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Outlier detection in the state space model 
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Abstract 

Zellner (1975), Chaloner and Brant (1988), and Chaloner (1991) used the posterior distributions of the realized errors to 
define outliers in a linear model. The same concept is used here to define outliers in a state-space model. An effective 
approach to compute the posterior probabilities of observations being outliers is developed and illustrated by means of 
examples. The detection of two outliers is straightforward. 
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1. Introduction 

In a linear model with normally distributed random errors, Ei for i= 1, . . . . n, with means zero and 

a common variance D’, Chaloner and Brant (1988) advocated the ith observation to be an outlier if lcil> ka 
for some choice of k. They suggested to choose k so that prior probability of no outliers is large, say 0.95. This 
gives k= C’(O.5 +4(0.95)““}. Zellner (1975), Chaloner and Brant (1988) and Chaloner (1991) thoroughly 
reviewed the problem of outlier detection. We use their idea to define outliers in a linear state-space model 
(cf. Chib and Tiwari, 1991; Harvey, 1981; Meinhold and Singpurwalla, 1983, 1989; West and Harrison, 1989) 
wherein the time series {Y,; t = 1,2, . . .}, given 8,, is modelled as 

Yr=@,+E,, E, - N(0, 0% (1) 

where 0, is the state p x 1 vector at time f, x, is a known regression p x 1 vector, and E, is an observational 
error. The evolution over time of the state vector Br, given 8,_ 1, is described by 

fIt=G,O,_l+w,, w,-N(0, c?W), (2) 

where G, is a known p x p state evolution matrix and w, the evolution error. The error sequence {E*} and {wt} 
are assumed to be independent and mutually independent. The p x p matrix W is assumed known, and the 
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prior distribution of c2 is an inverted-gamma, IG(v,/Z, 6,/2), with parameters v0/2 and S,/2; 
i.e., p(e-2)~(02)(yO+ IV2 ,-60/2c2. 

Let D, denote the n x 1 vector (yI, . . . , y,)’ of observations available up to and including time n. We say y,, 
for t = 1, . . . , n, is an outlier if the event It+I> ka occurs for some k. The choice of k is as suggested by Chaloner 
and Brant (1988) in the case of a linear model. To compute the posterior probability that IQ> ko we need the 
posterior distribution of E,, given D,, which is given by 

(3) 

(4) 

with ~sls_l=ys-x~~sls_l andf,,,_,=x:R,,,_,x,+l. The smoothing recursions to compute g,,,,and Rrlnare 
given by 

~*,n=~~,t+A,(B,+1,.-G,+letlr) 

R,,,=R,,,-A,(R,+,,,-RR,+1,,)A;, 
(5) 

where e,,, and R,,, are obtained through the Kalman filter recursions (see, e.g., Harvey, 1989, Section 4) and 

A,=R,,,G:+,R,‘,,,. 
At time t=O, we assume that 80~a2~N(~oIo, a2Rolo) and 0’ = IG(vo/2, 6,/2) with hyperparameters golo, 

Role, v. and do known. 

2. Realized error analysis 

Our approach to outlier detection builds on the framework of Bayesian error analysis, called realized error 
analysis, that is developed in (Zellner, 1975; Zellner and Moulton, 1985; Chaloner and Brant, 1988). These 
authors are only concerned with the linear model which is a special case of the state-space model with 
constant state variables. To detect which observations are outliers, define the probability ptln to be 
pr(lE,I > kaID,), the posterior probability that the tth observation is what we have defined to be an outlier. 
Let Q(z) denote the standard normal cumulative distribution function. Further, let 

then we have 

PrIn=pr(14>k~IDn)= 
s 

m{1--(ut,.)+~(vt,n))_p(‘i21D.)d~2. (7) 
0 

The ptIn’s can be compared with the prior probability 2@( - k). It is easy to see that pt,. is an increasing 
function of htln, often referred to as leverage. 

As in (Chaloner and Brant, 1988), the posterior probability that E, and E, are both outliers can be 
computed. For this, we use the posterior distribution of (E,, E,), 16s < t < n, given by 
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Table 1 
Pena and Guttman simulated data 

1 12.18 9 8.86 17 4.88 25 29.00 

2 9.32 IO 1 .oo 18 3.34 26 0.35 

3 11.20 II 7.19 19 2.08 27 3.42 

4 9.59 12 7.19 20 3.53 28 1.64 

5 7.41 13 1.62 1 21 1.25 29 2.17 

6 7.69 14 7.19 22 2.70 30 2.64 

7 9.06 15 4.71 23 0.48 31 3.87 

8 8.17 16 6.28 24 0.19 

where 

H 
h sin Xb&Jt 

s,tln’ _ h ’ [In 1 

with Cs,fI.=AsC,+l,tln, where Cf+= R,,, is used to initialize the recursion, and A, is defined in (5). This 

elegant expression for C,, f, n is due to Jong and Mackinnon (1988). Let rs.rIn=x~C,,tI,,x,/,/~ be the 
correlation between E, and .a, given D,. Further let B(a, b, p) be the standard bivariate normal cumulative 
distribution function with correlation p. Then the posteriori probability that F,, and E, are both outliers is 

where &a, b, c, d, p) = B( - a, - b, p) + B( - a, d, - p) + B(c, - b, - p) + B(c, d, p). The P~,~,,,‘s can be compared 
to the prior probability {2@( -k)j2. 

In many applications, for example, in the structural time series models considered by Harvey (1989), the 
elements of matrix W depend on a set of unknown parameters 1. Assuming p(A) to be the prior distribution of 
&the posterior probabilities outliers can be computed by integrating pt,,, and pS,*,. with respect to p(AlD,), see 
(Chib, et al., 1990). 

The approach developed does not rely on an outlier generating mechanism and is extremely easy to 
implement. Also, our approach can be adapted to deal with problems where the underlying time series 
experiences an abrupt break, as, for example, in the multi-process state-space model of (cf. West and Harrison 
1989). 

3. Examples 

The first example is the Pena and Guttman simulated data (Pena and Guttman, 1988, pp. 244, 245) 
obtained from the state-space model (see Table 1). 

Y,=&+Et, &,-NW, I), 

b)t=&t+w,, w,-N(0, l), t= 1, . ..) 31. 

At time r= 1, c)l = 10. The observations y,, and y,, are outliers. 
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Table 2 

Table of smoothed residuals E,,,, leverages h,,. and posterior probabilities 

pr(la,l >3.1 lalD,)=p,,, (3.11) for Pena and Guttman simulated data 

t B q. h t/n P,,“(3.11) 

0.0063 

1 0.9492 0.6180 0.0002 
2 -0.9613 0.4721 
3 0.9069 0.4508 
4 0.1921 0.4477 
5 - 0.9007 0.4473 
6 -0.4343 0.4472 
7 0.6879 0.4472 
8 0.2381 0.4472 
9 1.6063 0.4472 

10 - 3.969 1 0.4472 
11 1.1365 0.4472 
12 0.5885 0.4472 
13 0.4589 0.4472 
14 0.5283 0.4472 
15 -0.9241 0.4472 
16 0.7494 0.4472 
17 0.2024 0.4472 
18 -0.2824 0.4472 
19 -0.7694 0.4472 
20 0.6840 0.4472 
21 - 0.9084 0.4472 
22 0.3207 0.4472 
23 - 1.7996 0.4472 
24 -3.7895 0.4472 
25 10.5312 0.4472 
26 - 4.0769 0.4472 
27 - 0.0420 0.4473 
28 -0.8990 0.4477 
29 -0.3450 0.4508 
30 -0.1960 0.4721 
31 0.5170 0.6180 0.0001 

Note: Posterior probabilities less than 10m4 have been omitted. 

0.0001 
0.0047 

0.7504 

0.0074 

At t =.O, we assume that e,,, o = 10, Role = 103, v0 =O.l and 6e = 2. Setting the prior probability of no outliers 

to be 0.95 gives k = 3.11 to define an outlier. Table 2 gives smoothed residual, .Qn, leverage, II,,,,, and ptlnr for 
t= 1, . ..) 31. Comparing probabilities ptin with the prior probability 2@(k)=0.0019 shows that observations 

10 and 25 are outliers. In addition, observations 23 and 26 also appear as outliers. 
For selected values of s and t (and for k=2), Table 3 gives the posterior probabilities P~,~,. and the 

correlation coefficient Y,,~,“. Once again the observations 10 and 25 are outlier. 
The second example uses the sales data consisting of 72 observations given in (West and Harrison, 1989, 

p. 334). The variables of interest is an index of sales on a standardized deflated scale of a well-established food 
product in the UK market. Here x,=(1, xZt, e;; e;; e;) and G,= G = block diag[l; 1; F,; F3; F4], where xzt is 
a covariate measuring price and costs, and 

ez=(l, 0)‘; F,= 
cos(7rr/6) sin(rrr/6) 

-sin(rcr/6) 1 cos(Tcr/6) ’ 
r= 1,3,4. 
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Table 3 

Table of correlation coefficients rs,,,” and posterior probabilities pr((~~( > 2a. 

1% >2a)=Lk*,, (2) for selected values of s and t(s < t) for Pena and Guttman data 

s,t rs,tln Ps,t,.(2) 

IO,1 1 0.5279 0.0002 

lo,24 0.0339 

lo,25 0.1816 

24325 0.5279 0.1527 

25,26 0.5279 0.1905 

Note: Correlation coefficients less than 10m4 have been omitted 

Table 4 

Table of correlation coefficients rr t,n and posterior probabilities pr(la,l > 2a, 

IE,I >201D.)=pS,,,“(2) (s-cl) for West’and Harrison sales data 

s, t rs,tln P s,r/n (2) 

2,3 1 -0.2501 

2.32 -0.1329 

7,32 0.1180 

31,32 0.7197 

31,33 0.2749 

31,34 0.7422 

47,49 0.4698 

49,55 0.0994 

55,56 0.6334 

70,71 0.5217 

0.1144 

0.3 169 

0.0002 

0.3941 

0.0193 

0.2026 

0.0002 

0.0003 

Note: Posterior probabilities loess than 1O-4 have been omitted. 

The matrix W is specified as 

W= block diagC0.009; 0.0002; 0.00031,], 

where l6 is the 6 x 6 identity matrix. The initial prior information is specified directly for tI1 and is given by 

e,,,=[9.5; -0.7; 0.691; 1.159; 0.283; -0.050; -0.217; 0.144]‘, 

and 

R 1 , o = 20 x block diag CO.09; 0.0 1; 0.00671,], 

with v0 = 6 and & = 0.0990. 
To quote West and Harrison (1989, p. 354) “a typical outlier shows up in the January, 1980 error . . . the 

error in this month (is) way outside the 90% interval, and is in fact outside the 99% limit . . . Another apparent 
outlier occurs is February, 1976, but this one is explained as due to the inappropriateness of the initial prior 
estimate of the seasonal factor for that month.” 

The posterior probabilities ptln with k= 2 given in Fig. 1 confirm that January 1980 is an outlier. 
Interestingly, February 1976 does not show up as an outlier, and other observations do. To determine if 
February 1976 is masked as an outlier, the probability of two outliers is computed and reported in Table 4. It 
is clear that masking is not a problem as the probability of February 1976 and June 1978 (and February 1976 
and July 1979) being outliers is negligible. 
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Figure 1. Plot of Posterior probabilities pr( lc,l > 2a( DJ: West & Harrison sales data. 
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