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Abstract

In this paper we consider the simulation-based Bayesian analysis of stochastic volatil-

ity in mean (SVM) models. Extending the highly efficient Markov chain Monte Carlo

mixture sampler for the SV model proposed in Kim et al. (1998) and Omori et al. (2007),

we develop an accurate approximation of the non-central chi-squared distribution as a

mixture of thirty normal distributions. Under this mixture representation, we sample

the parameters and latent volatilities in one block. We also detail a correction of the

small approximation error by using additional Metropolis-Hastings steps. The proposed

method is extended to the SVM model with leverage. The methodology and models are

applied to excess holding yields in empirical studies, and the SVM model with leverage

is shown to outperform competing volatility models based on marginal likelihoods.

JEL classification: C11, C15, C32, C58

Keywords: Excess Holding Yield; GARCH in Mean; EGARCH-in Mean; Markov chain

Monte Carlo; Mixture Sampler; Risk Premium; Stochastic Volatility in Mean

1



1 Introduction

In financial time series, volatility clustering, the phenomenon of persistent volatility, is well

known to exist. One way to model time-varying volatility, or volatility clustering, is by

using the stochastic volatility (SV) model of Taylor (2008). In the simplest version of this

model, the standard deviation of the outcome is given by an exponential transformation of an

unobserved log-variance variable ht, where ht in turn is modeled by a stationary first-order

autoregressive process. The model in this basic form can be viewed as a state-space model in

which the measurement equation is nonlinear in the latent variance ht. A significant variant

of this standard SV model is one in which the standard deviation of the outcome exp(ht/2)

appears as a predictor variable in the mean of the measurement equation. This is called

the SV in mean model (SVM) and is similar in spirit to the ARCH in mean (ARCH-M)

model introduced by Engle et al. (1987). Like the standard SV model, the SVM model

has also been used in various fields, including macroeconomics and finance (see Koopman

and Hol Uspensky (2002), Berument et al. (2009), Mumtaz and Zanetti (2013), Cross et al.

(2023)).

In the Markov chain Monte Carlo (MCMC) estimation of model parameters for the SV-

type models, it is often observed that sampling one latent variable conditional on all the

other latent variables and parameters, which is referred to as the single-move sampler, is

inefficient in the sense that MCMC draws are highly autocorrelated. To address this issue,

Kim et al. (1998) introduced the mixture sampler as a highly efficient Bayesian estimation

method for the standard SV model. This approach was extended to SV models with jumps

and fat-tailed errors in Chib et al. (2002) and to SV models with leverage in Omori et al.

(2007).

In the existing literature, the SVM model without leverage has been estimated by the

multi-move (block) sampler (Shephard and Pitt (1997) and Omori and Watanabe (2008)), for

example, Abanto-Valle et al. (2011), Abanto-Valle et al. (2012), and Leão et al. (2017), and

by other approaches, for example, Chan (2017), Abanto-Valle et al. (2021), and Abanto-Valle

et al. (2023). There is no known mixture sampler approach for SVM models with leverage. In

this paper, we develop efficient MCMC based algorithms for SVM models, with and without

leverage, that are based on accurate representations of these models in terms of mixtures

of conditionally Gaussian linear state-space models, just as in the approach of Kim et al.

(1998). However, due to the β exp(ht/2) term in the mean equation, instead of characterizing
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the distribution of a central chi-squared distribution with one degrees of freedom in terms of

mixtures of normal distributions, a mixture representation to the distribution of a non-central

chi-squared distribution with one degrees of freedom is needed, in which the non-centrality

parameter is β2. We show that the latter distribution has an infinite series expansion. Our

estimation approach uses a truncated version of this series expansion to develop a highly

efficient fitting algorithm. It can be viewed as a generalized mixture sampler. Furthermore,

the small approximation error due to the truncation can be corrected by a data augmentation

method by incorporating a pseudo-target probability density whose marginal probability

density is the exact conditional posterior density.

We apply the proposed method to excess holding yields data, where we also consider alter-

native ways of introducing the log-variance in the mean function. We show that our proposed

SVM model outperforms other competing volatility models such as the basic SV model, al-

ternative SVM models, GARCH models, GARCH in mean models, EGARCH models and

EGARCH-in mean models based on marginal likelihoods.

The rest of this paper is organized as follows. Section 2 introduces the SVM model and

describes the novel mixture sampler as an efficient sampling method for such models. Section

3 illustrates the performance of this sampling method using the simulated data for several

cases. Section 4 further extends the SVM model to incorporate the leverage effect. Finally, in

Section 5, we apply our proposed SVM model to financial data and perform a comprehensive

evaluation of the model. Conclusion and remarks are given in Section 6.

2 Stochastic volatility in mean model

2.1 SVM model

We define the stochastic volatility in mean (SVM) model as follows.

yt = β exp(ht/2) + ϵt exp(ht/2), t = 1, ..., n, (1)

ht+1 = µ+ ϕ(ht − µ) + ηt, t = 1, ..., n− 1, (2)ϵt

ηt

 i.i.d.∼ N(0,Σ), Σ =

1 0

0 σ2

 , (3)

h1 ∼ N

(
µ,

σ2

1− ϕ2

)
, (4)
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where N(m,S) denotes normal distribution with mean vector m and covariance matrix S,

θ = (µ, ϕ, σ2, β) is a model parameter vector of interest, and h = (h1, . . . , hn)
′ is the logarithm

of the latent volatility vector. We use β exp(ht/2) rather than β exp(ht) in the mean equation

since β in our specification is not affected by the change of measurement units. For β ̸= 0,

we denote it as the stochastic volatility in mean (SVM) model. The standard stochastic

volatility (SV) model is obtained as a special case with β = 0. For θ, we assume the prior

distributions

µ ∼ N(µ0, σ
2
0),

ϕ+ 1

2
∼ Beta(a, b),

σ2 ∼ IG
(n0

2
,
s0
2

)
, β ∼ N(b0, B0).

where Beta(a, b) denotes beta distribution with parameters (a, b) and IG(a, b) denotes inverse

gamma distribution with parameters (a, b) whose probability density function is

π(x|a, b) ∝ x−(a+1) exp(−bx), x > 0, a, b > 0.

We let f(y, h|θ) and π(θ) denote the probability density function of (y, h) given θ and the

prior probability density function of θ where y ≡ (y1, . . . , yn)
′. The posterior density function

of (h, θ) is given in Appendix A.

Remark. It is straightforward to include the constant term in the measurement equation.

However, noting that β × exp(ht/2) ≈ β × (1 + ht/2), it is often confounded with β and

therefore omitted in this paper.

2.2 Transformation of the measurement equation

To sample h from its conditional distribution, we transform Equation (1) as below:

y∗t = ht + ϵ∗t , y∗t = log(y2t ), ϵ∗t = log(β + ϵt)
2, (5)

Since (β + ϵt) ∼ N(β, 1), its square (β + ϵt)
2 ∼ χ2

1(β
2) where χ2

1(β
2) denotes the non-central

chi-square distribution with the non-centrality parameter β2 and one degrees-of-freedom.

The special case with β = 0 is considered in Kim et al. (1998) and Omori et al. (2007),

who introduced the idea of accurately approximating the probability of the logarithm of the

central chi-square distribution with one degrees of freedom, logχ2
1(0),

f(ϵ∗t ) =
1√
2π

(
ϵ∗t − exp(ϵ∗t )

2

)
, −∞ < ϵ∗t < ∞,
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by a mixture of normal distributions. Below, we elaborate a highly accurate approximation

of the distribution of ϵ∗t given β ̸= 0 by the mixture of normal distributions. Let p(x; ν, λ)

be the probability density function of χ2
ν(λ). It can be expressed as an infinite mixture of

central χ2 probability density functions (see, e.g. Johnson et al. (1995)):

p(x; ν, λ) =
∞∑
j=0

{(
λ
2

)j
j!

exp

(
−λ

2

)}
p(x; ν + 2j, 0),

p(x; ν + 2j, 0) =
x

ν
2
+j−1

2
ν
2
+jΓ(ν2 + j)

exp
(
−x

2

)
.

Setting ν = 1 and noting that

p(x; 1 + 2j, 0) =
xjΓ

(
1
2

)
2jΓ

(
1
2 + j

) × p(x; 1, 0),

we obtain the expression

p(x; 1, λ) =

∞∑
j=0

{(
λ
2

)j
j!

exp

(
−λ

2

)}
xjΓ

(
1
2

)
2jΓ

(
1
2 + j

) × p(x; 1, 0). (6)

Let f(u;λ) denote the probability density function of U ∼ logχ2
1(λ). Using (6), it follows

that

f(u;λ) =

∞∑
j=0

(
λ
2

)j
j!

exp

(
−λ

2

)
exp(uj)Γ

(
1
2

)
2jΓ

(
1
2 + j

) × f(u; 0). (7)

As in Omori et al. (2007), we consider the mixture of ten normal distributions to approximate

f(u; 0), the probability density function of logχ2
1(0),

f(u; 0) ≈
K∑
i=1

piv
−1
i ϕ

(
u−mi

vi

)
, K = 10, (8)

where ϕ(·) denotes the probability density function of the standard normal distribution. The

values of (pi,mi, v
2
i ) are taken from Omori et al. (2007) and are reproduced in Table 1. The

columns labeled ai and bi will be used when we consider the model with leverage in Section

5.
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i pi mi v2i ai bi

1 0.00609 1.92677 0.11265 1.01418 0.50710

2 0.04775 1.34744 0.17788 1.02248 0.51124

3 0.13057 0.73504 0.26768 1.03403 0.51701

4 0.20674 0.02266 0.40611 1.05207 0.52604

5 0.22715 -0.85173 0.62699 1.08153 0.54076

6 0.18842 -1.97278 0.98583 1.13114 0.56557

7 0.12047 -3.46788 1.57469 1.21754 0.60877

8 0.05591 -5.55246 2.54498 1.37454 0.68728

9 0.01575 -8.68384 4.16591 1.68327 0.84163

10 0.00115 -14.65000 7.33342 2.50097 1.25049

Table 1: Selection of (pi,mi, v
2
i , ai, bi) introduced in Omori et al. (2007).

By substituting Equation (8) to Equation (7), we obtain

f(u;λ) ≈
∞∑
j=0

(
λ
2

)j
j!

exp

(
−λ

2

)
exp(uj)Γ

(
1
2

)
2jΓ

(
1
2 + j

) K∑
i=1

piv
−1
i ϕ

(
u−mi

vi

)

=
K∑
i=1

∞∑
j=0

pi exp

(
−λ

2

)
Γ
(
1
2

)
2jj!Γ

(
1
2 + j

) (λ

2

)j

exp

(
mij +

j2v2i
2

)

× 1√
2πv2i

exp

{
−(u− (mi + jv2i ))

2

2v2i

}

=

K∑
i=1

∞∑
j=0

pi exp

(
−λ

2
+mij +

j2v2i
2

)
Γ
(
1
2

)
2jj!Γ

(
1
2 + j

) (λ

2

)j

×v−1
i ϕ

(
u− (mi + jv2i )

vi

)
≈

K∑
i=1

J∑
j=0

p̃i,jv
−1
i ϕ

(
u− m̃i,j

vi

)
, (9)

where

p̃i,j =
wi,j∑K

i=1

∑J
j=0wi,j

, wi,j = pi exp

(
−λ

2
+mij +

j2v2i
2

)
Γ
(
1
2

)
2jj!Γ

(
1
2 + j

) (λ

2

)j

,

and m̃i,j = mi+jv2i . In the last equality, we truncate the summation at j = J and normalize

p̃i,j to ensure that
∑K

i=1

∑J
j=0 p̃i,j = 1.

This expression implies that the probability density function of logχ2
1(λ) is approximated

by the mixture of K(J + 1) normal distributions. Especially, when λ = 0 and J = 0,
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the approximation (9) reduces to (8). The extent of the impact on the approximation is

based on the value wi,j which includes λ = β2. The coefficient β of volatility exp(ht/2) is

often estimated to be β̂ = 0.1 ∼ 0.2 in past empirical studies for GARCH-M (generalized

autoregressive conditional heteroscedasticity in mean) models. When λ = β2 is less than 1.0,

J = 1 or 2 makes
∑K

i=1

∑J
j=0wi,j more than 0.9. For J = 2, Figures 1 and 2 show the true and

approximate densities of logχ2
1(β

2) for β = 0.3, 0.5 and 0.7 (equivalently, β = −0.3,−0.5 and

−0.7) and the difference between the two densities, respectively. Since these differences are

quite small and the approximation almost overlaps the true probability density of logχ2
1(β

2)

even for β = 0.7, we employ J = 2 in this paper. That is, we approximate the probability

density of ϵ∗t |β ∼ logχ2
1(β

2) by

f(ϵ∗t |β) ≈
10∑
i=1

2∑
j=0

p̃i,jv
−1
i ϕ

(
u− m̃i,j

vi

)
, (10)

where

p̃i,j =
pi exp

(
mij +

j2v2i
2

)
1

2jj!Γ(1/2+j)

(
β2

2

)j

∑10
i=1

∑2
j=0 pi exp

(
mij +

j2v2i
2

)
1

2jj!Γ(1/2+j)

(
β2

2

)j
, m̃i,j = mi + jv2i .

(a) β = 0.3 (b) β = 0.5 (c) β = 0.7

Figure 1: True and approximation densities of logχ2
1(β

2) for β = 0.3, 0.5 and 0.7.
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(a) β = 0.3 (b) β = 0.5 (c) β = 0.7

Figure 2: Differences between the true density of logχ2
1(β

2) and the approximate densities

for β = 0.3, 0.5 and 0.7.

Let st = (s1t, s2t) ∈ {(i, j)|i = 1, ...,K, j = 0, ..., J} denote the component of the mixture of

the normal densities in (10) at time t. Given st = (i, j), we have ϵ∗t |st = (i, j) ∼ N(m̃i,j , v
2
i )

and we see that the SVM model can be approximated by the linear Gaussian state space

form

y∗t = m̃s1t,s2t + ht + (vs1t , 0)zt, (11)

ht+1 = µ(1− ϕ) + ϕht + (0, σ)zt,

t = 1, ..., n− 1, h1 ∼ N

(
µ,

σ2

1− ϕ2

)
, |ϕ| < 1, (12)

zt = (z1t, z2t)
′ ∼ N(0, I2),

where y∗t = log(y2t ). In the following sections, m̃s1t,s2t and p̃s1t,s2t are abbreviated as m̃st and

p̃st , and we write v2st instead of v2s1t .

3 MCMC simulation and associated particle filter

3.1 MCMC algorithm

Algorithm 1. Let us denote θ = (α, β) where α = (µ, ϕ, σ2). The Markov chain Monte

Carlo simulation is implemented in four blocks:

1. Initialize h and θ = (α, β).

2. Generate β|α, h, y ∼ π(β|α, h, y).

3. Generate (α, h)|β, y ∼ π(α, h|β, y).

4. Go to Step 2.
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Step 2. Generation of β|α, h, y

The conditional posterior distribution of β is normal with mean b1 and variance B1 where

b1 = B1

(
X ′Ω−1y +B−1

0 b0
)
, B−1

1 = X ′Ω−1X +B−1
0 ,

and

X =


exp(h1/2)

exp(h2/2)
...

exp(hn/2)

 , Ω = diag (exp(h1), exp(h2), · · · , exp(hn)) .

Thus we generate β ∼ N(b1, B1).

Step 3. Generation of (α, h)|β, y

As discussed in the previous section, we sample h using the mixture sampler using the

mixture of normal distributions. Since our approximation is highly accurate, we incorporate

this mixture approximation in Step 3 without correcting the approximation error as in Step

2 of Algorithm 1 in Chib et al. (2002). The additional step to correct for the approximation

error is described in Algorithm 2 in the Appendix A. Let fN (·|m, s2) denote the probability

density of N(m, s2), and let π(α) denote the prior density of α. Define our target density in

Step 3 as

π∗(α, h, s|β, y) = π∗(α, h|β, s, y)× q(s),

= π∗(h|α, β, s, y)π∗(α|β, s, y)× q(s),

q(s) =
n∏

t=1

p̃st , y∗t = log(y2t ),

where

π∗(h|α, s, β, y∗) =
∏n

t=1 g(y
∗
t |ht, α, β, st)

m(y∗|α, s, β)
×

n−1∏
t=1

fN (ht+1|µ(1− ϕ) + ϕht, σ
2)× fN

(
h1

∣∣∣∣µ, σ2

1− ϕ2

)
.

π∗(α|s, β, y∗) ∝ m(y∗|α, s, β)π(α),

g(y∗t |ht, α, β, st) = fN (y∗t |m̃st + ht, v
2
st), t = 1, . . . , n,

and m̃st = m̃s1t,s2t and p̃st = p̃s1t,s2t are defined in (10) and (ps1t ,ms1t , v
2
s1t) are given in Table

1. Note thatm(y∗|α, s, β) is a normalizing constant for π∗(h|α, s, β, y∗) and is evaluated using
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the Kalman filter algorithm. Only p̃st , which depends on β, needs to be updated according to

the formula in (10) before sampling. Note that the target density π∗(α, h|β, y) approximates

the true conditional density π(α, h|β, y) accurately. We generate the sample (α, h, s) in two

steps.

(a) Generate s ∼ q(s|h, α, β, y∗) where

q(s|h, α, β, y∗) =
n∏

t=1

p̃stg(y
∗
t |ht, α, β, st)∑10

i=1

∑2
j=0 p̃i,jg(y

∗
t |ht, α, β, st = (i, j))

.

(b) Generate (α, h) ∼ π∗(α, h|s, β, y)

(i) Generate α ∼ π∗(α|s, β, y∗). We first transform α to ϑ = (µ, log{(1 + ϕ)/(1 −

ϕ)}, log σ2) to remove parameter constraints and perform the Metropolis-Hastings

(MH) algorithm (Chib and Greenberg, 1995) to sample from the conditional poste-

rior distribution with density π∗(ϑ|s, β, y) = π∗(α|s, β, y)×|dα/dϑ| where |dα/dϑ|

is the Jacobian of the transformation. Compute the posterior mode ϑ̂ and define

ϑ∗ and Σ∗ as

ϑ∗ = ϑ̂, Σ−1
∗ = −∂2 log π∗(ϑ|s, β, y)

∂ϑ∂ϑ′

∣∣∣∣
ϑ=ϑ̂

.

Given the current value ϑ, generate a candidate ϑ† from the distribution N(ϑ∗,Σ∗)

and accept it with probability

α(ϑ, ϑ†|s, β, y) = min

{
1,

π∗(ϑ†|s, β, y)fN (ϑ|ϑ∗,Σ∗)

π∗(ϑ|s, β, y)fN (ϑ†|ϑ∗,Σ∗)

}
,

where fN (·|ϑ∗,Σ∗) is the probability density of N(ϑ∗,Σ∗). If the candidate ϑ† is

rejected, we take the current value ϑ as the next draw. When the Hessian matrix

is not negative definite, we may take a flat normal proposal N(ϑ∗, c0I) using some

large constant c0.

(ii) Generate h|α, s, β, y ∼ π∗(h|α, s, β, y). We generate h = (h1, ..., hn) using a sim-

ulation smoother introduced by de Jong and Shephard (1995) and Durbin and

Koopman (2002) for the linear Gaussian state space model as in (14)-(16).

3.2 Associated particle filter

We describe how to compute the likelihood f(y|θ)

f(y|θ) =
∫

f(y, h|θ)dh,
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numerically as it is necessary to obtain the marginal likelihood, f(y) =
∫
f(y|θ)π(θ)dθ and

Bayes factor for the model comparison. The filtering and the associated particle computations

are carried out by the auxiliary particle filter (see e.g. Pitt and Shephard (1999), Omori et al.

(2007)). Let us denote Yt = (y1, . . . , yn), and

f(yt|ht, θ) =
1√
2π

exp

[
−1

2
ht −

1

2
{yt − β exp(ht/2)}2 exp(−ht)

]
f(ht+1|ht, yt, θ) =

1√
2π(1− ρ2)σ

exp

{
−(ht+1 − µt+1)

2

2σ2

}
,

µt+1 = µ+ ϕ(ht − µ),

and consider the importance function for the auxiliary particle filter

q(ht+1, h
i
t|Yt+1, θ) ∝ f(yt+1|µi

t+1, θ)f(ht+1|hit, yt, θ)f̂(hit|Yt, θ)

∝ f(ht+1|hit, yt, θ)q(hit|Yt+1, θ)

where

q(hit|Yt+1, θ) =
f(yt+1|µi

t+1, θ)f̂(h
i
t|Yt, θ)∑I

j=1 f(yt+1|µj
t+1, θ)f̂(h

j
t |Yt, θ)

,

f(yt+1|µi
t+1, θ) =

1√
2π

exp

[
−1

2
µi
t+1 −

1

2
{yt − β exp(hit/2)}2 exp(−µi

t+1)

]
,

µi
t+1 = µ+ ϕ(hit − µ).

This leads to the following particle filtering.

1. Compute f̂(y1|θ) and f̂(hi1|Y1, θ) = πi
1 for i = 1, . . . , I.

(a) Generate hi1 ∼ f(h1|θ) (= N(µ, σ2/(1− ϕ2))) for i = 1, . . . , I.

(b) Compute

πi
1 =

wi∑I
i=1wi

, wi = f(y1|h1, θ), Wi = F (y1|h1, θ),

f̂(y1|θ) = w1 =
1

I

I∑
i=1

wi, F̂ (y1|θ) = W 1 =
1

I

I∑
i=1

Wi,

where f(y1|θ) and F (y1|θ) are the marginal density function and the marginal

distribution function of y1 given θ. Let t = 1.

2. Compute f̂(yt+1|θ) and f̂(hit+1|Yt+1, θ) = πi
t+1 for i = 1, . . . , I.
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(a) Sample hit ∼ q(ht|Yt, θ), i = 1, . . . , I.

(b) Generate hit+1|hit, yt, θ ∼ f(ht+1|hit, yt, θ) (= N(µi
t+1, σ

2)) for i = 1, . . . , I.

(c) Compute

πi
t+1 =

wi∑I
i=1wi

, wi =
f(yt+1|hit+1, θ)f(h

i
t+1|hit, yt, θ)f̂(hit|Yt, θ)

f(hit+1|hit, yt, θ)q(hit|Yt+1, θ)
=

f(yt+1|hit+1, θ)f̂(h
i
t|Yt, θ)

q(hit|Yt+1, θ)
,

Wi =
F (yt+1|hit+1, θ)f̂(h

i
t|Yt, θ)

q(hit|Yt+1, θ)
,

f̂(yt+1|Yt, θ) = wt+1 =
1

I

I∑
i=1

wi, F̂ (yt+1|θ) = W t+1 =
1

I

I∑
i=1

Wi.

3. Increment t and go to 2.

It can be shown that as I → ∞, wt+1
p−→ f(yt+1|Yt, θ), and W t+1

p−→ F (yt+1|Yt, θ). Therefore,

it follows that
n∑

t=1

logwt
p−→

n∑
t=1

log f(yt|y1, . . . , yt−1, θ),

is a consistent estimate of the conditional log-likelihood and can be used as an input in the

calculation of the marginal likelihood by the method of Chib (1995).

4 Illustrative numerical examples

This section illustrates our proposed estimation method using the simulated data. We gen-

erate yt (t = 1, . . . , 1000) by setting

ϕ = 0.97, µ = 0, σ = 0.3.

To avoid the case yt = 0 which leads to log(y2t ) = −∞, we introduce very small value c and

use y∗t = log(y2t + c). We set c equal to 1.0×10−7. For β, we consider three cases β = 0.3, 0.5

and 0.7 to investigate the effect of the approximation error. The common random numbers

are used to generate yt’s for three cases. In these simulation studies, we specify the prior as

µ ∼ N(0, 10002),
ϕ+ 1

2
∼ Beta(1, 1),

σ2 ∼ IG

(
0.001

2
,

0.001

2

)
, β ∼ N (0, 1) .

The prior on (ϕ + 1)/2 is set to ensure the stationarity of the latent volatility process. We

iterated MCMC simulation 50,000 times after discarding initial 10,000 MCMC draws as

burn-in period.
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(i) Case β = 0.3. The acceptance rates of the MH algorithms for α is 73.6%. The sample

paths are given in Figure 3, and the MCMC chain mixes quite well.
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Figure 3: Sample paths for θ, h250, and h750. β = 0.3.

The sample autocorrelation functions are shown in Figure 4 and they decay very quickly.
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Figure 4: Sample autocorrelation functions for θ, h250, and h750. β = 0.3.

Par True Mean Std Dev 95% interval IF

µ 0 0.090 0.319 (-0.575, 0.725) 17

ϕ 0.97 0.971 0.011 ( 0.948, 0.989) 15

σ 0.3 0.259 0.037 ( 0.195, 0.338) 13

β 0.3 0.315 0.033 ( 0.251, 0.380) 1

h250 2.310 1.735 0.460 ( 0.843, 2.647) 5

h750 2.077 1.674 0.412 ( 0.900, 2.520) 5

Table 2: True values, posterior means, posterior standard deviations, 95% credible intervals,

and inefficiency factors. β = 0.3.
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Table 2 shows the posterior mean, 95% credible intervals and inefficiency factors (IF).

The estimated parameters are close to true values. IF is calculated by 1 + 2
∑∞

s=1 ρs

where ρs is the sample autocorrelation at lag s. This is interpreted as the ratio of the

numerical variance of the posterior mean from the chain to the variance of the posterior

mean from hypothetical uncorrelated draws. They are overall small as expected, which

means that the MCMC sampling is close to the uncorrelated sampling. Note that those

IF’s for h250 and h750 are quite small, which suggests the use of mixture sampler for

the MH algorithm for h is highly efficient. Finally Figure 5 shows true values, 95%

credible intervals and the posterior medians or volatilities. The estimated smoothed

values follow the true values values that are almost covered by 95% intervals, indicating

that MCMC estimations works well.

Figure 5: Log volatilities: True values, 95% credible intervals and posterior median.

(ii) Case β = 0.5. The acceptance rates of the MH algorithms for α is 73.6%. The plot of

the sample paths and log volatilities are similar to those in (i) and hence omitted to

save space. Table 3 shows the posterior means, 95% credible intervals and inefficiency

factors. The estimated parameters are close to true values, and inefficiency factors (IF)

are overall small as in (i). The IF’s for h250 and h750 are sufficiently small, and indicates

that the algorithm is still highly efficient.
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Par True Mean Std Dev 95% interval IF

µ 0 0.102 0.319 (-0.562, 0.754) 18

ϕ 0.97 0.971 0.011 ( 0.947, 0.988) 13

σ 0.3 0.263 0.037 ( 0.198, 0.342) 13

β 0.5 0.511 0.035 ( 0.443, 0.579) 3

h250 2.310 1.811 0.459 ( 0.928, 2.719) 4

h750 2.077 1.641 0.410 ( 0.866, 2.476) 4

Table 3: True values, posterior means, posterior standard deviations, 95% credible intervals,

and inefficiency factors. β = 0.5.

(iii) Case β = 0.7. The acceptance rates of the MH algorithms for α is 73.5%. The

convergence seems to become slightly slower, but the chain mixes well. The plot of

the sample paths and log volatilities are similar to those in (i) and hence omitted to

save space. Table 9 shows the posterior means, 95% credible intervals and inefficiency

factors. The estimated parameters are close to true values, and inefficiency factors (IF)

are overall relatively small. The IF’s for h250 and h750 are small, and indicates that the

algorithm is still works well.

Par True Mean Std Dev 95% interval IF

µ 0 0.109 0.326 (-0.616, 0.756) 31

ϕ 0.97 0.971 0.010 ( 0.949, 0.989) 23

σ 0.3 0.265 0.035 ( 0.202, 0.339) 15

β 0.7 0.704 0.037 ( 0.631, 0.776) 5

h250 2.310 1.881 0.454 ( 1.007, 2.792) 4

h750 2.077 1.662 0.404 ( 0.901, 2.493) 5

Table 4: True values, posterior means, posterior standard deviations, 95% credible intervals,

and inefficiency factors. β = 0.7.

These simulation results show that our proposed sampling method works well for those β’s

found in the past empirical studies.
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5 Extension to SVM model with Leverage (SVML model)

In this section, we consider the SVM model with leverage which we call SVML model. The

leverage effect implies the decrease in the return at time t followed by the increase in the

volatility at time t + 1. Thus we incorporate the correlation ρ between yt and ht+1 and

replace (3) by ϵt

ηt

 i.i.d.∼ N(0,Σ), Σ =

 1 ρσ

ρσ σ2

 . (13)

The negative correlation, ρ < 0, indicates the existence of the leverage effect. Next, we

construct the linear and Gaussian state space model that approximates the SVM model with

leverage using the mixture of the normal densities given in (10). We first let dt = I(yt ≥

0)− I(yt < 0) where I(A) = 1 if A is true and I(A) = 0 otherwise. Noting that

yt =dt exp(y
∗
t /2), ϵt = dt exp(ϵ

∗
t /2)− β

ηt|ϵt ∼ N(ρσϵt, σ
2(1–ρ2)),

we rewrite the conditional distribution as

ηt|ϵt ∼ N
(
ρσ{dt exp(ϵ∗t /2)− β}, σ2(1–ρ2)

)
.

Let st = (s1t, s2t) ∈ {(i, j)|i = 1, ...,K, j = 0, ..., J} denote the component of the mixture of

normal densities in (10) at time t. Given st = (i, j), we have ϵ∗t |st = (i, j) ∼ N(m̃i,j , v
2
i ). Fur-

thermore, we approximate exp(ϵ∗t /2) by exp(m̃i,j/2){ai + bi(ϵ
∗
t − m̃i,j)} with ai = exp(v2i /8),

bi =
1
2 exp(v

2
i /8), as in Table 1, which minimize the mean square norm

E[exp(ϵ∗t /2)− exp(m̃i,j/2){ai + bi(ϵ
∗
t − m̃i,j)}]2.

Thus, the approximate conditional distribution is

ηt|ϵt ∼ N
(
ρσ[dt exp(m̃i,j/2){ai + bi(ϵ

∗
t − m̃i,j)} − β], σ2(1–ρ2)

)
.
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Given s = (s1, ..., sn), we find that the SVM model can be approximated by the linear

Gaussian state space form

y∗t = m̃s1t,s2t + ht + (vs1t , 0)zt, (14)

ht+1 = µ(1− ϕ) + ρσ{dtas1t exp(m̃s1t,s2t)− β}+ ϕht (15)

+ (dtρσbs1tvs1t exp(m̃s1t,s2t/2), σ
√
1− ρ2)zt,

t = 1, ..., n− 1, h1 ∼ N

(
µ,

σ2

1− ϕ2

)
, |ϕ| < 1, (16)

zt = (z1t, z2t)
′ ∼ N(0, I2),

where y∗t = log(y2t ) and dt = I(yt ≥ 0)− I(yt < 0). In the following subsections, m̃s1t,s2t and

p̃s1t,s2t are abbreviated as m̃st and p̃st , and we write v2st , ast , and bst instead of v2s1t , as1t , and

bs1t , respectively. The MCMC algorithm and the particle filter are detailed in Appendix B.

6 Empirical studies of excess holding yield data

6.1 Data

This section applies the SVM model with leverage and several alternative models to three

excess holding yields data. Further, we conduct a comprehensive model comparison including

the GARCH, GARCH in mean, EGARCH and EGARCH in mean models. The descriptions

of the data (labeled as TB, DGS and AAA) are given below1.

(1) TB: the excess holding yield using 3 and 6 months treasury bills with 258 observations

from the forth quarter of 1958 to the first of 2023. It is defined as

yt =

{(
1 + Rt

100

)2
1 + rt+1

100

−
(
1 +

rt
100

)}
× 100,

at annual rate where Rt and rt are secondary market rates of the 6-month and 3-month

Treasury bill (discount basis, percent, daily, not seasonally adjusted), measured at the

beginning of the quarter.

(2) DGS: the excess holding yield using 1 and 3 month market yields on U.S. treasury

securities with 266 observations from August 2001 to September 2023. The excess

1The data are obtained from the website of Federal Reserve Bank of St. Louis.
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holding yield, yt is defined as

yt =

{ (
1 + Rt

100

)3(
1 + rt+1

100

) (
1 + rt+2

100

) −
(
1 +

rt
100

)}
× 100,

at annual rate where Rt and rt are market yields of 3 and 1 month on US Treasury

securities at constant maturity of 3 months (quoted on an investment basis, percent,

daily, not seasonally adjusted), measured at the beginning of the month.

(3) AAA: the excess holding yield using 3 months and 20 years Moody’s Seasoned AAA

corporate bond yield with 359 observations from the fourth quarter of 1933 to the

second of 2023. As discussed in Engle et al. (1987), assuming that the bonds are

effectively infinitely lived, we define

yt =

{
Rt

100
− rt

100
− 1 +

Rt

Rt+1

}
× 100,

at annual rate where Rt is the Moody’s seasoned AAA corporate bond yield (percent,

monthly, not seasonally adjusted) and rt is the 3-month treasury bill secondary mar-

ket rate (percent, discount basis, monthly, not seasonally adjusted), measured at the

beginning of the quarter.

The time series plots of three datasets are shown in Figures 6, 7 and 8. Volatility clustering

phenomena is observed for all three series, suggesting that the stochastic volatility models

are appropriate to describe these excess holding yield data.

Figure 6: Time series plot. TB data: 1958Q4–2023Q1.
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Figure 7: Time series plot. DGS data: 2001/8–2023/9.

Figure 8: Time series plot. AAA data: 1933Q4–2023Q2.

6.2 Estimation results for SVM model

Using the same prior distributions as in illustrative examples in Section 4, the proposed SVM

models with leverage are fitted to TB, DGS and AAA data. We iterated MCMC simulation

150,000 times after discarding initial 30,000 MCMC draws as burn-in period using Algorithm

3 in Appendix B. The acceptance rates of the MH algorithms for α and (α, h) are 70.2%

and 20.7% with TB data, 69.5% and 13.2% with DGS data, and 51.1% and 36.6% with AAA

data, respectively.
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Par Mean Std Dev 95% interval IF Pr(+)

µ -1.882 0.623 (-3.163, -0.656) 109 0.003

-3.824 0.641 (-5.053, -2.319) 130 0.000

3.699 0.882 ( 2.136, 5.877) 86 1.000

ϕ 0.920 0.024 ( 0.867, 0.961) 72 1.000

0.901 0.040 ( 0.815, 0.965) 156 1.000

0.982 0.015 ( 0.943, 0.999) 65 1.000

σ 0.690 0.099 ( 0.519, 0.911) 105 1.000

0.923 0.130 ( 0.696, 1.2) 175 1.000

0.196 0.055 ( 0.103, 0.32) 79 1.000

ρ -0.544 0.139 (-0.79, -0.253) 116 0.000

0.062 0.132 (-0.203, 0.313) 151 0.672

-0.305 0.130 (-0.549, -0.038) 41 0.012

β 0.651 0.074 ( 0.507, 0.797) 45 1.000

0.735 0.075 ( 0.589, 0.881) 52 1.000

0.440 0.057 ( 0.328, 0.552) 12 1.000

h100 -0.680 0.957 (-2.692, 1.076) 56 0.242

-5.493 1.007 (-7.454, -3.467) 72 0.000

2.873 0.358 ( 2.208, 3.634) 17 1.000

Table 5: Posterior mean, standard deviation, 95% credible interval, inefficient factor and the

posterior probability that the parameter is positive. TB (top row), DGS (middle row), and

AAA (bottom row).

Table 5 shows posterior means, standard deviations, 95% credible intervals, inefficiency

factors for parameters (IF), and the posterior probability that the parameter is positive for

three datasets. Further, the IF’s for log volatilities, ht’s are found to be less than 80, which

implies that our mixture sampler is highly efficient as shown in Section 4. The coefficient β is

estimated to be greater than 0.4, and we find a strong evidence of the positive risk premium

since the posterior probability that β is positive is almost one, Pr(β > 0|y) ≈ 1.000. The

autoregressive parameter ϕ for the log volatility process is estimated to be more than 0.9,

suggesting the high persistence in the volatility as found in the various empirical studies

in the previous literature. The correlation parameter ρ is estimated to be negative for TB

data and AAA data, implying a strong evidence of the leverage effect since the posterior

probability that ρ is negative is almost one, Pr(ρ < 0|y) ≈ 1.000. On the other hand, there
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is no evidence that ρ is negative for DGS data. Finally, Figures 9, 10 and 11 show 95%

credible intervals and posterior medians for h in the case of TB, DGS and AAA data. Noting

that

log(y2t ) = ht + logχ2
1(β

2),

we further plotted moving average
∑10

s=−10 zt+s/21 for reference where zt = log(y2t )−E(logχ2
1(β

2))

is evaluated at the posterior means of β. The expected values of logχ2
1(β

2) are computed

numerically as −0.88,−0.78, and −1.08 for TB, DGS, and AAA using Monte Carlo integra-

tion. The traceplot of the estimated log volatilities is similar to that of the moving average

series taking account of 95% credible intervals. The large volatilities around years 1980, 2008

and 2010-2023 are well captured by the proposed model as shown in Figures 9, 10 and 11

respectively.

Figure 9: Log volatilities: Moving average of log(y2t )−E(logχ2
1(β

2)), 95% credible intervals

and posterior median. TB data.

Figure 10: Log volatilities: Moving average of log(y2t )−E(logχ2
1(β

2)), 95% credible intervals

and posterior median. DGS data.
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Figure 11: Log volatilities: Moving average of log(y2t )−E(logχ2
1(β

2)), 95% credible intervals

and posterior median. AAA data.

6.3 Model comparison

In this section we use Bayesian marginal likelihoods to conduct a comprehensive comparisons

of various volatility models that includes GARCH models. We calculate the marginal likeli-

hood using the method of Chib (1995). Suppressing the model index, this method is based

on an identity introduced in that paper:

logm(y) = log f(y|θ) + log π(θ)− log π(θ|y),

where the first term on the right side is the log of the likelihood. the second term is the prior,

and the third is the posterior density. We evaluate each of these terms with the posterior

mean of θ. For each model, we calculate the first term using the particle filter method given

in Section 3.2, setting I = 80, 000. To compute the posterior density ordinate, we apply Chib

and Jeliazkov (2001) to the MCMC draws from Algorithm 4 in Appendix C.

As Engle et al. (1987) considered three volatility in mean models in the context of the

autoregressive conditional heteroscedasticity in mean (ARCH-M) model. The GARCH-M-

type models are defined as

yt = βφ(ht) + ut, ut =
√

htνt, (17)

ht = ω + γht−1 + αu2t−1, h1 =
ω

1− α− γ
, (18)

where νt
i.i.d.∼ N(0, 1), α > 0, γ > 0, α+γ < 1, and ω > 0. Note that the ht in the GARCH-M

models represents the standard deviation of the error term ut, and this is different from the

ht used in SVM models which represents the log volatility. We consider

• GARCH-M model: φ(ht) =
√
ht.
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• GARCH-M II model: φ(ht) = ht.

• GARCH-M III model: φ(ht) = log ht.

and GARCH model (GARCH, β = 0). The EGARCH-M models are also defined by replacing

(18) with

log ht = ω + γ log ht−1 + ανt−1 + δ(|νt−1| − E[|νt−1|]), log h1 =
ω

1− γ
,

where |γ| < 1. As in GARCH-Mmodels, we consider EGARCH-M, EGARCH-M II, EGARCH-

M III, EGARCH models for the comparison. The prior distributions are chosen to reflect no

prior information regarding of model parameters. Correspondingly, we additionaly consider

• SVM II model: yt = β exp(ht) + ϵt exp(ht/2).

• SVM III model: yt = βht + ϵt exp(ht/2).

Table 6 presents the logarithm of the marginal likelihood for TB, DGS, and AAA data. As

for TB and DGS data, the SVML model yields the largest log marginal likelihood among

those competing models, which implies our proposed model best describes the risk premium

and the time varying volatility among competing models. However, taking account of the

standard error, the SVM model performs as well as SVML model for DGS data. Note that

our proposed models (SVM and SVML) outperform other SV and SVMmodels. These results

are also consistent with high posterior probabilities of Pr(β > 0|y) for TB and DGS data,

and of Pr(ρ < 0|y) for TB data as given in Table 5 of Section 6.2. In most cases, the class of

SV models outperforms that of the GARCH and EGARCH models. This comparison shows

that the SVM-type models fit better than the GARCH-M and EGARCH-M-type models in

the analysis for TB and DGS data and that our proposed SVM model outperform other

comprehensive volatility in mean models.

On the other hand, for AAA data, we found the GARCH-M III model attains the largest

marginal likelihood. This is somewhat surprising, but it may be because the length of the

bond holding period is much longer than those of TB and AAA data. Moreover, the volatility

clustering in Figure 8 looks different from those in Figures 6 and 7 for TB and DGS data.

Also, the level of the volatilities in Figure 11 changes more smootherly than those in Figures

9 and 10. However, we note that the SVML model still outperform other SV models.
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Model TB DGS AAA

SVM -185.636(0.156) 66.390(0.109) -1131.540(0.051)

SVML -178.409(0.111) 66.616(0.122) -1126.976(0.061)

SVM II -211.910(0.072) 52.084(0.046) -1136.338(0.047)

SVML II -203.926(0.064) 49.823(0.046) -1131.055(0.066)

SVM III -215.386(0.049) 38.438(0.055) -1141.540(0.041)

SVML III -205.118(0.052) 39.304(0.046) -1139.085(0.045)

SV -224.784(0.090) 21.126(0.122) -1155.443(0.049)

SVL -214.247(0.195) 22.549(0.060) -1154.006(0.153)

GARCH-M -215.283(0.003) 10.194(0.005) -1125.723(0.007)

GARCH-M II -238.244(0.006) 1.940(0.005) -1129.148(0.010)

GARCH-M III -233.935(0.133) 14.178(0.231) -1119.157(0.161)

GARCH -259.238(0.011) -21.886(0.009) -1165.468(0.010)

EGARCH-M -229.199(0.043) 5.297(0.003) -1144.959(0.006)

EGARCH-M II -244.028(0.009) 4.743(0.007) -1151.550(0.006)

EGARCH-M III -253.988(0.010) -2.3118(0.005) -1143.756(0.005)

EGARCH -254.035(0.005) -14.376(0.004) -1168.813(0.008)

Table 6: Log marginal likelihood estimation and standard error (in parentheses). TB, DGS,

and AAA data. SVML, II and III, and SVL model include the leverage effect ρ. The bold

font indicates the largest marginal likelihood.

7 Conclusion

In this paper, we have successfully extended the mixture sampler for the SV model to the

SVM model of which the mean equation is described by the standard deviation of the error

term as an independent variable. Our main point is the approximation of the distribution of

logχ2
1(β

2) by mixture of normal distributions which is dependent on the parameter β. This

approximation facilitates efficient sampling, leveraging well-established methods for the linear

Gaussian state-space model. It is shown in simulation studies that our proposed method is

implemented easily and works efficiently. In the empirical studies of the excess holding yield

data, we conducted the extensive model comparison including the SVM, GARCH-M and

EGARCH-M models, and found that our proposed SVM outperforms other models in terms

of the marginal likelihood. It also shows that there exists the positive risk premiums and
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time-varying volatility in the excess holding yield data.
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Appendix

A MH step to correct the approximation error

The posterior density is given by

π(h, θ|y) ∝ f(y, h|θ)π(θ)

∝ (1 + ϕ)a−
1
2 (1− ϕ)b−

1
2 (σ2)−(

n1
2
+1) exp

{
− 1

2σ2
{s0 + (1− ϕ2)(h1 − µ)2}

}
× exp

{
−1

2

n∑
t=1

[ht + {yt − β exp(ht/2)}2 exp(−ht)]

}

× exp

{
− 1

2σ2

n−1∑
t=1

[ht+1 − µ(1− ϕ)− ϕht]
2

}

× exp

{
−(µ− µ0)

2

2σ2
0

}
exp

{
−(β − b0)

2

2B0

}
,

where n1 = n0+n. To correct the approximation error in Step 3 of Algorithm 1, we implement

the additional MH step (Step 4) as in the following Algorithm 2.

Algorithm 2. Let us denote θ = (α, β) where α = (µ, ϕ, σ2). The Markov chain Monte

Carlo simulation is implemented in four blocks:

1. Initialize h and θ = (α, β).

2. Generate β|α, h, y ∼ π(β|α, h, y) as in Algorithm 1.

3. Generate (α, h)|β, y ∼ π(α, h|β, y) as in Algorithm 1.

4. Conduct MH algorithm to correct the approximation error.

5. Go to step 2.
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Step 4. Generation of (α, h)|β, y

Since the mixture sampler is based on the approximation, we can correct the approximation

error after the MCMC simulation as in Kim et al. (1998) and Omori et al. (2007)) Instead,

we use the data augmentation method to correct it within the MCMC simulation by MH

algorithm with the pseudo target density. We note that the similar approach has been

considered for the SV model without leverage (Del Negro and Primiceri (2015)) and with

leverage (Takahashi et al. (2023)). Define the pseudo target density

π̃(α, h, s|β, y) = π(α, h|β, y)× q(s|h, α, β, y∗),

q(s|h, α, β, y∗) =
n∏

t=1

p̃stg(y
∗
t |ht, α, β, st)∑10

i=1

∑2
j=0 p̃i,jg(y

∗
t |ht, α, β, st = (i, j))

,

Note that the marginal density π(α, h|β, y) is our target density, π(α, h|β, y) =
∑

s π̃(α, h, s|β, y).

We generate sample (α, h, s) from the pseudo target density as follows. Using Step 3 of Algo-

rithm 1, we have a sample from π∗(h|α, s, β, y∗)π∗(α|s, β, y) and let us denote it as (α†, h†),

and let

f(yt|ht, α, β) = fN (yt|β exp(ht/2), exp(ht)), t = 1, . . . , n.

Given the current value (α, h), accept the candidate (α†, h†) with probability

min

{
1,

π̃(α†, h†|s, β, y)π∗(h|α, s, β, y∗)π∗(α|s, β, y)
π̃(α, h|s, β, y)π∗(h†|α†, s, β, y∗)π∗(α†|s, β, y)

}
= min

{
1,

π(α†, h†|β, y)q(s|h†, α†, β, y∗)π∗(h|α, s, β, y∗)π∗(α|s, β, y)
π(α, h|β, y)q(s|h, α, β, y∗)π∗(h†|α†, s, β, y∗)π∗(α†|s, β, y)

}
= min

{
1,

q(s|h†, α†, β, y∗)
∏n

t=1 f(yt|h
†
t , α

†, β)g(y∗t |ht, α, β, st)
q(s|h, α, β, y∗)

∏n
t=1 f(yt|ht, α, β)g(y∗t |h

†
t , α

†, β, st)

}

= min

{
1,

∏n
t=1 f(yt|h

†
t , α

†, β)
∑10

i=1

∑2
j=0 p̃i,jg(y

∗
t |ht, α, β, st = (i, j))∏n

t=1 f(yt|ht, α, β)
∑10

i=1

∑2
j=0 p̃i,jg(y

∗
t |h

†
t , α

†, β, st = (i, j))

}
.

Below we compare estimates using Algorithms 1 and 2 in illustrative examples. The results

are quite close to each other, implying that the approximation is highly accurate.
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Algorithm 1 Algorithm 2

Par True Mean Std Dev 95% interval IF Mean Std Dev 95% interval IF

µ 0 0.090 0.319 (-0.575, 0.725) 17 0.101 0.311 (-0.537, 0.731) 24

ϕ 0.97 0.971 0.011 ( 0.948, 0.989) 15 0.972 0.010 ( 0.949, 0.988) 29

σ 0.3 0.259 0.037 ( 0.195, 0.338) 13 0.257 0.036 ( 0.194, 0.335) 41

β 0.3 0.315 0.033 ( 0.251, 0.380) 1 0.327 0.033 ( 0.263, 0.392) 3

h250 2.310 1.735 0.460 ( 0.843, 2.647) 5 1.722 0.454 ( 0.858, 2.632) 16

h750 2.077 1.674 0.412 ( 0.900, 2.520) 5 1.715 0.415 ( 0.932, 2.549) 14

Table 7: True values, posterior means, posterior standard deviations, 95% credible intervals,

and inefficiency factors. β = 0.3.

Algorithm 1 Algorithm 2

Par True Mean Std Dev 95% interval IF Mean Std Dev 95% interval IF

µ 0 0.102 0.319 (-0.562, 0.754) 18 0.104 0.303 (-0.516, 0.740) 48

ϕ 0.97 0.971 0.011 ( 0.947, 0.988) 13 0.971 0.010 ( 0.950, 0.988) 53

σ 0.3 0.263 0.037 ( 0.198, 0.342) 13 0.262 0.035 ( 0.199, 0.333) 89

β 0.5 0.511 0.035 ( 0.443, 0.579) 3 0.530 0.034 ( 0.462, 0.597) 12

h250 2.310 1.811 0.459 ( 0.928, 2.719) 4 1.758 0.450 ( 0.891, 2.631) 38

h750 2.077 1.641 0.410 ( 0.866, 2.476) 4 1.710 0.417 ( 0.930, 2.574) 41

Table 8: True values, posterior means, posterior standard deviations, 95% credible intervals,

and inefficiency factors. β = 0.5.

Algorithm 1 Algorithm 2

Par True Mean Std Dev 95% interval IF Mean Std Dev 95% interval IF

µ 0 0.109 0.326 (-0.616, 0.756) 31 0.103 0.305 (-0.479, 0.802) 84

ϕ 0.97 0.971 0.010 ( 0.949, 0.989) 23 0.971 0.011 ( 0.945, 0.990) 110

σ 0.3 0.265 0.035 ( 0.202, 0.339) 15 0.263 0.035 ( 0.199, 0.343) 139

β 0.7 0.704 0.037 ( 0.631, 0.776) 5 0.731 0.037 ( 0.659, 0.804) 37

h250 2.310 1.881 0.454 ( 1.007, 2.792) 4 1.813 0.457 ( 0.966, 2.722) 74

h750 2.077 1.662 0.404 ( 0.901, 2.493) 5 1.660 0.399 ( 0.924, 2.441) 69

Table 9: True values, posterior means, posterior standard deviations, 95% credible intervals,

and inefficiency factors. β = 0.7.
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B MCMC algorithm and particle filter for SVM with leverage

B.1 MCMC algorithm

For the SVM with leverage, we set θ = (µ, ϕ, σ2, ρ). For the prior distribution of ρ, we assume

ρ ∼ U(−1, 1) where U(a, b) denotes uniform distribution over (a, b), and the posterior density

function of (h, θ) is given by

π(h, θ|y)

∝ f(y, h|θ)π(θ)

∝ (1 + ϕ)a−
1
2 (1− ϕ)b−

1
2 (1− ρ2)−

n−1
2 (σ2)−(

n1
2
+1) exp

{
− 1

2σ2
{s0 + (1− ϕ2)(h1 − µ)2}

}
× exp

{
−1

2

n∑
t=1

[ht + {yt − β exp(ht/2)}2 exp(−ht)]

}

× exp

{
− 1

2σ2(1− ρ2)

n−1∑
t=1

[ht+1 − µ(1− ϕ)− ϕht − ρσ{yt − β exp(ht/2)} exp(−ht/2)]
2

}

× exp

{
−(µ− µ0)

2

2σ2
0

}
exp

{
−(β − b0)

2

2B0

}
,

where n1 = n0 + n.

Algorithm 3. Let us denote θ = (α, β) where α = (µ, ϕ, σ2, ρ). The Markov chain Monte

Carlo simulation is implemented in four blocks:

1. Initialize h and θ = (α, β).

2. Generate β|α, h, y ∼ π(β|α, h, y).

3. Generate (α, h)|β, y ∼ π(α, h|β, y).

4. Go to step 2.

Step 2. Generation of β|α, h, y

The conditional posterior distribution of β is normal with mean b1 and variance B1 where

b1 = B1

(
X ′Ω−1ỹ +B−1

0 b0
)
, B−1

1 = X ′Ω−1X +B−1
0 ,
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and

ỹ =



y1 − ρ exp(h1/2)σ
−1{h2 − µ− ϕ(h1 − µ)}

y2 − ρ exp(h2/2)σ
−1{h3 − µ− ϕ(h2 − µ)}

...

yn−1 − ρ exp(hn−1/2)σ
−1{hn − µ− ϕ(hn−1 − µ)}

yn


, X =


exp(h1/2)

exp(h2/2)
...

exp(hn/2)

 ,

Ω = diag
(
(1− ρ2) exp(h1), (1− ρ2) exp(h2), · · · , (1− ρ2) exp(hn−1), exp(hn)

)
,

Thus we generate β ∼ N(b1, B1).

Step 3. Generation of (α, h)|β, y

We define the pseudo target density

π̃(α, h, s|β, y) = π(α, h|β, y)× q(s|α, h, β, y∗, d),

q(s|α, h, β, y∗, d) =
n∏

t=1

p̃stg(y
∗
t , ht+1|ht, α, β, st, d)∑10

i=1

∑2
j=0 p̃i,jg(y

∗
t , ht+1|ht, α, β, st = (i, j), d)

,

where θ = (α, β) and

g(y∗t ,ht+1|ht, α, β, st, d) =

fN (y∗t |m̃st + ht, v
2
st)fN (ht+1|hst,t, σ2(1− ρ2)), t < n,

fN (y∗t |m̃st + ht, v
2
st) t = n,

hst,t = µ(1− ϕ) + ϕht + ρσ[dt exp(m̃st/2){ast + bst(y
∗
t − ht − m̃st)} − β],

where y∗t = log(y2t ), dt = I(yt ≥ 0) − I(yt < 0). m̃st = m̃s1t,s2t and p̃st = p̃s1t,s2t are

defined in (10) and (ps1t ,ms1t , v
2
s1t , as1t , bs1t) are given in Table 1. Only p̃st , which depends

on β, needs to be updated according to the formula in (10) before sampling. Note that

the marginal density π(α, h|β, y) is our target density, π(α, h|β, y) =
∑

s π̃(α, h, s|β, y). We

generate sample (α, h, s) from the pseudo target density in two steps.

(a) Generate s ∼ q(s|h, θ, y∗, d).

(b) Generate (α, h)|θ, s, y ∼ π̃(α, h|β, s, y).

(i) Generate α ∼ π∗(α|s, β, y∗, d). The target density here is given by

π∗(α|s, β, y∗, d) ∝ m(y∗|α, s, β, d)π(α),
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where

m(y∗|α, s, β, d) =
∫ n∏

t=1

g(y∗t , ht+1|ht, α, st, β, d)× fN

(
h1

∣∣∣∣µ, σ2

1− ϕ2

)
dh,

which we evaluate using Kalman filter algorithm. We first transform α to ϑ =

(µ, log{(1 + ϕ)/(1 − ϕ)}, log σ2, log{(1 + ρ)/(1 − ρ)}) to remove parameter con-

straints, and conduct MH algorithm to sample from the conditional posterior

distribution with density π∗(ϑ|s, β, y) = π∗(α|s, β, y) × |dα/dϑ| where |dα/dϑ| is

the Jacobian of the transformation. Compute the posterior mode ϑ̂ and define ϑ∗

and Σ∗ as

ϑ∗ = ϑ̂, Σ−1
∗ = −∂2 log π∗(ϑ|s, β, y)

∂ϑ∂ϑ′

∣∣∣∣
ϑ=ϑ̂

.

Given the current value ϑ, generate a candidate ϑ† from the distribution N(ϑ∗,Σ∗)

and accept it with probability

α(ϑ, ϑ†|s, β, y) = min

{
1,

π∗(ϑ†|s, β, y)fN (ϑ|ϑ∗,Σ∗)

π∗(ϑ|s, β, y)fN (ϑ†|ϑ∗,Σ∗)

}
,

where fN (·|ϑ∗,Σ∗) is the probability density of N(ϑ∗,Σ∗). If candidate ϑ† is

rejected, we take the current value ϑ as the next draw. When the Hessian matrix

is not negative definite, we may take a flat normal proposal N(ϑ∗, c0I) using some

large constant c0. The obtained draw is denoted as α†.

(ii) Generate h|α, s, β, y ∼ π∗(h|α, s, β, y). Given α = α†, we propose a candidate

h† = (h†1, ..., h
†
n) using a simulation smoother introduced by de Jong and Shephard

(1995) and Durbin and Koopman (2002) for the linear space Gaussian state space

model as in (14)-(16). The h† is a sample from

π∗(h|α†, s, β, y∗, d) =

∏n
t=1 g(y

∗
t , ht+1|ht, α†, β, st, d)

m(y∗|α†, s, β, d)
× fN

(
h1

∣∣∣∣µ†,
σ2†

1− ϕ†2

)
,

(iii) Generate (α, h) ∼ π̃(α, h|s, β, y∗, d). From (i) and (ii), we have a sample (α†, h†)

from π∗(h|α, s, β, y∗, d)π∗(α|s, β, y∗, d). Let

f(yt,ht+1|ht, α, β)

=

fN (yt|β exp(ht/2), exp(ht))fN (ht+1|ht, σ2(1− ϕ2)), t < n

fN (yt|β exp(ht/2), exp(ht)), t = n,

ht = µ(1− ϕ) + ϕht + ρσ{yt − β exp(ht/2)} exp(−ht/2).
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Given the current value (α, h), accept the candidate (α†, h†) with probablity

min

{
1,

π̃(α†, h†|s, β, y)π∗(h|α, s, β, y∗, d)π∗(α|β, s, y∗, d)
π̃(α, h|s, β, y)π∗(h†|α†, s, β, y∗, d)π∗(α†|β, s, y∗, d)

}
= min

{
1,

π(α†, h†|β, y)q(s|h†, α†, β, y∗)π∗(h|α, s, β, y∗)π∗(α|β, s, y∗, d)
π(α, h|β, y)q(s|h, α, β, y∗)π∗(h†|α†, s, β, y∗)π∗(α†|β, s, y∗, d)

}
= min

{
1,

q(s|h†, α†, β, y∗)
∏n

t=1 f(yt, h
†
t+1|h

†
t , α

†, β)g(y∗t , ht+1|ht, α, β, st, d)
q(s|h, α, β, y∗)

∏n
t=1 f(yt, ht+1|ht, α, β)g(y∗t , h

†
t+1|h

†
t , α

†, β, st, d)

}

= min

{
1,

∏n
t=1 f(yt|h

†
t , α

†, β)
∑10

i=1

∑2
j=0 p̃i,jg(y

∗
t |ht, α, β, st = (i, j))∏n

t=1 f(yt|ht, α, β)
∑10

i=1

∑2
j=0 p̃i,jg(y

∗
t |h

†
t , α

†, β, st = (i, j))

}

= min

{
1,

∏n
t=1 f(yt, h

†
t+1|h

†
t , α

†, β)
∑10

i=1

∑2
j=0 p̃i,jg(y

∗
t , ht+1|ht, α, β, st = (i, j), d)∏n

t=1 f(yt, ht+1|ht, α, β)
∑10

i=1

∑2
j=0 p̃i,jg(y

∗
t , h

†
t+1|h

†
t , α

†, β, st = (i, j), d))

}

Remark. As in Algorithm 1, we may skip (iii) of Step 3b since the approximation error is

usually small.

B.2 Associated particle filter

We describe how to compute the likelihood f(y|θ) when there is a leverage effect. Let

f(yt|ht, θ) =
1√
2π

exp

[
−1

2
ht −

1

2
{yt − β exp(ht/2)}2 exp(−ht)

]
f(ht+1|ht, yt, θ) =

1√
2π(1− ρ2)σ

exp

{
−(ht+1 − µt+1)

2

2(1− ρ2)σ2

}
,

µt+1 = µ+ ϕ(ht − µ) + ρσ exp(−ht/2){yt − β exp(ht/2)},

and consider the importance function for the auxiliary particle filter

q(ht+1, h
i
t|Yt+1, θ) ∝ f(yt+1|µi

t+1, θ)f(ht+1|hit, yt, θ)f̂(hit|Yt, θ)

∝ f(ht+1|hit, yt, θ)q(hit|Yt+1, θ)

where

q(hit|Yt+1, θ) =
f(yt+1|µi

t+1, θ)f̂(h
i
t|Yt, θ)∑I

j=1 f(yt+1|µj
t+1, θ)f̂(h

j
t |Yt, θ)

,

f(yt+1|µi
t+1, θ) =

1√
2π

exp

[
−1

2
µi
t+1 −

1

2
{yt − β exp(hit/2)}2 exp(−µi

t+1)

]
,

µi
t+1 = µ+ ϕ(hit − µ) + ρσ exp(−hit/2){yt − β exp(hit/2)}.

This leads to the following particle filtering.
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1. Compute f̂(y1|θ) and f̂(hi1|Y1, θ) = πi
1 for i = 1, . . . , I.

(a) Generate hi1 ∼ f(h1|θ) (= N(µ, σ2/(1− ϕ2))) for i = 1, . . . , I.

(b) Compute

πi
1 =

wi∑I
i=1wi

, wi = f(y1|h1, θ), Wi = F (y1|h1, θ),

f̂(y1|θ) = w1 =
1

I

I∑
i=1

wi, F̂ (y1|θ) = W 1 =
1

I

I∑
i=1

Wi,

where f(y1|θ) and F (y1|θ) are the marginal density function and the marginal

distribution function of y1 given θ. Let t = 1.

2. Compute f̂(yt+1|θ) and f̂(hit+1|Yt+1, θ) = πi
t+1 for i = 1, . . . , I.

(a) Sample hit ∼ q(ht|Yt, θ), i = 1, . . . , I.

(b) Generate hit+1|hit, yt, θ ∼ f(ht+1|hit, yt, θ) (= N(µi
t+1, σ

2(1− ρ2))) for i = 1, . . . , I.

(c) Compute

πi
t+1 =

wi∑I
i=1wi

, wi =
f(yt+1|hit+1, θ)f(h

i
t+1|hit, yt, θ)f̂(hit|Yt, θ)

f(hit+1|hit, yt, θ)q(hit|Yt+1, θ)
=

f(yt+1|hit+1, θ)f̂(h
i
t|Yt, θ)

q(hit|Yt+1, θ)
,

Wi =
F (yt+1|hit+1, θ)f̂(h

i
t|Yt, θ)

q(hit|Yt+1, θ)
,

f̂(yt+1|Yt, θ) = wt+1 =
1

I

I∑
i=1

wi, F̂ (yt+1|θ) = W t+1 =
1

I

I∑
i=1

Wi.

3. Increment t and go to 2.

C MCMC algorithm to compute the posterior ordinate

This section describes MCMC algorithm which may be used when computing the marginal

likelihood. It is a little less efficient than Algorithm 3, but still efficient enough to compute

the posterior ordinate.

Algorithm 4. The Markov chain Monte Carlo simulation is implemented in four blocks:

1. Initialize h and θ.
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2. Generate θ|h, y ∼ π(θ|h, y).

3. Generate h|θ, y ∼ π(h|θ, y).

4. Go to step 2.

Step 2. Generation of θ|h, y

We first transform θ to ϑ = (µ, log{(1+ϕ)/(1−ϕ)}, log σ2, β, log{(1+ρ)/(1−ρ)}), to remove

parameter constraints, and conduct Metropolis-Hastings (MH) algorithm to sample from the

conditional posterior distribution with density π(ϑ|h, y) = π(θ|h, y)× |dθ/dϑ| where |dθ/dϑ|

is the Jacobian of the transformation. Compute the posterior mode ϑ̂ and define ϑ∗ and Σ∗

as

ϑ∗ = ϑ̂, Σ−1
∗ = −∂2 log π(ϑ|h, y)

∂ϑ∂ϑ′

∣∣∣∣
ϑ=ϑ̂

.

Given the current value ϑ, generate a candidate ϑ† from the distribution N(ϑ∗,Σ∗) and

accept it with probability

α(ϑ, ϑ†|h, y) = min

{
1,

π(ϑ†|h, y)fN (ϑ|ϑ∗,Σ∗)

π(ϑ|h, y)fN (ϑ†|ϑ∗,Σ∗)

}
,

where fN (·|ϑ∗,Σ∗) is the probability density of N(ϑ∗,Σ∗). If candidate ϑ† is rejected, we

take the current value ϑ as the next draw. When the Hessian matrix is not negative definite,

we may take a flat normal proposal N(ϑ∗, c0I) using some large constant c0.

Step 3. Generation of h|θ, y

We sample h using the mixture sampler using the mixture of normal distributions as discussed

in the previous section. Define the pseudo target density

π̃(h, s|θ, y) = π(h|θ, y)× q(s|h, θ, y∗, d),

q(s|h, θ, y∗, d) =
n∏

t=1

p̃stg(y
∗
t , ht+1|ht, θ, st, d)∑10

i=1

∑2
j=0 p̃i,jg(y

∗
t , ht+1|ht, θ, st = (i, j), d)

,

where

g(y∗t ,ht+1|ht, θ, st, d) =

fN (y∗t |m̃st + ht, v
2
st)fN (ht+1|hst,t, σ2(1− ρ2)), t < n,

fN (y∗t |m̃st + ht, v
2
st) t = n,

hst,t = µ(1 + ϕ) + ϕht + ρσ[dt exp(m̃st/2){ast + bst(y
∗
t − ht − m̃st)} − β].

We generate sample (h, s) from the pseudo target density in two steps.
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(a) Generate s ∼ q(s|h, θ, y∗, d).

(b) Generate h|θ, s, y ∼ π̃(h|θ, s, y).

i. Propose a candidate h† = (h†1, ..., h
†
n) using a simulation smoother introduced by

de Jong and Shephard (1995) and Durbin and Koopman (2002) for the linear

space Gaussian state space model as in (14)-(16). The h† is a sample from

π∗(h|θ, s, y∗, d) =
∏n

t=1 g(y
∗
t , ht+1|ht, θ, st, d)
m(y∗|θ, s)

× fN

(
h1

∣∣∣∣µ, σ2

1− ϕ2

)
,

where m(y∗|θ, s) is a normalizing constant given by

m(y∗|θ, s) =
∫ n∏

t=1

g(y∗t , ht+1|ht, θ, st, d)× fN

(
h1

∣∣∣∣µ, σ2

1− ϕ2

)
dh.

ii. Let

f(yt,ht+1|ht, θ)

=

fN (yt|β exp(ht/2), exp(ht))fN (ht+1|ht, σ2(1− ρ2)), t < n

fN (yt|β exp(ht/2), exp(ht)), t = n,

ht = µ(1 + ϕ) + ϕht + ρσ{yt − β exp(ht/2)} exp(−ht/2).

Given the current value h, accept the candidate h† with probability

min

{
1,

π̃(h†|θ, s, y)π∗(h|θ, s, y∗, d)
π̃(h|θ, s, y)π∗(h†|θ, s, y∗, d)

}
= min

{
1,

π(h†|θ, y)q(s|h†, θ, y∗, d)π∗(h|θ, s, y∗, d)
π(h|θ, y)q(s|h, θ, y∗, d)π∗(h†|θ, s, y∗, d)

}
= min

{
1,

q(s|h†, θ, y∗, d)
∏n

t=1 f(yt, h
†
t+1|h

†
t , θ)g(y

∗
t , ht+1|ht, θ, st, d)

q(s|h, θ, y∗, d)
∏n

t=1 f(yt, ht+1|ht, θ)g(y∗t , h
†
t+1|h

†
t , θ, st, d)

}

= min

{
1,

∏n
t=1 f(yt, h

†
t+1|h

†
t , θ)

∑10
i=1

∑2
j=0 p̃i,jg(y

∗
t , ht+1|ht, θ, st = (i, j), d))∏n

t=1 f(yt, ht+1|ht, θ)
∑10

i=1

∑2
j=0 p̃i,jg(y

∗
t , h

†
t+1|h

†
t , θ, st = (i, j), d))

}
.

36


