x1:T ,Ωw·x, τ f ), which can be derived

starting with the row-vectorized form of the model in (3.14),

vec(W ′
τf

) = (Xτf ⊗ Idw)γ + vec(E ′w.x) (3.19)

Combining with the conditional normal prior of γ in (2.24) and applying standard Bayesian

updates we get that

π(γ|w1:T ,x1:T ,Ωw·x, τ f ) = Nq(γ̂, Bγ,T ) (3.20)

where

Bγ,T = (B−1
γ,0 + (X ′τfXτf )⊗ Ω−1

w·x)−1 (3.21)

γ̂ = Bγ,T (B−1
γ,0γ0 + ((X ′τfXτf )⊗ Ω−1

w·x)γ̂LS) (3.22)

and

γ̂LS = vec(((X ′τfXτf )−1X ′τfWτf )′) (3.23)

We repeat these sampling steps a large number of times, say 80,000 times and discard

the burn-in draws, say the first 40,000. The remaining 40,000 draws, ignoring the draws

on the latent scales, are samples from the posterior distribution π(θ|f 1:T ).

Example 1 (continued) Applying our fitting algorithm to the q-factor model (with νf = 4),

the marginal posterior distributions of λx, γ, Ωx, Ωw·x are summarized in Table 4. The

M-H acceptance rate is around 82% and the inefficiency factor, the ratio of the numerical

variance of the mean to the variance of the mean assuming independent draws are small

(indicating that the draws, although serially correlated, are essentially independent). The

example showcases the simulation efficiency of our MCMC algorithm.

3.2 Marginal likelihood computation

Our main task in the empirical study is not just estimating a single model but also

comparing multiple models. In Bayesian analysis, we use the posterior odds of models

given the observed data to compare alternative models. The posterior odds reflect how

data favor each competing model. Let pj = Pr(Mj) denote the prior probability for
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param mean sd lower median upper ineff

λ1 6.93× 10−3 1.65× 10−3 6.91× 10−3 3.72× 10−3 1.02× 10−2 1.28
λ2 2.51× 10−3 1.05× 10−3 2.51× 10−3 4.19× 10−4 4.57× 10−3 1.26
λ3 6.91× 10−3 8.00× 10−4 6.91× 10−3 5.32× 10−3 8.44× 10−3 1.28
λ4 3.70× 10−3 6.62× 10−4 3.70× 10−3 2.38× 10−3 4.98× 10−3 1.28
Γ1,1 -1.06× 10−2 6.89× 10−3 -1.07× 10−2 -2.39× 10−2 2.92× 10−3 1.23
Γ2,1 -8.81× 10−2 2.10× 10−2 -8.79× 10−2 -1.30× 10−1 -4.72× 10−2 1.22
Γ3,1 -4.37× 10−2 1.49× 10−2 -4.37× 10−2 -7.28× 10−2 -1.45× 10−2 1.20
Γ4,1 -3.01× 10−2 7.58× 10−3 -3.01× 10−2 -4.51× 10−2 -1.55× 10−2 1.22
Γ5,1 -2.02× 10−3 3.30× 10−2 -1.86× 10−3 -6.81× 10−2 6.16× 10−2 1.22
Γ6,1 -1.73× 10−1 1.50× 10−2 -1.73× 10−1 -2.03× 10−1 -1.44× 10−1 1.23
Γ7,1 -2.39× 10−2 3.89× 10−2 -2.39× 10−2 -1.01× 10−1 5.27× 10−2 1.28
Γ8,1 9.08× 10−2 3.13× 10−2 9.08× 10−2 2.89× 10−2 1.52× 10−1 1.33
Γ9,1 -4.47× 10−2 2.35× 10−2 -4.45× 10−2 -9.08× 10−2 1.10× 10−3 1.21
Ωx,1,1 1.16× 10−3 8.29× 10−5 1.16× 10−3 1.01× 10−3 1.33× 10−3 2.54
Ωx,2,2 4.81× 10−4 3.48× 10−5 4.80× 10−4 4.17× 10−4 5.52× 10−4 2.40
Ωx,3,3 2.73× 10−4 1.95× 10−5 2.72× 10−4 2.37× 10−4 3.14× 10−4 2.54
Ωx,4,4 1.92× 10−4 1.35× 10−5 1.91× 10−4 1.66× 10−4 2.20× 10−4 2.47
Ωw·x,1,1 2.37× 10−5 1.68× 10−6 2.36× 10−5 2.05× 10−5 2.71× 10−5 3.38
Ωw·x,2,2 2.26× 10−4 1.60× 10−5 2.25× 10−4 1.96× 10−4 2.59× 10−4 2.96
Ωw·x,3,3 1.11× 10−4 7.86× 10−6 1.11× 10−4 9.64× 10−5 1.27× 10−4 3.10
Ωw·x,4,4 2.90× 10−5 2.04× 10−6 2.89× 10−5 2.53× 10−5 3.32× 10−5 3.51
Ωw·x,5,5 5.36× 10−4 3.82× 10−5 5.35× 10−4 4.66× 10−4 6.17× 10−4 3.39
Ωw·x,6,6 1.13× 10−4 8.09× 10−6 1.13× 10−4 9.79× 10−5 1.30× 10−4 3.54
Ωw·x,7,7 7.39× 10−4 5.35× 10−5 7.37× 10−4 6.43× 10−4 8.49× 10−4 3.21
Ωw·x,8,8 4.81× 10−4 3.41× 10−5 4.80× 10−4 4.16× 10−4 5.50× 10−4 3.36
Ωw·x,9,9 2.78× 10−4 1.99× 10−5 2.77× 10−4 2.42× 10−4 3.20× 10−4 3.43

Table 4: Posterior summary for selected parameters in Example 1 (q-factor model). The

summaries are based on 10,000 MCMC draws beyond a burn-in of 40,000. ”Lower” and ”upper”

refer to the .025 and .975 quantiles of the simulated draws respectively, and “ineff” to the

inefficiency factor, the ratio of the numerical variance of the mean to the variance of the mean

assuming independent draws

model Mj. The posterior odds between model Mi and Mk are

Pr(Mi|f 1:T )

Pr(Mk|f 1:T )
=
pi
pk

m(f 1:T |Mi)

m(f 1:T |Mk)
(3.24)

where the marginal likelihood is defined as the integral of the likelihood function with

respect to the prior density,

m(f 1:T |Mj) =

∫
Θj

p(f 1:T |θ,Mj)π(θ|Mj) dθ (3.25)

and the integration is over the parameter space

Θ = Rdx × Rq × {set of dx × dx pd matrices} × {set of dw × dw pd matrices}
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where “pd” stands for positive-definite. If the prior odds on the models are one, which we

are going to assume here, the posterior odds are equal to the ratio of marginal likelihoods.

Therefore, the central piece of model performance is the marginal likelihood. Marginal

likelihoods automatically penalize models based on complexity, ensuring that more com-

plex models will not rank higher merely because the more flexible model is capable of

fitting the noise in the data. Moreover, model selection based on the comparison of Bayes

factors or marginal likelihoods has attractive asymptotic properties. If the true model

is among the candidates under consideration, the highest marginal likelihood model will

select it with probability approaching one in the limit; if it is not among the candidates

(the likely case), the highest marginal likelihood model will select the model that is closest

to the true model in the Kullback-Leibler distance (see, e.g. Chib et al., 2017). We lean

on this latter property to help us ascertain, from the comparison of all subset models,

which group of factors are better supported by the data as being in the SDF.

To estimate the marginal likelihood of each contending model, we employ the Chib

(1995) method which starts with the convenient expression of the log marginal likelihood

lnm(f 1:T |Mj) = ln π(θ∗|Mj) + ln p(f 1:T |Mj,θ
∗)− ln π(θ∗|Mj,f 1:T ) (3.26)

where θ∗ = (λ∗x,γ
∗,Ω∗x,Ω

∗
w·x) is some chosen point, say the posterior mean. In this

expression, the prior and likelihood ordinates can be found analytically. As for the third

term, the posterior ordinate, suppress the model index, and use a marginal-conditional

decomposition to write

ln π(θ∗|f 1:T ) = lnπ(Ω∗w·x|f 1:T ) + ln π(λ∗x,γ
∗|f 1:T ,Ω

∗
w·x) + ln π(Ω∗x|f 1:T ,λ

∗
x,γ

∗,Ω∗w·x)

(3.27)

Now appealing to the approach of Chib and Jeliazkov (2001) we have that

π(Ω∗w·x|f 1:T ) =
E1{α(Ωw·x,Ω

∗
w·x|f 1:T ,λx,γ, τ f )IWdw(Ω∗w·x|ρ1, Qw·x,1)}

E2{α(Ω∗w·x,Ωw·x|f 1:T ,λx,γ, τ f )}
(3.28)

where E1 denotes the expectation with respect to the posterior distribution π(θ|f 1:T ),

and E2 denotes the expectation with respect to the distribution

π(λx,γ|f 1:T ,Ω
∗
w·x)× IWdw(Ωw·x|ρ1, Qw·x,1) (3.29)

We can calculate the former expectation by Monte Carlo with the draws on θ from the

full MCMC run. For the latter expectation, we perform a reduced MCMC run in which
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Ωw·x is fixed at Ω∗w·x and the remaining blocks of parameters are sampled as before. This

reduced MCMC run gives rise to the draws{
λ(j)
x ,γ(j),Ω(j)

x , τ
(j)
λ , τ

(j)
f

}
(3.30)

For each of these draws, we sample Ω
(j)
w·x from the proposal distribution

IWdw(ρ1, Q
(j)
w·x,1) (3.31)

where Q
(j)
w·x,1 are conditional posterior quantities computed at (γ(j), τ

(j)
f ).

The second ordinate, π(λ∗x,γ
∗|f 1:T ,Ω

∗
w·x), is estimated from the output of the previous

reduced run as

π̂(λ∗x,γ
∗|f 1:T ,Ω

∗
w·x) =

1

J

J∑
j=1

Ndx(λ∗x|λ̂
(j)

x , B
(j)
λ,T )Nq(γ∗|γ̂(j), B

(j)
γ,T ) (3.32)

where λ̂
(j)

x , B
(j)
λ,T , γ̂(j) and B

(j)
γ,T are computed conditional on (Ω

(j)
x ,Ω∗w·x, τ

(j)
λ , τ

(j)
f ).

Finally, π(Ω∗x|f 1:T ,λ
∗
x,γ

∗,Ω∗w·x) is from the output of another reduced MCMC run.

Fixing (λx,γ,Ωw·x) at (λ∗x,γ
∗,Ω∗w·x), we sample the remaining blocks of parameters. If

we let {
Ω(l)
x , τ

(l)
f

}L
l=1

denote the draws in this second reduced run then our estimate of the final ordinate is

given by

π̂(Ω∗x|f 1:T ,λ
∗
x,γ

∗,Ω∗w·x) =
1

L

L∑
l=1

IWdx(Ω∗x|ρ1 − dw, Q
(l)
x,1) (3.33)

where Q
(l)
x,1 is computed conditional on (λ∗x, τ

(l)
f ).

Though the marginal likelihood in our framework does not have a closed form, the

numerical computations follow in a straightforward manner. In addition, an R package

for implementing all the computations is available on request.

Example 1 (continued) Consider the q-factor model (with νf = 5). Let θ∗ denote the

average of 10,000 MCMC draws beyond a burn-in of 40,000. Let the number of iterations

in both reduced runs be 10,000. The estimated log marginal likelihood is 17,555.31. Sup-

pose we want to compare this q-factor model with five alternative models: the CAPM, in

which the only x-factor is MKT, with νf = 5 and ∞, the Fama-French five factor model,
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in which x-factors are {MKT, SMB,HML,RMW,CMA}, with νf = 5 and ∞, and the

q-factor model with νf = ∞. The log marginal likelihood for these models are given in

Table 5.

q5 FF55 CAPM5 q∞ FF5∞ CAPM∞
17569.61 17538.61 17511.86 16809.67 16790.97 16782.65

Table 5: Log marginal likelihoods of six common models.

4 Simulation experiments

In our framework, a different starting collection of factors that go into xt leads to a differ-

ent set of restrictions on the factor model and, hence, a different model. Simultaneously

confronting each of these possible restricted factor models with the data, and comparing

them in terms of the Bayesian marginal likelihood criterion, provides the means to iden-

tify the x-factors in the SDF. In this section, we use simulations to assess how well the

framework performs in identifying the x-factors. The simulation studies are designed to

mimic the real-world features of the factors that are typically employed in this setting.

We suppose that there are 11 factors and use our framework to calculate the marginal

likelihood of all possible models that cover a grid of νf = 4, 8, 16, 32, and ∞ degrees

of freedom, for samples of size T = 600, 1,200 and 2,400, and for 100 replications of the

data for each sample size. We could use a finer grid of νf values (as we do in our real

data example) but in general it is not possible to discriminate between close degrees of

freedom, unless the sample size is large. The results show that our method is capable of

locating the true model with remarkable accuracy. This accuracy increases with sample

size as per the asymptotic theory of the marginal likelihood.

4.1 Simulation design

Our simulations proceed as follows.

1. We assume an eleven-factor world in which the factors are matched to the following

11 factors, MKT, SMB, HML, RMW, CMA, ME, ROE, IA, MOM, QMJ and LIQ.
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2. We then make an assumption about the true pricing factors. In this setting, for

a given factor distributional form, there are 211 − 1 = 2, 047 possible true models

depending on the assumption made about the collection of factors that go into xt.

For instance, suppose that in the true model xt consists of MKT, ME, ROE and IA

and the factor distribution is a student-t with νf = 4. Our aim is to generate data

from this model and to then confront the (211−1)×5 = 10, 235 possible models over

the grid of νf = 4, 8, 16, 32, and ∞ to these data to see if the marginal likelihoods

correctly pick this true model. Of course, in order to generate data from this true

model we need to fix the parameters at some suitable values. A sensible choice is

to fix the parameters at the maximum likelihood (ML) values to ensure that the

generated data on the factors resemble the real data. A key point is that we need

to ensure that this is a valid model for the purpose of generating our data. By valid

model we mean a model in which the fitted SDF suggests that each assumed x-factors

is statistically significant. In other words, we need to check that in the expression of

Mt = 1− νf−2

νf
λ′xΩ−1

x (xt − µx), the fitted values of b = Ω−1
x λx are each significant.

Otherwise, the maintained assumption that the factors {MKT, ME, ROE, IA} are

the pricing factors would counter to the evidence and data generated from such a

data generating process (DGP) would lead to misleading model comparisons. In the

following example, we show the maintained assumption is valid for generating the

simulated data.

Example 2 Consider the factor model that has MKT, ME, ROE and IA as the

x-factors and SMB, HML, RMW, CMA, MOM, QMJ and LIQ as w-factors. The

factor distribution is assumed to be a student-t with νf = 4. To check whether

the model is valid for generating the simulated data, we find the estimate of b by

maximizing the log-likelihood function and calculate the variance-covariance matrix

of the estimate as the negative inverse of the Hessian matrix of the likelihood function

at the maximum likelihood estimate. The estimates and the associated standard

errors are reported in Table 6. As we can see from the table, each element of b is

significant at the level of .05.

We select three models that are valid for generating the simulated data. The com-
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Factor MKT ME ROE IA

b̂
9.61

(1.69)
6.34

(2.43)
28.66
(3.45)

30.64
(4.22)

Table 6: Maximum likelihood estimates of b in Mt = 1− νf−2
νf
b′(xt−µx), with standard errors

in parentheses. The estimation is for the factor model that has MKT, ME, ROE, IA as the x-

factors and SMB, HML, RMW, CMA, MOM, QMJ, and LIQ as the w-factors, and has νf = 4,

based on the monthly data from January 1968 to December 2015.

position of their xt are listed in the first column of Table 7 and their factor distri-

butional forms are listed in the second column of the same table.

3. Then, we simulate data from each of these three true models. As mentioned above,

the true parameter values are those obtained from the maximum likelihood fitting

of the models to the monthly data on the eleven factors which runs from January

1968 to December 2015.

Example 2 (continued) The ML estimates of the model over the actual data are

λ̂x =


0.0065
0.0021
0.0069
0.0038

 , Ω̂x =


12.76 2.00 −0.64 −1.68
2.00 5.21 −0.67 −0.38
−0.64 −0.67 3.07 −0.28
−1.68 −0.38 −0.28 2.10

× 10−4 (4.1)

Γ̂ =



−0.00 0.96 −0.10 −0.07
−0.08 −0.01 −0.27 0.86
−0.04 −0.11 0.50 −0.15
−0.03 −0.00 −0.16 0.93
0.00 0.13 0.85 0.26
−0.18 −0.20 0.56 −0.07
−0.04 −0.06 0.11 0.07


(4.2)

Ω̂w·x =



0.26 −0.14 0.12 −0.02 0.08 0.09 0.03
−0.14 2.38 0.12 0.26 −0.21 −0.33 0.23
0.12 0.12 1.16 −0.01 −0.47 0.62 0.25
−0.02 0.26 −0.01 0.32 0.03 0.03 0.00
0.08 −0.21 −0.47 0.03 5.73 −0.22 0.26
0.09 −0.33 0.62 0.03 −0.22 1.19 0.22
0.03 0.23 0.25 0.00 0.26 0.22 7.72


× 10−4 (4.3)

Given these parameter values, we then simulate the factors for each t from the

assumed model.
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4. Given a particular DGP and a particular sample from that DGP, we calculate the

marginal likelihood of the 10,235 possible factor models on a grid of 4, 8, 16, 32 and

∞ degrees of freedom, and see if the highest marginal likelihood corresponds to the

true model that generated the data.

5. We repeat this exercise 100 times for sample sizes of T = 600, 1,200, and 2,400 and

for each of the three true DGP’s.

4.2 Results

Note that for the first true DGP, the candidate models exclude the true degrees of freedom.

The true number of degrees of freedom is 3.5 whereas the candidate degrees of freedom are

4, 8, 16, 32 and∞. In Table 7, we report the percentages of times in 100 replications that

the model with the correct x-factors and the closest degrees of freedom (which is 4) to the

true degrees of freedom is selected for sample sizes of size T = 600, 1,200, and 2,400 based

on the marginal likelihood. For the other two designs, Table 7 reports the percentage of

times in 100 replications of data that the true model is selected by the marginal likelihood

comparison for each of the three samples sizes. The results show that our method locates

the true model (a needle in the haystack of possible models) with remarkable accuracy.

This accuracy increases with sample size as per the asymptotic theory of the marginal

likelihood. The results also confirm the ability of our framework to find the model closest

to the true model (when the true model is not in the pool of possible models).

5 Empirical results

We now turn to the application of our framework to the actual data on 13 common

risk factors. These are the Fama and French (1993, 2015) factors: excess market return

(MKT), size (SMB), value (HML), profitability (RMW) and investment (CMA); the Hou

et al. (2015) q-factors: size (ME), profitability (ROE) and investment (IA); the Carhart

(1997) momentum (MOM) factor; the Asness et al. (2014) quality minus junk (QMJ)

factor; the Pástor and Stambaugh (2003) liquidity (LIQ) factor; the Frazzini and Pedersen

(2014) betting against beta (BAB) factor; and another version of value (HMLD) factor

proposed by Asness and Frazzini (2013). In this real-data analysis, we use a training
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x-factors νf T = 600 T = 1, 200 T = 2, 400

MKT, ME, ROE, IA 3.5
52

(5322)
67

(6857)
72

(7369)

MKT ∞ 70
(7165)

96
(9826)

97
(9928)

MKT, HML 4
78

(7983)
85

(8700)
95

(9723)

Table 7: Percentage of times the true model is selected, from within an enumerated model

space of 10,235 models, over 100 simulated datasets. There are 11 factors in the candidate

set. The first and second columns are the x-factors and the degrees of freedom used in the

true model. Given each true model, we consider three time-series sizes, T = 600 (column 3),

T = 1,200 (column 4) and T = 2,400 (column 5). For each data set, we select the model that

has the highest marginal likelihood. The numbers in parentheses are the ratio of the selection

percentage divided by 1/10,235, the prior probability of each model.

sample that runs from January 1968 to December 1972 to form our prior distribution,

and the period from January 1973 to December 2015 as the estimation sample. In fitting

the different student-t models, we use a grid of 14 values of νf , composed of 11 values from

2.5 to 8 in increments of 0.5, and the values 16, 32 and inf. This leads to a collection of

(213−1)×14 = 114, 674 models under contention. Each of these 114,674 contending models

is estimated from 40,000 draws of the MCMC algorithm, collected after an initial burn-

in period of 40,000 iterations. The subsequent reduced runs for the marginal likelihood

estimation are of length 10,000.

Our analysis shows that the model with the highest marginal likelihood, which is listed

in the second row of Table 8, is a student-t distributed factor model with 5 degrees of

freedom. It has a log-marginal likelihood value of 17613.06 and includes eight x-factors.

Three of the Fama-French 5 factors, namely the market excess return MKT, the size

factor SMB, and the profitability factor RMW are in this most preferred model. The

profitability factor ROE from the q-factor model is also in this best model. Finally, the

other x-factors in this model are the momentum factor MOM, the quality factor QMJ,

the betting against beta factor BAB, and the value factor HMLD.

Table 8 contains the best 4 models according to the log marginal likelihood criterion.

The best model is a student-t model with 5 degrees of freedom and 8 x-factors. The

second best model has 5.5 degrees of freedom and the same pricing factors. The next
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log(m) x-factors νf

17, 613.06 MKT, SMB, RMW, ROE, MOM, QMJ, BAB, HMLD 5
17, 612.89 MKT, SMB, RMW, ROE, MOM, QMJ, BAB, HMLD 5.5
17, 612.55 MKT, SMB, HML, RMW, ROE, MOM, QMJ, BAB, HMLD 5.5
17, 612.38 MKT, SMB, HML, RMW, ROE, MOM, QMJ, BAB, HMLD 5.0

Table 8: Top 4 marginal likelihood models among all 114, 674 models considered. Column 2 lists

the x-factors in the model. Column 3 reports in each model specification what the number of

degrees of freedom is in the factor process. The best model is the one with the highest marginal

likelihood as reported in the second row. The data sample consists of monthly observations from

January 1968 to December 2015. The first 60 observations form the training sample and the

remaining 516 observations are the estimation sample.

two best models have 9 pricing factors but because the log-marginal likelihood values are

within .6, according to Jeffreys’ scale (Jeffreys, 1961), the models are roughly equivalent.

Several findings can be observed in Table 8. First, that the factors MKT, ROE, MOM,

QMJ, BAB, and HMLD are in each of the top 4 models. This suggests that these factors

are jointly important drivers of the cross section of expected returns. Also we note that

that SMB and ME factors are not jointly included as pricing factors, perhaps because

these factors, which have a correlation coefficient of 0.97, are similar. Our results show

that size matters but it is in general better reflected in the SMB factor. Second, the

factors CMA, IA, and LIQ do not appear in the collection of x-factors. Third, somewhat

surprisingly, the two versions of profitability, i.e., the RMW factor from the Fama-French

five factor model, and the ROE factor from the q-factor model, often appear jointly,

despite the fact that both are measures of similar risks.

Another important point to note is that the student-t distribution is much better

supported by these data than the Gaussian distribution. The difference between the best

overall model and the best Gaussian model is more than 700 on the log scale, as shown in

Table 9. Moreover, the x-factors in the best Gaussian are also different. For example, the

BAB factor, is not in the best Gaussian model. Given the large difference in log marginal

likelihoods, one should be cautious in interpreting results obtained under the normality

assumption.
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log(m) x-factors νf

17613.06 MKT, SMB, RMW, ROE, MOM, QMJ, BAB, HMLD 5
16836.76 MKT, SMB, HML, RMW, ROE, MOM, QMJ, HMLD ∞

Table 9: The highest log marginal likelihood model vs the best Gaussian model. The data

sample consists of monthly observations from January 1968 to December 2015. The first 60

observations form the training sample and the remaining 516 observations are the estimation

sample.

6 Concluding remarks

In this paper, we develop a Bayesian framework to isolate risk factors, from a given col-

lection of potential risk factors, to explain the cross-section of expected returns. The

framework relies on two important assumptions, that factors are traded portfolio excess

returns or return spreads and the stochastic discount factor is linear in the factors. The

framework uses an enumerative model search strategy to jointly compare all possible factor

pricing models and finds the one that is best supported by the data in terms of marginal

likelihoods and posterior model probabilities. One aspect of this enumerative strategy,

that we do not emphasize here, but is a potent justification for our approach, is that it

avoids post- model selection biases (in the frequentist sense) because all the models are

enumerated before the data are encountered. Our construction of the proper prior, based

on a training sample, with independent student-t distributions for some location param-

eters, and a common inverse Wishart distribution for the covariance parameters, can act

as template for prior construction in other similar problems with large dimensional pa-

rameter spaces, and large dimensional model spaces. We also supply a simulation-efficient

Bayesian MCMC method for model estimation and marginal likelihood computation. The

framework overall is self-contained and can be used with minimum user intervention.

Our paper also highlights the importance of using multivariate student-t distribu-

tions to model the fat tails in the factor data. In our empirical study, we show that

the multivariate student-t distribution is better supported than the multivariate normal

distribution. Moreover, the best model under the normality assumption is quite different

from the student-t model that is most supported overall. This suggests caution in inter-

preting results that are predicated on the normality assumption. As the editor of this
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paper has pointed out, it would also be useful to allow for the possibility of multivariate

stochastic volatility. Such a model extension is likely to lead to new findings about the

risk factors. However, incorporating multivariate stochastic volatility in our model is a

rather significant extension that requires a considerable elaboration and modification of

our model and estimation framework. We intend to describe this extension in future work.

We conclude by noting that with the enormous continuing increase in computing

power, our enumerative model search strategy can be extended to even larger collections

of potential risk-factors than the 13 leading factors we have considered in this paper.

For instance, if we assume sparsity and suppose that at most 10 factors can be in the

SDF, our Bayesian enumerative strategy, with a starting collection of 50 potential risk

factors, would require the comparison of 13 billion models, which is within the reach of

our method with current parallel and cloud computing resources. In general, as it turns

out, the limiting factor to the enumerative model comparison strategy outlined here is not

computing, but rather the lack of serious potential risk factors. Nonetheless, in ongoing

work we are in the process of assembling a data set with several additional factors, with

the aim of applying the method of this paper to that setting. We are hopeful that the

proposed method will have a large impact on the practical discovery of risk-factors, with

a consequent large impact on the investment and wealth management industries.
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