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ABSTRACT
In this article, we develop a Bayesian semiparametric analysis of moment condition models by casting the
problem within the exponentially tilted empirical likelihood (ETEL) framework. We use this framework to
develop a fully Bayesian analysis of correctly and misspecified moment condition models. We show that
even under misspecification, the Bayesian ETEL posterior distribution satisfies the Bernstein–von Mises
(BvM) theorem. We also develop a unified approach based on marginal likelihoods and Bayes factors for
comparing different moment-restricted models and for discarding any misspecified moment restrictions.
Computationof themarginal likelihoods is by themethodofChib (1995) as extended toMetropolis–Hastings
samplers in Chib and Jeliazkov in 2001. We establish the model selection consistency of the marginal likeli-
hood and show that themarginal likelihood favors themodelwith theminimumnumber of parameters and
the maximum number of valid moment restrictions. When the models are misspecified, the marginal likeli-
hoodmodel selectionprocedure selects themodel that is closer to the (unknown) truedata-generatingpro-
cess in terms of the Kullback–Leibler divergence. The ideas and results in this article broaden the theoretical
underpinning and value of the Bayesian ETEL framework with many practical applications. The discussion
is illuminated through several examples. Supplementary materials for this article are available online.

1. Introduction

Our goal in this article is to develop a Bayesian analysis of
moment condition models. By moment condition models, we
mean models that are specified only through moment restric-
tions of the type EP[g(X, θ)] = 0, where g(X, θ) is a known
vector-valued function of a random vector X and an unknown
parameter vector θ, and P is the unknown data distribu-
tion. Models of this type, which arise frequently in statistics
and econometrics, see, for example, Broniatowski and Keziou
(2012), can be attractive since full modeling of P is not invoked
and inferences about θ are based only on the partial informa-
tion supplied by the set of moment conditions. For instance, in
a regression context, letting X = (y, x) and y = xβ + ε, where
y is the scalar response and x is a scalar predictor, one can
learn about the regression parameter β from the orthogonality
assumptionEP[(y − xβ)x] = 0without fullymodeling the error
distribution or the parameters of the error distribution. More
generally,β can be inferred in this setting from the orthogonality
conditions EP[(y − xβ)z] = 0, given a set of instrumental vari-
ables z. Examples of such moment condition models abound,
but for the most part the analysis of such models from the
Bayesian perspective has proved elusive since typical paramet-
ric and semiparametric Bayesian methods are reliant on a full
probability model of P.

On the frequentist side, the recent developments in empir-
ical likelihood (EL) based methods, see, for example, Owen
(1988, 1990, 2001), Qin and Lawless (1994), Kitamura and
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Stutzer (1997), Imbens (1997), Schennach (2007), Chen and
Van Keilegom (2009), and references therein, have opened up
a promising approach for dealing with moment condition mod-
els. There are emerging cogent arguments for using the EL in
Bayesian analysis. For example, Lazar (2003) argued that the EL
can be used in a Bayesian framework in place of the data dis-
tribution P. In fact, Schennach (2005) showed that it is possi-
ble to obtain a nonparametric likelihood closely related to EL,
called the exponentially tilted empirical likelihood (ETEL), by
marginalizing over Pwith a nonparametric prior that favors dis-
tributions that are close to the empirical distribution function in
terms of the Kullback–Leibler (KL) divergence while satisfying
the moment restrictions. In addition, Grendar and Judge (2009)
showed that the EL is themode of the posterior of P under a gen-
eral prior on P. Thus, by combining either the EL or the ETEL
functions with a prior π(θ) on θ, moment conditionmodels can
in principle be subjected to a Bayesian semiparametric analy-
sis. Applications of this idea are given, for instance, by Lancaster
and Jun (2010), Kim and Yang (2011), Yang and He (2012), Xi,
Li, and Hu (2016) to handle moment condition models, by Rao
and Wu (2010) in complex survey estimation, and by Chaud-
huri andGhosh (2011), Porter,Holan, andWikle (2015), Chaud-
huri, Mondal, and Yin (2017) in small area estimation. On the
theory side, Yang and He (2012) showed the asymptotic nor-
mality of the Bayesian EL posterior distribution of the quantile
regression parameter, and Fang andMukerjee (2006) andChang
and Mukerjee (2008) studied the higher-order asymptotic and
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coverage properties of the Bayesian EL/ETEL posterior distri-
bution for the population mean, while Schennach (2005) and
Lancaster and Jun (2010) considered the large-sample behav-
ior of the Bayesian ETEL posterior distribution under the
assumption that all moment restrictions are valid. Alternative,
non-EL/ETEL-based approaches formoment conditionmodels,
which we do not consider in this article, have also been exam-
ined, for example, Bornn, Shephard, and Solgi (2015), Florens
and Simoni (2016), and Kitamura and Otsu (2011).

The purpose of this article is to establish a number of new
results for the Bayesian analysis of moment condition mod-
els, within the ETEL framework, complementing and extending
the aforementioned papers in important directions. One goal
is the Bayesian analysis of moment condition models that are
potentially misspecified. For this reason, our analysis is built
on the ETEL function which, as shown by Schennach (2007),
leads to frequentist estimators of θ that have the same orders
of bias and variance (as a function of the sample size) as the
EL estimators but, importantly, maintain the root n conver-
gence even under model misspecification (see Schennach 2007,
Theorem 1). Within this useful framework, we develop a fully
Bayesian treatment of correctly and misspecified moment con-
dition models. We show that even under misspecification, the
Bayesian ETEL posterior distribution has desirable properties,
and that it satisfies the Bernstein–von Mises (BvM) theorem.
Another goal is to develop a Bayesian approach for compar-
ing different moment-restricted models and for discarding any
misspecified moment restrictions. For an overview on Bayesian
model selection in standard models, we refer to Robert (2007),
and references therein. Our proposal is to select the model with
the largest marginal likelihood. Since one aim of this model
selection comparison is to discard misspecifiedmoment restric-
tions, we do not consider the model averaging perspective. To
operationalize model comparisons in our set-up, in particular
when models are defined by different numbers of moment con-
ditions, we show that it is necessary to linearly transform the
moment functions g(X, θ) so that all the transformed moments
are included in each model. This linear transformation simply
consists of adding an extra parameter different from zero to the
components of the vector g(X, θ) that correspond to the restric-
tions not included in a specific model.

We compute the marginal likelihood by the method of Chib
(1995), as extended to Metropolis–Hastings samplers in Chib
and Jeliazkov (2001). This method renders computation of the
marginal likelihood simple and is a key feature of both our
numerical and theoretical analysis. Our asymptotic theory cov-
ers the following exhaustive possibilities: the case where the
models in the comparison set contain only validmoment restric-
tions, the case where all the models in the set are misspeci-
fied, and finally the case where some of the models contain
only valid moment restrictions while the others contain at least
one invalid moment restriction. Our analysis shows that the
marginal likelihood-based selection procedure is consistent in
the sense that: (i) it discards misspecified moment restrictions,
(ii) it selects the model that is the “less misspecified” when com-
paring models that are all misspecified, (iii) it selects the model
that contains the maximum number of overidentifying valid
moment restrictions when comparing correctly specified mod-
els, and (iv) when somemodels are correctly specified and some

are misspecified, it selects the model that is correctly specified
and contains the maximum number of overidentifying moment
conditions. These importantmodel selection consistency results
are based on the asymptotic behavior of the ETEL function, and
the validity of the BvM theorem, both under correct specifica-
tion andmisspecification. These results, developed within a for-
mal Bayesian setting, can be viewed as complementary to the less
Bayesian formulations described by Variyath, Chen, and Abra-
ham (2010) and Vexler, Deng, and Wilding (2013) where the
focus is on quasi-Bayes factors constructed from the EL, and
Hong and Preston (2012) where models are compared based on
a quasi-marginal likelihood obtained from an approximation to
the true P.

The rest of the article is organized as follows. In Section 2,
we describe the moment condition model, define the notion
of misspecification in this setting, and then discuss the prior-
posterior analysis with the ETEL function. We then provide the
first pair ofmajor results dealingwith the asymptotic behavior of
the posterior distribution for both correctly specified and mis-
specified models. Section 3 introduces our model selection pro-
cedure based on marginal likelihoods and the associated large
sample results. Throughout the article, for expository purposes,
we include numerical examples. Then in Section 4 we discuss
the problems of variable selection in a count regression model
and instrument validity in an instrumental variable regression.
Section 5 concludes. Proofs of our results are collected in the
Appendix and in the online Appendix.

2. Setting

Suppose thatX is anRdx-valued random vector with (unknown)
distribution P. Suppose that the operating assumption is that
the distribution P satisfies the d unconditional moment restric-
tions

EP[g(X, θ)] = 0, (2.1)

where EP denotes the expectation taken with respect to P, g :
R

dx × � �→ R
d is a vector of known functionswith values inRd,

θ := (θ1, . . . , θp)
′ ∈ � ⊂ R

p is the parameter vector of interest,
and 0 is the d × 1 vector of zeros. We assume that EP[g(X, θ)]
is bounded for every θ ∈ �. We also suppose that we are given
a random sample x1:n := (x1, . . . , xn) on X and that d ≥ p.

When the number of moment restrictions d exceeds the
number of parameters p, the parameter θ in such a setting is said
to be overidentified (over restricted). In such a case, there is a
possibility that a subset of themoment conditionsmay be invalid
in the sense that the true data-generating process is not con-
tained in the collection of probability measures that satisfy the
moment conditions for all θ ∈ �. That is, there is no parameter θ
in � that is consistent with the moment restrictions (2.1) under
the true data-generating process P. To deal with possibly invalid
moment restrictions, we reformulate the moment conditions in
terms of an additional nuisance parameter V ∈ V ⊂ R

d . For
example, if the kth moment condition is not expected to be
valid, we subtract V = (V1, . . . ,Vd ) from the moment restric-
tions where Vk is a free parameter and all other elements of V
are zero. To accommodate this situation, we rewrite the above
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conditions as the following augmented moment conditions:

EP[gA(X, θ,V )] = 0, (2.2)

where gA(X, θ,V ) := g(X, θ) −V . Note that in this formalism,
the parameterV indicates which moment restrictions are active
where by “active moment restrictions” we mean the restrictions
for which the corresponding components ofV are zero. To guar-
antee identification of θ, at most (d − p) elements of V can be
different than zero. If all the elements ofV are zero, we recover
the restrictions in (2.1).

Let dv ≤ (d − p) be the number of nonzero elements of V
and let v ∈ V ⊂ R

dv be the vector that collects all the nonzero
components ofV . We call v the augmented parameter and θ the
parameter of interest. Therefore, the number of active moment
restrictions is d − dv . In the following, we write gA(X, θ, v) as
a shorthand for gA(X, θ,V ), with v the vector obtained fromV
by collecting only its nonzero components.

The central problem of misspecification of the moment con-
ditions, mentioned in the preceding paragraph, can now be for-
mally defined in terms of the augmented moment conditions.

Definition 1 (Misspecified model). We say that the augmented
moment conditionmodel is misspecified if the set of probability
measures implied by the moment restrictions does not contain
the true data-generating process P for every (θ, v) ∈ � × V ,
that is, P /∈ P where P = ⋃

(θ,v)∈�×V P(θ,v) and P(θ,v) = {Q ∈
M; EQ[gA(X, θ, v)] = 0} withM the set of all probability mea-
sures on R

dx .

In a nutshell, a set of augmented moment conditions is mis-
specified if there is no pair (θ, v) in (� × V ) that satisfies
EP[gA(X, θ, v)] = 0whereP is the true data-generating process.
On the other hand, if such a pair of values (θ, v) exists then the
set of augmented moment conditions is correctly specified.

Throughout the article, we use regression models to under-
stand the various concepts and ideas.

Example 1 (Linear regression model). Suppose that we are inter-
ested in estimating the following linear regression model with
an intercept and a predictor:

yi = α + βzi + ei, i = 1, . . . , n, (2.3)

where (zi, ei)′ are independently drawn from some distribution
P. Under the assumption that EP[ei|zi] = 0, we can use the fol-
lowing moment restrictions to estimate θ := (α, β):

EP[ei(θ)] = 0, EP[ei(θ)zi] = 0, EP[(ei(θ))3] = v, (2.4)

where ei(θ) := (yi − α − βzi). The first two moment restric-
tions are derived from the standard orthogonality condition
and identify θ. The last restriction potentially serves as addi-
tional information. In terms of the notation in (2.1) and (2.2),
xi := (yi, zi)′, g(xi, θ) = (ei(θ), ei(θ)zi, ei(θ)3)′,V = (0, 0, v )′,
dv = 1, and gA(xi, θ,V ) = g(xi, θ) − (0, 0, v )′. If one believes
that the underlying distribution of ei is indeed symmetric, then
one could use this information by setting v to zero. Otherwise,
it is desirable to treat v as an unknown object. If the distribu-
tion of ei is skewed and v is forced to be zero, then the model
becomes misspecified because no (α, β) can be consistent with

the three moment restrictions jointly under P. When the aug-
mented parameter v is treated as a free parameter, the model is
correctly specified even under asymmetry.

2.1. Prior-Posterior Analysis

Consider now the question of prior-posterior analysis under
the ETEL function. Although our setting is similar to that of
Schennach (2005), the presence of the augmented parameter
v and the possibility of misspecification lead to a new analysis
and new results.

For any (θ, v), define the convex hull of
⋃n

i=1 g
A(xi, θ, v) as

the following convex subset of Rd : {∑n
i=1 pig

A(xi, θ, v); pi ≥
0,∀i = 1, . . . , n,

∑n
i=1 pi = 1}. Now suppose that (i)

gA(x, θ, v) is continuous in x for every (θ, v) ∈ � × V (or
has a finite number of step discontinuities) and (ii) the interior
of the convex hull of

⋃n
i=1 g

A(xi, θ, v) contains the origin.
Suppose also that the nonparametric prior on P is the mix-
ture of uniform probability densities described by Schennach
(2005), which is capable to approximating any distribution as
the number of mixing components increases. Then, adapting
the arguments of Schennach (2005), the posterior distribution
of (θ, v) after marginalization over P has the form

π(θ, v|x1:n) ∝ π(θ, v)p(x1:n|θ, v), (2.5)

where π(θ, v) is the prior of (θ, v) and p(x1:n|θ, v) is the ETEL
function defined as

p(x1:n|θ, v) =
n∏
i=1

p∗
i (θ, v) (2.6)

and p∗
i (θ, v) are the probabilities that minimize the KL diver-

gence between the probabilities (p1, . . . , pn) assigned to each
sample observation and the empirical probabilities ( 1

n , . . . ,
1
n ),

subject to the conditions that the probabilities (p1, . . . , pn)
sum to one and that the expectation under these probabilities
satisfies the given moment conditions:

max
p1,...,pn

n∑
i=1

[−pi log(npi)
]

(2.7)

subject to
n∑

i=1

pi = 1 and
n∑
i=1

pigA(xi, θ, v) = 0. (2.8)

For numerical and theoretical purposes below, the preced-
ing probabilities are computedmore conveniently from the dual
(saddlepoint) representation as, for i = 1, . . . , n

p∗
i (θ, v) : = êλ(θ,v)′gA(xi,θ,v)∑n

j=1 êλ(θ,v)′gA(x j,θ,v)
,

where λ̂(θ, v) = argmin
λ∈Rd

1
n

n∑
i=1

exp
(
λ′gA(xi, θ, v)

)
. (2.9)

Therefore, the posterior distribution takes the form

π(θ, v|x1:n) ∝ π(θ, v)

n∏
i=1

êλ(θ,v)′gA(xi,θ,v)∑n
j=1 êλ(θ,v)′gA(x j,θ,v)

, (2.10)
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which may be called the bayesian exponentially tilted empirical
likelihood (BETEL) posterior distribution. It can be efficiently
simulated by Markov chain Monte Carlo (MCMC) methods.
For example, the one block tailored Metropolis–Hastings
(M-H) algorithm (Chib and Greenberg 1995) is applied as
follows. Let q(θ, v|x1:n) denote a student-t distribution whose
location parameter is the mode of the log ETEL function and
whose dispersion matrix is the inverse of the negative Hessian
matrix of the log ETEL function at the mode. Then, starting
from some initial value (θ(0), v(0)), we get a sample of draws
from the BETEL posterior by repeating the following steps for
s = 1, . . . , S:

1. Propose (θ†, v†) from q(θ, v|x1:n) and solve for
p∗
i (θ

†, v†), 1 ≤ i ≤ n, from the Exponential Tilting
saddlepoint problem (2.9).

2. Calculate the M-H probability of move

α
(
(θs−1, vs−1), (θ†, v†)

∣∣ x1:n)
= min

{
1,

π(θ†, v†|x1:n)
π(θs−1, vs−1|x1:n)

q(θs−1, vs−1|x1:n)
q(θ†, v†|x1:n)

}
.

3. Set (θs, vs) = (θ†, v†) with probability α((θs−1, vs−1),

(θ†, v†)|x1:n). Otherwise, set (θs, vs) = (θs−1, vs−1). Go
to step 1.

Note that when the dimension of (θ, v) is large, the tailored
randomized block M-H algorithm of Chib and Ramamurthy
(2010) can be used instead for improved simulation efficiency.

Prior specification. In our examples, we focus on two prior
distributions. Under the first prior, which we call the default
prior, each element θk and vl of θ and v, respectively, is given
independent student-t distributions with ν = 2.5 degrees of
freedom, location zero, and dispersion equal to 5:

θk ∼ t2.5(0, 52) and vl ∼ t2.5(0, 52). (2.11)

In the second prior, which we call the training sample prior, an
initial portion of the sample (which is not used for subsequent
inferences) is used to find the ETEL estimate of the unknown
parameters, that is, the maximizer of the ETEL function (2.6)
whose definition is recalled in (A.1) in the Appendix. Then, the
prior of each element of (θ′, v′)′ is equal to the default prior
except that now the location is set equal to the corresponding
ETEL estimate.

To see the different implications of these prior distribu-
tions, consider two moment condition models defined by the
restrictions:

M1: EP[g1(X, θ)] = 0, EP[g2(X, θ)] = 0
M2: EP[g1(X, θ)] = 0, EP[g2(X, θ)] = v, (2.12)

where both moments restrictions are active under M1 but only
the first is active under M2. Then, under the default prior, a
prior mean of 0 on v implies the belief that the second moment
restriction is likely to hold. On the other hand, in the training
sample prior, the prior location of v is determined by the ETEL
estimate of v in the training sample. If this is substantially
different from zero (relative to the prior dispersion), this prior
implies the belief that the secondmoment restriction is, a priori,
less likely to be active.

Table . Posterior summary for two simulated sample sizes fromExample  (a regres-
sionmodel with skewed error distribution). The true value ofα is  and that ofβ is .
The summaries are based on ,MCMCdraws beyond a burn-in of . TheM-H
acceptance rate is around 90% in both cases. “Lower”and “upper”refer to the .
and . quantiles of the simulated draws, respectively, and “ineff” to the ineffi-
ciency factor, the ratio of the numerical variance of the mean to the variance of the
mean assuming independent draws: an inefficiency factor close to  indicates that
the MCMC draws, although serially correlated, are essentially independent.

mean sd median lower upper ineff

n = 250
α −. . −. −. . .
β . . . . . .
v −. . −. −. −. .

n = 2000
α . . . −. . .
β . . . . . .
v −. . −. −. −. .

Example 1 (continued). To illustrate the prior-posterior analysis,
we generate yi, i = 1, . . . , n from the regression model in (2.3)
with the covariate zi ∼ N (0.5, 1), intercept α = 0, slope β = 1
and ei distributed according to the skewed distribution:

ei ∼
{
N (0.75, 0.752) with probability 0.5
N (−0.75, 1.252) with probability 0.5.

(2.13)

Our analysis is based on themoment restrictions in (2.4), that
is,

gA(xi, θ, v ) = (ei(θ), ei(θ)zi, ei(θ)3 − v )′, ei(θ) = yi − α − βzi,

with θ = (α, β). These moment conditions are correctly speci-
fied because v is free. Under the default independent student-t
prior in (2.11), the marginal posterior distributions of α, β , and
v are summarized in Table 1 for two different values of n. It can
be seen from the 0.025 and 0.975 quantiles (called “lower” and
“upper,” respectively) that the marginal posterior distributions
of α and β are already concentrated around the true values for
n = 250 but concentrate even more closely around the true val-
ues for n = 2000. This example showcases the ease with which
such Bayesian inferences are possible.

Notation. In Sections 2.2 and 2.3, and in the online Appendix,
we use the following notations. For ease of exposition, we denote
ψ := (θ, v),ψ ∈ 	 with	 := � × V . Moreover, ‖ · ‖F denotes
the Frobenius norm and ‖ · ‖ the Euclidean norm. The notation
‘
p→’ is for convergence in probability with respect to the prod-

uct measure Pn = ⊗n
i=1 P. The log-likelihood function for one

observation is denoted by ln,ψ :

ln,ψ(x) : = log
êλ(ψ)′gA(x,ψ)∑n
j=1 êλ(ψ)′gA(x j,ψ)

= − log n + log
êλ

′gA(x,ψ)

1
n
∑n

j=1

[
êλ

′gA(x j,ψ)
]

so that the log-ETEL function is log p(x1:n|ψ) = ∑n
i=1 ln,ψ(xi).

For a set A ⊂ R
m, we denote by int(A) its interior relative to

R
m. Further notations are introduced as required.
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2.2. Asymptotic Properties: Correct Specification

In this section, we first introduce additional notations and
assumptions for correctly specified models. Under these
assumptions and Assumptions 5–6 in the online Appendix, we
establish both the large sample behavior of the BETEL posterior
distribution and, in Section 3, the model selection consistency
of our marginal likelihood procedure.

Let θ∗ be the true value of the parameter of interest θ
and v∗ be the true value of the augmented parameter. So,
ψ∗ := (θ∗, v∗). The true value v∗ is equal to zero when the
nonaugmented model (2.1) is correctly specified. Moreover, let

 := EP[gA(X,ψ∗)gA(X,ψ∗)′] and � := EP[ ∂

∂ψ′ gA(X,ψ∗)].
Assumption 1 requires that the augmented model is correctly
specified in the sense that there is a value of ψ such that (2.2) is
satisfied by P, and that this value is unique. A necessary condi-
tion for the latter is that (d − p) ≥ dv ≥ 0.

Assumption 1. Model (2.2) is such that ψ∗ ∈ 	 is the unique
solution to EP[gA(X,ψ)] = 0.

The next assumption concerns the prior distribution and
is a standard assumption to establish asymptotic properties of
Bayesian procedures.

Assumption 2. (a) π is a continuous probability measure that
admits a density with respect to the Lebesgue measure; (b) π

is positive on a neighborhood of ψ∗.

For a correctly specified moment conditions model, the
asymptotic normality of the BETEL posterior is established in
the following theoremwherewe denote byπ(

√
n(ψ − ψ∗)|x1:n)

the posterior distribution of
√
n(ψ − ψ∗). The result shows that

the BETEL posterior distribution has a Gaussian limiting dis-
tribution and that it concentrates on a n−1/2-ball centered at
the true value of the parameter. An informal discussion of this
behavior is given by Schennach (2005) but without the required
assumptions. Theorem 1 provides these assumptions. The proof
of the result is based on, for example, Lehmann and Casella
(1998) and Ghosh and Ramamoorthi (2003) and is given in the
online Appendix C.

Theorem 1 (Bernstein–von Mises—correct specification). Under
Assumptions 1, 2 and Assumptions 5, 6 in the online Appendix
and if in addition, for any δ > 0, there exists an ε > 0 such that,
as n → ∞

P

(
sup

‖ψ−ψ∗‖>δ

1
n

n∑
i=1

(
ln,ψ(xi) − ln,ψ∗ (xi)

) ≤ −ε

)
→ 1, (2.14)

then the posteriors converge in total variation toward a normal
distribution, that is,

sup
B

∣∣∣π(
√
n(ψ − ψ∗) ∈ B|x1:n) − N0,(�′
−1�)

−1 (B)

∣∣∣ p→ 0,

(2.15)
where B ⊆ 	 is any Borel set.

According to this result, the posterior distribution π(ψ|x1:n)
of ψ is asymptotically normal, centered on the true value ψ∗
and with variance n−1(�′
−1�)−1. Thus, the posterior distri-
bution has the same asymptotic variance as the efficient Gener-
alized Method of Moments estimator of Hansen (1982; see also

Chamberlain 1987). Assumption (2.14) in this theorem is a stan-
dard identifiability condition (see, e.g., Lehmann and Casella
1998, Assumption 6.B.3) that controls the behavior of the log-
ETEL function at a distance from ψ∗. Controlling this behavior
is important because the posterior involves integration over the
whole range of ψ. To understand the meaning of this assump-
tion, we remark that asymptotically the log-ETEL functionψ �→∑n

i=1 ln,ψ(xi) is maximized at the true value ψ∗ because the
model is correctly specified. Hence, Assumption (2.14) means
that if the parameter ψ is “far” from the true value ψ∗, then the
log-ETEL function has to be small, that is, has to be far from the
maximum value

∑n
i=1 ln,ψ∗ (xi).

2.3. Asymptotic Properties: Misspecification

In this section, we consider the case where the model is mis-
specified in the sense of Definition 1 and establish that, even in
this case, the BETEL posterior distribution has good frequen-
tist asymptotic properties as the sample size n increases. Namely,
we show that the BETEL posterior of

√
n(ψ − ψ∗) is asymptot-

ically normal and the BETEL posterior of ψ concentrates on an
n−1/2-ball centered at the pseudo-true value of the parameter.
To the best of our knowledge, these properties have not been
established yet for misspecified moment condition models.

Because in misspecified models there is no value of ψ for
which the true data distribution P satisfies the restriction (2.2),
we need to define a pseudo-true value forψ. The latter is defined
as the value ofψ thatminimizes theKLdivergenceK(P||Q∗(ψ))

between the true data distribution P and a distribution Q∗(ψ)

defined as Q∗(ψ) := arginfQ∈PψK(Q||P), where K(Q||P) :=∫
log(dQ/dP)dQ and Pψ is defined in Definition 1. We remark

that these two KL divergences are the population counterparts
of the KL divergences used for the definition of the ETEL func-
tion in (2.6): the empirical counterpart of K(Q||P) is used to
construct the p∗

i (ψ) probabilities and is given by (2.7), while the
empirical counterpart of K(P||Q∗(ψ)) is given by log(1/n) −∑n

i=1 ln,ψ(xi)/n, where
∑n

i=1 ln,ψ(xi) is the log-ETEL function
if the dual theorem holds. Roughly speaking, the pseudo-true
value is the value ofψ for which the distribution that satisfies the
corresponding restrictions (2.2) is the closest to the trueP, in the
KL sense. By using the dual representation of the KL minimiza-
tion problem, the P-density dQ∗(ψ)/dP admits a closed-form:
dQ∗(ψ)/dP = eλ◦(ψ)′gA(X,ψ)/EP[eλ◦(ψ)′gA(X,ψ)] where λ◦(ψ) is
the pseudo-true value of the tilting parameter defined as the
solution of EP[exp{λ′gA(X,ψ)}gA(X,ψ)] = 0 which is unique
by the strict convexity of EP[exp{λ′gA(X,ψ)}] in λ. Therefore,

λ◦(ψ) := argmin
λ∈Rd

EP
[
eλ

′gA(X,ψ)
]
,

ψ◦ := argmax
ψ∈	

EP log

[
eλ◦(ψ)′gA(X,ψ)

EP
[
eλ◦(ψ)′gA(X,ψ)

]] . (2.16)

However, in a misspecified model, the dual theorem is not guar-
anteed to hold and so ψ◦ defined in (2.16) is not necessarily
equal to the pseudo-true value defined as the KL-minimizer. In
fact, when themodel ismisspecified, the probabilitymeasures in
P := ⋃

ψ∈	 Pψ , which are implied by themodel,might not have
a common support with the true P, see Sueishi (2013) for a dis-
cussion on this point. Following Sueishi (2013, Theorem 3.1), to
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guarantee identification of the pseudo-true value by (2.16) and
validity of the dual theoremwe introduce the following assump-
tion. This assumption replaces Assumption 1 in misspecified
models.

Assumption 3. For a fixed ψ ∈ 	 , there exists Q ∈ Pψ such that
Q is mutually absolutely continuous with respect to P, wherePψ
is defined in Definition 1.

This assumption implies that Pψ is nonempty. A similar
assumption is also made by Kleijn and van der Vaart (2012)
to establish the BvM under misspecification. Moreover, because
consistency inmisspecifiedmodels is definedwith respect to the
pseudo-true value ψ◦, we need to replace Assumption 2 (b) by
the following assumption which, together with Assumption 2
(a), requires the prior to put enough mass to balls around ψ◦.

Assumption 4. The prior distribution π is positive on a neigh-
borhood of ψ◦ where ψ◦ is as defined in (2.16).

A first step to establish the BvM theorem is to prove that
the misspecified model satisfies a stochastic local asymptotic
normality (LAN) expansion around the pseudo-true value ψ◦.
Namely, that the log-likelihood ratio ln,ψ − ln,ψ◦ , evaluated at a
local parameter around the pseudo-true value, is well approxi-
mated by a quadratic form. Such a result is established in The-
orem C.1 in the online Appendix C. A second key ingredient
for establishing the BvM theorem is the requirement that, as
n → ∞, the posterior ofψ concentrates and puts all its mass on
	n := {‖ψ − ψ◦‖ ≤ Mn/

√
n}, where Mn is any sequence such

thatMn → ∞.Weprove this result inTheoremC.2 in the online
Appendix C.

Theorem 2 states that the limit of the posterior distribution
of

√
n(ψ − ψ◦) is a Gaussian distribution with mean and vari-

ance defined in terms of the population counterpart of ln,ψ(x),
which we denote by Ln,ψ(x) := log exp(λ◦(ψ)′gA(x,ψ))

EP[exp(λ◦(ψ)′gA(x,ψ))] − log n
andwhich involves the pseudo-true valueλ◦.With this notation,
the variance and mean of the Gaussian limiting distribution are
V−1
ψ◦

:= −(EP[L̈n,ψ◦])
−1 and 
n,ψ◦ := 1√

n

∑n
i=1V

−1
ψ◦

L̇n,ψ◦ (xi),
respectively, where L̇n,ψ◦ and L̈n,ψ◦ denote the first and sec-
ond derivatives of the function ψ �→ Ln,ψ evaluated at ψ◦.
Let π(

√
n(ψ − ψ◦)|x1:n) denote the posterior distribution of√

n(ψ − ψ◦).

Theorem 2 (Bernstein–von Mises—misspecification). Assume
that the matrixVψ◦ is nonsingular and that Assumptions 2 (a),
3, 4 and Assumptions 5 (a)–(d), 6 (b), 7, and 8 in the online
Appendix hold. If in addition there exists a constantC > 0 such
that for any sequenceMn → ∞, as n → ∞

P

(
sup
ψ∈	c

n

1
n

n∑
i=1

(
ln,ψ(xi) − ln,ψ◦ (xi)

) ≤ −CM2
n

n

)
→ 1, (2.17)

then the posteriors converge in total variation toward a normal
distribution, that is,

sup
B

∣∣∣π(
√
n(ψ − ψ◦) ∈ B|x1:n) − N
n,ψ◦ ,V−1

ψ◦
(B)

∣∣∣ p→ 0,

(2.18)
where B ⊆ 	 is any Borel set.

Condition (2.17) involves the log-likelihood ratio ln,ψ(x) −
ln,ψ◦ (x) and is an identifiability condition, standard in the lit-
erature, and with a similar interpretation as condition (2.14).
Theorem 2 states that, in misspecified models, the sequence of
posterior distributions converges in total variation to a sequence
of normal distributions with randommean and fixed covariance
matrix V−1

ψ◦
. By using the first-order condition for ψ◦ it can be

shown that the random mean 
n,ψ◦ has mean zero. We stress
that the BvM result of Theorem 2 for the BETEL posterior distri-
bution does not directly follow from the assumptions and results
in Kleijn and van der Vaart (2012) because the ETEL function
contains random quantities. Therefore, we need to strengthen
the assumptions to establish that a stochastic LAN expansion
holds for our case.

As the next lemma shows, the quantity 
n,ψ◦ relates to the
Schennach’s (2007) ETEL frequentist estimator ψ̂ (whose def-
inition is recalled in (A.1) in the Appendix for convenience).
Because of this connection, it is possible to write the location of
the normal limit distribution in a more familiar form in terms
of the semiparametric efficient frequentist estimator ψ̂.

Lemma 1. Assume that the matrix Vψ◦ is nonsingular and that
Assumption 3 and Assumptions 5 (a)–(d), 6 (b), 7, and 8 in the
online Appendix hold. Then, the ETEL estimator ψ̂ satisfies

√
n(ψ̂ − ψ◦) = 1√

n

n∑
i=1

V−1
ψ◦
L̇n,ψ◦ + op(1). (2.19)

Therefore, Lemma 1 implies that the BvM Theorem 2 can be
reformulated with the sequence

√
n(ψ̂ − ψ◦) as the location of

the normal limit distribution, that is,

sup
B

∣∣∣π(ψ ∈ B|x1:n) − Nψ̂,n−1V−1
ψ◦

(B)

∣∣∣ p→ 0. (2.20)

Two remarks are in order: (I) the limit distribution of√
n(ψ̂ − ψ◦) is centered on zero because EP[L̇n,ψ◦] = 0;

(II) the asymptotic covariance matrix of
√
n(ψ̂ − ψ◦) is

V−1
ψ◦
EP[L̇n,ψ◦L̇

′
n,ψ◦

]V−1
ψ◦

(which is also derived by Schennach
2007, Theorem 10) and, because of misspecification, it does not
coincide with the limiting covariance matrix in the BvM theo-
rem. This consequence of misspecification is also discussed in
Kleijn and van der Vaart (2012) and implies that, for α ∈ (0, 1),
the central (1 − α) Bayesian credible sets are not in general
(1 − α) confidence sets, even asymptotically. In fact, while cred-
ible sets are correctly centered, their width/volume need not be
correct since the asymptotic variance matrix in the BvM is not
the sandwich asymptotic covariance matrix of the frequentist
estimator. See Example 2 in the online Appendix A for an illus-
tration of misspecified models and pseudo-true value.

3. BayesianModel Selection

3.1. Basic Idea

Now suppose that there are countable candidatemodels indexed
by �. Suppose that model � is characterized by

EP[g�(X, θ�)] = 0, (3.1)
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with θ� ∈ �� ⊂ R
p� , and � = 1, . . . , J for some J ≥ 2. Differ-

ent models involve different parameters of interest θ� and/or
different g� functions. If X contains a dependent variable and
covariates it might be that the covariates are not the same for all
models, however to lighten the notation we do not explicit this
difference across the models.

One or all models may be misspecified. The goal is to com-
pare these models and select the best model. By best model we
mean the model that contains the maximum number of over-
identifying conditions when all models are correctly specified,
and when all models are misspecified, we mean the model that
is the closest to the trueP. Our purpose in this section is to estab-
lish a collection of results on the search for such a best model.
We show that this search can be carried out with the help of
the marginal likelihoods (defined as the integral of the sampling
density over the parameters with respect to the prior density) of
the competingmodels. Themodelwith the largestmarginal like-
lihood satisfies a model selection consistency property in that
the model chosen in this way is the best model asymptotically.
This property, which has not been established in this context
before, is of enormous practical and theoretical importance.

Before getting to the details, it is crucial to understand
that there are some subtleties involved in comparing differ-
ent moment condition models. The central problem is that the
marginal likelihood of models with different sets of moment
restrictions and different parameters may not be comparable.
In fact, when we have different sets of moment restrictions, we
need to be careful about dealing with, and interpreting, unused
moment restrictions. This can be best explained by an example.

Example 1 (continued). Suppose we do not know if ei is symmet-
ric. In this case, one might be inclined to compare the following
two candidate models:

Model 1: EP[ei(θ)] = 0, EP[ei(θ)zi] = 0.
Model 2: EP[ei(θ)] = 0, EP[ei(θ)zi] = 0, EP[(ei(θ))3] = 0,

(3.2)

where θ := (α, β) is the same parameter in the two models
and ei(θ) := (yi − α − βzi). As written, these two mod-
els are not comparable because the convex hulls associated
with the two models do not have the same dimension. More
precisely, let co1 := {∑n

i=1 pi(ei(θ), ei(θ)zi)
′; pi ≥ 0,∀i =

1, . . . , n,
∑n

i=1 pi = 1} be the convex hull associated with
Model 1, and co2 := {∑n

i=1 pi(ei(θ), ei(θ)zi, ei(θ)
3)′; pi ≥

0,∀i = 1, . . . , n,
∑n

i=1 pi = 1} be the convex hull associated
with Model 2. Because co1 and co2 have different dimensions,
the p∗

i (θ) in the two ETEL functions are not comparable because
they enforce the zero vector constraint (the second constraint
in (2.8)) in different spaces (R2 and R

3).

The foregoing problem can be overcome as follows. We start
by defining a grand model that nests all the models that we
want to compare. This grand model is constructed such that:
(1) it includes all the moment restrictions in the models and,
(2) if the same moment restriction is included in two or more
models but involves a different parameter in different mod-
els, then the grand model includes the moment restriction that
involves the parameter of largest dimension.We write the grand
model as EP[gG(X, θG)] = 0 where gG has dimension d, and θG

includes the parameters of all models. Next, each original model

is obtained from this grandmodel by first subtracting a vector of
nuisance parametersV and then restricting θG andV appropri-
ately. More precisely, an equivalent version of the original model
is obtained by: (I) setting equal to zero the components of θG in
the shared moment restrictions that are not present in the origi-
nal model, (II) letting free the components ofV that correspond
to the over-identifying moment restrictions not present in the
original model, and (III) setting equal to zero the components
ofV that correspond tomoment restrictions present in the orig-
inal model and to moment restrictions that exactly identify the
extra parameters arising from the other models.

The set of models that emerge from this strategy are equiva-
lent to the original collection but, crucially, are now comparable.
Also importantly for practice, as our illustrations of this strat-
egy show below, the strategy just described is simple to opera-
tionalize.With this formulation,model �, denoted byM�, is then
defined from the grand model as

EP[gA(X, θ�, v�)] = 0, θ� ∈ �� ⊂ R
p� , (3.3)

where gA(X, θ�, v�) := gG(X, θ�) −V � withV � ∈ V ⊂ R
d and

with v� ∈ V� ⊂ R
dv� being the vector that collects all the

nonzero components of V �. We assume that 0 ≤ dv�
≤ d − p�

to guarantee identification of θ�. The parameter v� is the aug-
mented parameter and θ� is the parameter of interest for model
� that has been obtained from θG by doing the transformation
in (I). Hereafter, we use the notation ψ� := (θ�, v�) ∈ 	� with
	� := � × V�.

Example 1 (continued). To be able to compare Model 1
and Model 2 in (3.2), we construct the grand model as
EP[gG(xi, θ)] := EP[(ei(θ), ei(θ)zi, ei(θ)3)′]. With respect to
this grand model, Model 1 and Model 2 are reformulated asM1
andM2, respectively, by applying (II) and (III) above:

M1: EP[ei(θ)] = 0, EP[ei(θ)zi] = 0, EP[(ei(θ))3] = v

M2: EP[ei(θ)] = 0, EP[ei(θ)zi] = 0, EP[(ei(θ))3] = 0.
(3.4)

So, ψ1 = (θ′, v)′ and ψ2 = θ. The convex hulls of M1 and
M2 have both dimension 3 and more importantly, if co(M1)

and co(M2) denote these two convex hulls, we have co(M1) =
co(M2) −V where V = (0, 0, v )′ so that the two models are
comparable. It is important to note howModel 1 in (3.2) andM1
deal with uncertainty about the thirdmoment restriction:Model
1 in (3.2) ignores its uncertainty completely while M1 models
the degree of uncertainty through the augmented parameter v .
This argument is not limited to comparing two models. When
we have multiple models, we need to make sure that the grand
model encompasses all candidate models through augmented
parameters.

We note that this strategy covers both nested and nonnested
models. We say that two models are nonnested, in their original
formulation, if neither model can be obtained from the other
by eliminating some moment restriction, or by setting to zero
some parameter, or both. Points (II) and (III) above are impor-
tant for the treatment of such nonnested models. In fact, points
(II) and (III) imply that, if there are moment restrictions not
present in the original model that involve parameters that are
not in the original model, then a number of these extra moment
restrictions equal to the number of the extra parameters has to
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be included. This does not alter the original model if these extra
moment restrictions exactly identify the extra parameters and so
place no restrictions on the data-generating process. Moreover,
despite the notation, for nonnested models θ� in (3.3) might be
larger than the parameter in the original model �.

In what follows, we show how to compute the marginal like-
lihood for a model. Then, in Section 3.3 we formally show that,
with probability approaching one as the number of observa-
tions increases, the marginal likelihood-based selection proce-
dure favors themodel with theminimumnumber of parameters
of interest and the maximum number of valid moment restric-
tions. We also consider the situation where all models are mis-
specified. In this case, our model selection procedure selects the
model that is closer to the true data-generating process in terms
of the KL divergence.

3.2. Marginal Likelihood

For eachmodelM�, we impose a prior distribution forψ� on	�,
and obtain the BETEL posterior distribution based on (2.10).
Then, we select the model with the largest marginal likelihood,
denoted by m(x1:n;M�), which we calculate by the method of
Chib (1995) as extended to Metropolis–Hastings samplers in
Chib and Jeliazkov (2001). This method makes computation of
the marginal likelihood simple and is a key feature of our proce-
dure. The main advantage of the Chib (1995) method is that it
is calculable from the same inputs and outputs that are used in
the MCMC sampling of the posterior distribution. The starting
point of thismethod is the following identity of the log-marginal
likelihood introduced in Chib (1995):

logm(x1:n;M�) = logπ(ψ̃
�|M�) + log p(x1:n|ψ̃�

,M�)

− logπ(ψ̃
�|x1:n,M�), (3.5)

where ψ̃
�
is any point in the support of the posterior (such as

the posterior mean) and the dependence on the model M� has
beenmade explicit. The first two terms on the right-hand side of
this decomposition are available directly whereas the third term
can be estimated from the output of the MCMC simulation of
the BETEL posterior distribution. For example, in the context
of the one block MCMC algorithm given in Section 2.1, from
Chib and Jeliazkov (2001), we have that

π(ψ̃
�|x1:n,M�) =

E1

{
α
(
ψ�, ψ̃

�|x1:n,M�

)
q(ψ̃

�|x1:n,M�)
}

E2

{
α(ψ̃

�
,ψ�|x1:n,M�)

} ,

where E1 is the expectation with respect to π(ψ�|x1:n,M�)

and E2 is the expectation with respect to q(ψ�|x1:n,M�). These
expectations can be easily approximated by simulations.

3.3. Model Selection Consistency Results

In this section, we establish the consistency of our marginal
likelihood-based selection procedure for the following exhaus-
tive cases: the case where the models in the comparison set con-
tain only valid moment restrictions, the case where all the mod-
els in the set are misspecified, and finally the case where some
of the models contain only valid moment restrictions while
the others contain at least one invalid moment restriction. Our

proofs of consistency are based on: (I) the results of the BvM the-
orems for correctly and misspecified models stated in Sections
2.2 and 2.3, and (II) the analysis of the asymptotic behavior of
the ETEL function under correct and misspecification which
we develop in the online Appendix (see Lemmas D.1 and D.3).

The first theorem states that, if the activemoment restrictions
are all valid, then the marginal likelihood selects the model that
contains the maximum number of overidentifying conditions,
that is, the model with the maximum number of active moment
restrictions and the smallest number of parameters of interest.
This means that the marginal likelihood-based selection proce-
dure enforces parsimony.

For a model M�, the dimension of the parameter of inter-
est θ� to be estimated is p� while the number of active moment
restrictions (included in the model for the estimation of θ�)
is (d − dv�

). Consider two generic models M1 and M2. Then,
dv2 < dv1 means that model M2 contains more active restric-
tions than model M1, and p2 < p1 means that model M1 con-
tains more parameters of interest to be estimated thanM2.

Theorem 3. Let Assumption 2, Assumptions 5, 6 in the online
Appendix, and (2.14) hold, and consider J < ∞ different mod-
elsM�, � = 1, . . . , J, that satisfy Assumption 1, that is, they are
all correctly specified. Then,

lim
n→∞ P

(
max
� �= j

logm(x1:n;M�) < logm(x1:n;Mj)

)
= 1

if and only if p j + dv j < p� + dv�
, ∀� �= j.

The result of the theorem implies that, with probability
approaching 1, the Bayes factorBj� := m(x1:n;Mj)/m(x1:n;M�)

is larger than 1 for every � �= j. The result in the theorem is an
equivalence result saying that, if we compare models that con-
tain only valid moment restrictions, then the marginal likeli-
hood selects amodelMj if and only ifMj contains themaximum
number of overidentifying conditions among all the compared
models. An illustration of this theorem is provided in Example
3 in the online Appendix.

Next, we consider the case where all models are wrong
in the sense of Definition 1 and establish a major result of
enormous practical significance. The result states that if we
compare J misspecified models, then the marginal likelihood-
based selection procedure selects the model with the smallest
KL divergence K(P||Q∗(ψ�)) between P and Q∗(ψ�), where
Q∗(ψ�) is such that K(Q∗(ψ�)||P) = infQ∈P

ψ�
K(Q||P) and

dQ∗(ψ)/dP = eλ◦(ψ)′gA(X,ψ)/EP[eλ◦(ψ)′gA(X,ψ)] by the dual theo-
rem, as defined in Section 2.3. Because the I-projection Q∗(ψ�)

onPψ� is unique (Csiszar 1975), whichQ∗(ψ�) is closer to P (in
terms of K(P||Q∗(ψ�))) depends only on the “amount of mis-
specification” contained in each model Pψ� .

Theorem 4. Let Assumptions 2–4, Assumptions 5–8 in the
online Appendix and (2.17) be satisfied. Let us consider the
comparison of J < ∞ models Mj, j = 1, . . . , J that all use
misspecified moments, that is, Mj does not satisfy Assumption
1, ∀ j. Then,

lim
n→∞ P

(
logm(x1:n;Mj) > max

� �= j
logm(x1:n;M�)

)
= 1
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if and only if K(P||Q∗(ψ j)) < min� �= j K(P||Q∗(ψ�)), where
K(P||Q) := ∫

log(dP/dQ)dP.

Similarly as in Theorem 3, Theorem 4 establishes the equiv-
alence result that, if we compare models that all use misspeci-
fied moments, then the marginal likelihood selects a modelMj
if and only if Mj has the smallest Kullback–Leibler divergence
K(P||Q∗(ψ j)) between the true data distribution P andQ∗(ψ j).
Remark that the condition K(P||Q∗(ψ j)) < K(P||Q∗(ψ�)),
∀� �= j, given in the theorem does not depend on a particular
value of ψ j and ψ�. Indeed, the result of the theorem hinges on
the fact that the marginal likelihood selects the model with the
Q∗(ψ j) closer to P, that is, themodel that contains the “less mis-
specified” moment restrictions for every value of ψ j.

The result of the theorem also applies to the case where we
compare a correctly specified modelM1 to misspecified models.
Indeed, if modelM1 is correctly specified thenK(P||Q∗(ψ1)) =
0 while if modelMj is misspecified then K(P||Q∗(ψ j)) > 0.

Example 4 (Model selection when all models are
misspecified). For i = 1, . . . , n, let yi = α + βzi + ei. Here,
we generate zi ∼ N (0.5, 1) and ei from the skewed distri-
bution in (2.13) with mean zero and variance 1.625, inde-
pendently of zi. Let θ := (α, β)′, ei(θ) := (yi − α − βzi),
and the true value of θ be (0, 1)′. We compare the following
models. Model 4: EP[(ei(θ), ei(θ)zi, ei(θ)3, ei(θ)2 − 2)′] = 0,
Model 5: EP[(ei(θ), ei(θ)zi, ei(θ)2 − 2)′] = 0, and Model 6:
EP[ei(θ), ei(θ)2 − 2] = 0 which, written in terms of an encom-
passing grand model, become, respectively:

M4: EP[ei(θ)] = 0, EP[ei(θ)zi] = 0, EP[(ei(θ))3] = 0,
EP[(ei(θ))2 − 2] = 0

M5: EP[ei(θ)] = 0, EP[ei(θ)zi] = 0, EP[(ei(θ))3] = v1,

EP[(ei(θ))2 − 2] = 0
M6: EP[ei(θ)] = 0, EP[ei(θ)zi] = v2, EP[(ei(θ))3] = v1,

EP[(ei(θ))2 − 2] = 0 (3.6)

with ψ4 = θ, ψ5 = (θ, v1)
′, and ψ6 = (θ, v1, v2)

′. Thus, com-
pared to Example 3 in the online Appendix, here we change the
moment restriction that involves the variance of ei. When the
underlying distribution has variance different from 2, all mod-
els M4, M5, and M6 are misspecified due to the new moment
restriction: EP[(ei(θ))2 − 2] = 0. In Table 2, we report the per-
centage of times the marginal likelihood selects each model out
of 500 trials, by sample size, under the default and training sam-
ple prior (based on 50 prior observations).

Because we know the true data-generating process, we can
compute, for each model, the KL divergence between the true

Table . Model selection when all models are misspecified. Frequency (%) of times
each of the threemodels in Example  are selected by themarginal likelihood crite-
rion in  trials, by sample size, for two different prior distributions.

Default prior Training sample prior

Model M4 M5 M6 M4 M5 M6

n = 250 . . . . . .
n = 500 . . . . . .
n = 1000 . . . . . .
n = 2000 . . . . . .

model P andQ∗(ψ j
◦) at the pseudo-true parameterψ j

◦ formodel
Mj based on (2.16). Using 10,000,000 simulated draws from P,
our calculations show that K(P||Q∗(ψ j

◦)) is equal to 0.0283 for
M4, 0.0096 forM5, and 1.4901 × 10−13 forM6. Intuitively,M6 is
the closest to the true model since it imposes fewer restrictions
(only two moment restrictions are active). This means that the
set of probability distributions that satisfyM6 is larger than (and
contains) the sets of probabilities that conformwithM4 andM5.
This flexibility ensures that the divergence between the set of
probabilities that satisfyM6 and P (as measured by the KL) will
be at least as small as for M4 and M5. As the empirical results
show, under each prior, the best model M6 picked out by our
marginal likelihood ranking is also the model that is the closest
to the true model, consistent with the prediction of our theory.

Finally, suppose that some of the models that we consider
are correctly specified and others are misspecified in the sense
of Definition 1. This means that, for the latter, one or more of
the active moment restrictions are invalid, or in other words,
that one or more components of V are incorrectly set equal to
zero. Indeed, all themodels for which the activemoment restric-
tions are valid are not misspecified even if some invalidmoment
restrictions are included among the inactive moment restric-
tions. This is because there always exists a value v ∈ R

dv� that
equates the invalid moment restriction. In this case, the true v∗
for this model will be different from the zero vector: v∗ �= 0 and
the true value of the corresponding tilting parameter λ will be
zero.

For this situation, Theorems 3 and 4 together imply an
interesting corollary: the marginal likelihood selects the cor-
rectly specified model that contains the maximum number of
overidentifying moment conditions. Without loss of generality,
denote this model byM1. Then we have the following result.

Corollary 1. Let Assumptions 2–4, and Assumptions 5–8 in the
online Appendix hold, and let either (2.14) or (2.17) be satisfied,
depending on the model. Let us consider the comparison of J
differentmodelsMj, j = 1, 2, . . . , J whereM1 satisfies Assump-
tion 1 whereasMj, j �= 1 can either satisfy Assumption 1 or not.
Then,

lim
n→∞P

(
logm(x1:n;M1) > max

j �=1
logm(x1:n;Mj)

)
= 1

if and only if (p1 + dv1 ) < (p j + dv j ), ∀ j �= 1 such thatMj sat-
isfies Assumption 1.

This corollary says that, if we compare a set of models, some
of them are correctly specified and the others are misspecified,
then the marginal likelihood selects model M1 if and only if
M1 is correctly specified and contains the maximum number of
overidentifying moment conditions among the correctly speci-
fied models.

4. Applications

The techniques discussed in the previous sections have wide-
ranging applications to various statistical settings, such as
generalized linear models, and to many different fields, such
as biostatistics and economics. In fact, the methods discussed



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1665

above can be applied to virtually any problem that, in the fre-
quentist setting, would be approached by generalizedmethod of
moments or estimating equation techniques. To illustrate some
of the possibilities, we consider in this section two important
problems: one in the context of count regression, and the second
in the setting of instrumental variable (IV) regression.

4.1. Count Regression: Variable Selection

Suppose that yi, i = 1, . . . , n arise from the negative binomial
(NB) regression model

yi|β, xi ∼ NB
(

p
1 − p

μi, p
)

, μi > 0, p ∈ (0, 1)

log(μi) = x′
iβ, (4.1)

where μi is the size parameter, xi = (x1,i, x2,i, x3,i)′, and
β = (β1 = 1, β2 = 1, β3 = 0). Thus, x3,i is a redundant regres-
sor. Each explanatory variable x j,i is generated iid from an
N (0.4, 1/9) distribution and p is set equal to 1/2. In this
setting, suppose we wish to learn about β under the moment
conditions

EP [(yi − exp(β1x1,i + β2x2,i + β3x3,i)
)
xi
] = 0

EP

⎡⎣(yi − exp(x′
iβ)√

exp(x′
iβ)

)2

− 1

⎤⎦ = v . (4.2)

The first type of moment restriction (one for each x j,i for
j = 1, 2, 3) is derived from the fact that the conditional expec-
tation of yi is exp(x′

iβ) and this identifies β. The second type of
restriction is suggested by a Poisson model (which is misspeci-
fied when the data arise from an NB). More specifically, if v = 0
that moment condition asserts that the conditional variance of
yi is equal to the conditional mean.

Suppose that we are interested in determining if x3 is a
redundant regressor and if the conditional mean and variance
are equal. To solve this problem, we can create the following
four models based on the grand model (4.2) with the following
restrictions:

M1: β1 and β2 are free parameters, β3 = 0 and v = 0.
M2: β1, β2, β3 are free parameters and v = 0.
M3: β1, β2 and v are free parameters, and β3 = 0.
M4: β1 β2, β3 and v are free parameters. (4.3)

As required, each model has the same moment restrictions. The
different models arise from the different restrictions on β3 and
v . In this set-up, models M3 and M4 are the correctly speci-
fied models but M3 has more overidentifying moment restric-
tions than M4. We conduct our MCMC analysis and compute
the marginal likelihoods of the four models by the Chib (1995)
method under the default student-t prior distribution onβ given
in (2.11). The results are given in Table 3. The results show that
the frequency of selecting M3 is 94% for n = 250 and this per-
centage increases with sample size, in accordance with our the-
ory. In addition, neither modelM1 norM2 (which state equality
of the conditional mean and variance) is picked for any sample
size.

Table . Frequency (%) of times each of the four models in (.) are selected by the
marginal likelihood criterion in  trials. Model choicewith Negative Binomial DGP.
Model M3 , defined by β3 = 0 and v free, is the true model. The other models are
defined in the text.

Model M1 M2 M3 M4

n = 250 . . . .
n = 500 . . . .
n = 1000 . . . .

In the online Appendix A, we report a similar analysis where
the data are generated from a Poisson model. We emphasize
that our analysis of these data, and the comparison across
models, was light in terms of assumptions. The Poisson and
negative binomial distributions are used to simply obtain a
sample. These distributional forms are not featured in the
estimation or the model comparison. A reader of this article
wondered how a parametric Poisson model would have per-
formed for these data. Since the data were generated under
either a Poisson model or a model close to a Poisson model, the
marginal likelihood of the Poisson model (correctly) is higher
than that of the moment model. But this performance suffers
dramatically if the data are generated from a count process
that is quite different from the Poisson. For instance, suppose
that the data are generated under the assumption that the first
three moment conditions hold. We have developed a way of
generating such a sample which works as follows. We first gen-
erate a large population of count data from an arbitrary count
process (say yi = �exp{β1x1,i + β2x2,i + 20N (0, 1)}�, setting
any negative observations to zero and where �a� denotes the
largest integer less than or equal to a). We then find the ETEL
probabilities p∗

i consistent with the given moment conditions.
Finally, we sample the population of observations according to
these probabilities. The resulting sample satisfies the moment
conditions but has no connection to the Poisson or negative
binomial distributional forms. For such a design, in 500 repli-
cations, in the parametric Poisson models (one with β3 = 0 and
one with β3 free), the Poissonmodel with β3 = 0 is selected 42%
when n = 250, 46% when n = 500, and 45% when n = 1000.
Thus, the Poisson assumption is not capable of selecting the
correct case. In addition, when these two Poisson models are
compared along with the four moment models in (4.3), for
which the marginal likelihoods are computed with our method,
M3 is decisively preferred over the Poisson models in terms of
marginal likelihood and the frequency of times it is selected is
similar to that reported above in Table 3.

4.2. IV Regression

Consider now the commonly occurring situation with observa-
tional data where one is interested in learning about the causal
effect parameter β in the model

y = α + xβ + wδ + ε, EP[ε] = 0

but the covariate x is correlatedwith the error, due to say unmea-
sured or uncontrolled factors, apart from w, that are correlated
with x and that reside in ε. Also suppose that one has two
valid instrumental variables z1 and z2 that (by definition) are
correlated with x but uncorrelated with ε. In this setting, we
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Table . Posterior summary for two simulated sample sizes from IV regression
model with skewed error. The true value of α is , of β is ., and of δ is .. The
summaries are based on , MCMC draws beyond a burn-in of . The M-H
acceptance rate is around 90% in both cases.

mean sd median lower upper ineff

n = 250
α . . . . . .
β . . . . . .
δ . . . − . . .

n = 2000
α . . . . . .
β . . . . . .
δ . . . . . .

can learn about θ := (α, β, δ) from the overidentified moment
restrictions

EP [(yi − α − xiβ − wiδ
)] = 0 (4.4)

EP [(yi − α − xiβ − wiδ
)
z1i
] = 0 (4.5)

EP [(yi − α − xiβ − wiδ
)
z2i
] = 0 (4.6)

EP [(yi − α − xiβ − wiδ
)
wi
] = 0, (i ≤ n) (4.7)

without having to model the distribution of ε or the model con-
necting z to x.

To demonstrate the performance of our Bayesian prior-
posterior analysis in this setting, we generate data on
(yi, xi, z1i, z2i) from a design that incorporates a skewed
marginal distribution of ε and substantial correlation between
x and ε. In our DGP, we assume that y = 1 + 0.5x + 0.7w + ε,
x = z1 + z2 + w + u, and generate z j from N (0.5, 1) and
w from Uniform(0, 1). The errors (ε, u) are generated
from a Gaussian copula whose covariance matrix has 1 on
the diagonal, and 0.7 on the off-diagonal, such that the
ε marginal distribution is the skewed bivariate mixture
0.5N (0.5, 0.52) + 0.5N (−0.5, 1.1182) and the u marginal
distribution is N (0, 1). We generate n = 250 and n = 2000
observations from this design and use moment conditions
(4.4)–(4.7) and our default student-t prior given in (2.11)
to learn about θ. The results shown in Table 4 and Figure 1
demonstrate clearly the ability of our method to concentrate on
the true values of the parameters, under minimal assumptions.

Now suppose that we are unsure that z2 is an appropriate
instrument. We can address this concern by estimating a new
model M2 in which the moment condition (4.6) is not active.
The marginal likelihood of this model can be compared with

the marginal likelihood of the previous model M1. The results
show that for n = 250, the log-marginal likelihood of M1 is
−1395.807 and that of M2 is −1398.092, while for n = 2000,
the corresponding log-marginal likelihoods are −15217.78 and
−15222.65, respectively, thus correctly indicating for both sam-
ple sizes that z2 is an appropriate instrument.

5. Conclusion

In this article, we have developed a fully Bayesian framework
for estimation and model comparisons in statistical models that
are defined by moment restrictions. The Bayesian analysis of
such models has always been viewed as a challenge because
traditional Bayesian semiparametric methods, such as those
based on Dirichlet process mixtures and variants thereof, are
not suitable for suchmodels. What we have shown in this article
is that the exponentially tilted empirical likelihood setting is an
immensely useful organizing framework within which a fully
Bayesian treatment of such models can be developed. We have
established a number of new, powerful results surrounding the
Bayesian ETEL framework including the treatment of models
that are possibly misspecified. We show how the moment
conditions can be reexpressed in terms of additional nuisance
parameters and that the Bayesian ETEL posterior distribution
satisfies a Bernstein–von Mises theorem. We have also devel-
oped a framework for comparing moment condition models
based on marginal likelihoods and Bayes factors and provided
a suitable large sample theory for model selection consistency.
Our results show that the marginal likelihood favors the model
with the minimum number of parameters and the maximum
number of valid moment restrictions. When the models are
misspecified, themarginal likelihood-based selection procedure
selects the model that is closer to the (unknown) true data-
generating process in terms of the Kullback–Leibler divergence.
The ideas and results illumined in this article now provide the
means for analyzing a whole array of models from the Bayesian
viewpoint. This broadening of the scope of Bayesian techniques
to previously intractable problems is likely to have far-reaching
practical consequences.

Appendix: Proofs for Section 3

In this Appendix, we provide the proof of Theorems 3 and 4. The proofs of
all the other results are in the online Appendix.

Figure . Posterior densities of β in the IV regression with skewed error. Posterior densities are based on , draws beyond a burn-in of . The M-H acceptance rate
is about % for each sample size.
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Notation: Let λ̂(ψ) := argminλ∈Rd
1
n
∑n

i=1[exp{λ′gA(xi,ψ)}]. We
recall the Schennach (2007) ETEL estimator ofψ, denoted by ψ̂ := (̂θ, v̂):

ψ̂ : = argmax
ψ∈	

1
n

n∑
i=1

[̂
λ(ψ)′gA(xi,ψ)

− log
1
n

n∑
j=1

exp{̂λ(ψ)′gA(x j,ψ)}
]
. (A.1)

The following notation is used hereafter. The ETEL estimator of ψ� in
modelM� is

ψ̂
�
: = arg max

ψ�∈	�

1
n

n∑
i=1

[̂
λ(ψ�)′gA(xi,ψ�)

− log
1
n

n∑
j=1

exp{̂λ(ψ�)′gA(x j,ψ
�)}
]
, (A.2)

where λ̂(ψ�) = argminλ∈Rd
1
n
∑n

i=1[exp{λ′gA(xi,ψ�)}]. Denote
ĝA(ψ�) := 1

n
∑n

i=1 g
A(xi,ψ�), ĝA� := ĝA(ψ�), L̂(ψ�) := exp{̂λ

(ψ�)′̂gA(ψ�)}[n−1∑n
i=1 exp{̂λ(ψ�)′gA(xi,ψ�)}]−1, and L(ψ�) :=

exp{λ◦(ψ�)′EP[gA(x,ψ�)]}(EP[exp{λ◦(ψ�)′gA(x,ψ�)}])−1. Moreover,
we use the notation �� := (�′

�

−1
� ��)

−1 where �� := E
P[ ∂

∂ψ�′ gA(X,ψ�
∗)]

and 
� := E
P[gA(X,ψ�

∗)gA(X,ψ�
∗)

′]. In the proofs, we omit measura-
bility issues which can be dealt with in the usual manner by replacing
probabilities with outer probabilities.

Proof of Theorem 3. By (3.5) and Lemmas D.1 and D.2 in the online
Appendix, we obtain

P
(
max
� �= j

logm(x1:n;M�) < logm(x1:n;Mj)

)
= P

(
max
� �= j

[
− n

2
ĝA

′
� 
−1̂gA� + logπ(ψ̂

�|M�)

− (p� + dv�
)

2
(log n − log(2π)) + 1

2
log |��|

]
+n
2
ĝA

′
j 
−1̂gAj + op(1)

< logπ(ψ̂
j|Mj) − (p j + dv j )

2
(log n − log(2π)) + 1

2
log |� j|

)
.

(A.3)

Remark that n̂gA
′

j 
−1̂gAj
d→ χ2

d−(p j+dv j )
, ∀ j, so that n̂gA

′
j 
−1̂gAj = Op(1).

Suppose first that (p� + dv�
> p j + dv j ), ∀� �= j. Since −n̂gA

′
� 
−1̂gA� < 0

for every �, we lower bound (A.3) as

P
(
max
��= j

logm(x1:n;M�) < logm(x1:n;Mj )

)
≥ P

(n
2
ĝA

′
j 
−1̂gAj + op(1)

< log n
[min��= j(p� + dv�

) − p j − dv j

2

−min��= j(p� + dv�
) − p j − dv j )

2 log n
log(2π)

− log[max��= j π(ψ̂
�|M�)/π(ψ̂

j|Mj )]
log n

− 1
2 log n

(
max
��= j

log |��| − log |� j|
)])

= P
( n
2
ĝA

′
j 
−1̂gAj + op(1)︸ ︷︷ ︸

=:In

< log n
[min��= j(p� + dv�

) − p j − dv j

2
+ Op((log n)−1)

]
︸ ︷︷ ︸

=:IIn

)
.

(A.4)

BecauseIn = Op(1) (and is asymptotically positive) andIIn is strictly pos-
itive as n → ∞ (since (p� + dv�

) > (p j + dv j ), ∀� �= j) and converges to
+∞, then the probability converges to 1. This proves one direction of the
statement.

To prove the second direction of the statement, suppose that
limn→∞ P(max��= j logm(x1:n;M�) < logm(x1:n;Mj )) = 1 and consider
the following upper bound (which follows from (A.3) and the fact that
n̂gA

′
j 
−1̂gAj > 0, ∀n):

P
(
max
��= j

logm(x1:n;M�) < logm(x1:n;Mj )

)
≤ P

(
logm(x1:n;M�) < logm(x1:n;Mj )

)
, ∀� �= j

≤ P
(

− n
2
ĝA

′
� 
−1̂gA� + op(1) + log n

[
(p j + dv j ) − (p� + dv�

)

2

+Op

(
1

log n

)]
< 0

)
, ∀� �= j. (A.5)

Because the probability in the first line of (A.5) converges to 1 as n → ∞
then, necessarily, the probability in the last line of (A.5) converges to 1which
is possible only if (p j + dv j ) < (p� + dv�

) because log n[
(p j+dv j )−(p�+dv�

)

2 ]
is the dominating term since − n

2 ĝ
A′
� 
−1̂gA� < 0 and it remains bounded as

n → ∞. Since the first inequality in (A.5) holds ∀� �= j then convergence
to 1 of the probability in the last line of (A.5) is possible only if (p j + dv j ) <

(p� + dv�
), ∀� �= j. �

Proof of Theorem 4. We can write log p(x1:n|ψ�;M�) = −n log n +
n log L̂(ψ�). Then, we have

P
(
logm(x1:n;Mj ) > max

��= j
logm(x1:n;M�)

)
= P

(
n log L̂(ψ j

◦) + logπ(ψ j
◦|Mj ) − logπ(ψ j

◦|x1:n,Mj )

>max
��= j

[n log L̂(ψ�
◦) + logπ(ψ�

◦|M�) − logπ(ψ�
◦|x1:n,M�)]

)
= P

(
n log L(ψ j

◦) + n log
L̂(ψ j

◦)
L(ψ j

◦)
+ B j

> max
��= j

[
n log L(ψ�

◦) + B� + n log
L̂(ψ�

◦)
L(ψ�

◦)

])
, (A.6)

where ∀�, B� := logπ(ψ�
◦|M�) − logπ(ψ�

◦|x1:n,M�) and B� =
Op(1) under the assumptions of Theorem 2. By defini-
tion of dQ∗(ψ) in Section 2.3 we have that: log L(ψ�

◦) =
E
P[log dQ∗(ψ�

◦)/dP] = −E
P[log dP/dQ∗(ψ�

◦)] = −K(P||Q∗(ψ�
◦)).

Remark that EP[log(dP/dQ∗(ψ2
◦))] > E

P[log(dP/dQ∗(ψ1
◦))] means that

the KL divergence between P andQ∗(ψ�
◦), is smaller for modelM1 than for

model M2, where Q∗(ψ�
◦) minimizes the KL divergence between Q ∈ Pψ�

◦
and P for � ∈ {1, 2} (notice the inversion of the two probabilities).

First, suppose that min��= j E
P[log(dP/dQ∗(ψ�

◦))] >

E
P[log(dP/dQ∗(ψ j

◦))]. By (A.6):

P
(
logm(x1:n;Mj ) > max

��= j
logm(x1:n;M�)

)
≥ P

(
log

L̂(ψ j
◦)

L(ψ j
◦)

− max
��= j

log
L̂(ψ�

◦)
L(ψ�

◦)
+ 1

n
(B j − max

��= j
B�)

> max
��= j

log L(ψ�
◦) − log L(ψ j

◦)︸ ︷︷ ︸
=:In

)
. (A.7)
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This probability converges to 1 because In = K(P||Q∗(ψ j
◦)) −

min��= j K(P||Q∗(ψ�
◦)) < 0 by assumption, and [log L̂(ψ�) − log L(ψ�)]

p→
0, for every ψ� ∈ 	� and every � ∈ {1, 2} by Lemma D.3 in the online
Appendix.

To prove the second direction of the statement, suppose that
limn→∞ P(logm(x1:n;Mj ) > max��= j logm(x1:n;M�)) = 1. By (A.6)
it holds, ∀� �= j

P
(
logm(x1:n;Mj ) > max

��= j
logm(x1:n;M�)

)
≤ P

(
log

L̂(ψ j
◦)

L(ψ j
◦)

− log
L̂(ψ�

◦)
L(ψ�

◦)
+ 1

n
(B j − B�) > log

L(ψ�
◦)

L(ψ j
◦)

)
.

(A.8)

Convergence to 1 of the left-hand side implies convergence to 1 of the
right-hand side which is possible only if log L(ψ�

◦) − log L(ψ j
◦) < 0. Since

this is true for every model �, then this implies that K(P||Q∗(ψ j
◦)) <

min��= j K(P||Q∗(ψ�
◦)) which concludes the proof. �

SupplementaryMaterial
The supplementarymaterial in the online Appendix contains further exam-
ples, assumptions, and the technical proofs of the results in the article.
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