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Abstract 

We develop practical and exact methods of analyzing ARMA(p, 4) regression error 
models in a Bayesian framework by using the Gibbs sampling and Metropolis-Hastings 
algorithms, and we prove that the kernel of the proposed Markov chain sampler 
converges to the true density. The procedures can be applied to pure ARMA time series 
models and to determine features of the likelihood function by choosing appropriate 
diffuse priors. Our results are unconditional on the initial observations. We also show 
how the algorithm can be further simplified for the important special cases of stationary 
AR(p) and invertible MA(q) models. Recursive transformations developed in this paper 
to diagonalize the covariance matrix of the errors should prove useful in frequentist 
estimation. Examples with simulated and actual economic data are presented. 

KPJ~ ~~ourls: Gibbs sampling; Metropolis-Hastings algorithm; Data augmentation; Time 
series; ARMA processes; Markov chain; Bayesian statistics 
JEL c.la.ssification: Cl 1; C15; C22 

1. Introduction 

Regression models with correlated errors have been the focus of considerable 
attention in econometrics and statistics. Although textbook presentations 
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usually restrict attention to autoregressive (AR) and moving average (MA) 
models, the latter often of the first order, the mixed autoregressive and moving 
average (ARMA) model is clearly the most interesting case. Unfortunately, the 
unconditional likelihood function for the general stationary and invertible 
ARMA(p, 4) error model is quite complicated and can present serious computa- 
tional problems. Therefore, despite the approaches to maximum likelihood 
estimation developed in Newbold (1974), Pagan and Nicholls (1976) Box and 
Jenkins (1976), Ansley (1979), and Gardner et al. (1979) software packages are 
organized around the method of nonlinear least squares or its equivalent, the 
conditional maximum likelihood (Harvey, 1981). Another line of inquiry has 
been directed at feasible generalized least squares estimators, most notably in 
Otto et al. (1987) and Galbraith and Zinde-Walsh (1992). 

Absent to a large extent from this literature is the Bayesian analysis of 
regression models with ARMA(p, 4) errors. Although a Bayesian perspective for 
time series has been actively pursued, a full treatment for such models is not 
available. Much of the early work is concentrated on autoregressive models (see 
Zellner, 1971) while the later work on mixed ARMA models was spurred by the 
approach of Monahan (1983) which is most useful for low-order processes. 
Broemeling and Shaarway (1984) enlarge the scope of Bayesian time series 
analysis by conditioning on initial values of pre-sample errors and other simpli- 
fications that replace the unknown errors appearing in the likelihood function 
with estimates obtained by nonlinear least squares. 

In recent years many of the perceived difficulties of implementing the 
Bayesian paradigm have effectively disappeared through the emergence 
of Markov chain Monte Carlo (MCMC) simulation methods such as the 
Gibbs sampler (see Tanner and Wong, 1987; Gelfand and Smith, 1990) and 
MetropolissHastings (MH) algorithms (see Metropolis et al., 1953; Hastings, 
1970; and Tierney, 1993). These methods are powerful tools for simulating 
intractable joint distributions that rely on the convergence of a suitably construc- 
ted Markov chain to the joint distribution of interest. The output of the simula- 
tion is a sample of draws that can be used for various purposes, for example to 
compute posterior moments and quantiles. The value of these methods for 
operationalizing Bayesian inference for time series regression, especially with 
autoregressive processes conditioned on initial observations, was recognized early 
by Chib (1993) McCulloch and Tsay (1993) and Albert and Chib (1993). In this 
paper we continue this line of attack but focus on a more general class of models, 
namely, regression models, perhaps with lagged dependent variables, whose 
errors follow a stationary and invertible ARMA(p, q) process of any specified 
order. Furthermore, our results are unconditional on the initial observations. 

To put our work in perspective, recall that the quest in Gibbs sampling is to 
express the joint posterior density of the parameters in a form that lends itself to 
simulation, usually over a block of parameters at a time, conditioned on the 
remaining blocks. Achieving this in the current context necessitates the use of 



several related strategies and the development of several new results. First, we 
introduce a set of additional parameters into the simulation, an example of data 
augmentation. These variables are not the p + 4 pre-sample errors that are used 
to define the conditional likelihood, but rather m = max(p, q + 1) functions of 
these errors obtained from the state space representation of the model. Second, 
we show that two transformations of the data can be separately used to 
diagonalize the covariance matrix of the error. From the transformed observa- 
tions we obtain the full conditional distributions of the regression parameters, 
the autoregressive coefficients, and the error variance. Third, we combine 
Markov chain strategies, as has been done in prior work by Miiller (1993), but 
with a different class of candidate-generating densities. Fourth, we obtain the 
full conditional distribution of the transformed pre-sample errors by Kalmari 
smoothing. Fifth, we specialize the analysis for AR(p) and MA(q) models and 
show that much of the analysis can be simplified. Finally, we formally prove the 
convergence of the MCMC algorithm to the desired joint posterior distribution 
of the parameters. In the proof, we establish a result of independent interest that 
states that the set of parameters that lead to stationarity and invertibility is 
arc-connected. 

In concurrent and independent work Marriott et al. (1992) develop a different 
approach to the estimation of ARMA models that is based on sampling 
functions of the partial autocorrelations. A virtue of their approach is that 
one-for-one draws of each partial autocorrelation can be obtained but at the 
cost of a more complex algorithm. For the most part, that paper focuses on the 
important data analytic issues related to forecasting, missing values, and model 
adequacy. In contrast, we explicitly allow for a regression structure, derive exact 
forms for complete conditional distributions, conduct the sampling with blocks 
of parameters to improve the convergence of the Markov chain, and verify 
formal convergence conditions for our proposed algorithm. 

The plan of this paper is as follows. Section 2 presents the model and the prior 
distributions. Section 3 contains the transformations mentioned above, the full 
conditional distributions, the details of the MCMC algorithm, and a theorem 
that the algorithm converges. Section 4 takes up the AR(p) and MA(q) special 
cases. Several numerical examples based on simulated and actual data are 
presented in Section 5, while Section 6 contains concluding remarks. The 
Appendix contains a proof of Proposition 2. 

2. Model and prior assumptions 

Consider the following Gaussian model in which the observation at time t, y,, 
is generated by 

Yt = x;B + Et, f = l,...,n, (1) 
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where X, is a k x 1 vector of covariates, p is the k x 1 vector of regression 
parameters, and E, is a random error. Suppose that E, follows an ARMA(p, 4) 
process 

&=&E,-, +...+~,E,~,+U,+u1U,~1 +...+u,u,_,, (2) 

which is expressed in terms of a polynomial in the backshift operator L as 

4(L)&, = &L)u,, (3) 

where 4, # 0, 0, # 0, U, “2 N(0, a’), a2 > 0, JV denotes the normal distribution, 

4(L) = 1 - 4, L -... - qbpLp, and U(L) = 1 + U1 L + ... + H,Lq. Equivalently, 
the model in (1) and (2) can be expressed in state space form (see Harvey, 198 1) as 
follows: 

1’1 = X;B + Z’CI, 

x, = GE,_, +fir,, 

where z = (1, 0, . . . ,O)‘: nz x 1. x, = (Al,,, 

G= 

41 1 
42 ! 

43 f IIf-1 

. 

. . 

. . 

. , . . . . . . . 

qbm f 0 “. 0 

(4) 

(5) 

zmt,)‘: m x 1, m = max(p, q + l), 

m x m, 

and f = (1, 8, , . , 0,)‘. In writing G and f we employ the conventions that 4s = 0 
for s > p, 8, = 0 for r > q, and (I,, = 1. We make the following assumptions: 

Assumption M (Model): The data J’ = (y,, . . . ,yJ are generated by (1) and (2), 
with p and q known. 

Assumption S (Stationarity): All roots of 4(L) lie outside the unit circle. 

Assumption I (Invertibility): All roots of U(L) lie outside the unit circle. 
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where r$ = (~$r, . . . ,4J, 0 = (or, . . . , fiJq)‘, .A$ .) is the s-variate normal distribu- 

tion, YY( .) is the inverted gamma distribution, IA is the indicator function of the 
set A, S, is the set of C$ that satisfies Assumption S, and SB is the set of l3 that 
satisfies Assumption I. The hyperparameters fiO, BO, &, @,,, (IO, O,,, vO, and & 
are known. 

A few comments about these assumptions are in order. Assuming stationarity 
does not limit in any important way the ability to model nonstationary data, 
since x, may contain lagged values of y, whose coefficients are unrestricted. In 
the absence of lagged yC, the variables in x, may be (unit-root) nonstationary in 
which case Assumption S amounts to an assertion that y and x are cointegrated. 
The long-run relation between a nonstationary y and its covariates would 
otherwise break down; y in effect would be a pure time series process, and there 
would be no interest in estimating 8. Assumption I is introduced for identifica- 
tion purposes. With respect to Assumption P, it will be noted that the usual 
normal-inverted gamma distribution has been assumed for /II and a2, while those 
for C$ and 0 are multivariate normal truncated to their stationary and invertible 
regions, respectively. Vague prior information can be entertained by centering 
these distributions at zero and setting each prior precision matrix equal to 
I: times an identity matrix, where E is a small number. A highly informative prior 
(large precision) on a parameter can take the place of a constraint, thereby 
permitting the analysis of seasonal ARMA processes. For the initial state vector, 
the stationarity assumption implies that zO, conditioned on 13, 4, (I, and (T’, 
follows a normal distribution with parameters E(Q) = 0 and E(roxb) = Q, 
where 

vec(S2) = 02(l - G @ G))‘vec(ff’). (7) 

Finally, the normal and truncated normal priors that we assume are defensible 
on several grounds, primarily analytical tractability and flexibility. Nonetheless, 
if desired a different class of priors can be employed because it is possible to 
sample from nonstandard distributions (as we do below for 0) within a Markov 
chain algorithm by employing the MetropolissHastings algorithm. Equally 
important, output corresponding to different prior distributions, for example 
those not in the above class, can be obtained by a weighted bootstrap applied to 
the sampled draws. We remark further on these points below. 

3. Main results 

The goal of the paper is to determine moments and other features of the 
posterior distribution of $ = (/I, 4, 0, a’) under Assumptions M, S, I, and P. By 



Bayes theorem, the posterior density is given by ,f’($lv) TX rc($)J’(yI$), where 
rc($) is the prior density and ,f’(yl$) is the likelihood function. The direct 
calculation of the exact likelihood function is intractable. It is well known, 
however, that given the pre-sample errors i. = (c,, . . . .c ,,+ ,, u,,, , umq+ ,), the 
density of y given ($, L) can be expressed as 

.l’(_Vl$, j.) = fi (27ra2)) ‘.2 
,=I 

exp[ -$u:] 

= fi (2na’) “‘exp 
,= I l 

- & (_v, - _PIt_ ,i2] (8) 

where j,,,_, = xi/j + (4(L) - l)(y, - x:/j) + (O(L) - l)u, is the one-step-ahead 
prediction of JJ, given information up to time t - I., We therefore develop an 
approach that relies on (8) but nevertheless provides the posterior density for 
the exact likelihood. 

First, we show that the conditional likelihood can be expressed in terms of 
only MI pre-sample variables, not all the p + q elements in i_ This surprising 
result is actually a consequence of the state space form of the ARMA model and 
appears to have been overlooked in the literature. Our demonstration begins by 
considering the period t = 1. Then from (8) 

_?,,o = x;B+ C/),X0 +...+ &Lp+, + LlrJ + U,llo +...+ u,u_,+,. 

By solving the state space form for z, from the bottom up, we find that 

#,c, + “‘+ &L,, + , + (I, L4” + ..’ + o,u_,+, = c/),x,, + rA20. 

Therefore, f, I0 = xi/j + c$, CC,,, + ~1~~; i.e., the elements of i enter only through 
rows of Q,. This is true for all values oft as the following argument proves. For 
l<t<p,defined,(L)= 1 -(b,L-...-~I~,L’~‘.Then 

4r(Uy, - x;B) = 4,(‘%‘% = Z’&(L)& 

= z’(z, - gh,?,_, -“.- f$_,‘X,) (9) 

= a,, - 4,X,.,P, -...- &lx,*. 

By repeatedly using the recursion CC,, = &c(,,~_, + x,+ ,,1-, + Or-, u,, (9) can be 
rewritten as 

’ There IS no need to introduce the pre-sample errors if the model does not contain a moving average 
component. In that case a direct approach can be based on the assumption that the first p observa- 

tions come from the stationary distribution. This important speaal case, and our treatment of it, is 

described in Section 4.1. 



from which it follows that 

i!tl,- 1 = +;B + $I(Y,- 1 - x;-,B) +...+ &,(!‘1 - x;p) 

+ H,u,-, +...+ B,_ru, + &Xl0 + c(,+r.o. (TO) 

Thus jlt (1 < t < p) depends on i only through x0. Upon multiplying by 4(L), 
the same type of argument shows that 

jr,,-, = X;fi + i $i(yr-i - Xi-j/l) 
i=, 

+ OlU,-1 +...+ e,-,u, + ‘&+I.(), t = p + I,...,& (11) 

where we have used the conventions that Uj = 0 (j > y) and c(,.~ = 0 (r > m). 

Since pre-sample errors enter ?;,,,_ 1 only through rows of x0, we have estab- 
lished the result that .f(yI$, 1”) = f(yl$, x0). Therefore we include [j, 4,H, 
c2, and a0 as elements in our MCMC algorithm, simulating these parameters 
from the following conditional densities: n(PIy, $_,]. x0), rc(4ly, I,!_+, CL~), 
rr(UIy,t,~,,~(,), r~(a~ly,$_~~. x0), and rc(~~ly, $), where, e.g., r+-s denotes all 
parameters in I,!I other than /I. To derive these densities, we proceed by noting 
that each is proportional to the joint posterior density for the augmented 
parameter vector (II/, ao) given by 

n(ti, ~OIY) x ~(~)~MW’(Yl~~ %“I> (12) 

where ,f(~~l$, ro) is the conditional density of y (see below) and the other 
densities are taken from Assumption P. Simplifying (12) is the next order of 
business. 

3.2. Full conditional distributiorls 

Two results are central to the analysis that now follows. We show that the 
density ,f‘(yI $, x0) can be diagonalized by recursive transformations of the data 
to produce a regression relationship for /3 and 4. These simple recursions for the 
general ARMA problem have not appeared elsewhere and may be useful for 
frequentist estimation. 

Drfinition 1. Let the sccllars ~1~ = y ,F = 0 und the vectors x, = x d = 0, s < 0, and 

let a,.0 = 0, r > m. For t = 1, . . . , n, dt$ine 

*_ 
J’t -2’t- jl 4SYr-3 - i OiY,*_i - X,+1,0, 

i=l 

x: = x, - i 4sxt-.s - i H,x,*_i. 
.s= 1 i=l 



190 S. C’hih, E. Grwherg~ Journal of’ Ecmornrtrk.~ 64 (1994J 1x3 206 

This definition implies the following lemma: 

Lernrnu 1. Lety* he the n x 1 cector cfthr ~1: and let X* be the n x k matrix with 

Xl *’ as its tth row. Then 

.f‘(.Y*l$, x0) = (27ca2)~“~*exp 
1 

- $ (_,J* - x*b)‘(J’* - x*/q 
1 

Proc$ Verify that ~1 T - x f’fi = ~4~ and proceed by induction, making use of (10) 
and (11). n 

From the definition of J’:: and its appearance in ,f’(s*I$, x0) we see how z0 
enters the conditional density. Moreover, the regression relationship y* = 
X*p + u, where u - .N;(O. ~‘l,,), immediately yields the full conditional distri- 
bution of p and a2. We continue by introducing a transformation that allows us 
to determine the full conditional distribution of 4. 

Dqfinition 2. For s < 0, let the scalurs y., = J,, = :U,, = 0 and the vectors x,~ = 0, 
and let x rO = 0, r > m. For t = 1, . , n, define 

With this definition we can prove the following lemma: 

Lemma 2. Let ji he the n x 1 column rector of’ the Jt and let 2: n x p he gioen by 

x= 

Then 

X10 0 . . . . . 0 ’ 
x , XI0 0 0 

-u2 x , !I10 ... 0 

.xp- 1 .x/,-z ... ... x10 

.fn_, _unm2 X,_J ... 2, p 

f(jl$, zo) = (2za2)m”‘2exp 
[ 

- $ (j - XC$)‘(P - X4) 1 . 



Proof Verify that jI - x ; [j = ul, where x ‘, is the first row of x, and proceed 
by induction, making use of (10) and (11). n 

A corollary of this result is that y = T?c$ + u, where u - ,Y^,(O, 0’1,). 
At this point, we introduce notation for Proposition 1, which is presented 

below. We let B, = B0 + a-‘X*‘X*, @,, = Q0 + o-‘J?‘T?, and define the func- 
tionp(4,0, a’) = (cJ’)-“‘~~Q(c#I, U)l~“‘exp[-(l/2a2)nbQ(~, N)-‘x,,], which is 
the prior density rc(c(,l[j, 4, 0, 0’). For a given value of(0, 02), the latter function 
is denoted asp, (4), and for a given value of(+, 02), it is denoted as p,(B). Also let 
li, = /I.)‘* - X*/I II2 and d, = abQ(4, O)- ‘x0. Finally, jlO,,, and Rojn are the 
mean and covariance of the full conditional distribution of q,, which are 
obtained from the recursions (see Harvey, 1981) Qn = Ql + B,(c?,+, I,, - Gjltl,), 
R,,, = R,lt + B,(R,+ ,in - R,, ,il)B:, t = n - 1, n - 2. . . . ,O, and B, = R+GR,+ ,I~, 
0 < t < n - 1, where ‘&t,,s and R,,, for s < t are the forward filter estimates and 

R ,+ I I t is the Moore-Penrose inverse.2 
We are now in a position to present the full conditional distributions that are 

used in the simulation for the regression model with ARMA(p, q) errors. 

Proposition I. Under Assumptions M, S, I, und P, the jiill corlditional distrihu- 

tions,for fl, 4, 02, x0, und 0 me gicrn by 

6) Plu, ks, a0 _ AqB, ‘(&/lo + K’x*‘y*), B, ‘), 

(4 4I.k ti-+ m. x P~(~)xJV~(@~‘(@~~~ + om2X’Y), @,1)1s4, 

(iii) 021y, 1,/_,2, cto _ J%((vo + n + m)/2, (6, + d, + d2)/2), 

(iv) ~oIY~ II/ - -KA& Rolnh 

(VI df~lY, $-0, 30) cT p2(0) x fi expC-(1/202)u,(U)2] 
I=1 

x exp[ -$(o - flo)‘OO(O - OO)IIS~. 

Proof (i) and (iii) follow from Assumption P and Lemma 1; (ii) follows from 
Assumption P and Lemma 2; (iv) follows from Assumption P and the definition 
of the Kalman smoothing recursions; and (u) follows from the definition of the 
full conditional distribution. n 

‘The prior distribution of cxO enters this expression through Role = cov(r,), where the covariance is 

that of the prior distribution. The Moore-Penrose inverse is required because R,, Il, becomes 
singular for large t. Moreover, since xl, = Y, - x;fl, R,I, is always singular. But of more importance 
is that R,i, + 0 as t --* w This implies that not all of the n observations contain information about 

a, so that the filter can be terminated for large enough t. 



In passing we mention that the terms pr(+), pz(0), and m and d2 (in the 
inverted gamma distribution) arise from the prior on c(~ through its dependence 
on the parameters (4,0, 0’). 

3.3. /nydementcrtion tiott~s 

We have now shown in Proposition 1 that the full conditional distributions of 

p> c2, a0 are straightforward to compute, belong to standard families of distribu- 
tions, and are readily simulated. Evidently, the situation with Q, and 0 is more 
intricate and, therefore, a short digression is in order. 

Mftvopolis-Hustings (MH) Algorithm: Suppose p(z) is a density function of 
a multi-dimensional 2 that is to be simulated. An MCMC algorithm that 
produces a sample of draws from p( .) proceeds as follows. Suppose that Z’” is 
the current draw in the chain. To obtain the next draw Z(‘+r’, first draw 
a candidate Z’ from a suitable density q(Z”’ , z), which is called the candidate- 
generating density. The candidate draw is now subjected to a further random- 
ization and is accepted with probability 

x(Z(‘), 2’) = min 
i 

p(Z’)/q(Z”‘, Z’) 

p(Z”‘)lq(Z Z(i))’ 
1 

I ? I 

If Z’ is rejected, Zcii r’ IS set equal to Z(“. This process is iterated. It should be 
noted that this procedure does not require the normalizing constant of p(z). For 
more details see Tierney (1993). 

Clearly, successful implementation of the MH algorithm, with a high accept- 
ance rate of candidate draws, requires a suitable candidate-generating density. 
Fortunately, such densities are available for both d, and 0. Suppose we let 
q(c,b(“, 4) be the density of J$(@; 1(@oq50 + CT e2x’y), @, 1)ls4, and let 4’ be 
a draw from this distribution.3 Then the Metropolis-Hastings step amounts to 
an acceptance--rejection of 4’ with probability 

For 0, a suitable q( -, -) density is the truncated normal approximation to rr(Ol_~, 

kB, Q) given by 

q(Qs, p, 4, f12, (I+) 

= q(0) x exp [ - i [Cl - m(O+)]’ V(O+)- ’ [O - m(O+)]] Is,,, (13) 

‘A convenient strategy is to sample the untruncated normal and retain the drawing if it lies in S,. 
This strategy may be ineflicient if the mass of the posterior is not concentrated over the stationary 

region, which may also indicate that the model is misspecified. 
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where Ot denotes the nonlinear least squares estimate of 0, 

m(u+) = V(u+)[Oouo + KZ W(H+)‘(u(u+) + w(u+)o+)], 

v(e+) = [O, + (T- 2 w(o+)’ w(fl+)]- I. 

u(U’) = y*(o+) - x*(o+)p, 

w(o+) = (au(u)/auf)l,=,lt, 

the elements of which can be computed from the recursion (see also Fuller, 1976, 
p. 358) 

CO, t G 0, 

wit = 

i 
u,-j(u+) - i 0; LI&(o+), t= l,..., n, i= I,..., q. 

j=l 

We have suppressed the dependence of these expressions on y, p, 4, and CJ’ and 
defined u,( .) as the tth row of u(m). Note that the density in (13) is obtained by 
expanding u,(O) around Ot as u,(O) 2 n,(0+) - M';(U - Ut) (where wi is the tth 
row of W), substituting into (v), and combining terms. The MH accept- 
ance-rejection probability is now easily defined.4 

With these results, the sampling process can be run to obtain any desired 
number of draws. In this process, given the ith draw on (I/J(~), r a)) the next draw 
is obtained by simulating [j from fl\y, 4(i), (I”‘, CJ”~), x$); C#I from 4ly, /I(‘+ ‘), (I’“, 
o2(i) ,x~~;~from~~y,p~~+~~,qi(~+~~,02~~~,~~~~02frOm~2(3’,p(i+~),~(i+~),~~(~f1), 

cc;‘; and x0 from r,Jy, /?i”‘, dCit ‘I, tIcif”, CT~(~+‘). Although the Markov chain 
generated by this process will converge to the target posterior distribution, as 
the next section demonstrates, practical monitoring of the sampling process, for 
example, via the methods of Gelman and Rubin (1993) Ritter and Tanner 
(1992) and Zellner and Min (1992) will be useful. 

3.4. Conwrgence results 

In this section we show that the Gibbs sampler presented above defines 
a Markov chain that converges as M + x to rc($, c(~ 1~1) in the L’ norm and 
that sample moments of integrable functions of ($, x0) converge almost surely to 
their expectations under the target density. To prove this result we utilize 
Theorem 2 of Roberts and Smith (1992) and Proposition 4 of Tierney (1993) 
which provide sufficient conditions for these results. Before proceeding further 
we define T,=S++uSb and T,=S,uSA, where Sb= (4: $,=O,z#O and 

4The tactic of combining Markov chain strategies has been successfully employed by, among others, 

Miiller (1993) and Chib and Greenberg (1993a). Jacquier et al. (1992) sample all full conditionals 
with the MH algorithm in stochastic volatility models. 
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4(z) = 0 * IzI > 1) and S; = 10: 8, = 0, z # 0 and O(z) = 0 + Iz( > 1). We 
can now establish the following result: 

Proposition 2. The posterior density qf ($, x0) = (p, 4, 0, 02, zO) de$ned on the 

product set D = $9Zk x Tb x 7;, x $Ji+ x ‘W” satisfies thefbllowing properties: 

(i) ,f-(y?, CY~~Y) is lower semicontinuous at 0, i.e., it has the property that if 

,I’($‘, rb/y) > 0, there exists an open neighborhood N,ti,,1;,,3(t+V, xb) and 

I: > 0 such that,,for all ($, Q)E N,ti,,.;I,, ,f($, x,ly) > e > 0. 

(ii) J I’($, a, ly)d p is locally hounded, where p is any qf the parameter vectors 

included in the Gibbs sampler. 

(iii) The support D qf’,f’(ll/, srOly) is arc-connected. 

Proof: See Appendix. 

Proposition 2 immediately implies the following: 

Proposition 3. Let K denote the transition densit). qfthe Markotl chain defined hi 

the Gibbs-MN algorithm and let K VI denote the Nth iterate of the kernel. Then 

ftir all ($, x0) in D as N --) 8x1 

(i) IKK’“’ - X($% %Ily)l+ 0. 
(ii) For real-t:alued, n-integrable .functions 8, 

This result follows from Theorem 2 of Roberts and Smith (1992) since the 
conditions of their theorem were verified in Proposition 2 and from Tierney 
(1993) since p( .)/q( ‘, .) in the MH step is bounded. 

4. Special cases 

Let us now consider how models with AR(p) or MA(q) errors could be 
estimated. One straightforward possibility is to specialize the ARMA(p, q) 
algorithm by directly imposing the restrictions, as we do in Section 5. For 
example, to fit an AR(p) model, we simply set Oi = 0 in Definitions 1 and 2, and 
apply Proposition 1 to simulate /J, c$, g2, and ao. Another possibility is to use 
specific algorithms that are optimized for these special cases. In fact, for the 
AR(p) error model it is not necessary to introduce r. at all, while in the case of 
MA(q) errors, i. = (u,, . . ..u_~+~). instead of SIP, suffices. In both cases, the 
algorithms are simple enough that for the sake of completeness and importance 
of these models, it is worthwhile to present the details. 
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4. I. Regression ufth AR(p) errors 

As mentioned above, there is no need to introduce r0 if the error process does 
not contain any moving average components. Accordingly, suppose that the 
error follows a stationary AR(p) process E, = 4r.s_ r + ... + $p~r_p + u,, 

UI ‘2 &‘“(O, 02), and that the first p data points y, = (yr , . . . , y,)’ are drawn from 
the stationary distribution 

where C, = @C,@’ + e,(p)e,(p)‘, 

@ = 4’-P 4, 

[ 1 I,_, 0 ’ 

e,(p) = (1, 0, . . ,O)’ is the p x 1 unit vector, and &,, = (4,) . . . , & I)‘. Define the 
following quantities (which are local to this subsection): y 7 = Q- ‘~1~ and XT = 
Q- ‘XI, where X1 contains the first p rows of X and Q satisfies the equation 
QQ’ = 1,. Also, for t > p + 1, define an n - p vector yT with tth element given 
by 4(L)y, and an n - p x k matrix XT with tth row $(15)x;. In stacked form 
let y* = (yr’, y T’)’ and likewise for X *. Finally, let e = (e,, r, . . , P,)’ and let E 
denote the n - p x p matrix with tth row given by (e, _ r, . . , e,_,,), where e, = 

y, - xl/$ t 3 p + 1. 
Then it can be shown that the full conditional distributions are given by 

Bl_K 3-a c J$(B,‘(B,~, + a-‘X*‘y*), B,‘), 

$lY, ti-6 cx Y(4) x J&L @n’)& 

CT2 IY? 1c/md ‘v 9%((v, + n)/2, (6, + dl)/2), 

where 4 = @;1(@)o4o + o~2E’e), Qn = (@040 + oP2E’E),d, = lly* - X*/II12, 
and 

y(4) = I~p(4)l~“2exp - &(yl i - m)lvw(Yl - XIB) 1 
It is easy to simulate from the conditional distributions for /I and 02. To 

simulate 4 we can apply a MetropolissHastings step since a natural candidate- 
generating density is available in Jvb(4 16, 6 ‘) Zs4. Therefore, after taking 
a draw 4’ from the latter distribution we accept it as the next sample value with 
probability min (Y(~‘)/vl(@‘), 1). If the candidate value is rejected, we stay at 
4ci! This concludes the MCMC algorithm for the regression model with station- 
ary AR(p) errors. 



Estimation of the moving average model can also be simplified. First, instead 
of x0 we now only require the q elements in i. = (no. u. r, . . . ,14_~+ 1)‘. Second, 
the simulation of 2 does not require the smoothing recursions employed in the 
general ARMA case, since the transformations defined in this section allow us to 
write the elements of iL as regression coefficients, after which it is easy to derive 
the full conditional distribution of [I’, X, and 0’. 

Define the following transformation (the notation is local to this subsection): 

where for t < 0 the scalars J!: = 0 and the vectors XT = 0. Forj = 1, . . . ,q and 
for t = l,...,n, let 

where u,~~ = 0 for s < 0, and set (I, = 0 for r > q. With this transformation, we 
show below that y: = x,*‘B + cyii v,~u_~ + u,, or, in vector-matrix form, 

4’* = x*p + V/L + u, (15) 

where V = (C,j): n x q. The full conditional distributions [fl, ily, 02, O] and 
[a’/~?, fi, 2, (I] can be immediately derived. Finally, the simulation of 0 can be 
achieved. as in Proposition 1, through an MH step. 

We now prove (1.5). For t > q, by using 

y,* = X:‘p + 11, + l‘,,lIo + ... + VrqLq+ 1. 

we may rewrite y, = xip + U, + 0, n_, + ... + (Iq~,_q+, as 

l’,=x:j~+u,+0,[~I* l-xI*l,lj~l.,~,,,ll~~.“-c~_l,qu~q+~] 

+ 02[y:_2 - X;L2p - 1:,_2,,ug -...- I’,_2,qu_q+ 11 

+ . . . + 04[y1*-_q - x,*i,p - L‘,_(/,uo -..‘- I’,_y.qu_q, 11. 

By rearranging and collecting terms in the uj, ,j = 0, - 1, . . . , -y + 1, the last 
n - q rows of (15) are obtained. For t < q, write 

?‘t = x;jI+ U, + G,U,_r +.“+ fI_,U.r + e,u() +...+ Hqz+, 

and then substitute as above for u,_ I,..., u 1. Collecting terms in the pre-sample 
errors verifies the first q rows of (15). 
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5. Examples 

5.1. Simulated duta 

In this subsection we present three examples with simulated data designed to 
illustrate the efficacy of our proposed methodology. For comparison we provide 
from the MICROTSP program approximate maximum likelihood (AML) 
results that incorporate a backcasting step. In all examples, the variable 
X, is generated from the autoregression Y, = 0.8x,_ r + v,, L’, - N(O, 8). 
The examples are now described. 

Exumple 1: AR(3) errors 

1’1 = BI + /jzx, + E,, n = 100, 

with B = (1, l)‘, (b = (1.2, -0.2, -0.2)‘, o2 = 1. 

Example 2: MA(4) errors 

Yt = BI + B2x* + Et, n = 100, 

with p = (1, l)‘, 0 = (1.6,0.5, -0.4, -0.2)‘, o2 = 0.50. 

Exmnple 3: Unit root autoregression with ARMA(2, 3) errors 

Yr = BI + P2xt + L‘t-1 + E,, n = 150, 

where p = (1, l)‘, 4 = (1, -0.2)‘, 0 = (0.5,0.2,0.2)‘, o2 = 1. 

No specific prior information about any of the parameters is incorporated: 
proper priors centered at zero with large variances are used for fi, 4, and 0. For 
simplicity, a diffuse normal prior was also adopted for x0, and the results were 
not found to change very much if (7) was used for the prior covariance since the 
sample sizes are relatively large. With x0 assumed to be independent of the 
remaining parameters, the terms p,(4), p2(B), m, and d2 disappear from the 
equations of Proposition 1. For cr2 the prior is specified through v. = do = 0. In 
all cases, the results that are reported are obtained from the ARMA(p, q) 

algorithm of Section 3. For models 1 and 2, virtually identical results were also 
obtained from the specialized algorithms given in Section 4. The third example 
presents an interesting problem: The coefficient of the intercept is not identified 
in the presence of a unit root, because the expected value of yt does not exist in 
that case. As a result, the constant term is not well estimated, which is revealed in 
large variance and instability in the algorithm for this parameter. For simulation 
cycles when the coefficient is not equal to 1, of course, the intercept is identified. 

Our implementation and monitoring of the MCMC algorithm is straight- 
forward. The iterations are started from the least squares values, the first 200 



Table 1 

AR(3) model 

!‘, = I + .x, + r,. e, = l.Ze - - ,-I O.Ze,_ z 0.2e,-.3 + N,, 02 = I 

Posterior distributmn 

AML Std. LOWV UPPer 
Parameter estimate MeaIl dev. Median 95% limit 95% ltmit Cow. 

/II 1.524 1.521 0.307 1.518 0.932 2.128 0.088 
(0.435) (0.004) 

/ix 1.027 I.095 0.089 1.095 0.923 I.274 0.026 
(0.079) (0.001) 

@I I.379 1.351 0.113 1.352 1.133 I.516 0.078 

(0.105) (0.002) 
Gf)L - 0.550 ~ 0.51 I 0. I76 - 0.51 I ~ 0.866 0.171 0.073 

(0.169) (0.002) 

41 - 0.052 ~ 0.070 0. I ox - 0.070 ~ 0.276 0. I49 0.026 
(0.105) (0.001) 

02 0.952 0.992 0. I47 0.98 I 0.744 I 320 0.04 I 
_~ (0.002) 

Numerical standard error of posterior mean is m parentheses. Correlation denotes the first-order correla- 

tion of the Gibbs run. For AML, standard error is in parentheses. Sample size is 100; 6000 simulations. 

draws are discarded, and the next 6000 are retained. Different starting values 
were seen to produce estimates in a range that is consistent with the numerical 
standard errors. Admittedly, the practical convergence of the chain can be 
monitored, as mentioned in Section 3.3, but we were satisfied with our simple 
sampling scheme for the purpose of these illustrations. Moreover, we found that 
the serial correlation of the run was generally negligible and tended to dissipate 
quickly for Example 1, and by the fifth to tenth lag in Examples 2 and 3. All 
posterior moments are computed as sample averages, which is justified by 
Proposition 3. To compute marginal density functions, however, samples are 
taken as fixed intervals to produce an approximately independent sample. 
Numerical standard errors are computed for the posterior mean by the batch 
means method described in Ripley (1987). In particular, the 6000 simulated 
values were placed into c’ batches of 6000/o observations. The batch size is 
increased until the lag 1 correlation of the batch means is less than 0.05. The 

numerical standard errors are estimated as s/4, where s is the standard 
deviation of the batch means. Our experience in this and other problems 
suggests that this method is quite adequate. Alternatively, the spectral approach 
of Geweke (1992) can be used to compute the numerical standard errors. 

Table 1 presents our results for Example 1 and results from an AML regres- 
sion. For this model and data set, both AML and our Bayes procedures yield 
very similar results. A 95% confidence interval using the 0.025 and 0.975 
percentiles of the simulated draws includes every true parameter value. 
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Table 2 
MA(4) model 
J,= I +s,+e,,e,=u,+ 1.6Ou,., +0.50u,~~~0.40u,~~-0.20u,~,.u2=0.S0 

Posterior distribution 

AML Std. L0WU UPPer 
Parameter estimate Meall dev. Median 95% limit 95% limit Cow. 

PI 0.682 0.720 0.188 0.720 0.344 I.108 0.259 
(0.078) (0.004) 

P2 1.034 1.026 0.026 1.025 0.978 1.080 0.261 
(0.03 I) (0.001) 

0, 1.394 1.506 0.117 1.508 1.263 1.730 0 778 
(0.071) (0.004) 

01 0.197 0.404 0.169 0.399 0.076 0.761 0.614 
(0.089) (0.005) 

(11 - 0.405 ~ 0.382 0.157 ~ 0.384 - 0.68 I _ 0.058 0.496 
(0.076) (0.004) 

0, _ 0.156 ~ 0.189 0.107 - 0. I92 ~ 0.393 0.02 I 0.661 
(0.065) (0.003) 

(12 0.758 0.596 0.089 0.588 0.447 0.790 0.076 
(0.001) 

Numerical standard error of posterior mean is III parentheses. Correlation denotes the tirst-order 
correlation of the Gibbs run. For AML, standard error is in parentheses. Sample size is 100; 6000 
simulations. 

Table 2 presents AML and Bayes results for Example 2. As in Example 1, the 
95% confidence interval traps the true parameter every time. For making 
hypothesis tests it is interesting to note that the standard deviations for the Oi are 
larger than the standard errors reported by AML. This suggests that the normal 
approximation employed by AML understates the variability. 

Results for Example 3 are contained in Table 3. It is noteworthy that the 
Bayes approach has no difficulty in finding a coefficient close to unity for the 
lagged dependent variable, while AML reports a much lower value. Note again 
that the standard deviations of the posterior distributions are larger for the 
ARMA parameters than the corresponding AML standard errors. Interestingly, 
the opposite is true for bz and /S3. True parameter values are contained in the 
95% Bayesian confidence intervals in all cases. 

Of course, the above results cannot be used to demonstrate the superiority of 
either AML or posterior means for estimation. They are based on only one 
simulated data set, for example, and only a small number of models. They do 
reveal, however, that the Bayes approach is practical and does not merely 
reproduce the AML results. In particular, differences in standard deviations are 
of potential importance. The frequentist sampling properties of our Bayes 
estimator is an important issue that will be taken up in future work. 



Table 3 

ARMA(2.3) with lagged dependent variable model 

1’2 = l + y, + !‘,F I + e,. e, = e,~ 1 - 0.20r,_L + UC + 0.5ou, [ + O.ZOu, > + O.ZOu, .~. 01 = I 

Posterior distribution 

AML Std. Lower UPPer 
Parameter estimate Meall de\,. Median 95% limit 95% limit Corr. 

/iI 3.893 2.578 3.738 ~ 1.205 9.539 0.856 
(0.109) 

ljz 0.963 1.068 0.06 I 1.067 0.948 1.192 0.075 
(0.080) (0.001) 

P, 0.777 0.988 0.014 0.989 0.955 1.014 0.750 
(0.057) (0.001) 

$1 I.269 I.221 0.239 I.250 0.664 I.624 0.895 
(0.165) (0.015) 

4r ~ 0.283 ~ 0.409 0.221 ~ 0.446 ~ 0.747 0. I34 0.873 
(0.161) (0.0 14) 

0, 0.573 0.369 0.257 0.336 ~ 0.063 0.955 0.928 
(0.145) (0.016) 

(‘2 0.279 0.148 0.196 0.138 - 0.2 I8 0.567 0.850 
(0.172) (0.012) 

K, 0. I70 0.101 0.1 I6 0.103 ~ 0. I40 0.324 0.629 
(0. I 15) (0.005) 

II? 1.025 I.180 0.267 1.123 0.866 I.909 0.66 I 
(0.013) 

Numerical standard error of posterior mean IS in parentheses. Correlatmn denotes the first-order correla- 
tion of the Gibbs run. For AML, standard error is in parentheses. Sample size is 149; 6000 simulations. 

5.2. GNP dutu 

Our last example examines U.S. real GNP data from 1951.2 to 1988.4, taken 
from Business Conditions Diyrst, September 1989. A large literature on the 
behavior of this and related series is concerned with the possible existence of 
a unit root. To investigate this question we estimate the model 

In(GNP,) = /I, + ljzt + f131n(GNP,_ r) + I:,. 

Since several of the specifications that we examined led to approximately the 
same inferences about p2 and p3, we assumed an MA(2) process for the errors. 
Models similar to this have been investigated extensively in the emerging 
Bayesian literature on unit-root tests but with an uncorrelated error term. 

Results appear in Table 4 and Figs. 1 and 2. The marginal and joint posterior 
densities are computed from a Gaussian kernel applied to every tenth draw in 
the Gibbs sampler, which achieves an approximately independent sample. For 
the reasons mentioned above, the intercept is not well estimated in this model. 
The mean value of 0.9 191 for the coefficient of the lagged dependent variable 
suggests considerable persistence, although it is in the stationary region. Fig. 1 
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Table 4 
U.S. GNP data: MA(2). lagged dependent variable 
In (GNP,) = /i, + /I21 + p3 In (GNP,_ J + e,, e, = L1, + (I,& I + 0~11,- 2 

Posterior dlstributton 

AML 
estimate 

0.619 
(0.155) 
0.0006 

(0.0002) 
0.9 I49 
(0.0215) 

0.355 
(0.080) 
0.254 

(0.0X1 1 

0.0001 

Std. Lower Upper 
Meall dev. Median 95% limit 95% limit Corr 

0.6337 0.5406 0.6066 - 0.2828 I .7240 0.1125 
(0.0073) 
0.0006 0.0005 0.0006 - 0.0002 0.00 I6 0. I702 

(0.0000) 
0.9191 0.0697 0.9225 0.7789 1.0373 0.1129 
(0.0009) 

0.363 0.123 0.358 0.117 0.618 0.572 
(0.003) 
0.261 0.102 0.256 0.076 0.485 0.292 
(0.002) 

0.0002 0.0005 0.0001 0.000 I 0.0010 0.3331 
(0.000) 

Numerical standard error of posterior mean IS in parentheses. Correlation denotes the first-order correla- 
tion of the Gibbs run. For AML. standard error is in parentheses. Sample size is 151; 6000 simulations: the 
Metropolis acceptance rate IS 0.8204 
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Fig. 1. GNP example: Selected posterior distributions. 
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Fig. 2. GNP example: Selected joint posterior distributions 

reveals a distribution of ,G3 that is quite compact around its mean, but with 
some probability of being greater than 1. The posterior probability that p3 is 
greater than 0.95 is approximately 0.25. The mean of the time trend coefficient is 
very small and is also distributed closely about its mean. Table 4 and Fig. 1 
indicate that 0, and f12 are clearly not zero, and the former displays a pro- 
nounced positive skewness. Fig. 2 demonstrates the ability of our procedure to 
generate exact joint posterior distributions. In particular, it appears that an 
approximate bivariate normal distribution would be highly misleading for /II2 
and p3. 
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6. Concluding remarks 

We believe that the sampling-based approach taken in this paper is an 
important alternative to existing methods for the exploration of a very rich set of 
models. We have shown that a full Bayesian analysis of regression models with 
ARMA(p, q) errors is possible without special assumptions about pre-sample 
errors and without the evaluation of high-dimensional integrals. Since our 
approach yields the complete posterior distribution of the parameters, their 
behavior can be studied over their entire range rather than only around the 
mode. Our experience accumulated over many different problems is that the 
procedures discussed and illustrated above work very well. We have found that 
the usual reason for the failure of sample values to converge is the presence of 
common factors or nearly common factors in 4(L) and 8(L). Some coefficients are 
then not identified, and their posterior distributions display large standard errors. 

Another feature of our approach is that its implementation is straightforward. 
Our transformations and the Kalman equations involve recursive calculations, 
simulation is largely from standard distributions, and no large matrix inversion, 
determinant computation, or numerical integration is required. Moreover, the 
analysis can easily be modified for classes of prior distributions other than those 
employed above. By reweighting (resampling) it is possible to transform a poste- 
rior sample based on one prior to a sample based on another, without additional 
simulations. See Smith and Gelfand (1992) for this technique. 

We have also shown how the approach can be further simplified for the 
important special cases of stationary AR(p) and invertible MA(q) models. In the 
former case, there is no need to introduce x0 and in the latter case only A is 
required, whose simulation does not require the smoothing recursions employed 
in the general ARMA(p, q) model. The recursive transformations that we have 
developed in this paper to diagonalize the covariance matrix of the errors should 
also prove useful in frequentist estimation. 

Finally, the framework described above can be extended to accommodate 
a wide variety of inferential objectives or assumptions. For example, prediction 
densities of future observations can be obtained by the method of composition 
to generate a posterior sample of future y. Detailed calculations of this type are 
reported in Albert and Chib (1993), where prediction densities up to four steps 
ahead are found for Markov switching autoregressive models. Unlike frequen- 
tist calculations, these prediction densities fully incorporate both parameter and 
error term uncertainty. As another example, the Gaussian assumption can be 
relaxed in the direction of the Student-t family or, more generally, in the 
direction of scale-mixtures of normals. Finally, our results can be extended to 
vector ARMA(p, q) processes. Although this extension remains an object for 
future research, some progress toward that goal is made in Chib and Greenberg 
(1993b), where SUR models with low-order correlated vector error processes are 
shown to be amenable to Markov chain sampling. 



Appendix: Proof of Proposition 2 

A 1, Preliminaries 

We provide a proof of Proposition 2 as it pertains to T+; the proof for TB is 
analogous. Note that Roberts and Smith (1992) assert that connectedness is 
required, but their proof utilizes the stronger condition of arc connectedness. It 
is easy to check the conditions for p, cr2, and Mu since they live on Sk, ‘Ji’, and 
‘Y?“, which are open connected sets, with well-behaved multivariate normal, 
inverted gamma, and multivariate normal densities, respectively. The stationarity 
and invertibility conditions imposed on C#I and H, however, lead to domains that 
require further analysis. For the one- and two-dimensional cases, pictured in 
many textbooks, the structures of S, and SB are well known, but this does not 
appear to be the case for larger values of p. Our result may therefore be of 
independent interest. The set S, is extended to T+, because S, is not connected 
even for p = 1 since 0 < 1$1 1 < 1. To ensure connectedness, we need to include 
$1 = 0. But since both Sb and Si, are sets of measure zero, draws will be made 
from S, or So a.s., and the simulations will therefore not be affected. 

It is convenient to work with the polynomial 

l’(z) = zp - C$IZ”m’ -... - &, (16) 

which is obtained from 4(z) by multiplying by zmp and interpreting the result as 
a polynomial in z- ‘. In this form, stationarity implies that all roots lie inside the 
unit circle. Note that 4(z) and ,f(z) are real polynomials. 

A.2. Proqf 

First consider property (i). Baumol (1970, p. 247) quotes a version of the 
Routh-Hurwitz theorem that states that the roots of the polynomial (16) are all 
less than unity in absolute value if and only if the values of certain determinants, 
the elements of which are the I, are positive. Since determinants are continuous 
functions of their elements, we have the result that T, is an open set. As noted 
above, the parameters are defined on the product set of the elements of ($, cc,,), 
all of which are open, and continuous densities have been placed on each of 
these sets; property (i) is therefore verified. This result also shows that Sb and 
.Sb have measure 0. 

Next consider property (ii). As may be seen from (12) and Assumption P, the 
joint posterior density can be written in the form 

n(ti, xg IJJ) X a-(“+ “O) expC-+C\+& + Q(ICI, adll, (17) 

where Q($, CX,,) is a quadratic function of its arguments. Since the exponential 
term is dominated by unity, integrating out any of /I, 4, 8, or a, results in an 
upper bound of K~J’~-(~+‘~), where K is the proportionality constant and V is 



the volume of the region of integration. This expression is clearly bounded. To 
integrate out 0 over the interval (a’ - ,u, c’ + p), again dominate the exponential 
term by unity. Then we obtain as an upper bound J$f~~~“+‘~d~, which is finite 
for sufficiently small ,u. This completes the verification of property (ii). 

Finally, we verify property (iii). We first show that the set Z = jz: z = 
(Z,,...,Z,)E~‘,(Zi/< l,,f(z,)=O(i= l,...,p) 1 is arc connected, where f( .) is 
a real polynomial. It is well known that the roots and coefficients of a poly- 
nomial are related through pi = (- 1)‘~~ (i = 1, ,p), where the oi are the 
elementary symmetric functions. Each oi is the sum of cross-products of the 
roots taken i at a time; i.e., o1 is the sum of the roots, c2 is the sum of all products 
of roots taken two at a time, and finally, oP is the product of all roots. If FEZ, 
then E.zgZ for 0 < 2 < 1: Clearly izgwp, lizi = i/;i/ < 1, and the iLzi are the 
roots of a polynomial with coefficients (- 1)’ 1 ~‘ai, which are real for real gi. 
Now consider any U, FEZ. The result that EJEZ proves that the straight lines 
from u to 0 and from 0 to r are entirely in Z and constitute a path from u to c. 
This proves that Z is arc connected. The verification of property (iii) is then 
completed by noting that the coefficients in T, are continuous functions of their 
roots and that continuous images of arc-connected sets are arc-connected. n 
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