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Abstract
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tion on the number of approximating functions, the posterior distribution satisfies the Bernstein-von
Mises theorem, even when the set of conditional moments contain misspecified moment conditions.
Large-sample theory for comparing different conditional moment models shows that the marginal
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unknown true distribution in terms of the Kullback-Leibler divergence. Examples to illustrate the
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1 Introduction

In this paper we extend Bayesian analysis under the empirical likelihood (for example, see Lazar

(2003), Schennach (2005), Fang and Mukerjee (2006), Chang and Mukerjee (2008), Mengersen, Pudlo

and Robert (2013), Vexler, Tao and Hutson (2014), Chib, Shin and Simoni (2018)), which deal with

unconditional moment restrictions, to the class of problems that are specified by a set of conditional

moment restrictions of the type

EP [ρ(X, θ)|Z] = 0, (1.1)

where ρ(X, θ) is a d-vector of known functions of a Rdx-valued random vector X and an unknown

parameter vector θ, and P is the unknown conditional distribution of X given a Rdz -valued random

vector Z. The parameter θ ∈ Θ ⊂ Rp is the parameter of interest. Conditional moment conditions, by

virtue of being more informative than unconditional moment restrictions, lead to sharper posterior in-

ferences for parameters and model comparisons. Interestingly, conditional moment restrictions arise in

various settings, for example, in causal inference, as in the framework of Rosenbaum and Rubin (1983)

where one assumes that the potential outcomes are independent of the treatment variable, conditioned

on covariates and, for example, in missing at random problems as considered by Hristache and Patilea

(2017). Inference by conditional moment restrictions avoids the full probability modeling of the out-

comes that is required by the classical Bayesian machinery, whether by parametric or non-parametric

Dirichlet process methods or its variants, and delivers Bayesian prior-posterior analyses under core,

minimally supportable assumptions, yet retaining the semi-parametric viewpoint.

Our analysis of conditional moment models relies on the nonparametric exponentially tilted empir-

ical likelihood (ETEL) family (Schennach, 2005) because of its better behavior under misspecification

(Schennach, 2007), a central feature of the problems considered in this paper. Our development differs

from the Bayesian analysis of related problems developed in Liao and Jiang (2011) (see also Florens

and Simoni (2012, 2016) and Kato (2013)). Our analysis covers a broad range of models that consider-

ably enlarge the category of problems that can be subjected to a formal Bayesian analysis, importantly,

without the necessity of auxiliary modeling and prior assumptions that would arise in classical Bayesian

treatments. As in the frequentist setting, for example, Donald, Imbens and Newey (2003) (see Kita-

mura, Tripathi and Ahn (2004) for a different approach), our procedure requires that the conditional

moment conditions are first transformed into unconditional moment conditions. This transformation is
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made through approximating functions qK(Z) = (qK1 (Z), . . . , qKK (Z))′, such as tensor product splines

from splines of each variable in Z, with the number of such functions, denoted by K, increasing with

the sample size n at a certain rate. Thus, instead of (1.1), inference is based on the expanded uncondi-

tional moment conditions

EP [ρ(X, θ)⊗ qK(Z)] = 0, (1.2)

where ⊗ is the Kronecker product operator. As K → ∞, (1.1) and (1.2) are equivalent under mild

assumptions. Given this equivalence, the posterior distribution, for each sample size, is based on the

ETEL function that is constructed from these expanded moment conditions. This ETEL function can

be interpreted in the current problem as a nonparametric likelihood that is consistent with the expanded

moment restrictions.

In our theoretical analysis, we study the behavior of the sequence of posterior distributions as K

increases with the sample size. The parameter K plays the role of a regularization parameter and our

asymptotic theory supplies the rate at which K must increase to ensure that the asymptotic posterior

variance achieves the semiparametric efficiency bound derived in Chamberlain (1987). Specifically, we

prove that, under regularity conditions, as K →∞ with the sample size n at a certain rate the posterior

distribution of θ satisfies the Bernstein von Mises (BvM) theorem with asymptotic posterior variance

equal to the semiparametric efficiency bound. As a result, Bayesian credible sets are asymptotically

valid efficient confidence sets. Because the number of unconditional moment conditions must increase

with sample size, the details of the theory are different from those in Chib, Shin and Simoni (2018).

This is primarily because quantities that are bounded with fixed moment restrictions, now diverge with

K, and the rate of this divergence has to be determined to stabilize the growth.

We also provide generalizations of our theory for conditional moment models that are misspecified

in the sense that the set of probability measures implied by the moment restrictions does not contain

the true data generating process P for every θ ∈ Θ. For such models, which can be considered to be

the norm in practical settings, we also establish a BvM-type phenomenon. We also develop the theory

for comparing different conditional moment models with the aim of finding the model (in the set of

contending models) that is closest in the Kullback-Leibler (KL) divergence to the true unknown distri-

bution. The theory is based on the marginal likelihood of each competing model, which we estimate

by the method of Chib (1995). Unlike Chib, Shin and Simoni (2018), it is not necessary to reformulate

models to have the same number of conditional moment restrictions, as long as each contending model
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contains at least one misspecified condition. Because of this simplification, the different conditional

models can be compared directly in terms of marginal likelihoods. Under regularity conditions, we

establish the model-consistency of the sequence of models picked according to the largest value of the

marginal likelihood. The theory shows that in the limit we select the model that is less misspecified,

that is, the model that contains the smaller number of misspecified moment restrictions. This is also

the model that is closet to the true distribution in the KL divergence.

The rest of the paper is organized as follows. Section 2 describes the conditional moment model

with motivating examples. In Section 3 we discuss the construction of the sequence of unconditional

moments, obtained from the conditional moments by an increasing (in sample size) vector of approx-

imating functions. We then consider the prior-posterior analysis and the asymptotic behavior of the

posterior distribution. Section 4 is concerned with the theory of model comparisons based on the large

sample behavior of the marginal likelihood. Along with various running examples to illustrate our

framework and results, Section 5 discusses issues that arise in higher dimensional problems and Sec-

tion 6 provides applications of our techniques in two causal inference problems. Proofs of the theorems

are included in the appendix, and in a supplementary appendix.

2 Setting and motivation

Let X := (X ′1, X ′z)′ be an Rdx-valued random vector and Z := (Z ′1, X ′z)′ be an Rdz -valued random

vector. The vectors Z and X have elements in common if the dimension of the subvector Xz is non-

zero. Moreover, we denote W := (X ′, Z ′1)′ ∈ Rdw and its (unknown) joint distribution by P . By

abuse of notation we use P also to denote the associated conditional distribution. We suppose that we

are given a random sample w1:n = (w1, . . . , wn) of W . Hereafter, we denote by EP [·] the expectation

taken with respect to P and by EP [·|·] the conditional expectation taken with respect to the conditional

distribution associated with P .

The parameter of interest is θ ∈ Θ ⊂ Rp which is related to the conditional distribution P through

the following conditional moment restrictions

EP [ρ(X, θ)|Z = z] = 0 (2.1)

for all z ∈ supp(Z) , Z , where ρ(X, θ) is a d-vector of known functions. Many interesting and

important models in statistics fall into this framework.
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Example 1 (Linear model with heteroscedastic error) Consider the following data generating process

(DGP)

yi = θ0 + θ1xi + εi, εi = s(xi)ui, (2.2)

where (xi, ui)′, i ≤ n, are independently drawn from some distribution P . Suppose the researcher does

not know the form of s(x), the heteroskedasticity function, or the distribution of ui. Then, the (con-

ditional) moment restrictions implied by the model without knowing the form of the heteroskedasticity

is

EP [(yi − θ0 − θ1xi)|xi] = 0 (2.3)

where Z in the conditioning set is equal to the scalar xi, ρ(X, θ) = (yi − θ0 − θ1xi), and d = 1. Now

suppose we want to impose conditional symmetry of εi. Then, our model is defined by the following

two conditional moment conditions

EP [(yi − θ0 − θ1xi)|xi] = 0

EP [(yi − θ0 − θ1xi)3|xi] = 0
(2.4)

In this case ρ(X, θ) is (2× 1) vector of functions, X1,i = yi, Xz,i = xi and the conditioning variable

Z is the scalar xi.

It is worth noting that the conditional moment model is different from the unconditional moment

model. For example, one could start the Bayesian analysis in Example 1 based on weaker assumptions

that εi is mean zero and uncorrelated with xi. In such case, relevant unconditional moment conditions

can be written as

EP [(yi − θ0 − θ1xi)⊗ (1, xi)′] = 0, (2.5)

More generally, one could always transform a conditional moment restriction model into a set of uncon-

ditional moment conditions EP [ρ(X, θ)⊗(1, Z ′)′] = 0, but this is less informative than the conditional

moment model.

3 Prior-Posterior analysis

3.1 Expanded Moment Conditions

Under certain circumstances (Bierens, 1982, Chamberlain, 1987), conditional moment restrictions are

equivalent to a countable number of unconditional moment restrictions. The equivalent set of uncon-

ditional moments are obtained through approximating functions, similarly as in Donald, Imbens and
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Newey (2003). Let qK(z) = (qK1 (z), . . . , qKK (z))′, K > 0, denote a K-vector of real-valued func-

tions of Z, for instance, splines, truncated power series, or Fourier series. Suppose that these functions

satisfy the following condition for the distribution P .

Assumption 3.1 For all K, EP [qK(Z)′qK(Z)] is finite, and for any function a(z) : Rdz → R with

EP [a(Z)2] <∞ there are K × 1 vectors γK such that as K →∞,

EP [(a(Z)− qK(Z)′γK)2]→ 0.

Now if EP [ρ(X, θ)′ρ(X, θ)] < ∞, then Donald, Imbens and Newey (2003, Lemma 2.1) estab-

lished that (1) if equation (2.1) is satisfied with θ = θ∗ then EP [ρ(X, θ∗)⊗ qK(z)] = 0 for all K; (2)

if equation (2.1) is not satisfied then EP [ρ(x, θ∗)⊗ qK(z)] 6= 0, ∀K large enough.

Thus, the prior-posterior analysis can be based on the expanded moment functions

g(W, θ) := ρ(X, θ)⊗ qK(Z) (3.1)

given the equivalence between the conditional moment restrictions and the limit of a sequence of un-

conditional moment restrictions.

Example 1 (continued) Let (τ1, . . . , τK) denote K knots, with the exterior knots τ1 and τK taken to

be the min and maximum values of the sample data x = (x1, . . . , xn), and the interior knots taken

to be specified quantile points of x. Let qK(x) = (q1(x), . . . , qK(x))′ denote (say) K natural cubic

spline basis functions, where qj(x) is the cubic spline basis function located at τ j . Let B denote the

(n×K) matrix of these basis functions evaluated at x, where the ith row of B is given by qK(xi)′. Let

(y − θ0 − θ1x) and (y − θ0 − θ1x)3 each denote n × 1 vectors where y = (y1, . . . , yn). Then, the

expanded moment conditions for the n sample observations are the n× 2K conditions

EP [ρ(x, θ)⊗ qK(z)] = EP
[
(y − θ0 − θ1x)�B

... (y − θ0 − θ1x)3 �B
]

= 0 (3.2)

where a � B is the operation in which the vector a is multiplied element by element into each column

of the matrix B,
... denotes matrix concatenation (column binding) and 0 is the matrix of zeros.

In our numerical examples, we use the natural cubic spline basis of Chib and Greenberg (2010)

based on zi to construct qK(zi). In the case with one conditioning variable, we set K ≈ n1/3−1/24

(so that we have K < n1/3) as suggested by the asymptotic analysis below. For example, when
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n = 500, we set K = 6 and when n = 2000 we set K = 9. If z consists of more than one

element, say (z1, z2, z3) where z1 and z2 are continuous variables and z3 is binary, then the basis

matrix B is constructed as follows. Let zj denote the n × 1 sample data on zj (j ≤ 3). Let Z =

(z1, z2, z1 � z2, z1 � z3, z2 � z3) denote the n × 5 matrix of the continuous data and interactions

of the continuous data and the binary data. Now suppose (τ j1, . . . , τ jK) are K knots based on each

column of Z and let Bj denote the corresponding n×K matrix of cubic spline basis functions. Then,

the basis matrix B is given by

B =
[
B1

... B∗2
... B∗3

... B∗4
... B∗5

... z3

]
where B∗j (j = 2, 3, 4, 5) is the n × (K − 1) matrix in which each column of Bj is subtracted from

its first and then the first column is dropped, see Chib and Greenberg (2010). Thus, the dimension of

this basis matrix is n× (5K − 4 + 1). To define the expanded moment conditions, let ρl(x, θ) (l ≤ d)

denote a n× 1 vector of the lth element of ρ(X, θ) evaluated at the sample data x. Then the expanded

moment conditions for the sample observations are obtained by multiplying ρl(x, θ) into the matrix B,

and concatenating, as

EP [ρ(x, θ)⊗ qK(z)] = EP [G(w, θ)] = 0

where

G(w, θ) =
[
ρ1(x, θ)�B

... ρ2(x, θ)�B
... · · ·

... ρd(x, θ)�B
]
.

We use versions of this approach to construct the expanded moment conditions in our examples.

3.2 Prior-posterior analysis

The conditional model (2.1) is semiparametric and is characterized by two parameters: the data distri-

bution P and the structural parameter θ, which is assumed to be finite dimensional. For a given value

of K, the prior on (θ, P ) is specified as π(θ)π(P |θ,K), where the prior on θ is standard. Our default

prior on θ is a product of independent student-t distributions with 2.5 degrees of freedom on each com-

ponent of θ. Our prior on P is related to the one proposed by Schennach (2005) for the unconditional

moment condition models, extended here to the case where the number of moment restrictions on P

is not fixed, but increases with the sample size. Schennach (2005)’s nonparametric prior is a mixture

of uniform probability densities, which is capable of approximating any distribution as the number of
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mixing components increases. Our modified prior on P , which is discussed in the online appendix,

restricts P to satisfy the expanded moment restrictions EP [g(W, θ)] = 0, given (θ,K).

As in the case of the unconditional moments problem, the posterior distribution of θ, after marginal-

ization over the nonparametric prior on P , has the form

π(θ|w1:n,K) ∝ π(θ)p(w1:n|θ,K) (3.3)

where

p(w1:n|θ,K) =
n∏
i=1

p̂i(θ) (3.4)

is the Exponential Tilting (ET) empirical likelihood (ETEL) for a given K, and {p̂i(θ), i = 1, . . . , n}

are the probabilities that minimize the KL divergence between the probabilities (p1, . . . , pn) assigned

to each sample observation and the empirical probabilities ( 1
n , . . . ,

1
n), subject to the conditions that

the probabilities (p1, . . . , pn) sum to one and that the expectation under these probabilities satisfy the

given unconditional moment conditions (3.1):

max
p1,...,pn

n∑
i=1

[−pi log(npi)] subject to:
n∑
i=1

pi = 1,
n∑
i=1

pig(wi, θ) = 0, pi ≥ 0. (3.5)

These probabilities are computed conveniently from the dual (saddlepoint) representation as

p̂i(θ) := eλ̂(θ)′g(wi,θ)∑n
j=1 e

λ̂(θ)′g(wj ,θ)
(i = 1, . . . , n) (3.6)

where λ̂(θ) = arg minλ∈RdK 1
n

∑n
i=1 e

λ′g(wi,θ) is the estimated tilting parameter. Therefore, on multi-

plying the ETEL function by the prior density of θ, the posterior distribution takes the form

π(θ|w1:n,K) ∝ π(θ)
n∏
i=1

eλ̂(θ)′g(wi,θ)∑n
j=1 e

λ̂(θ)′g(wj ,θ)
. (3.7)

Efficient simulation of θ from this posterior distribution is possible, in small dimension problems, with

the one block tailored Metropolis-Hastings (M-H) algorithm of Chib and Greenberg (1995), and, in

larger dimension problems, by the Tailored Randomized Block MH algorithm of Chib and Ramamurthy

(2010).

Example 1 (continued) To illustrate the prior-posterior analysis, we create a set of simulated data

{yi, xi}ni=1 from the regression model in 2.2 with covariates xi ∼ U(−1, 2.5), intercept θ0 = 1, slope

θ1 = 1, and εi is distributed according to

εi ∼ SN (m(xi), s(xi), w(xi)) (3.8)
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Figure 1: Scatter plot of (xi, εi). Red dashed line is a regression line. Black dots represent realizations
of (xi, εi). Contour lines based on the joint density function of (xi, εi) are presented in the figure.

where SN (m, s,w) is the skew normal distribution with location, scale, and shape parameter given

by (m, s,w), each depending on xi. When w is zero, εi is a normal distribution with mean m and

standard deviation s. We set m(xi) = −s(xi)
√

2/πw(xi)/(
√

1 + w(xi)2) so that EP [εi|xi] = 0.

As an illustration we generate a set of data {yi, xi}ni=1 with s(xi) =
√

exp(1 + 0.7xi + 0.2x2
i )

and w(xi) = 1 + x2
i . Under this setup εi is conditionally heteroscedastic and asymmetric. A sample of

500 realizations of (xi, εi) are presented in Figure 1.

Note that under this model, EP [ε|x] = 0, and inferences about (θ0, θ1) require just this core

restriction, without the need to model the heteroskedasticity or the skewness functions. We create

the expanded moment conditions in (3.2), with ρ(X, θ) = (y − θ0 − θ1x). Then, under the default

independent student-t prior with mean 0, dispersion 5, and degrees of freedom 2.5, implying a prior

standard deviation of (25 (2.5) /(2.5− 2))1/2 = 11. 18, the marginal posterior distribution of θ0 and

θ1 are summarized in the panel (a) of Table 1 for two different sample sizes. We note from the dispersion

of the posterior distribution, that the posterior distribution of both θ0 and θ1 shrink to the true value at

the
√
n-rate. In the next section we formally establish this behavior. For comparison, we also compute

the posterior distribution of (θ0, θ1) under the weaker assumption that εi is mean zero and uncorrelated

with xi. The relevant moment restrictions, given as in (2.5), are a subset of the expanded moment

conditions. As can be seen from panels (a) and (b) of Table 1, imposing the (correct) conditional

9



moment restrictions leads to about a 25% reduction in the posterior standard deviation of θ1, for each

of the two sample sizes.

Panel (a): EP [ε|x] = 0
Mean SD Median Lower Upper Ineff

n = 500 θ0 0.896 0.073 0.895 0.755 1.040 1.107
θ1 1.127 0.084 1.126 0.964 1.296 1.117

n = 2000 θ0 0.976 0.034 0.976 0.910 1.042 1.119
θ1 1.040 0.041 1.040 0.961 1.121 1.093

Panel (b): EP [ε] = 0,EP [εx] = 0
Mean SD Median Lower Upper Ineff

n = 500 θ0 0.854 0.079 0.854 0.704 1.010 1.092
θ1 1.198 0.115 1.196 0.980 1.432 1.141

n = 2000 θ0 0.962 0.036 0.962 0.893 1.032 1.092
θ1 1.053 0.055 1.053 0.947 1.162 1.101

Table 1: Difference between inferences from conditional vs unconditional moments. Data is generated
from a regression model with conditional heteroscedasticity and skewness. The true value of θ0 is 1
and that of θ1 is 1. Inference in the top panel is based on the single conditional moment restriction;
inference in the bottom panel is based on two unconditional moment restrictions. Results are based
on 20,000 MCMC draws beyond a burn-in of 1000. The M-H acceptance rate is around 95% in both
cases. “Lower” and “Upper” refer to the 0.05 and 0.95 quantiles of the simulated draws, respectively,
and “Ineff” to the inefficiency factor.

3.3 Asymptotic properties

In this section, we study asymptotic properties of the posterior distribution of θ from a frequentist point

of view. This means that we admit the existence of a true value θ∗ of the parameter of interest θ and

a true value P∗ of the data distribution P . When we are using the true distribution P∗, EP [·] (resp.

EP [·|·]) has to be understood as the expectation (resp. conditional expectation) taken with respect to

P∗ (resp. the conditional distribution associated with P∗). In addition, we denote

ρθ(X, θ) := ∂ρ(X, θ)
∂θ′

, D(z) := EP [ρθ(X, θ∗)|z],

Σ(z) := E[ρ(X, θ∗)ρ(X, θ∗)′|z], and ρjθθ(x, θ∗) := ∂2ρj(x, θ)/∂θ∂θ′.

For a vector a, ‖a‖ denotes the Euclidean norm. For a matrix A, ‖A‖ denotes the operator norm (the

largest singular value of the matrix). Finally, `n,θ(wi) := log p̂i(θ).
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The first assumption is a normalization for the second moment matrix of the approximating func-

tions which is standard in the literature, see e.g. Newey (1997) and Donald et al. (2003).

Assumption 3.2 For each K there is a constant scalar ζ(K) such that supz∈Z ‖qK(z)‖ ≤ ζ(K),

EP [qK(Z)qK(Z)′] has smallest eigenvalue bounded away from zero uniformly in K, and
√
K ≤

ζ(K).

The bound ζ(K) is known explicitly in a number of cases depending on the approximating functions

we use. Donald et al. (2003) provide a discussion and explicit formulas for ζ(K) in the case of splines,

power series and Fourier series. We also refer to Newey (1997) for primitive conditions for regression

splines and power series.

Assumption 3.3 The data Wi := (Xi, Zi), i = 1, . . . , n are i.i.d. according to P∗ and (a) there

exists a unique θ∗ ∈ Θ that satisfies EP [ρ(X, θ)|z] = 0 for the true P∗; (b) Θ is compact; (c)

EP [supθ∈Θ ‖ρ(X, θ)‖2|Z] is bounded.

This assumption is the same as Donald, Imbens and Newey (2003, Assumption 3). Part (d) of

this assumption imposes a Lipschitz condition which, together with part (c), allows to apply uniform

convergence results. The following three assumptions are also the same as the ones required by Donald,

Imbens and Newey (2003) to establish asymptotic normality of the Generalized Empirical Likelihood

estimator.

Assumption 3.4 (a) θ∗ ∈ int(Θ); (b) ρ(x, θ) is twice continuously differentiable in a neighbor-

hood U of θ∗, EP [supθ∈U ‖ρθ(X, θ)‖2|z] and EP [‖ρjθθ(X, θ∗)‖2|Z], j = 1, . . . d, are bounded; (c)

EP [D(X)D(X)′] is nonsingular.

Assumption 3.5 (a) Σ(z) has smallest eigenvalue bounded away from zero; (b) for a neighborhood U

of θ∗, EP [supθ∈U ‖ρ(x, θ)‖4|z] is bounded, and for all θ ∈ U , ‖ρ(x, θ) − ρ(x, θ∗)‖ ≤ δ(x)‖θ − θ∗‖

and EP [δ(X)2|Z] <∞.

Assumption 3.6 There is γ > 2 such that EP [supθ∈Θ ‖ρ(X, θ)‖γ ] <∞ and ζ(K)2K/n1−2/γ → 0.

The last assumption is about the prior distribution of θ and is standard in Bayesian literature estab-

lishing frequentist asymptotic properties of Bayes procedures.
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Assumption 3.7 (a) π is a continuous probability measure that admits a density with respect to the

Lebesgue measure; (b) π is positive on a neighborhood of θ∗.

Let π(
√
n(θ− θ∗)|w1:n) denote the posterior distribution of the local parameter h :=

√
n(θ− θ∗).

We are now able to state our first major result in which we establish the asymptotic normality and

efficiency of the posterior distribution of θ.

Theorem 3.1 (Bernstein - von Mises) Under Assumptions 3.1-3.7, if K → ∞, ζ(K)K2/
√
n → 0,

and if for any δ > 0, ∃ε > 0 such that as n→∞

P

(
sup

‖θ−θ∗‖>δ

1
n

n∑
i=1

(`n,θ(wi)− `n,θ∗(wi)) ≤ −ε
)
→ 1, (3.9)

then the posterior distribution of the local parameter h converges in total variation towards a random

Normal distribution, that is,

sup
B

∣∣∣π(
√
n(θ − θ∗) ∈ B|w1:n)−N∆n,θ∗ ,Vθ∗

(B)
∣∣∣ p→ 0 (3.10)

where B ⊆ Θ is any Borel set, ∆n,θ∗ := − 1√
n

∑n
i=1 Vθ∗D(zi)′Σ(zi)−1ρ(xi, θ∗) is bounded in proba-

bility and Vθ∗ :=
(
EP [D(Z)′Σ(Z)−1D(Z)]

)−1
.

We note that the centering ∆n,θ∗ of the limiting normal distribution satisfies 1√
n

∑n
i=1

d log p̂i(θ∗)
dθ −

V −1
θ∗

∆n,θ∗
p→ 0. We also note that the condition ζ(K)K2/

√
n → 0 in the theorem implies K/n → 0

which is a classical condition in the sieve literature. On the other hand, it is slightly stronger than the

condition ζ(K)K/
√
n → 0 required by Donald, Imbens and Newey (2003) to establish asymptotic

normality of the Generalized Empirical Likelihood estimators. The asymptotic covariance of the pos-

terior distribution coincides with the semiparametric efficiency bound given in Chamberlain (1987) for

conditional moment condition models. This means that, for every α ∈ (0, 1), (1− α)-credible regions

constructed from the posterior of θ are (1 − α)-confidence sets asymptotically. Indeed, they are cor-

rectly centered and have correct volume.

The proof of this theorem is given in the Appendix and consists of three steps. In the first step we

show consistency of the posterior distribution of θ, namely:

π
(√

n‖θ − θ∗‖ > Mn

∣∣w1:n
) p→ 0 (3.11)

for any Mn → ∞, as n → ∞. To show this, the identification assumption (3.9) is used. In the

second step we show that the ETEL function satisfies a stochastic Local Asymptotic Normality (LAN)
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expansion:

sup
h∈H

∣∣∣∣∣
n∑
i=1

`n,θ∗+h/
√
n(wi)−

n∑
i=1

`n,θ∗(wi)− h′V −1
θ∗

∆n,θ∗ −
1
2h
′V −1
θ∗
h

∣∣∣∣∣ = op(1) (3.12)

where H denotes a compact subset of Rp and V −1
θ∗

∆n,θ∗
d→ N (0, V −1

θ∗
). In the third step of the

proof we use standard arguments, see e.g. the proof of Van der Vaart (1998, Theorem 10.1), to show

that (3.11) and (3.12) imply asymptotic normality of π(
√
n(θ − θ∗) ∈ B|w1:n). While these three

steps are classical in proving Bernstein-von Mises phenomenon, here the main difficulty consists in

showing (3.12) because the ETEL function is a nonstandard likelihood function involving estimated

parameters whose dimension increases with K. Therefore, we first need to determine the rate of ‖λ̂‖,

‖ 1
n

∑n
i=1 g(wi, θ)‖ and of the norms of the empirical counterparts of D(z), Σ(z). For instance, the

tilting parameter λ̂(θ) has dimension dK, where K increases with n. Therefore, while ‖λ̂(θ∗)‖ is

expected to converge to zero in the correctly specified case, the rate of convergence is slower than

n−1/2. In the Appendix we show that ‖λ̂(θ∗)‖ = Op(
√
K/n) under the previous assumptions.

3.4 Misspecified model

We now turn our attention to conditional moment condition models that are misspecified. By misspec-

ified conditional model we mean the following.

Definition 3.1 (Misspecified model) We say that the conditional moment conditions model is misspec-

ified if the set of probability measures implied by the moment restrictions does not contain the true data

generating process P for every θ ∈ Θ, that is, P /∈ P where P =
⋃
θ∈Θ P̃θ and P̃θ = {Q ∈

MX|Z ; EQ[ρ(X, θ)|Z] = 0 a.s.} with MX|Z the set of all conditional probability measures of X|Z.

In essence, if (2.1) is misspecified then there is no θ ∈ Θ such that EP [ρ(X, θ)⊗ qK(Z)] = 0 almost

surely for every K large enough. Now, for every θ ∈ Θ define Q∗(θ) as the minimizer of the Kullback-

Leibler divergence of P∗ to the model Pθ := {Q ∈ M; EQ[g(W, θ)] = 0} where M denotes the set

of all the probability measures on Rdw . That is, Q∗(θ) := arginfQ∈PθK(Q||P∗), where K(Q||P∗) :=∫
log(dQ/dP∗)dQ. If we suppose that the dual representation of the Kullback-Leibler minimization

problem holds, then the P∗-density of Q∗(θ) has the closed form: [dQ∗(θ)/dP∗](wi) = eλ
′
◦g(wi,θ)

EP [eλ
′
◦g(wj,θ)]

where λ◦ denotes the tilting parameter and is defined in the same way as in the correctly specified case:

λ◦ := λ◦(θ) := arg min
λ∈RdK

EP [eλ
′g(wi,θ)]. (3.13)

13



However, under misspecification the dual theorem is not guaranteed to hold. In fact, when the

model is misspecified, the probability measures in P :=
⋃
θ∈θ Pθ, which are implied by the model,

might not have a common support with the true P∗, see Sueishi (2013) for a discussion on this point.

Following Sueishi (2013, Theorem 3.1), in order to guarantee validity of the dual theorem we introduce

the following assumption. This assumption replaces Assumption 3.3 (a) in misspecified models.

Assumption 3.8 For a fixed θ ∈ Θ, there exists Q ∈ Pθ such that Q is mutually absolutely continuous

with respect to P , wherePθ := {Q ∈M; EQ[g(W, θ)] = 0} and M denotes the set of all the probability

measures on Rdw .

This assumption implies that Pθ is non-empty. A similar assumption is also made by Kleijn and van der

Vaart (2012) and Chib et al. (2018) to establish the BvM under misspecification. The pseudo-true value

of the parameter θ ∈ Θ is denoted by θ◦ and is defined as the minimizer of the Kullback-Leibler

divergence between the true P∗ and Q∗(θ):

θ◦ := arginfθ∈ΘK(P∗||Q∗(θ)) (3.14)

where K(P∗||Q∗(θ)) :=
∫

log(dP∗/dQ∗(θ))dP∗. Under the preceding absolute continuity assump-

tion, the pseudo-true value θ◦ is available as

θ◦ = argmaxθ∈ΘEP log
(

eλ
′
◦g(wi,θ)

EP [eλ′◦g(wj ,θ)]

)
. (3.15)

Note that λ◦(θ◦), the value of the tilting parameter at the pseudo-true value θ◦, is nonzero because the

moment conditions do not hold.

Assumption 3.8 implies that K(Q∗(θ◦)||P∗) < ∞. We supplement this with the assumption that

K(P∗||Q∗(θ◦)) < ∞ and that K(P∗||Q∗(θ)) < ∞, ∀θ ∈ Θ. Because consistency in misspecified

models is defined with respect to the pseudo-true value θ◦, we need to replace Assumption 3.7 (b) by

the following assumption which, together with Assumption 3.9 (a), requires the prior to put enough

mass to balls around θ◦.

Assumption 3.9 (a) π is a continuous probability measure that admits a density with respect to the

Lebesgue measure; (b) The prior distribution π is positive on a neighborhood of θ◦ where θ◦ is as

defined in (3.15).
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In the next assumption we denote by int(Θ) the interior of Θ and by U a ball centred at θ◦ with radius

h/
√
n for some h ∈ H andH a compact subset of Rp.

Assumption 3.10 The data Wi := (Xi, Zi), i = 1, . . . , n are i.i.d. according to P∗ and

(a) The pseudo-true value θ◦ ∈ int(Θ) is the unique maximizer of

λ◦(θ)′EP [g(W, θ)]− log EP [exp{λ◦(θ)′g(W, θ)}],

where Θ is compact;

(b) λ◦(θ) ∈ int(Λ(θ)) where Λ(θ) is a compact set for every θ ∈ Θ and λ◦ is as defined in (3.13);

(c) ρ(x, θ) is continuous at each θ ∈ Θ with probability one;

(d) ρ(x, θ) is twice continuously differentiable in the neighborhood U of θ◦, EP [supθ∈U ‖ρθ(x, θ)‖4|Z]

and EP [supθ∈U eλ◦(θ◦)
′gi(θ)‖ρjθθ(x, θ)‖2|Z], j = 1, . . . d, are bounded;

(e) for the neighborhood U of θ◦,

EP [eλ◦(θ◦)′g(W,θ◦)‖ρ(x, θ◦)‖2‖qK(Z)‖] = O(K)

and for all θ ∈ U , ‖ρ(x, θ)− ρ(x, θ◦)‖ ≤ δ(x)‖θ − θ◦‖, EP [δ(X)2|Z] <∞ and

EP [eλ◦(θ◦)′g(W,θ◦)δ(X)2‖qK(Z)‖2] = O(K)

(f) for the neighborhood U of θ◦ and for κ = 1, 2, j = 2, 4 it holds that

EP [sup
θ∈U

eκλ◦(θ◦)
′g(W,θ)‖g(Wi, θ)‖j ] = O(ζ(K)j−2K)

and EP [supθ∈U eκλ◦(θ◦)
′g(W,θ)‖G(W, θ)‖j ] = O(ζ(K)j−2K), where ζ(K) is as defined in Assump-

tion 3.2;

(g) E[eλ◦(θ◦)′g(W,θ◦)ρ(X, θ◦)ρ(X, θ◦)′|Z] has smallest eigenvalue bounded away from zero;

(h) letH be a compact subset of Rp, it holds

sup
h∈H

E[g(Wi, θ◦)′]
(
dλ̂(θ◦)
dθ′

− dλ◦(θ◦)
dθ′

)
h = Op(n−1/2)

where λ̂(θ◦) is the solution of En[eλ̂(θ◦)′g(wi,θ◦)g(wi, θ◦)] = 0, and En[·] := 1
n

∑n
i=1[·] is the empirical

mean operator.

Assumption 3.10 (a) guarantees uniqueness of the pseudo-true value and is a standard assumption in

the literature on misspecified models (see e.g. White (1982)). Assumption 3.10 (d) is the misspec-

ified counterpart of Assumption 3.4 (a) and 3.5 (b). Remark that the presence of the exponential
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eλ◦(θ◦)
′g(W,θ◦) inside the expectations in Assumption 3.10 (e)-(g) is due to the fact that in the misspeci-

fied case the pseudo-true value of the tilting parameter λ◦(θ◦) is not equal to zero as it is in the correctly

specified case. Assumptions 3.10 (e) and (f) impose an upper bound on the rate at which the norms

of K-vector and (dK × p)-matrices are allowed to increase. Assumption 3.10 (g) is the misspecified

counterpart of Assumption 3.5 (a). Finally, 3.10 (h) guarantees that one of the terms in the random

vector ∆n,θ◦ , which is introduced in Theorem 3.2 below, is bounded in probability.

We are now in a position to state our next important theorem, the Bernstein - von Mises theorem

for misspecified models.

Theorem 3.2 (Bernstein - von Mises (misspecified)) Let Assumptions 3.1, 3.2, 3.6, 3.8, 3.9 and 3.10

hold. Assume that there exists a constant C > 0 such that for any sequence Mn →∞,

P

(
sup

‖θ−θ◦‖>Mn/
√
n

1
n

n∑
i=1

(`n,θ(wi)− `n,θ◦(wi)) ≤ −CM2
n/n

)
→ 1, (3.16)

as n → ∞. If K → ∞, ζ(K)K2√K/n → 0, then the posteriors converge in total variation towards

a Normal distribution, that is,

sup
B

∣∣∣∣π(
√
n(θ − θ◦) ∈ B|w1:n)−N∆n,θ◦ ,A

−1
θ◦

(B)
∣∣∣∣ p→ 0 (3.17)

where B ⊆ Θ is any Borel set, ∆n,θ◦ is a random vector bounded in probability and A−1
θ◦

is a nonsin-

gular matrix.

The expressions for Aθ◦ is given in (B.20) in the Appendix. Just as in Kleijn and van der Vaart (2012),

this theorem establishes that the posterior distribution of the centered and scaled parameter
√
n(θ−θ◦)

converges to a Normal distribution with a random mean that is bounded in probability. Its proof is based

on the same three steps as the proof of Theorem 3.1 in the correctly specified case with θ∗ replaced by

the pseudo-true value θ◦. There are however important differences in proving that the ETEL function

satisfies a stochastic LAN expansion in the misspecified case. First of all the limit of λ̂(θ◦) is λ◦(θ◦)

which is different from zero. Therefore, several terms that were equal to zero in the LAN expansion for

the correctly specified case are non-zero in the misspecified case and we have to deal with their limit in

distribution. Second, the quantity 1√
n

∑n
i=1 g(wi, θ◦) is no longer centered on zero which leads to an

additional bias term. Part of the behavior of this term is controlled buy Assumption 3.10 (h).
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Furthermore, our proof makes use of a stochastic LAN expansion of the ETEL function, which we

prove (under the assumptions of the theorem) takes the form

sup
h∈H

∣∣∣∣∣
n∑
i=1

`n,θ1(wi)−
n∑
i=1

`n,θ◦(wi)− h′Aθ◦∆n,θ0 −
1
2h
′Aθ◦h

∣∣∣∣∣ = op(1)

where ∆n,θ0 and Aθ◦ are as in the statement of Theorem 3.2.

4 Model Comparison: Misspecified models

The comparison of different moment models, with the aim of selecting the best model, is central in

practice (for example, Vexler, Deng and Wilding (2013), Vexler, Yu and Lazar (2017), Chib, Shin and

Simoni (2018)). In this section we consider this question for conditional moment models. Our idea is

to screen these different models in terms of the marginal likelihood of each competing model, selecting

the model with the largest marginal likelihood.

We show that such a marginal likelihood selection criterion selects the model that is the closest to

the true distribution P∗ in terms of the Kullback-Leibler (KL) divergence. Thus, if all the models are

misspecified the marginal likelihood selection procedure isolates the less misspecified one. Because

the KL divergence is zero if and only if the true distribution belongs to the model considered, our

procedure can determine, up to statistical error, which model is correctly specified if one knows that

there is a correctly specified model.

Comparison of conditional moment condition models differs in one important respect from the

framework for comparing unconditional moment condition models that was established in Chib et al.

(2018), where it is shown that to make the unconditional moment condition models comparable it is

necessary to linearly transform the moment functions so that all the transformed moments are included

in each model. This linear transformation consists of adding an extra parameter different from zero

to the components of the vector g(θ,W ) that correspond to the restrictions not included in a specific

model. When comparing conditional moment models, however, this transformation is not necessary

because the convex hulls associated with different expanded models have the same dimension asymp-

totically.

Let M` denote the `-th model in the comparison set of models. Each model is characterized by

a parameter θ` and an extended moment function g`(W, θ`). For each model M`, we impose a prior

distribution for θ`, and obtain the posterior distribution based on (3.7). Then, we select the model
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with the largest marginal likelihood, denoted by m(w1:n|M`), which we calculate by the method of

Chib (1995) as extended to Metropolis-Hastings samplers in Chib and Jeliazkov (2001). This method

makes computation of the marginal likelihood simple and is a key feature of our procedure. The main

advantage of the Chib (1995) method is that it is calculable from the same inputs and outputs that are

used in the MCMC sampling of the posterior distribution. The starting point of this method is the

following identity of the log-marginal likelihood introduced in Chib (1995):

logm(w1:n|M`) = log π(θ̃`|M`) + log p(w1:n|θ̃
`
,M`)− log π(θ̃`|w1:n,M`), (4.1)

where θ̃
`

is any point in the support of the posterior (such as the posterior mean) and the dependence

of the terms on the right hand side on the model M` has been made explicit. The first two terms on

the right-hand side of this decomposition are available directly whereas the third term can be estimated

from the output of the MCMC simulation of the posterior distribution.

4.1 Model selection consistency results

In this section we establish the consistency of our marginal likelihood based selection procedure.

This result is stated in Theorem 4.1 below. It states that if we compare J misspecified models, then

the marginal likelihood based selection procedure selects the model with the smallest KL divergence

K(P ||Q∗(θ`)) between P andQ∗(θ`), whereQ∗(θ`) is such thatK(Q∗(θ`)||P ) = infQ∈P
θ`
K(Q||P )

andPθ` is defined in Section 3.4. Under Assumption 3.8, dQ∗(θ`)/dP = eλ◦(θ)
′A(X,θ)/EP

[
eλ◦(θ)

′A(X,θ)
]

by the dual theorem, as defined in Section 3.4. Because the I-projection Q∗(θ`) on Pθ` is unique

(Csiszar (1975)), whichQ∗(θ`) is closer to P (in terms ofK(P ||Q∗(θ`))) depends only on the “amount

of misspecification” contained in each model Pθ` . We then have the following theorem.

Theorem 4.1 Let the assumptions of Theorem 3.2 hold. Let us consider the comparison of J < ∞

models Mj , j = 1, . . . , J that each has at least one misspecified moment, that is, Mj does not satisfy

Assumption 3.3 (a), ∀j. Then,

lim
n→∞

P

(
logm(w1:n;Mj) > max

`6=j
logm(w1:n;M`)

)
= 1

if and only if K(P ||Q∗(θj◦)) < min 6̀=jK(P ||Q∗(θ`◦)), where K(P ||Q) :=
∫

log(dP/dQ)dP .

Note that if one model in the contending set of models is correctly specified, then this model will

have zero KL divergence and, therefore, according to Theorem 4.1, that model will have the larger

marginal likelihood and will be selected by our procedure.

18



4.2 Remarks and examples

We now explore and explain the various ramifications of the preceding result, which covers both nested

and non-nested models. Focusing on the more general non-nested situation, the first setting is one

where we have misspecified models that involve different moment conditions and different conditioning

variables:

Model 1: EP [ρ1(X1, θ1)|Z1] = 0, Model 2: EP [ρ2(X2, θ2)|Z2] = 0, (4.2)

where X1 and X2 (resp. θ1 and θ2) either have all or some or none elements in common and Z1 and

Z2 may have some elements in common.

Example 2 (Variable selection, comparing misspecified and non-nested models). Suppose that we

compare the following two models

M1 : E[(yi − θ0 − θ2x2,i)|x2,i] = 0

M2 : E[(yi − θ0 − θ3x3,i)|x3,i] = 0

where the two covariates x2,i and x3,i are competing against each other. We generate data from the

following mechanism

yi = 1 + x2
2,i + x3

3,i + εi, E[εi|x1,i, x2,i, x3,i] = 0.

with x2 entering as a square and x3 as a cube. Because relevant covariates in bothM1 andM2 enter

linearly, both models are misspecified, butM2 is more misspecified. We generate xi = [x1,i, x2,i, x3,i]′

from a correlated Gaussian copula with the same uniform marginals, U [−1, 2.5]. Diagonal elements

of the covariance matrix for this Gaussian copula are all 1 and off-diagonal elements are cov(x1,x2)

= cov(x1,x3) = 0.5, and cov(x2,x3) = 0. The error εi is identically and independently drawn from the

skew normal distribution with the following covariate-dependent parameters,

m(xi) = −s(xi)
√

2/π w(xi)√
1 + w(xi)2

s(xi) =
√

exp(1 + 0.2x2
1,i) , w(xi) = 1 + x2

1,i.

In Table 2 we present posterior summaries based on both M1 and M2, and the corresponding

marginal likelihood of both models.M1 has lower marginal likelihood, therefore, it is less misspecified

thanM2 according to our theory.
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Table 2: Variable selection, n = 500

Comparing misspecified and non-nested models
M1: ML=-3134.75

Mean SD Median Lower Upper Ineff
θ0 4.60 0.20 4.59 4.28 4.95 1.35
θ2 1.57 0.13 1.57 1.35 1.79 1.26
M2: ML=-3444.08

Mean SD Median Lower Upper Ineff
θ0 3.50 0.07 3.50 3.38 3.61 1.36
θ3 3.22 0.06 3.22 3.12 3.31 1.12

Note: The posterior summaries are based on 20,000 MCMC draws beyond a burn-in of 1000.

The second situation that we consider is one in which we have different moment conditions but the

same conditioning variables:

Model 1: EP [ρ1(X1, θ1)|Z] = 0, Model 2: EP [ρ2(X2, θ2)|Z] = 0, (4.3)

where X1 and X2 (resp. θ1 and θ2) either have all or some or none elements in common. An example

of this is the case where we are unsure about which covariate we have to include in a regression model,

as discussed in the following example.

Example 3 (Variable selection, selecting a correct model). Consider a linear regression model with

two explanatory variables

yi = θ0 + θ1x1,i + θ2x2,i + εi, E[εi|x1,i, x2,i] = 0

where θ = [θ0, θ1, θ2]′. Suppose that we are interested in whether x2,i should be included or not. To

this end we can compare the following two models

M1 :E[(yi − θ0 − θ1x1,i)|x1,i, x2,i] = 0

M2 :E[(yi − θ0 − θ1x1,i − θ2x2,i)|x1,i, x2,i] = 0.

Note thatM1 implies that E[(yi − θ0 − β1x1,i)|x1,i] = 0 meaning that the x2,i does not influence the

conditional mean of yi conditional on x1,i. Applying our preceding theorem to this problem, when the

true θ2 is zero, then the marginal likelihood is higher forM1. When the true θ2 is not zero, then the

marginal likelihood is higher for M2. If both models are wrong, the marginal likelihood selects the

model with lower KL divergence.
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To see these results in action, we generate sample data on xi = [x1,i, x2,i]′ from a correlated

Gaussian copula with the same uniform U [−1, 2.5] marginal distribution. Now, let us consider two

cases. In Case 1, we assume that θ = (θ0, θ1, θ2) = [1, 1, 0]′, and

εi ∼ SN (m(xi), s(xi), w(xi))

where SN (m, s,w) is the skew normal distribution with location, scale, and shape parameters speci-

fied as follows:

m(xi) = −s(xi)
√

2/π w(xi)√
1 + w(xi)2

s(xi) =
√

exp(1 + 0.5x1,i + 0.1x2
1,i), w(xi) = 1 + x2

1,i.

In Case 1, M1 is expected to have higher marginal likelihood. From Table 3 we see that this is

what occurs. Table 3 also presents posterior summaries and the corresponding marginal likelihood of

Table 3: Variable selection (Case 1), n = 500

Case 1
M1: ML=-3122.68

Mean SD Median Lower Upper Ineff
θ0 1.148 0.063 1.149 1.027 1.271 1.108
θ1 1.063 0.064 1.063 0.937 1.187 1.073
M2: ML=-3126.73

Mean SD Median Lower Upper Ineff
θ0 1.152 0.067 1.152 1.018 1.282 1.167
θ1 1.073 0.098 1.074 0.883 1.265 1.151
θ2 -0.013 0.096 -0.014 -0.200 0.172 1.108

Note: The posterior summaries are based on 20,000 MCMC draws beyond a burn-in of 1000.

modelsM1 andM2.

In Case 2, we assume that θ = (1, 1, 0.5)′, and

m(xi) = −s(xi)
√

2/π w(xi)√
1 + w(xi)2

s(xi) =
√

exp(1 + 0.5x1,i + 0.1x2
1,i + 0.3x2,i) , w(xi) = 1 + x2

1,i + 0.5x2,i

In this case,M2 is expected to have the higher marginal likelihood, precisely what we see in Table 4.

The third situation is the one where we have the same moment conditions but different conditioning

variables:

Model 1: EP [ρ(X, θ)|Z1] = 0, Model 2: EP [ρ(X, θ)|Z2] = 0, (4.4)
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Table 4: Variable selection (Case 2), n = 500

Case 2
M1: ML=-3133.14

Mean SD Median Lower Upper Ineff
θ0 1.281 0.059 1.281 1.167 1.396 1.111
θ1 1.455 0.071 1.454 1.316 1.592 1.055
M2: ML=-3125.88

Mean SD Median Lower Upper Ineff
θ0 1.180 0.066 1.180 1.049 1.308 1.159
θ1 1.112 0.102 1.113 0.912 1.313 1.115
θ2 0.459 0.098 0.458 0.267 0.651 1.116

Note: The posterior summaries are based on 20,000 MCMC draws beyond a burn-in of 1000.

where Z1 and Z2 may have some elements in common, in particular Z2 might be a subvector of Z1 (or

vice versa). An example of this is when we are unsure about the validity of instrumental variables in

an instrumental regression model, as discussed in the following example.

Example 4 (Comparing IV models) Consider the following model with three instruments (z1, z2, z3):

yi = θ0 + θ1xi + e1,i

xi = f(z1,i, z2,i, z3,i) + e2,i

z1,i ∼ U [0, 1] and z2,i ∼ U [0, 1] and z3 ∼ B(0.4)

where (e1,i, e2,i)′ are non-Gaussian and correlated, which makes x in the outcome model correlated

with the error e1. We let the true value of θ = (θ0, θ1) be (1, 1). Moreover, suppose that zj’s are

relevant instruments, that is, cov(xi, zj,i) 6= 0 for j ≤ 3, and

f(z1,i, z2,i, z3,i) = 6(
√

0.3z1,i +
√

0.7z2,i)3(1−
√

0.3z1,i −
√

0.7z2,i)z3,i + z1iz2,i(1− z3,i). (4.5)

We consider a situation in which some instruments are valid and some are not, and we are interested

in selecting valid instruments from a set of instruments. To this end, we generate (e1,i, e2,i, z1,i) from a

Gaussian copula whose covariance matrix is

Σ =

 1 0.7 0.7
0.7 1 0
0.7 0 1


such that the marginal distribution of e1,i is the skewed mixture of two normal distributions 0.5N (0.5, 0.52)+

0.5N (−0.5, 1.1182) and the marginal distribution of e2,i is N (0, 1). Under this setup, z1 is now an
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invalid instrument. We consider the following three models

M1 : EP [(yi − θ0 − θ1xi)|z1,i, z2,i, z3,i] = 0 (4.6)

M2 : EP [(yi − θ0 − θ1xi)|z1,i, z3,i] = 0 (4.7)

M3 : EP [(yi − θ0 − θ1xi)|z2,i, z3,i] = 0. (4.8)

Because z1,i is invalid instrument,M1 andM2 are wrong.

For purpose of inference about θ forM1, Our basis matrix B is made from the variables

(z1, z2, z1 � z2, z1 � z3, z2 � z3) ,

each using five knots, concatenated with the vector z3. This matrixB has 22 columns, which equals the

number of expanded moment conditions. The prior for θ0 and θ1 is the product of Student-t distributions

with mean zero, dispersion 5, and degrees of freedom equal to 2.5. Estimation and calculation of the

marginal likelihood forM2 andM3 are special case ofM1.

Table 5 calculates the marginal likelihoods of all the three models for two simulated samples. Note

that the model with the valid instruments (M3) is correctly specified and it has the highest marginal

likelihood, in conformity with our theory.

Table 5: Model comparison: IV regression example

M1 M2 M3

n = 500 Marginal Likelihood -3160.65 -3130.36 -3118.76
(0.032) (0.123) (0.004)

n = 2, 000 Marginal Likelihood -15350.08 -15262.06 -15217.79
(0.188) (0.370) (0.001)

Note: The posterior summaries are based on 20,000 MCMC draws beyond a burn-in of 1000.
Numerical standard errors are in parenthesis.

5 Empirical Issues in Higher Dimensions

In this section, we discuss two problems that arise in higher dimensions. One is the question of variable

selection with a large set of covariates and the other is posterior simulation when the dimension of θ is

large.
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5.1 Model search

Suppose we have a large set of covariates, but only a small subset of regressors is assumed to be active.

That is, the model is sparse. In this situation, one can conduct a “sparsity-endowed model search” by

which we mean the comparison of all models that contain at most L covariates. For example, when

we have 10 potential covariates and L = 5, the sparsity-endowed model search would involve the

marginal likelihood based comparison of
∑5
l=1
(10
l

)
= 2, 560 models. We illustrate this search with the

IV regression example.

Example 4 (continued) (Selecting exogenous regressors in IV regression). Consider the IV model with

additional exogenous regressors (w = [w1, w2, ..., w10]′):

yi = θ0 + θ1xi + w′iγ + e1,i

where wk,i ∼i.i.d. N (0, 1), E[e1,iwi] = 0, and under the true P , γ1 = γ2 = γ3 = 1 and all other γk’s

are zero. The other components of the model are the same as before in the previous Example 2. Then

M3 with these additional exogenous regressors can be represented as

EP [(yi − θ0 − θ1xi − w′iγ)|z2,i, z3,i] = 0 and EP [(yi − θ0 − θ1xi − w′iγ)wi] = 0.

To illustrate our model selection strategy we set the maximum number of possible covariates at L =

5. For each model we compute the marginal likelihood based on 20,000 MCMC draws following a

burn-in of 1,000 MCMC cycles. We set a prior for γk’s as independent Student-t distribution with

mean zero, dispersion 5, and degrees of freedom equal to 2.5. Table 6 presents the model with the

highest marginal likelihood among the models with the same number of covariates. As can be seen,

our marginal likelihood based model selection strategy is able to locate the true model, that is, to select

the correct number of active covariates as well as the correct identity of the active covariates.

5.2 TaRB-MH

The examples in the paper thus far have intentionally limited the dimension of θ in order to focus on

the theoretical aspects of our method. In this section, we present an example where the size of θ is

considerably larger. Instead of simulating the posterior distribution with the one-block M-H algorithm,

which now, with large size of θ, tends to becomes less efficient (in the simulation sense), we employ the

Tailored Randomized Block MH algorithm of Chib and Ramamurthy (2010) to sample the posterior
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Group 1 Group 2 Group 3 Group 4 Group 5

# of models 10 90 360 840 1260
Best model {w9} {w9, w10} {w1, w2, w3} {w1, w2, w3, w9} {w6, w7, w8, w9, w10}

Marginal Likelihood -3142.21 -3141.65 -3137.57 -3141.02 -3144.59
(0.021) (0.034) (0.010) (0.016) (0.051)

Table 6: Model comparison (n = 500): IV regression example with additional covariates. Group l is
the set of models with l number of covariates. # of models indicates the total number of models based
on l covariates. There are 2,560 models in total. Best model presents the combination of covariates
that are selected by marginal likelihood. The summaries are based on 20,000 MCMC draws beyond a
burn-in of 1,000. Numerical standard errors are in parenthesis.

distribution. The TaRB-MH algorithm has proved useful in several other highly non-linear settings. As

we now show by way of an example, it is similarly useful in sampling the posterior distribution of the

conditional moment model. To conserve space, we suppress the details of how this algorithm works

since these follow closely the implementation given in the preceding source paper.

Example 4 (continued) (IV regression with additional exogenous regressors). We generate 1,000 ob-

servations from the previous IV regression model with additional exogenous regressors

yi = θ0 + θ1xi + w′iγ + e1,i

where both [w1,i, w2,i, w3,i, w4,i, w5,i]′ and [w6,i, w7,i, w8,i, w9,i, w10,i]′ are identically and indepen-

dently drawn from N (0,Σ(ρ)) where Σ(ρ) is 5 × 5 matrix. Diagonal elements in Σ(ρ) are set to one

and off-diagonal elements are set to ρ. We set ρ = 0.9 and γk = 1 for all k. Other elements of the

DGP are unchanged. Table 7 presents the posterior summaries of the posterior distribution based on

the same conditional moment conditions, based on the one-block and TaRB-MH samplers. It is evident

that the TaRB-MH sampler dominates the one-block MH sampler in terms of simulation efficiency as

measured by the inefficiency factor, the ratio of the numerical variance of the mean to the variance

of the mean assuming independent draws: an inefficiency factor close to 1 indicates that the MCMC

draws, although serially correlated, are essentially independent.

6 Moment-based Causal Inference

In this section we illustrate the application of our techniques in the estimation of causal parameters

in two problems, the average treatment effect (ATE) estimation under a conditional independence as-
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One-block-MH TaRB-MH
Mean SD Ineff Mean SD Ineff

θ0 1.00 0.04 60.30 1.00 0.04 2.55
θ1 0.95 0.14 128.40 0.95 0.13 4.11
γ1 1.00 0.03 31.06 0.99 0.03 4.68
γ2 0.98 0.10 21.13 0.98 0.09 3.04
γ3 0.85 0.10 11.40 0.85 0.10 2.02
γ4 1.19 0.11 16.16 1.19 0.10 2.31
γ5 1.04 0.10 23.77 1.04 0.10 1.59
γ6 1.02 0.03 33.43 1.02 0.03 2.57
γ7 0.96 0.10 74.61 0.97 0.09 1.88
γ8 1.01 0.10 71.14 1.01 0.09 1.98
γ9 0.92 0.10 26.78 0.92 0.10 3.13
γ10 1.00 0.10 42.85 1.00 0.10 2.33

Table 7: Posterior summary of IV regression example with additional covariates (n = 1000). The
true value of all parameters (θ’s and γ’s) are set to one. The summaries are based on 50,000 MCMC
draws beyond a burn-in of 10,000 for the one-block-MH sampler and 5,000 draws beyond a burn-in of
1,000 for the TaRB-MH. The M-H acceptance rate is around 52% for the one-block-MH and 93% for
TaRB-MH. The average size of blocks in each iteration for the TaRB-MH is around 6.5. “Ineff” is the
inefficiency factor.

sumption, and the regression-discontinuity (RD) ATE estimation under a sharp-design.

6.1 Average treatment effect (ATE) estimation

A standard problem in causal inference with a binary treatment xi ∈ {0, 1}, for control and treated,

respectively, and covariates zi : d × 1 assumes that the two potential outcomes yi0 and yi1 for n

randomly chosen subjects satisfy the conditional independence assumption (Rosenbaum and Rubin,

1983)

(yi0, yi1)⊥xi|zi.

If we let EP (yi1|zi) − EP (yi0|zi) denote the ATE conditional on zi for the ith subject, then the goal

of the analysis is to calculate the ATE given by

ATE = 1
n

n∑
i=1

(
EP (yi1|zi)−EP (yi0|zi)

)
.

We show that the conditional moment technique developed above is ideally suited for calculating the

posterior distribution of this quantity, under minimal assumptions. We just need to make assumptions
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about the conditional expectations EP (yij |zi) (j = 0, 1) without specifying (or restricting) the condi-

tional distributions of yij |zi in any further way. For illustration, suppose that

EP (yij |zi) = z′iβj , j = 0, 1.

Also suppose that there are n0 control subjects, and that the data are organized such that the observa-

tions i ≤ n0 are the data on the controls, and the observations i > n0 are the data on the treated. Then,

the latter conditional expectations imply that estimation of β0 can be based on the conditional moment

conditions

EP ((yi0 − z′iβ0)|zi) = 0 (i ≤ n0)

since yi0 is observed for such subjects, and that independently, estimation of β1 can be based on the

conditional moment conditions

EP ((yi1 − z′iβ1)|zi) = 0 (i > n0)

since yi1 is observed for these subjects. Now, suppose that our prior-posterior analysis is applied to

these sets of moment conditions to produce the MCMC samples

{βg0}
M
g=1 ∼ π(β0| {yi0, zi}

n0
i=1) and {βg1}

M
g=1 ∼ π(β1| {yi1, zi}i>n0

).

Then, the Bayes posterior sample of the ATE is given by the sequence of values

ATE(g) = 1
n

n∑
i=1

(
z′iβ

(g)
1 − z

′
iβ

(g)
0

)
, g = 1, 2, . . . ,M.

As an illustration of this approach, consider n = 500, 1000 and 2000 observations generated

from the following DGP. First, suppose that z1 and z2 are generated from a Gaussian copula whose

covariance matrix has 1 on the diagonal, and 0.7 on the off-diagonal, such that the marginal distribution

of z1 is uniform on (0, 1) and the marginal distribution of z2 is standard normal. Next, conditional on

(z1, z2), suppose that x is generated as independent Bernoulli

x ∼ B(p)

where the propensity score, the probability p of being treated, is given by

p = Φ
(
0.5(
√

0.3z1,i +
√

0.7z2,i)3(1−
√

0.3z1,i −
√

0.7z2,i)
)
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and Φ(·) is the cdf of the standard normal. Finally, suppose that the potential outcomes for each

individual in the sample are given by

y0 = 10 + z1 + 1.5z2 + ε0,

y1 = 10 + 1.5z1 − z2 + ε1
(6.1)

where the conditional distribution of εj is skewed normal with conditional variance and conditional

skewness depending on z = (z1, z2). In particular,

εj ∼ SN (mj(z), sj(z), wj(z)) (6.2)

where

s0(z) = exp
(
0.5
(
1 + .5z1 + 1z2

1 + .3z2
))
, w0 (z) = 1 + z2

1 + .5z2

and

s1(z) = exp
(
0.5
(
1 + z1 + .2z2

1 + .3z2
))
, w1 (z) = 1 + z2

1 + z2

and mj(z) is fixed based on these functions to ensure that E(εj |z) = 0. The observed data is y =

xy1 + (1− x)y0.

There are approximately 42 percent treated subjects that emerge from this design. Also note that,

because of the extreme nonlinearity of the propensity score function, standard propensity score match-

ing does not perform well with data generated from this design. In addition, any method that is based

on direct modeling of the outcome distributions that is not robust to covariate dependent heteroskedas-

ticity, or to covariate dependent skewness, would also not perform well.

Our results in Table 8, which are based on 5 knots for the n = 500 case (implying 13 expanded

moment conditions created from z1, z2, and z1z2 ) and 7 knots for the larger sample sizes (implying 19

expanded moment conditions), show that the ATE is well inferred in this problem.

True Mean SD Median Lower Upper Ineff

n = 500 0.19 0.12 0.05 0.12 -0.00 0.19 1.27
n = 1000 0.21 0.15 0.04 0.15 0.07 0.20 1.09
n = 2000 0.23 0.25 0.03 0.26 0.21 0.30 1.19

Table 8: Posterior summary for ATE estimation with three data sets. True ATE for each sample size is
indicated by True. The summaries are based on 10,000 MCMC draws beyond a burn-in of 1000. The
M-H acceptance rate is around 90% in the estimation of the control and treated models.
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6.2 RD ATE in a Sharp design

Consider now the Bayesian analysis of the RD ATE effect under a sharp regression discontinuity design

where we suppose that the data arise from the following data generating mechanism,

yi = (1− xi)g0(zi) + xig1(zi) + εi,

where xi = 1{zi ≥ τ} and EP [εi|zi] = 0. We define the regression discontinuity average treatment

effect (RD-ATE) as

RD-ATE = g1(τ)− g0(τ)

where g0(τ) is the left limit of g0(z) and g1(τ) is a right limit of g1(z).

For illustrative purposes, suppose that

g0(zi) = 0.5 + zi

g1(zi) = 0.8 + 2zi

where zi = 2(z∗i − 1) and z∗i ∼ 2B(2, 4). εi is independently drawn from SN ∼ (m(zi), s(zi), w(zi))

with m(xi) = −s(zi)
√

2/πw(zi)/(
√

1 + w(zi)2), s(zi) = 0.7(2 − z2
i ), and w(zi) = 3 + z2

i . Under

this set up, the true value of RD ATE at the break-point (τ = 0) is 0.3. We estimate the RD-ATE with

three different sample sizes, n = 500, 2000, 8000.

Our prior-posterior analysis is based on the conditional mean independence assumptionEP [εi|zi] =

0, without any further assumptions about εi. We estimate g0(zi) and g1(zi) separately for data on ei-

ther side of τ using the conditional moment restrictions, EP [yi − θj0 − θj1zi|zi] = 0, where j = 0, 1.

We use 5 knots to convert the conditional expectation into the expanded moment conditions when

n = 500, 2000, and 10 knots when n = 8000. The prior of (θ00, θ01, θ10, θ11) is an independent

student-t prior with mean 0, dispersion 5, and degrees of freedom 2.5.

The results from this analysis are reported in Figure 2 and Table 9. The left panels of the figure has

a scatter plot of the data and the estimated regression functions at the posterior mean of the parameters.

The right panels of the figure have the histogram approximation to the posterior distribution of the

RD-ATE. One can see that the posterior distribution puts high mass around the true RD-ATE value of

0.3, and that the posterior distribution shrinks around this value with n.
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(a) (zi, yi) scatter plot (n = 500) (b) RD-ATE, n = 500

(c) (zi, yi) scatter plot (n = 2000) (d) RD-ATE, n = 2000

(e) (zi, yi) scatter plot (n = 8000) (f) RD-ATE, n = 8000

Figure 2: In left panels, grey dots represent realizations of (zi, yi). Blue and red lines are g0(zi) and
g1(zi) evaluated at the posterior mean (n = 500, 2000, 8000). Results are based on 20,000 MCMC
draws beyond a burn-in of 1000. The M-H acceptance rate is around 95% in both cases. In right
panels, the histogram of posterior draws for RD-ATE is presented for n = 500, 2000, 8000. In this
example, RD-ATE is defined as g1(0)− g0(0). The true value of RD-ATE is 0.3.
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Table 9: Posterior summaries for RD-ATE

Mean SD Median Lower Upper Ineff

n = 500 0.311 0.147 0.314 0.016 0.594 1.137
n = 2000 0.324 0.088 0.324 0.153 0.496 1.093
n = 8000 0.293 0.040 0.293 0.214 0.373 1.073

7 Conclusion

In this paper we have developed a Bayesian framework for analyzing an important and broad class

of semiparametric models in which the distribution of the outcomes is defined only up to a set of

conditional moments, some of which may be misspecified. We have derived Bernstein von Mieses

theorems for the behavior of the posterior distribution under both correct and incorrect specification of

the conditional moments, and developed the theory for comparing different conditional moment models

through a comparison of model marginal likelihoods. Our examples show that the framework we have

developed is both practical and useful.

Appendix

In this Appendix we only provide the main technical results that are new and that we need in order

to prove the theorems in the paper. These results are specific to the particular setting with increasing

dimension that we are considering. The complete proofs of all the theorems and technical results can

be found in the Supplementary Appendix to this paper.

A Notation

For each positive integer K let qK(z) := (q1(z), . . . , qK(z))′ be a K-vector of approximating func-

tions. For every ε > 0 and a constant C > 0, let

Θ(C, ε) := {‖θ − θ∗‖ ≤ Cε}.

We denote: W := (X ′, Z ′)′, w1:n := (w1, . . . , wn) the n-sample of i.i.d. observations of W ,

g(W, θ) := ρ(X, θ)⊗ qK(Z) the expanded moment functions and gi(θ) = g(wi, θ).
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Denote p(w1:n|θ) :=
∏n
i=1 p̂i(θ),

`n,θ(wi) := log p̂i(θ) = log eλ̂(θ)′g(wi,θ)∑n
j=1 e

λ̂(θ)′g(wj ,θ)

where λ̂(θ) := arg minλ∈RdK 1
n

∑n
i=1 e

λ′g(wi,θ) is the estimated tilting parameter. Moreover,

τ(λ̂, θ, w) := eλ̂(θ)′g(w,θ) and τn(λ̂, θ) := 1
n

n∑
i=1

τ(λ̂, θ, wi).

We use the notation En[·] := 1
n

∑n
i=1[·] for the empirical mean and E[·] for the population mean with

respect to the true distribution P∗. For a matrix A, we denote by λmin(A) and λmax(A) the minimum

and maximum eigenvalue of A, respectively.

In addition we denote,

ĝ(θ) := En[gi(θ)], ρθ(X, θ) := ∂ρ(X, θ)
∂θ′

, Ĝ(θ) := En[G(wi, θ)]

with G(w, θ) := ρθ(x, θ)⊗ qK(z) a dK × p matrix,

Ǧ(θ) := En[τ(λ̂, θ, wi)G(wi, θ)], Ω̂(θ) := En[g(wi, θ)g(wi, θ)′]

a dK × dK matrix and

Ω̌(θ) := En[τ(λ̂, θ, wi)g(wi, θ)g(wi, θ)′].

Their population counterparts in the correctly specified model are G∗ := E[ρθ(X, θ∗) ⊗ qK(z)] and

Ω∗ := E[g(wi, θ∗)g(wi, θ∗)′], respectively. In addition, Σ(z) := E[ρ(X, θ∗)ρ(X, θ∗)′|z], D(z) :=

E[ρθ(X, θ∗)|z], V −1
θ∗

:= EP [D(Z)′Σ(Z)−1D(Z)], and ρjθθ(x, θ∗) := ∂2ρj(x, θ)/∂θ∂θ′.

Finally, let CS, M, and MVT refer to the Cauchy-Schwartz, Markov, and Mean Value Theorem,

respectively.

B Proofs for Section 3.3

B.1 Proof of Theorem 3.1

The main steps of this proof proceed as in the proof of Van der Vaart (1998, Theorem 10.1) while

the proofs of the technical results we need all along this proof are new. For this reason, here we only

provide the main technical results that are new. The detailed proof of Theorem 3.1 can be found in the

Supplementary Appendix to this paper.
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The first technical result that we need to establish a Bernstein - von Mises theoerm is the stochastic

local asymptotic normality (LAN) expansion which is given in Lemma B.1 below. The second result

that we need is consistency of the posterior distribution, namely P (π(
√
n‖θ − θ∗‖ > Mn|w1:n) >

0)→ 0 for any Mn →∞, as n→∞, which is established in Theorem B.1.

We start with stating posterior consistency. The proof of this theorem is similar to the proof of

Theorem C.2 in Chib et al. (2018) and is given in the Supplementary Appendix for completeness.

Theorem B.1 (Posterior Consistency) Let the Assumptions of Lemma B.1 and Assumption 3.7 hold.

Moreover, assume that there exists a constant C > 0 such that for any sequence Mn →∞,

P

(
sup

‖θ−θ∗‖>Mn/
√
n

1
n

n∑
i=1

(`n,θ(wi)− `n,θ∗(wi)) ≤ −CM2
n/n

)
→ 1, (B.1)

as n→∞. Then,

π
(√

n‖θ − θ∗‖ > Mn

∣∣w1:n
) p→ 0 (B.2)

for any Mn →∞, as n→∞.

Lemma B.1 (Stochastic LAN) Let Assumptions 3.1, 3.2, 3.3, 3.5 and 3.6 be satisfied and assume

ζ(K)K2/
√
n→ 0. LetH denote a compact subset of Rp. Then,

sup
h∈H

∣∣∣∣∣
n∑
i=1

`n,θ∗+h/
√
n(wi)−

n∑
i=1

`n,θ∗(wi)− h′V −1
θ∗

∆n,θ∗ −
1
2h
′V −1
θ∗
h

∣∣∣∣∣ = op(1) (B.3)

where V −1
θ∗

∆n,θ∗
d→ N (0, V −1

θ∗
) and 1√

n

∑n
i=1

d`n,θ∗ (wi)
dθ − V −1

θ∗
∆n,θ∗

p→ 0.

Proof. Define τ i(λ, θ) := eλ
′gi(θ)

En[eλ
′gj(θ)]

,

Ω̌(θ, λ) := En[τ i(λ, θ)gi(θ)gi(θ)′] and Ǧ(θ, λ) := En[τ i(λ, θ)G(wi, θ)].

By the MVT expansion of
∑n
i=1 `n,θ(wi) around λ̂(θ) = 0, there exists a λ̃θ lying on the line between

λ̂(θ) and zero such that:

n∑
i=1

`n,θ(wi) =
n∑
i=1

log τ i(λ̂,θ)− n log(n) = −n log(n) + nĝ(θ)′λ̂(θ)− nĝ(θ)′λ̂(θ)

− 1
2nλ̂(θ)′Ω̌(θ, λ̃θ)λ̂(θ) + 1

2n
∣∣∣En[τ i(λ̃θ, θ)gi(θ)′]λ̂(θ)

∣∣∣2 . (B.4)

By expanding the first order condition for λ̂(θ) around λ̂(θ) = 0, there exists a λ̄θ lying on the line

between λ̂(θ) and zero such that : ĝ(θ) + Ω̌(θ, λ̄θ)λ̂(θ) = 0 which gives λ̂(θ) = Ω̌(θ, λ̄θ)−1ĝ(θ). By

replacing this in (B.4) we obtain:
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n∑
i=1

`n,θ(wi) = −n log(n)− 1
2nĝ(θ)′Ω̌(θ, λ̄θ)−1Ω̌(θ, λ̃θ)Ω̌(θ, λ̄θ)−1ĝ(θ)

+ 1
2n
∣∣∣En[τ i(λ̃θ, θ)gi(θ)′]Ω̌(θ, λ̄θ)−1ĝ(θ)

∣∣∣2 . (B.5)

Hence, by replacing in
∑n
i=1 `n,θ∗+hn(wi) the following MVT expansion ĝ(θ∗ + h/

√
n) = ĝ(θ∗) +

Ĝ(θ̃)h/
√
n, for θ̃ lying between θ∗ + h/

√
n and θ∗, and by denoting θ1 := θ∗ + hn hn := h/

√
n we

get

n∑
i=1

`n,θ∗+hn(wi)−
n∑
i=1

`n,θ∗(wi)

= 1
2nĝ(θ∗)′

[
Ω̌(θ∗, λ̄θ∗)−1Ω̌(θ∗, λ̃θ∗)Ω̌(θ∗, λ̄θ∗)−1 − Ω̌(θ1, λ̄θ1)−1Ω̌(θ1, λ̃θ1)Ω̌(θ1, λ̄θ1)−1

]
ĝ(θ∗)

−
√
nĝ(θ∗)′Ω̌(θ1, λ̄θ1)−1Ω̌(θ1, λ̃θ1)Ω̌(θ1, λ̄θ1)−1Ĝ(θ̃)h

− 1
2h
′Ĝ(θ̃)′Ω̌(θ1, λ̄θ1)−1Ω̌(θ1, λ̃θ1)Ω̌(θ1, λ̄θ1)−1Ĝ(θ̃)h

+1
2n
∣∣∣En[τ i(λ̃θ1 , θ1)gi(θ1)′]Ω̌(θ1, λ̄θ1)−1ĝ(θ1)

∣∣∣2−1
2n
∣∣∣En[τ i(λ̃θ∗ , θ∗)gi(θ∗)′]Ω̌(θ∗, λ̄θ∗)−1ĝ(θ∗)

∣∣∣2 .
(B.6)

By using the equalityA−1BA−1−C−1DC−1 = A−1(B−D)A−1+(A−1−C−1)DA−1+C−1D(A−1−

C−1) for matrices A,B,C,D we can write

n∑
i=1

`n,θ∗+hn(wi)−
n∑
i=1

`n,θ∗(wi)

= 1
2nĝ(θ∗)′Ω̌(θ∗, λ̄θ∗)−1

[
Ω̌(θ∗, λ̃θ∗)− Ω̌(θ1, λ̃θ1)

]
Ω̌(θ∗, λ̄θ∗)−1ĝ(θ∗)

+ 1
2nĝ(θ∗)′

[
Ω̌(θ∗, λ̄θ∗)−1 − Ω̌(θ1, λ̄θ1)−1

]
Ω̌(θ1, λ̃θ1)Ω̌(θ∗, λ̄θ∗)−1ĝ(θ∗)

+ 1
2nĝ(θ∗)′

[
Ω̌(θ∗, λ̄θ∗)−1 − Ω̌(θ1, λ̄θ1)−1

]
Ω̌(θ1, λ̃θ1)Ω̌(θ1, λ̄θ1)−1ĝ(θ∗)

−
√
nĝ(θ∗)′Ω̌(θ1, λ̄θ1)−1Ω̌(θ1, λ̃θ1)Ω̌(θ1, λ̄θ1)−1Ĝ(θ̃)h

− 1
2h
′Ĝ(θ̃)′Ω̌(θ1, λ̄θ1)−1Ω̌(θ1, λ̃θ1)Ω̌(θ1, λ̄θ1)−1Ĝ(θ̃)h

+1
2n
∣∣∣En[τ i(λ̃θ1 , θ1)gi(θ1)′]Ω̌(θ1, λ̄θ1)−1ĝ(θ1)

∣∣∣2−1
2n
∣∣∣En[τ i(λ̃θ∗ , θ∗)gi(θ∗)′]Ω̌(θ∗, λ̄θ∗)−1ĝ(θ∗)

∣∣∣2 .
(B.7)

Let us analyse the first three terms in (B.7). Since λ̄θ∗ , λ̄θ1 , λ̃θ1 ∈ Λn, where Λn is as defined in

Lemma G.2, in the following we can use the results in Lemma G.4 to get Ω̌(θ∗, λ̄θ∗)−1 ≤ CΩ̂(θ∗)−1,

Ω̌(θ1, λ̄θ1)−1 ≤ CΩ̂(θ1)−1 and Ω̌(θ1, λ̃θ1)−1 ≤ CΩ̂(θ1)−1 with probability approaching 1 for any

1 < C <∞. We start from the first term:

34



sup
h∈H

Rn,1(h) := 1
2 sup
h∈H

∣∣∣nĝ(θ∗)′Ω̌(θ∗, λ̄θ∗)−1
[
Ω̌(θ∗, λ̃θ∗)− Ω̌(θ1, λ̃θ1)

]
Ω̌(θ∗, λ̄θ∗)−1ĝ(θ∗)

∣∣∣
≤ 1

2‖Ω̌(θ∗, λ̄θ∗)−1√nĝ(θ∗)‖2 sup
h∈H
‖Ω̌(θ∗, λ̃θ∗)− Ω̌(θ1, λ̃θ1)‖

≤
(

min
1≤i≤n

τ i(λ̄θ∗ , θ∗)
)−2
‖Ω̂(θ∗)−1√nĝ(θ∗)‖2Op

(
ζ(K)K/

√
n
)

= Op
(
ζ(K)K2/

√
n
)

by using the first result in Lemma G.7 and because ‖Ω̂(θ∗)−1√nĝ(θ∗)‖ = ‖Ω−1
∗
√
nĝ(θ∗)‖ with prob-

ability approaching 1 by Donald et al. (2003, Lemma A.6) and ‖Ω−1
∗
√
nĝ(θ∗)‖ = Op(

√
K) by M. For

the second term we use the identity (A−1 − B−1) = A−1(B − A)B−1 for two matrices A,B, and

again the first result in Lemma G.7:

sup
h∈H

Rn,2(h) := 1
2 sup
h∈H

∣∣∣nĝ(θ∗)′Ω̌(θ∗, λ̄θ∗)−1
[
Ω̌(θ1, λ̄θ1)− Ω̌(θ∗, λ̄θ∗)−1

]
Ω̌(θ1, λ̄θ1)−1

× Ω̌(θ1, λ̃θ1)Ω̌(θ∗, λ̄θ∗)−1ĝ(θ∗)
∣∣∣

≤ 1
2‖Ω̌(θ∗, λ̄θ∗)−1√nĝ(θ∗)‖2Op

(
ζ(K)K/

√
n
)

= Op
(
ζ(K)K2/

√
n
)
.

The third term can be treated in a similar way and gives the same rate.

Next, we analyze the last two terms in (B.7). We use again Lemma G.4. Therefore, because

‖Ω̌(θ1, λ̄θ1)−1ĝ(θ∗)‖ = ‖Ω−1
∗
√
nĝ(θ∗)‖with probability approaching 1 by Donald et al. (2003, Lemma

A.6) and ‖Ω−1
∗
√
nĝ(θ∗)‖ = Op(

√
K) by M.

sup
h∈H

1
2n
∣∣∣En[τ i(λ̃θ1 , θ1)gi(θ1)′]Ω̌(θ1, λ̄θ1)−1ĝ(θ1)

∣∣∣2
≤ 1

2CEn[τ i(λ̃θ1 , θ1)gi(θ1)′]2‖Ω̌(θ1, λ̄θ1)−1ĝ(θ1)‖2 = Op(K2/n) (B.8)

where we have used the MVT expansion ĝ(θ1) = ĝ(θ∗) + Ĝ(θ̃)h/
√
n for a θ̃ lying between θ1 and θ∗

and the result of Lemma G.5. We conclude that

sup
h∈H

∣∣∣ n∑
i=1

`n,θ∗+hn(wi)−
n∑
i=1

`n,θ∗(wi)−
√
nĝ(θ∗)′Ω̌(θ1, λ̄θ1)−1Ω̌(θ1, λ̃θ1)Ω̌(θ1, λ̄θ1)−1Ĝ(θ̃)h

− 1
2h
′Ĝ(θ̃)′Ω̌(θ1, λ̄θ1)−1Ω̌(θ1, λ̃θ1)Ω̌(θ1, λ̄θ1)−1Ĝ(θ̃)h

∣∣∣
= Op

(
ζ(K)K2/

√
n
)

+Op(K/
√
n) = Op

(
ζ(K)K2/

√
n
)
. (B.9)

Under the assumptions of the theorem the term Op
(
ζ(K)K2/

√
n
)

converges to zero.Moreover, by

Lemma G.7 and ζ(K)K/
√
n→ 0:
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−
√
nĝ(θ∗)′Ω̌(θ1, λ̄θ1)−1Ω̌(θ1, λ̃θ1)Ω̌(θ1, λ̄θ1)−1Ĝ(θ̃)h

= −
√
nĝ(θ∗)′Ω̂(θ∗)−1Ĝ(θ∗)h+ op(1)

= − h′√
n

n∑
i=1

D(zi)′Σ(zi)−1ρ(xi, θ∗)′ + op(1)

where the op(1) term is uniform in h ∈ H and where to get the second equality we have used arguments

similar to the ones in Donald et al. (2003, Proof of Theorem 5.6). By the Lindberg-Levy central limit

theorem, ∆n,θ∗ := − 1√
n

∑n
i=1 Vθ∗D(zi)′Σ(zi)−1ρ(xi, θ∗)

d→ N (0, Vθ∗). Similarly as in Donald et al.

(2003, Proof of Theorem 5.6) it is possible to show that (by using compactness ofH)

h′Ĝ(θ̃)′Ω̌(θ1, λ̄θ1)−1Ω̌(θ1, λ̃θ1)Ω̌(θ1, λ̄θ1)−1Ĝ(θ̃)h = h′Vθ∗h+ op(1)

where the op(1) term is uniform in h ∈ H. Finally, remark that

1√
n

n∑
i=1

d`n,θ∗(wi)
dθ

− V −1
θ∗

∆n,θ∗
p→ 0.

This establishes the result of the Lemma. �

B.2 Proof of Theorem 3.2

For the misspecified case we use the following notation: Gi(θ) := G(wi, θ), G◦ := E[Gi(θ◦)],

Ǧ◦ := E[τ i(λ◦(θ◦), θ◦)Gi(θ◦)], Ω◦ := E[τ(λ◦(θ◦), θ◦,Wi)gi(θ◦)gi(θ◦)′], τ i(λ, θ) := eλ
′gi(θ)

En[eλ
′gj(θ)]

,

Ǧ(λ, θ) := En[τ i(λ, θ)Gi(θ)], Ω̌(θ, λ) := En[τ(λ, θ,Wi)gi(θ)gi(θ)′]. We also use standard nota-

tion in empirical process theory: Pn := En[δxi ] where δx is the Dirac measure at x, and Gng :=
√
n(Pnf − EP f) for every function f .

The proof of Theorem 3.2 proceeds as the proof of Theorem 3.1 and so we omit it. In the Sup-

plementary Appendix we explain the differences between the proofs of Theorem 3.2 and of Theorem

3.1. As for Theorem 3.1, even for the Bernstein - von Mises theorem in the misspecified case we need

to establish a stochastic local asymptotic normality (LAN) expansion, which is given in Lemma B.2

below, and consistency of the posterior distribution, namely P (π(
√
n‖θ − θ◦‖ > Mn|w1:n) > 0)→ 0

for any Mn →∞, as n→∞, which is given in Theorem B.2.

We start with stating posterior consistency. The proof of this theorem is similar to the proof of

Theorem C.2 in Chib et al. (2018) and to the proof of Lemma B.1 which is given in the Supplementary

Appendix for completeness.
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Theorem B.2 (Posterior Consistency) Let the Assumptions of Lemma B.2 and Assumption 3.9 hold.

Moreover, assume that there exists a constant C > 0 such that for any sequence Mn →∞,

P

(
sup

‖θ−θ◦‖>Mn/
√
n

1
n

n∑
i=1

(`n,θ(wi)− `n,θ◦(wi)) ≤ −CM2
n/n

)
→ 1, (B.10)

as n→∞. Then,

π
(√

n‖θ − θ◦‖ > Mn

∣∣w1:n
) p→ 0 (B.11)

for any Mn →∞, as n→∞.

Lemma B.2 (Stochastic LAN) Let Assumptions 3.1, 3.2, 3.6 and 3.10 hold and assume ζ(K)K2√K/n→
0. LetH denote a compact subset of Rp and θ1 := θ◦ + h/

√
n with h ∈ H. Then,

sup
h∈H

∣∣∣∣∣
n∑
i=1

`n,θ1(wi)−
n∑
i=1

`n,θ◦(wi)− h′Aθ◦∆n,θ0 −
1
2h
′Aθ◦h

∣∣∣∣∣ = op(1) (B.12)

where ∆n,θ0 is a random vector bounded in probability and Aθ◦ is a nonsingular matrix.

Proof. We have to analyse the difference
∑n
i=1 `n,θ1(wi)−

∑n
i=1 `n,θ◦(wi). Because Wi are i.i.d. then

E[gi(θ)] = E[gj(θ)], and so we can write:

n∑
i=1

`n,θ(wi) =
n∑
i=1

log τ i(λ̂, θ)− n log(n) =
n∑
i=1

log eλ̂
′
(gi(θ)−E[gi(θ)])

En[eλ̂
′
(gj(θ)−E[gj(θ)])]

− n logn

= nλ̂(θ)′En(gi(θ)− E[gi(θ)])− n logEn[eλ̂(θ)′(gj(θ)−E[gj(θ)])]− n log(n). (B.13)

Denote gi(θ) := gi(θ) − E[gi(θ)] and Gi(θ) := Gi(θ) − E[Gi(θ)], so that
∑n
i=1 `n,θ(wi) =

nλ̂(θ)′En[gi(θ)] − n logEn[eλ̂(θ)′gi(θ)] − n log(n). By the MVT there exists a t ∈ [0, 1] such that

θ̃ := θ◦ + th/
√
n satisfies

n∑
i=1

`n,θ1(wi) =
n∑
i=1

`n,θ◦(wi) + h′√
n

n∑
i=1

˙̀
n,θ◦(wi) + 1

2
h′√
n

n∑
i=1

῭
n,̃θ

(wi)
h√
n

(B.14)

where

˙̀
n,θ◦(wi) :=

n∑
i=1

d`n,θ1(wi)
dθ

∣∣∣∣∣
θ1=θ◦

= dλ̂(θ◦)′

dθ
gi(θ◦) +Gi(θ◦)′λ̂(θ◦)

+ dλ̂(θ◦)′

dθ
E[gi(θ◦)]− En

[
τ i(λ̂(θ◦), θ◦)Gi(θ◦)′

]
λ̂(θ◦)

= dλ̂(θ◦)′

dθ
gi(θ◦) +Gi(θ◦)′λ◦(θ◦) +Gi(θ◦)′(λ̂(θ◦)− λ◦(θ◦)) +

(
dλ̂(θ◦)′

dθ
− dλ◦(θ◦)′

dθ

)
E[gi(θ◦)]
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− En
[(
τ i(λ̂(θ◦), θ◦)− τ i(λ◦, θ◦)

)
Gi(θ◦)′

]
λ̂(θ◦)− En

[
τ i(λ◦, θ◦)Gi(θ◦)′ − Ǧ′◦

]
λ◦(θ◦)

− En[τ i(λ◦, θ◦)Gi(θ◦)′ −G′◦](λ̂(θ◦)− λ◦(θ◦)) (B.15)

with

dλ̂(θ◦)′

dθ
= −En

[
τ i(λ̂, θ◦)Gi(θ◦)′(I + λ̂(θ◦)gi(θ◦)′)

] (
En[τ i(λ̂, θ◦)gi(θ◦)gi(θ◦)′]

)−1
,

dλ◦(θ◦)′

dθ
= −E

[
τ(λ◦, θ◦,Wi)Gi(θ◦)′(I + λ◦(θ◦)gi(θ◦)′)

]
Ω−1
◦ (B.16)

and where we have used the first order condition of the pseudo true value θ◦, that is:

dλ◦(θ◦)′

dθ
E[gi(θ◦)] +G′◦λ◦(θ◦)−

dλ◦(θ◦)′

dθ
E[τ i(λ◦, θ◦)gi(θ◦)]− E[τ i(λ◦, θ◦)Gi(θ◦)′]λ◦(θ◦) = 0

and E[τ i(λ◦, θ◦)gi(θ◦)] = 0 because it is the first order condition for λ◦. Moreover,

῭
n,̃θ

(wi) :=
n∑
i=1

d2`n,θ1(wi)
dθdθ′

∣∣∣∣∣
θ1=θ̃

=
dK∑
j=1

d2λ̂(θ̃)′

dθdθ′
gi,j(θ̃) + dλ̂(θ̃)′

dθ
Gi(θ̃) +Gi(θ̃)′

dλ̂(θ̃)′

dθ

+
dK∑
j=1

d2gi,j(θ̃)
dθdθ′

λ̂j(θ̃) + En

[
Gi(θ̃)′λ̂(θ̃)dτ i(λ̂(θ̃), θ̃)

dλ̂
′

dλ̂(θ̃)
dθ′

]
+ En

[
τ i(λ̂(θ̃), θ̃)

dθ
λ̂(θ̃)′Gi(θ̃)

]

+ En

τ i(λ̂(θ̃), θ̃)
dK∑
j=1

d2gi,j(θ̃)
dθdθ′

 λ̂j(θ̃) + En
[
τ i(λ̂(θ̃), θ̃)Gi(θ̃)′

] dλ̂(θ̃)
dθ′

. (B.17)

We start with analyzing term (B.15). First, remark that by Lemma G.12 it holds:

h′(dλ̂(θ◦)′

dθ
− dλ◦(θ◦)′

dθ
)
√
nEn[gi(θ◦)] = op(1)

uniformly in h ∈ H. Next, we analyse the third term in (B.15). By a MVT expansion of the first

order condition for λ̂(θ◦) there exists τ ∈ [0, 1] such that λ̂τ := τ(λ̂(θ◦) − λ◦(θ◦)) + λ◦(θ◦) satisfies

En[eλ̂(θ◦)′gi(θ◦)gi(θ◦)] = 0 = En[eλ◦(θ◦)′gi(θ◦)gi(θ◦)] + Ω̌(θ◦, λ̂τ )(λ̂(θ◦)− λ◦(θ◦)) which implies:

(λ̂(θ◦)− λ◦(θ◦)) = −Ω̌(θ◦, λ̂τ )−1En[eλ◦(θ◦)′gi(θ◦)gi(θ◦)]. (B.18)

Therefore,

h′
1√
n

n∑
i=1

Gi(θ◦)′(λ̂(θ◦)− λ◦(θ◦)) = −
√
nEn[eλ◦(θ◦)′gi(θ◦)gi(θ◦)′]Ω̌(θ◦, λ̂τ )−1En[Gi(θ◦)]h

= −Gn[eλ◦(θ◦)′gi(θ◦)gi(θ◦)′]Ω̌(θ◦, λ̂τ )−1En[Gi(θ◦)]h = Op(K/
√
n).

Here, to get the term Op(K/
√
n) we have used the inequality
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sup
h∈H

E
∣∣∣Gn[eλ◦(θ◦)′gi(θ◦)gi(θ◦)′]Ω̌(θ◦, λ̂τ )−1En[Gi(θ◦)]h

∣∣∣
≤ C−2 sup

h∈H

√
E
∥∥Gn[eλ◦(θ◦)′gi(θ◦)gi(θ◦)′]

∥∥2
√
E
∥∥∥En[Gi(θ◦)]h

∥∥∥2
= Op(

√
K
√
K/n)

for which we have used Lemma G.9 and Assumption 3.10 (d) and (f). To control the fourth term in

(B.15) we use Assumption 3.10 (h). We now control the fifth term in (B.15). For this, we use again

(B.18) and a MVT expansion of τ i(λ̂(θ◦), θ◦) around λ◦(θ◦):

√
nλ̂(θ◦)′En[

(
τ i(λ̂(θ◦), θ◦)− τ i(λ◦(θ◦), θ◦)

)
Gi(θ◦)]h

=
√
n(λ̂(θ◦)− λ◦(θ◦))′En

[
∂τ i(λt, θ◦)

∂λ
λ̂(θ◦)′Gi(θ◦)

]
h

= −
√
nEn[eλ◦(θ◦)′gi(θ◦)gi(θ◦)′]Ω̌(θ◦, λ̂τ )−1En

[
∂τ i(λt, θ◦)

∂λ
λ̂(θ◦)′Gi(θ◦)

]
h

= −Gn[eλ◦(θ◦)′gi(θ◦)gi(θ◦)′]Ω̌(θ◦, λ̂τ )−1En
[
∂τ i(λt, θ◦)

∂λ
λ◦(θ◦)′Gi(θ◦)

]
h+ op(1) (B.19)

where λt = t(λ̂(θ◦)− λ◦(θ◦)) + λ◦(θ◦) for some t ∈ [0, 1]. To control the last term in (B.15) we use

again (B.18) to get

− h′
√
nEn[τ i(λ◦, θ◦)Gi(θ◦)′ −G′◦](λ̂(θ◦)− λ◦(θ◦))

= h′En[τ i(λ◦, θ◦)Gi(θ◦)′ −G′◦]Ω̌(θ◦, λ̂τ )−1Gn[eλ◦(θ◦)′gi(θ◦)gi(θ◦)].

By putting together these arguments we get:

h√
n

n∑
i=1

˙̀
n,θ◦(wi) = h′Gn(L̇n,θ◦(wi)) +

√
nh′

(
dλ̂(θ◦)′

dθ
− dλ◦(θ◦)′

dθ

)
E[gi(θ◦)]

+ Gn[eλ◦(θ◦)′gi(θ◦)gi(θ◦)′]Ω̌(θ◦, λ̂τ )−1En
[
∂τ i(λt, θ◦)

∂λ
λ◦(θ◦)′Gi(θ◦)

]
h

− h′Gn(τ i(λ◦(θ◦), θ◦)Gi(θ◦)′)λ◦(θ◦)

+h′En[τ i(λ◦, θ◦)Gi(θ◦)′−G′◦]Ω̌(θ◦, λ̂τ )−1Gn[eλ◦(θ◦)′gi(θ◦)gi(θ◦)]+op(1) =: h′Aθ◦∆n,θ0 +op(1)
(B.20)

where the op(1) is uniform in h ∈ H, and L̇n,θ◦(wi) := d
dθLn,θ(wi)

∣∣∣
θ=θ◦

with

Ln,θ◦(wi) := log(dQ∗(θ◦)/dP∗)(wi) = log eλ◦(θ◦)
′gi(θ◦)

EP [eλ◦(θ◦)′gi(θ◦)]
.

Moreover, as shown above ∆n,θ0 = Op(1) and Aθ◦ is defined below.

We now analyse the limit of (B.17). For this, we use Lemma G.12, the fact that

(λ̂(θ◦)− λ◦(θ◦)) = −Ω̌(θ◦, λ̂τ )−1En[eλ◦(θ◦)′gi(θ◦)gi(θ◦)]
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as shown above, and the fact that λ̂(θ̃)′ − λ̂(θ◦)′ = (θ̃ − θ0)dλ̂(̃θ2)′
dθ for θ̃2 = θ◦ + th/

√
n and some

t ∈ [0, 1], to get

h′
1
n

n∑
i=1

῭
n,̃θ

(wi)h = h′
dK∑
j=1

d2λ◦(θ◦)′

dθdθ′
E[gi,j(θ◦)]h+ h′

dλ◦(θ◦)′

dθ
E[Gi(θ◦)]h

+ h′E
[
Gi(θ◦)′λ◦(θ◦)

dτ i(λ◦(θ◦), θ◦)
dλ′◦

dλ◦(θ◦)
dθ′

]
h+ h′E

[
dτ i(λ◦(θ◦), θ◦)

dθ
λ◦(θ◦)′Gi(θ◦)

]
h

+h′E

τ i(λ◦(θ◦), θ◦) dK∑
j=1

d2gi,j(θ◦)
dθdθ′

λ◦,j(θ◦)+h′E [τ i(λ◦(θ◦), θ◦)Gi(θ◦)′] dλ◦(θ◦)
dθ′

h+op(1) =: h′Aθ◦h

(B.21)

where the op(1) is uniform in h ∈ H. By replacing (B.20) and (B.21) in (B.14) we get the result of the

Lemma. �

C Proof of Theorem 4.1

We can write log p(w1:n|θ`;M`) = −n logn+ n log L̂(θ`) where

L̂(θ`) := exp{λ̂(θ`)′ĝi(θ`)}
[

1
n

n∑
i=1

exp{λ̂(θ`)′gi(wi, θ`)}
]−1

and L(θ`) = exp{λ◦(θ`)′EP [g(w, θ`)]}
(
EP

[
exp{λ◦(θ`)′g(w, θ`)}

])−1
. Then, we have:

P

(
logm(w1:n;Mj) > max

` 6=j
logm(w1:n;M`)

)
= P

(
n log L̂(θj◦)+log π(θj◦|Mj)−log π(θj◦|w1:n,Mj)

> max
`6=j

[n log L̂(θ`◦) + log π(θ`◦|M`)− log π(θ`◦|w1:n,M`)]
)

= P
(
n logL(θj◦) + n log L̂(θj◦)

L(θj◦)
+ Bj > max

` 6=j

[
n logL(θ`◦) + B` + n log L̂(θ`◦)

L(θ`◦)

])
(C.1)

where ∀`, B` := log π(θ`◦|M`) − log π(θ`◦|x1:n,M`) and B` = Op(1) under the assumptions of The-

orem 3.2. By definition of dQ∗(θ) in Section 3.4 we have that: logL(θ`◦) = EP [log dQ∗(θ`◦)/dP ] =

−EP [log dP/dQ∗(θ`◦)] = −K(P ||Q∗(θ`◦)). Remark that EP [log(dP/dQ∗(θ2
◦))] > EP [log(dP/dQ∗(θ1

◦))]

means that the KL divergence between P and Q∗(θ`◦), is smaller for model M1 than for model M2,

where Q∗(θ`◦) minimizes the KL divergence between Q ∈ Pθ`◦ and P for ` ∈ {1, 2} (notice the inver-

sion of the two probabilities).

First, suppose that min 6̀=j EP
[
log

(
dP/dQ∗(θ`◦)

)]
> EP

[
log

(
dP/dQ∗(θj◦)

)]
. By (C.1):
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P

(
logm(w1:n;Mj) > max

` 6=j
logm(w1:n;M`)

)
≥

P

log L̂(θj◦)
L(θj◦)

−max
6̀=j

log L̂(θ`◦)
L(θ`◦)

+ 1
n

(Bj −max
`6=j
B`) > max

`6=j
logL(θ`◦)− logL(θj◦)︸ ︷︷ ︸

=:In

 . (C.2)

This probability converges to 1 because In = K(P ||Q∗(θj◦))−min`6=jK(P ||Q∗(θ`◦)) < 0 by assump-

tion, and
[
log L̂(θ`)− logL(θ`)

]
p→ 0, for every θ` ∈ Θ` and every ` ∈ {1, 2} by Lemma G.10 and

by K/
√
n→ 0.

To prove the second direction of the statement, suppose that

lim
n→∞

P (logm(w1:n;Mj) > max
`6=j

logm(w1:n;M`)) = 1.

By (C.1) it holds, ∀` 6= j

P

(
logm(w1:n;Mj) > max

6̀=j
logm(w1:n;M`)

)
≤

P
(

log L̂(θj◦)
L(θj◦)

− log L̂(θ`◦)
L(θ`◦)

+ 1
n

(Bj − B`) > log L(θ`◦)
L(θj◦)

)
. (C.3)

Convergence to 1 of the left hand side implies convergence to 1 of the right hand side which is pos-

sible only if logL(θ`◦) − logL(θj◦) < 0. Since this is true for every model `, then this implies that

K(P ||Q∗(θj◦)) < min 6̀=jK(P ||Q∗(θ`◦)) which concludes the proof. �
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